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Abstract Disrupted nucleocytoplasmic transport (NCT) has been implicated in

neurodegenerative disease pathogenesis; however, the mechanisms by which disrupted NCT

causes neurodegeneration remain unclear. In a Drosophila screen, we identified ref(2)P/p62, a key

regulator of autophagy, as a potent suppressor of neurodegeneration caused by the GGGGCC

hexanucleotide repeat expansion (G4C2 HRE) in C9orf72 that causes amyotrophic lateral sclerosis

(ALS) and frontotemporal dementia (FTD). We found that p62 is increased and forms ubiquitinated

aggregates due to decreased autophagic cargo degradation. Immunofluorescence and electron

microscopy of Drosophila tissues demonstrate an accumulation of lysosome-like organelles that

precedes neurodegeneration. These phenotypes are partially caused by cytoplasmic mislocalization

of Mitf/TFEB, a key transcriptional regulator of autophagolysosomal function. Additionally, TFEB is

mislocalized and downregulated in human cells expressing GGGGCC repeats and in C9-ALS patient

motor cortex. Our data suggest that the C9orf72-HRE impairs Mitf/TFEB nuclear import, thereby

disrupting autophagy and exacerbating proteostasis defects in C9-ALS/FTD.

Introduction
A GGGGCC (G4C2) hexanucleotide repeat expansion (HRE) in chromosome nine open reading

frame 72 (C9orf72) is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and

frontotemporal dementia (FTD), accounting for up to 40% of cases of familial ALS (DeJesus-

Hernandez et al., 2011; ITALSGEN Consortium et al., 2011). ALS and/or FTD caused by mutations

in C9orf72 (C9-ALS/FTD) is inherited in an autosomal dominant manner, suggesting that the HRE

causes disease through gain-of-function or haploinsufficiency (DeJesus-Hernandez et al., 2011;

Ling et al., 2013). Loss of C9orf72 function has been linked to disruption of autophagy and
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lysosome function, though neurodegeneration is not observed in C9orf72 knockout mice (Liu et al.,

2016; Shi et al., 2018; Webster et al., 2016), suggesting that C9-ALS/FTD is primarily caused by

toxicity of the HRE. Furthermore, expression of G4C2 repeats causes neurotoxicity in Drosophila and

cell culture models of C9-ALS (Goodman et al., 2019a; Kramer et al., 2016; Tran et al., 2015). This

toxicity has been proposed to occur through either G4C2 repeat RNA-mediated sequestration of

RNA-binding proteins or translation of the G4C2 repeats into dipeptide-repeat proteins (DPRs)

through non-canonical repeat-associated non-AUG (RAN) translation (Donnelly et al., 2013;

Goodman et al., 2019a; Mori et al., 2013; Tran et al., 2015).

We previously conducted a Drosophila screen of candidate proteins that bound with moderate-

to-high affinity to G4C2 RNA and identified modulation of the nucleocytoplasmic transport (NCT)

pathway as a potent modifier of G4C2 toxicity in both fly and iPS neuron models of C9-ALS

(Zhang et al., 2015a), a finding that has also been made by other groups (Freibaum et al., 2015;

Jovičić et al., 2015). The mechanisms by which the G4C2 HRE disrupts NCT remain unclear, but

potential mechanisms include G4C2 RNA binding to the master NCT regulator RanGAP

(Zhang et al., 2015a), DPRs disrupting the nuclear pore complex (Boeynaems et al., 2016;

Shi et al., 2017; Zhang et al., 2016), stress granules sequestering NCT factors (Zhang et al., 2018),

or cytoplasmic TDP-43-dependent dysregulation of karyopherin-a (Chou et al., 2018; Gasset-

Rosa et al., 2019; Solomon et al., 2018). Recently, a role for NCT disruption in Huntington’s dis-

ease and Alzheimer’s disease has been proposed, indicating that NCT disruption may be a common

mechanism in several neurodegenerative diseases (Eftekharzadeh et al., 2018; Gasset-Rosa et al.,

2017; Grima et al., 2017). However, the pathways affected by NCT disruption that cause neurode-

generation have not yet been elucidated.

In a Drosophila screen for modifiers of G4C2-mediated neurodegeneration (Zhang et al., 2015a),

we identified refractory to sigma P (ref(2)P), the Drosophila homolog of p62/SQSTM1 (Sequesto-

some 1). p62/SQSTM1 functions in macroautophagy (hereafter termed autophagy), and mutations in

p62/SQSTM1 are a rare genetic cause of ALS/FTD (Cirulli et al., 2015; Le Ber et al., 2013;

Teyssou et al., 2013). Interestingly, many other genes implicated in ALS/FTD function in autophagy

(Evans and Holzbaur, 2019; Lin et al., 2017; Ramesh and Pandey, 2017) such as tank-binding

kinase 1 (TBK1), optineurin (OPTN1), ubiquilin 2 and 4 (UBQLN2 and 4), valosin-containing protein

(VCP), charged multivesicular body protein 2B (CHMP2B), VAMP-associated protein B (VapB), and

the C9orf72 protein itself (O’Rourke et al., 2015; Sellier et al., 2016; Sullivan et al., 2016;

Ugolino et al., 2016; Webster et al., 2016; Yang et al., 2016). Organelles and protein aggregates

are degraded via polyubiquitination and targeting to a newly forming autophagosome, followed by

degradation upon fusion with the lysosome. Deletion of key autophagy genes in neurons is sufficient

to cause neurodegeneration in mice (Hara et al., 2006; Komatsu et al., 2006).

Although autophagy and nucleocytoplasmic transport have both been implicated in neurodegen-

eration, it is unclear whether or how these two pathways interact in disease pathogenesis

(Gao et al., 2017; Thomas et al., 2013). Here, we show that expression of expanded G4C2 repeats

is sufficient to disrupt autophagy in Drosophila, leading to an accumulation of p62 and ubiquitinated

protein aggregates. We find that autophagolysosomal defects are caused by loss of nuclear localiza-

tion of the transcription factor Mitf (the Drosophila homolog of TFEB), which regulates transcription

of genes involved in autophagolysosome biogenesis (Bouché et al., 2016; Palmieri et al., 2011;

Sardiello et al., 2009; Zhang et al., 2015b). Furthermore, suppressing this NCT defect is sufficient

to rescue Mitf nuclear localization, restoring autophagy and lysosome function and rescuing neuro-

degeneration. These findings suggest a pathogenic cascade in C9-ALS/FTD whereby NCT disruption

causes a failure of autophagosome biogenesis and lysosome dysfunction that ultimately leads to

neuronal death.

Results

Ref(2)P/p62 knockdown suppresses G4C2-mediated neurodegeneration
Expression of 30 G4C2 repeats (30R) in the eye using GMR-Gal4 results in progressive photorecep-

tor degeneration and visible ommatidial disruption by day 15 (Figure 1A; Xu et al., 2013;

Zhang et al., 2015a). In a genetic modifier screen of over 800 RNAi lines, UAS-ref(2)PRNAi was

among the strongest of 32 suppressors of G4C2-mediated eye degeneration (Zhang et al.,
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Figure 1. Autophagy receptor Ref(2) P/p62 genetically suppresses G4C2-HRE-mediated degeneration. (A) 15-day-old Drosophila eyes expressing GMR-

Gal4 +/- UAS-30R (GMR>30R) with RNAi background (control), ref(2)P RNAi#1 or overexpression (OE) of ref(2)P. (B) Quantification of external eye

degeneration in A by semi-quantitative scoring system. Data are reported as mean ± SEM. Kruskal-Wallis test, p<0.0001, followed by Dunn’s multiple

comparisons, n > 15 adults. (C) 15-day-old Drosophila eyes expressing GMR-Gal4 +/- UAS-36R (GMR >36R) along with UAS-luciferase RNAi (control),

UAS-ref(2)P RNAi #1, UAS-ref(2)P RNAi #2, or UAS-ref(2)P OE. (D) Quantification of external eye degeneration in C by semi-quantitative scoring system.

Data are reported as mean ± SEM. Kruskal-Wallis test, p<0.0001, followed by Dunn’s multiple comparisons, n = 23, 62, 28, 10 adults respectively. (E)

Percent of pupal eclosion of adult flies expressing the motor neuron driver vGlut-Gal4 +/- UAS-30R and RNAi background control or UAS-ref(2)P RNAi #1.

Fisher’s exact test, n > 100 pupa. (F) Percent of pupal eclosion of adult flies expressing the motor neuron driver vGlut-Gal4 +/- UAS-44R along with

UAS-luciferase RNAi, UAS-ref(2)P RNAi #1, or UAS-ref(2)P OE. Fisher’s exact test, n > 55 pupa. (G) Adult Drosophila expressing UAS-30R under the

control of the inducible, pan-neuronal elavGS induced with 200 mM RU486 or vehicle alone and co-expressing control or UAS-ref(2)P RNAi #1. Data are

reported as mean ± SEM. One-way ANOVA, ****p<0.0001, with Sidak’s multiple comparisons test, n = 9, 8, 8, 8 groups of 10 flies.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Ref(2)P/p62 genetically modifies G4C2-HRE.
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2015a; Figure 1A). ref(2)P is the Drosophila homolog of p62/SQSTM1, and this modifier is of partic-

ular interest because SQSTM1 mutations that cause loss of selective autophagy cause ALS/FTD

(Cirulli et al., 2015; Goode et al., 2016; Le Ber et al., 2013), and p62 aggregates are pathological

features of both familial and sporadic ALS (Al-Sarraj et al., 2011; Cooper-Knock et al., 2012).

Knockdown of ref(2)P suppresses eye degeneration, whereas overexpression of ref(2)P enhances this

phenotype (Figure 1A–B, Figure 1—figure supplement 1A). ref(2)P RNAi #1 expression reduced ref

(2)P mRNA levels by ~80%, but did not alter G4C2 RNA levels in 30R expressing eyes (Figure 1—fig-

ure supplement 1B–C), suggesting that ref(2)P acts downstream of G4C2 transcription. Similarly,

knockdown of ref(2)P also rescued eye degeneration in a second G4C2 model expressing 36 G4C2

repeats (36R) (Mizielinska et al., 2014; Figure 1C–D). We next assessed the ability of ref(2)P RNAi to

rescue toxicity of G4C2 repeats in motor neurons using the 30R model and a new G4C2 model

expressing 44R (Goodman et al., 2019b). As shown in Figure 1E–F, while expression of either 30R

or 44R in motor neurons with vGlut-Gal4 leads to paralysis and lethality during pupal development,

knockdown of ref(2)P partially rescues this phenotype, whereas overexpression of ref(2)P enhances

the pupal lethality observed with 44R expression. These data suggest that ref(2)P is required for

G4C2-mediated toxicity during Drosophila development.

To determine whether ref(2)P knockdown is able to suppress age-dependent neurodegeneration,

we used a pan-neuronal, inducible ‘GeneSwitch’ driver (elavGS) in which 30R-expression leads to a

marked reduction in climbing ability after 7 days (Figure 1G). This climbing defect is suppressed

with coexpression of ref(2)P RNAi, suggesting that ref(2)P contributes to G4C2-mediated neurotoxic-

ity in the adult nervous system. Since RAN-translation of arginine-containing DPRs have been impli-

cated in G4C2-mediated toxicity in Drosophila (Kwon et al., 2014; Mizielinska et al., 2014), we

next tested whether ref(2)P knockdown rescues poly-glycine-arginine (GR) repeat-mediated toxicity.

As shown in Figure 1—figure supplement 1D, ref(2)P RNAi partially rescues the severe eye degener-

ation phenotype caused by poly(GR)36 expression. Together, these data indicate that ref(2)P, the

Drosophila orthologue of p62/SQSTM1, modulates G4C2-mediated neurodegeneration.

G4C2 repeat expression impairs autophagic flux
p62/SQSTM1-positive inclusions are a common pathologic feature seen in brains of C9-ALS/FTD

patients where they colocalize with ubiquitin and DPRs (Al-Sarraj et al., 2011). We next investigated

the localization of Ref(2)P protein (hereafter referred to as p62) in motor neurons. Expression of 30R

leads to the formation of many large p62:GFP puncta in cell bodies compared to controls that

strongly colocalize with poly-ubiquitinated proteins (Figure 2A–B, Figure 2—figure supplement

1A–B). Western blot analysis demonstrates that p62 and poly-ubiquitin are strongly upregulated in

flies ubiquitously expressing 30R (Figure 2C, Figure 2—figure supplement 1C–D). Similarly, immu-

nofluorescence staining with a p62 antibody shows endogenous p62 accumulations colocalizing with

polyubiquitinated proteins in the ventral nerve cord and salivary gland of flies ubiquitously overex-

pressing 30R (Figure 2—figure supplement 1E). These data show that G4C2 repeat expression in

fly models recapitulates the p62 accumulation with ubiquitinated protein aggregates seen in C9-

ALS/FTD patient tissue and iPS neurons (Almeida et al., 2013; Mackenzie et al., 2014).

Increased p62 levels can be due to either increased transcription and/or translation or insufficient

protein degradation (Korolchuk et al., 2010). Using qRT-PCR, we find that ref(2)P transcript levels

are unchanged in G4C2 repeat-expressing larvae (Figure 2—figure supplement 1F), suggesting

that G4C2 repeats cause p62 upregulation by inhibiting p62 degradation. Since p62 is degraded by

autophagy and disrupted autophagic flux is known to cause p62 upregulation, we assessed autoph-

agy in G4C2-repeat-expressing flies. We first co-expressed the tagged autophagosome marker

mCherry:Autophagy-related 8 (Atg8, the fly orthologue of mammalian Microtubule-associated pro-

tein 1A/1B-light chain 3 (LC3)) with 30R in fly motor neurons and found a marked reduction in

mCherry:Atg8 autophagic esicles (AVs) when compared to wild-type controls (Figure 2D–E). p62:

GFP accumulation and loss of mCherry:Atg8 puncta were recapitulated in 36R and poly(GR)36 Dro-

sophila models of C9-ALS/FTD (Figure 2—figure supplement 1G–J). Reduction of mCherry:Atg8-

positive vesicles coupled with the accumulation of p62 and ubiquitin suggest that autophagic flux is

impaired in these fly models of C9-ALS/FTD.
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Figure 2. G4C2 repeat expression impairs autophagic flux. (A) Drosophila motor neurons expressing UAS-p62:GFP +/- UAS-30R, showing multiple

motor neuron cell bodies (top) or a representative cell co-expressing the membrane marker CD8:RFP (bottom). Plasma membrane outlined with solid

white line; nucleus outlined with dotted line. Scale bar = 10 mm (top), 1 mm (bottom) (B) Quantification of number of p62:GFP puncta in Drosophila

motor neuron cell bodies. Data are reported as mean ± SEM. Mann-Whitney test, n = 5 larvae per genotype. (C) Western blot of anti-p62 and anti-beta-

actin showing the whole (W), supernatant (S) and pellet (P) fractions of lysates from Drosophila larvae ubiquitously expressing -/+ UAS-30R under the

control of Act-Gal4. (D) Drosophila motor neurons expressing UAS-mCherry:Atg8 -/+ UAS-30R showing cell bodies (top) with an example single cell

highlighting mCherry:Atg8-positive puncta (bottom). Scale bar = 10 mm (top), 1 mm (bottom). (E) Quantification of mCherry:Atg8-positive autophagic

vesicles (AVs) in the ventral nerve cord of vGlut-Gal4/+ or vGlut >30R expressing flies. Data are reported as mean ± SEM. Mann-Whitney test, n = 16

and 13 larvae, respectively. (F) Western blot of anti-GFP and anti-beta-actin of lysates from whole Drosophila larvae ubiquitously expressing UAS-GFP:

mCherry:Atg8 -/+ UAS-30R under the control of Act-Gal4 showing full length GFP:mCherry:Atg8 at 75 kDa and cleaved GFP at 25 kDa. (G) Drosophila

motor neurons expressing UAS-GFP:Lamp1 (with N-terminal [luminal] GFP) -/+ UAS-30R under the control of vGlut-Gal4 in multiple cell bodies (top) or

in a representative cell (bottom). Scale bar = 10 mm (top), 1 mm (bottom). (H) Quantification of GFP:Lamp1 positive area in G. Data are reported as

mean ± SEM. Student’s t-test, n = 5 larvae. (I) Western of whole Act-Gal4 Drosophila larvae -/+ UAS-30R blotted for the lysosomal protease Cp1,

showing pro- (inactive, upper band) and cleaved (active, lower band) Cp1. (J) Quantification of the ratio of pro-Cp1 to total Cp1 in I. Data are reported

as mean ± SEM. Student’s t-test, n = 5 biological replicates.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. p62:GFP accumulates in C9-ALS fly models and co-localizes with poly-ubiquitin.

Figure supplement 2. Rescuing G4C2-mediated lysosome defects reduces neurodegeneration.
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G4C2 repeat expression causes lysosome defects
To further study lysosomal morphology and function, we expressed Lysosome- associated mem-

brane protein 1 (Lamp1) with luminally-tagged GFP in our control and G4C2-expressing flies. Since

GFP is largely quenched by the acidity of lysosomes in control animals (Pulipparacharuvil et al.,

2005), the accumulation of GFP:Lamp-positive vesicles in 30R-expressing motor neurons suggests a

defect in lysosomal acidity or targeting of GFP:Lamp to mature lysosomes (Figure 2G–H). Further-

more, we observe a marked increase in size and number of late endosomes and lysosomes using

genomically tagged Ras-related GTP-binding protein 7, Rab7:YFP, throughout 30R-expressing

motor neurons (Figure 2—figure supplement 2A) without alterations in early endosomes labeled

with Rab5:YFP (data not shown). Together, these data demonstrate a marked expansion of the late

endosome/lysosome compartment in G4C2-expressing neurons.

Though accumulation of p62 and ubiquitinated proteins could be caused by a failure of autopha-

gic vesicles to fuse with the degradative endolysosomal compartment, we did not detect a decrease

in mCherry:Atg8+, Rab7:GFP+ amphisomes in G4C2-expressing motor neuron cell bodies (Fig-

ure 2—figure supplement 2B–F). To assess autophagolysosomal function after fusion, we per-

formed a GFP liberation assay on larvae expressing GFP:mCherry:Atg8 (Klionsky et al., 2016;
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Figure 3. Autophagolysosomal defects precede neurodegeneration in photoreceptor neurons. (A) Transmission electron microscopy (TEM) of

rhabdomeres (cell bodies) in Rhodopsin1-Gal4 (Rh1-Gal4) driving UAS-LacZ (control) or UAS-30R at Day 1, Day 28, and Day 54 after eclosion. Scale

bar = 2 mm. (B) Quantification of number of healthy (not split) photoreceptors (PRs) per ommatidium in A. Data are reported as mean ± SEM. Student’s

t-test, n = 8, 8, 6, 6, 6, and 6 flies, respectively. (C) TEM images at 28 days of Drosophila eyes (rhabdomeres) -/+ 30R repeats expressed by Rh1-Gal4

showing representative autolysosomes and multilamellar bodies (MLBs), marked with red arrows. Scale bar = 200 nm. (D) Quantification of different

vesicle types (autophagosomes, autolysosomes, lysosomes, MLBs, and multivesicular bodies (MVBs)) shown in TEM of rhabdomeres with Rh1-Gal4

driving UAS-LacZ or UAS-30R (as in C) normalized to LacZ (control). Data are reported as mean ± SEM. Student’s t-test, n = 3 adults per genotype.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Progressive synapse degeneration in G4C2-expressing photoreceptor neurons.
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Mauvezin et al., 2014). GFP is degraded more slowly than the rest of the mCherry:Atg8 protein,

leaving a population of free GFP in functioning lysosomes. Free lysosomal GFP is not observed in

G4C2-expressing larvae, suggesting an impairment in GFP:mCherry:Atg8 degradation by the lyso-

some (Figure 2F). To directly probe lysosome enzymatic activity, we performed Western analysis of

Drosophila cathepsin Cp1. Whereas pro-Cp1 is normally cleaved to its mature form by acid hydro-

lases in lysosomes (Kinser and Dolph, 2012), larvae ubiquitously expressing 30R show an increase in

the ratio of pro-Cp1 to Cp1, indicating a decrease in pro-Cp1 cleavage efficiency (Figure 2I–J).

Together, these data suggest that lysosomes are expanded and dysfunctional in G4C2 repeat-

expressing animals.

To investigate whether the autophagic pathway defects precede neurodegeneration in G4C2

repeat-expressing neurons, we performed transmission electron microscopy (TEM) on Drosophila

eyes. As GMR-Gal4 is expressed throughout the development of the eye, we chose to perform elec-

troretinograms (ERGs) of fly eyes selectively expressing 30R in photoreceptor neurons (PRs) using

Rh1-Gal4, which turns on during adulthood. Rh1 >30R PRs show only a mild reduction of ON tran-

sient amplitude at 28 days, but a complete loss of ON and OFF transients and a decrease in ERG

amplitude by 56 days (Figure 3—figure supplement 1A–D), indicating a slow and progressive loss

of synaptic transmission and impaired phototransduction respectively. These changes also corre-

spond to a marked loss of photoreceptors and synaptic terminals by 54 days which are not observed

at 28 days (Figure 3A–B; Figure 3—figure supplement 1E). We therefore examined autophagic

structures by TEM at 28 days, prior to cell loss. Strikingly, we observe a marked increase in the size

and number of multilamellar bodies (MLBs) (Figure 3C–D). MLBs are commonly observed in lyso-

somal storage diseases and result from a deficiency of lysosomal hydrolases and accumulations of

lysosomal lipids and membranes (Hariri et al., 2000; Weaver et al., 2002). Though we did not

detect an alteration in the number of autophagosomes, lysosomes, or multivesicular bodies, we did

see a significant increase in the number of autolysosomes (Figure 3C–D). These data suggest that

autophagolysosomal function is disrupted in G4C2-expressing photoreceptor neurons at early stages

of degeneration.

Given the impairment in autophagic flux, we hypothesized that genetic or pharmacologic manipu-

lations that accelerate autophagy may suppress neurodegenerative phenotypes, whereas those that

further impede autophagy would enhance the phenotypes. Indeed, in a candidate-based screen,

activation of early steps in the autophagic pathway (e.g. by Atg1 overexpression) suppresses eye

degeneration and blocking autophagosome/lysosome fusion (e.g. by Snap29 knockdown) enhances

eye degeneration (Supplementary file 1). Similarly, pharmacologic activation of autophagy via inhi-

bition of mTor with rapamycin or mTor-independent activation via trehalose (Sarkar et al., 2007)

rescues neurodegenerative phenotypes and p62 accumulation (Figure 2—figure supplement 2G–

K). Together, these data show that promoting autophagy or lysosomal fusion are potent suppressors

of G4C2-mediated neurodegeneration.

Nucleocytoplasmic transport impairment disrupts autophagic flux
A diverse array of cellular pathways including autophagy, RNA homeostasis, and NCT are implicated

in the pathogenesis of ALS and FTD (Balendra and Isaacs, 2018; Evans and Holzbaur, 2019;

Gao et al., 2017; Lin et al., 2017; Ling et al., 2013; Ramesh and Pandey, 2017). However, the

sequence of events in the pathogenic cascade remains unknown. Cytoplasmic protein aggregates or

RNA stress granule formation is sufficient to disrupt nucleocytoplasmic transport (Woerner et al.,

2016; Zhang et al., 2018). We therefore tested whether defects in autophagy are upstream, down-

stream, or in parallel with defects in NCT.

We first tested whether knockdown of ref(2)P rescues the mislocalization of the NCT reporter

shuttle-GFP (S-GFP) containing both a nuclear localization sequence (NLS) and nuclear export

sequence (NES). G4C2 repeat expression causes mislocalization of S-GFP to the cytoplasm

(Zhang et al., 2015a), but knockdown of ref(2)P does not restore nuclear localization (Figure 5—fig-

ure supplement 1A). Similarly, stimulation of autophagy with rapamycin or trehalose fails to rescue

S-GFP mislocalization in G4C2 expressing salivary glands (Figure 5—figure supplement 1B). Stimu-

lating autophagy does not rescue NCT defects although it can rescue neurodegeneration, suggest-

ing that autophagy defects are either independent of or downstream of NCT defects. Indeed,

RanGAP knockdown increases the number and size of p62:GFP puncta, similar to the effects of
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Figure 4. Mitf/TFEB is mislocalized from the nucleus and inactivated. (A) Drosophila larval salivary glands -/+ UAS-

30R under the control of vGlut-Gal4 stained with anti-Mitf and DAPI. Dotted lines outline nuclei. Scale bar = 10

mm. (B) Quantification of percent (%) nuclear Mitf (nuclear Mitf fluorescence/total fluorescence) in A. Data are

reported as mean ± SEM. Student’s t-test, n = 5 larvae per genotype. (C) Drosophila motor neurons (MNs)

expressing UAS-Mitf-HA and UAS-CD8:GFP -/+ UAS-30R under the control of vGlut-Gal4 stained with anti-HA,

anti-GFP (membrane), and DAPI to show nuclear localization. Scale bar = 1 mm. (D) Quantification of percent (%)

nuclear Mitf in C. Data are reported as mean ± SEM. Student’s t-test, n = 4 and 5 larvae, respectively, with at least

10 motor neurons per larva. (E) Quantitative RT-PCR to assess transcript levels of Mitf and seven target genes from

lysates of Drosophila heads expressing control (UAS-LacZ) or UAS-30R driven by daGS in control conditions or

with overexpression of Mitf. Data are reported as mean ± SEM. One-way ANOVA, p<0.0001, with Sidak’s multiple

comparisons test, n > 4 biological replicates of 30 heads per genotype.
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Figure 5. Modulation of nucleocytoplasmic transport rescues autophagolysosome dysfunction. (A) Drosophila larval salivary glands stained with anti-

Mitf and DAPI expressing +/- UAS-30R, UAS-shuttle-GFP (S-GFP, not shown), and either control RNAi (UAS-lucRNAi) or exportin RNAi (UAS-embRNAi )

under the control of vGlut-Gal4. Scale bar = 10 mm (B) Quantification of percent (%) nuclear Mitf in A. Data are reported as mean ± SEM. Student’s

t-test, n = 4 and 5 larvae, respectively. (C) Drosophila motor neurons expressing UAS-GFP:Lamp1 (N-terminal, luminal GFP) -/+ UAS-30R and UAS-

lucRNAi or exportin RNAi (UAS-embRNAi ). Scale bar = 10 mm. (D) Quantification of C. Student’s t-test, n = 6 larvae. (E) Drosophila motor neurons

expressing UAS-mCherry:Atg8 +/- UAS-30R and either control RNAi (UAS-lucRNAi) or exportin RNAi (UAS-embRNAi ). Scale bar = 10 mm. (F)

Quantification of E. Data are reported as mean ± SEM. Mann-Whitney test, n = 10 larvae. (G) Drosophila motor neurons expressing UAS-p62:GFP -/+

UAS-30R and either control RNAi (lucRNAi) or exportin RNAi (embRNAi ) under the control of vGlut-Gal4. Scale bar = 10 mm. (H) Quantification of G. Data

are reported as mean ± SEM. Brown-Forsythe and Welch ANOVA test, p<0.0001, followed by Dunnett’s T3 multiple comparisons, n = 12–14 larvae per

genotype.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Nucleocytoplasmic transport disruption is upstream of autophagic defects.
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overexpressing the G4C2 repeats (Figure 5—figure supplement 1C), suggesting that NCT disrup-

tion is sufficient to disrupt autophagic flux in Drosophila motor neurons.

Mitf is mislocalized and inactivated in Drosophila models of C9-ALS/
FTD
Because we observed a reduction in autophagosomes and expansion of lysosome-related organ-

elles, we hypothesized that transcription factors regulating autophagolysosomal function may be

mislocalized to the cytoplasm due to disrupted nuclear import. The MiT/TFE family of transcription

factors (TFEB, TFE3, MITF, and TFEC) regulates multiple steps of autophagy from autophagosome

biogenesis through lysosome acidification via a network of genes called the Coordinated Lysosome

Expression And Regulation (CLEAR) network (Settembre et al., 2011). These transcription factors

are regulated by localization between the cytoplasm and nucleus (Li et al., 2018). In Drosophila, this

conserved transcription factor family is represented by a single homolog called Mitf (Bouché et al.,

2016; Zhang et al., 2015b). Mitf knockdown in the nervous system causes lysosomal defects similar

to those observed in G4C2-expressing flies (Bouché et al., 2016; Hallsson et al., 2004;

Sardiello et al., 2009; Song et al., 2013). Additionally, TFEB levels are reduced in superoxide dis-

mutase 1 (SOD1) mutant cell culture and mouse ALS models (Chen et al., 2015) as well as in ALS

and Alzheimer’s patient brain tissue (Wang et al., 2016). Therefore, we hypothesized that impaired

Mitf nucleocytoplasmic transport might underlie the autophagolysosomal phenotypes in fly models

of C9-ALS. Indeed, both salivary gland cells and motor neurons expressing 30R show a reduction in

percent nuclear Mitf (Figure 4A–D). To assess whether disrupted Mitf NCT alters CLEAR gene

expression in adult heads, we expressed 30R using a ubiquitous inducible driver, daughterless-Gen-

eSwitch (daGS). In control flies, a mild (~1.75 fold) overexpression of Mitf mRNA resulted in a signifi-

cant upregulation of 3 of the 7 Mitf targets tested (the vesicular ATPase (v-ATPase) subunits Vha16-

1, Vha68-2, and Vha44) and a trend towards upregulation of 4 others (Figure 4E). Importantly, co-

expression of 30R with daGS >Mitf led to a similar ~2 fold increase in Mitf transcripts but did not

induce Mitf target genes (Figure 4E). This lack of Mitf target induction in 30R flies suggests that

decreased nuclear import of Mitf suppresses the ability of 30R-expressing flies to upregulate CLEAR

genes in order to maintain or induce autophagic flux.

We next examined whether rescue of nucleocytoplasmic transport defects in 30R-expressing ani-

mals can rescue Mitf nuclear import and autophagolysosomal defects. Exportin-1 has recently been

demonstrated to regulate Mitf/TFEB nuclear export (Li et al., 2018; Silvestrini et al., 2018). Knock-

down of exportin-1 (Drosophila emb) rescues G4C2-mediated cytoplasmic Mitf mislocalization in the

salivary gland (Figure 5A–B) and GFP:Lamp accumulation in motor neurons (Figure 5C–D). Impor-

tantly, emb knockdown increases the total number of autophagosomes in G4C2-expressing motor

neuron cell bodies by ~3 fold (Figure 5E–F), suggesting that nuclear retention of Mitf rescues auto-

phagolysosomal defects. However, emb knockdown caused a slight elevation of p62:GFP puncta

intensity in controls and did not rescue the accumulations of p62:GFP in 30R-expressing motor neu-

rons (Figure 5G–H). Together, these data indicate that autophagolysosomal dysfunction in 30R-

expressing animals occurs downstream of nucleocytoplasmic transport disruption, whereas inhibition

of nuclear export is not sufficient to rescue p62 accumulation.

Mitf rescues G4C2 repeat-mediated degeneration
Since Mitf mislocalization contributes to autophagolysosome defects in a fly C9-ALS model, we

hypothesized that increasing total levels of Mitf might compensate for impaired nuclear import.

While high level Mitf overexpression is toxic in Drosophila (Hallsson et al., 2004), a genomic dupli-

cation construct containing the Mitf gene lacking the DNA repetitive intron 1 (Mitf Dp)

(Zhang et al., 2015b), is sufficient to partially rescue 30R-mediated eye degeneration, while Mitf

knockdown enhances eye degeneration (Figure 6A–B). Furthermore, pupal lethality caused by 30R

expression in motor neurons and climbing impairment in elavGS >30R flies are also partially rescued

by Mitf Dp (Figure 6C–D). In contrast, Mitf Dp did not rescue the severe rough eye phenotype

observed with GMR-Gal4 overexpression of poly(GR)36 (Figure 6—figure supplement 1A–B), sug-

gesting that Mitf Dp rescues toxicity caused by the G4C2 repeat RNA rather than the DPRs alone.

To determine whether increased levels of Mitf rescue G4C2-mediated neurodegeneration through

effects on the autophagolysosomal pathway, we examined GFP:Lamp and p62:GFP expression in
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Figure 6. Transcription factor Mitf/TFEB suppresses neurodegeneration caused by G4C2 expansion via lysosome activity. (A) 15-day-old Drosophila

eyes expressing UAS-30R under the control of GMR-Gal4, crossed to controls (w1118 or UAS-luciferase RNAi), genomic Mitf Duplication (Mitf Dp), or UAS-

Mitf RNAi. (B) Quantification of external eye degeneration shown in A. Data are reported as mean ± SEM. Kruskal-Wallis test, p<0.0001, followed by

Dunn’s multiple comparisons, n = 10–20 adults per genotype. (C) Percent of pupal eclosion in Drosophila expressing UAS-30R under the control of

vGlut-Gal4 -/+ Mitf Dp compared to vGlut-Gal4/w1118 control. Fisher’s exact test, n = 133, 139, and 84 pupae, respectively. (D) Adult Drosophila

expressing UAS-30R under the control of the inducible, pan-neuronal elavGS driver induced with 200 mM RU486 have decreased climbing ability at 7

days of age. Co-expressing Mitf Dp with UAS-30R rescues climbing ability. One-way ANOVA, p<0.0001, followed by Sidak’s multiple comparisons,

n = 14–17 groups of 10 flies per genotype. (E) Representative images of motor neurons expressing UAS-GFP:Lamp1 for control (w1118), UAS-30R, or

coexpressing Mitf Dp and UAS-30R. Scale bar = 10 mm (F) Quantification of the GFP positive (GFP+) area of GFP:Lamp1 in E. Data are reported as

mean ± SEM. Brown-Forsythe and Welch ANOVA, p<0.0001, test followed by Dunnett’s T3 multiple comparisons, n = 15 per genotype. (G)

Representative images of motor neurons coexpressing UAS-p62:GFP with no repeats (control, w1118), UAS-30R, and Mitf Dp with UAS-30R. Scale

bar = 10 mm. (H) Quantification of p62:GFP GFP+ puncta area in F. Data are reported as mean ± SEM. Brown-Forsythe and Welch ANOVA test,

p<0.0001, followed by Dunnett’s T3 multiple comparisons, n = 12–14 larvae per genotype.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Genetic increase of lysosome function rescues degeneration caused by G4C2 expression but not by poly-GR.

Cunningham et al. eLife 2020;9:e59419. DOI: https://doi.org/10.7554/eLife.59419 11 of 35

Research article Cell Biology Neuroscience

https://doi.org/10.7554/eLife.59419


- -+ +Starvation

47R - - + +

StarvationNormal StarvationNormal

Control 47 Repeats
G

F
P

 F
L

A
G

 D
A

P
I

G
F

P
 

0

20

40

60

80

TFEB

Total

protein

TFEB

Total

protein

N
u
c
le

a
r

F
ra

c
ti
o
n
 

C
y
to

p
la

s
m

ic
 

F
ra

c
ti
o
n

50

50

kDa

C9-ALS: - -+ +
Nucleus Cytoplasm

p = 0.0075

p =.21

T
F

E
B

/T
o

ta
l 
P

ro
te

in

0

1

2

3

N
u

c
le

a
r 

T
F

E
B

:G
F

P
 (

%
)

p <0.0001

p=0.013
p<0.0001

p<0.0001

A

B

C DC9-ALS: - - - -+ + + +

Figure 7. Nuclear TFEB is reduced in human cells expressing GGGGCC repeats and in C9-ALS human motor cortex. (A) HeLa cells stably expressing

TFEB:GFP transfected with 0R (Control) or a 47R construct (Flag tag in frame with poly-GR) in normal media (DMEM) or starved (3 hr in EBSS)

conditions. White arrowheads indicate transfected cells in the 47R starved group. (B) Quantification of cells from A showing the percent (%) nuclear

TFEB:GFP (nuclear/total) for each group. Data are presented as mean + SEM. One-way ANOVA, p<0.0001, with Sidak’s multiple comparisons, n = 47,

47, 35, and 38 cells. (C) Western blot for TFEB of human motor cortex samples fractionated into cytoplasmic and nuclear samples from postmortem

control and C9-ALS patient brains. (D) Quantification of TFEB levels against total protein loading (Faststain) in control and C9-ALS patients. Data

reported are mean ± SEM. One-way ANOVA, p=0.0142, with Sidak’s multiple comparisons, n = 4.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. DPRs affect TFEB import in HeLa Cells.
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30R-expressing motor neurons. Indeed, Mitf Dp rescues increased GFP:Lamp1 expression

(Figure 6E–F) and reduces p62:GFP accumulation in motor neurons of vGlut >30R larvae

(Figure 6G–H). Thus, increasing Mitf levels in multiple neuronal subtypes in Drosophila suppresses

G4C2-mediated neurotoxicity, consistent with our hypothesis that loss of nuclear Mitf is a key con-

tributor to G4C2-mediated neurodegeneration.

If the impaired lysosomal function we observe in our Drosophila model is contributing to neuro-

degeneration downstream of NCT defects, we would predict that genetic upregulation of key regu-

lators of lysosome function may suppress degenerative phenotypes. Indeed, overexpression of

Rab7, the small GTPase required for fusion of autophagosomes with lysosomes, or Trpml, a lyso-

somal calcium channel, suppress eye degeneration (Figure 6—figure supplement 1C–D). Further-

more, overexpression of key lysosomal v-ATPase subunits whose expression is regulated by Mitf also

suppresses neurodegeneration in the Drosophila eye, while RNAi-mediated knockdown enhances

degeneration (Figure 6—figure supplement 1C–D). Interestingly, loss of the ALS-associated gene

ubqn in Drosophila was also rescued by increase in key lysosomal v-ATPase subunits or by nanoparti-

cle mediated lysosome acidification (Şentürk et al., 2019). Overexpression of these Mitf-regulated

genes also showed partial rescue of pupal lethality in animals expressing 30R in motor neurons

Figure 8. A proposed model of GGGGCC repeat expansion pathogenesis. G4C2 repeat expansion causes nucleocytoplasmic transport disruption

through multiple proposed mechanisms including G4C2 RNA binding of RanGAP and stress granule recruitment of nucleocytoplasmic transport

machinery. Transport disruption leads to a blockage in the translocation of autophagy-mediating transcription factors such as Mitf/TFEB to the nucleus

in response to proteotoxic stress. Failure to induce autophagic flux leads to autophagy pathway disruption such as the accumulation of large, non-

degradative lysosomes and MLBs. Loss of autophagic flux leads to accumulation of Ref(2)P/ p62 and ubiquitinated protein aggregates, leading to

chronic protein stress signaling and eventually neuronal cell death.
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(Figure 6—figure supplement 1E). These findings suggest a model whereby downregulation or

cytoplasmic retention of Mitf targets leads to lysosomal disruption in G4C2-repeat-expressing flies.

Nuclear TFEB is reduced in human cells and motor cortex with
GGGGCC repeat expansions
In humans, TFEB is the homolog of Drosophila Mitf that is best characterized for its role in autoph-

agy and has been implicated in neurodegenerative disease (Cortes and La Spada, 2019; Martini-

Stoica et al., 2016). Interestingly, a previous study showed nuclear TFEB was selectively depleted in

the motor cortex of a sample of five ALS patients compared to five controls (Wang et al., 2016). To

test the relevance of our findings in Drosophila models to human disease, we next examined

whether G4C2 repeat expression impairs nuclear import of TFEB in HeLa cells stably expressing

TFEB:GFP (Roczniak-Ferguson et al., 2012) using a 47-repeat (47R) G4C2 construct that expresses

tagged DPRs (see Materials and methods). In control cells, TFEB:GFP is predominantly localized to

the cytoplasm, whereas induction of autophagy by 3 hr starvation leads to robust nuclear transloca-

tion of TFEB (Figure 7A–B). In contrast, while 47R-expressing cells have a mild basal elevation of

nuclear TFEB, the nuclear translocation of TFEB in response to starvation is significantly impaired rel-

ative to control cells (Figure 7A–B). We then tested the effect of expression of DPRs produced by

alternate codons (i.e. in the absence of G4C2 repeats): poly-glycine-alanine (poly-GA50), poly-gly-

cine-arginine (poly-GR50), and poly-proline-arginine (poly-PR50) (Figure 7—figure supplement 1A–

B). While poly-GA50 causes a mild decrease in TFEB nuclear translocation, expression of poly-GR50

or poly-PR50 does not disrupt TFEB:GFP nuclear translocation. These data suggest that human cells

expressing an expanded G4C2 repeat, but not DPRs, are unable to efficiently import TFEB into the

nucleus in response to stimuli.

To further investigate the relevance of loss of TFEB nuclear import to C9-ALS patients, we

obtained human motor cortex samples from four non-neurological controls and four C9-ALS patients

(Supplementary file 2). These samples were fractionated into cytoplasmic and nuclear-enriched frac-

tions and assayed for TFEB using Western analysis. TFEB is reduced by an average of 76% in the

nuclear fraction and by about 50% in the cytoplasm in C9-ALS compared to controls (Figure 7C–D,

Figure 7—figure supplement 1C). These data suggest that TFEB protein is downregulated in C9-

ALS/FTD motor cortex, but the greatest depletion occurs in the nucleus. Therefore, we propose a

model whereby disruption of protein nuclear import by the C9orf72-HRE results in a failure of Mitf/

TFEB to translocate to the nucleus to regulate the autophagic response to protein stress (Figure 8).

Discussion
Our work has revealed that the ALS-associated G4C2 hexanucleotide repeat is sufficient to disrupt

multiple aspects of autophagy. In Drosophila, G4C2 repeats cause loss of autophagosomes and dis-

rupt lysosomal structure and function. This accumulation of autolysosomes and lysosome-related

organelles (MLBs) has been observed in lysosomal storage disorders and has been reported in spinal

cord tissue from sporadic ALS patients (Bharadwaj et al., 2016; Parkinson-Lawrence et al., 2010;

Sasaki, 2011). Regulation of protein and lipid homeostasis by the lysosome may be particularly

important in neurons since they are post-mitotic and have high energy demands (Fraldi et al.,

2016). Loss of function of C9orf72 also disrupts autophagy and lysosomal function in multiple cell

types (Farg et al., 2014; Ji et al., 2017; O’Rourke et al., 2015; Sellier et al., 2016; Shi et al.,

2018; Sullivan et al., 2016; Ugolino et al., 2016; Webster et al., 2016; Yang et al., 2016;

Zhu et al., 2020), suggesting a mechanism whereby G4C2 repeats may have synergistically detri-

mental effects with haploinsufficient C9orf72 in C9-ALS/FTD patients. Additionally, multiple forms of

familial ALS are caused by mutations in genes in autophagy and lysosome function (Evans and Holz-

baur, 2019; Lin et al., 2017; Ramesh and Pandey, 2017), and upregulation of lysosome function

has been proposed to be beneficial in multiple preclinical models of ALS (Donde et al., 2020;

Mao et al., 2019; Şentürk et al., 2019; Shi et al., 2018). Thus, our findings suggest that, as has

been shown in other forms of ALS, neurotoxicity of G4C2 repeats in C9 ALS-FTD is at least partially

caused by disrupted autophagolysosomal function.

The finding that ref(2)P knockdown prevents or delays G4C2-mediated neurodegeneration is sur-

prising, as p62/SQSTM1 is thought to link toxic ubiquitinated aggregates to LC3 to remove aggre-

gates via selective autophagy (Cipolat Mis et al., 2016; Levine and Kroemer, 2008; Saitoh et al.,
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2015). However, other studies have also suggested that p62 may contribute to (rather than amelio-

rate) toxicity of ubiquitinated proteins. For example, Atg7-/- mice display severe defects in autoph-

agy and accumulation of p62-positive protein aggregates in the liver and brain, and knockout of p62

in these mice prevents the formation of ubiquitinated aggregates and rescues liver dysfunction via

suppression of chronic oxidative stress signaling (Komatsu et al., 2007). Additionally, Ataxia Telan-

giectasia Mutated-mediated DNA double stranded break repair is impaired in cultured neurons

expressing the C9orf72-HRE, and this phenotype is rescued by p62 knockdown (Walker et al.,

2017). These findings suggest that increases in p62 may contribute to DNA damage previously

described in C9-ALS. Further, p62 is found to co-localize with DPRs in C9-ALS patients (Al-

Sarraj et al., 2011; Mackenzie et al., 2014; Mori et al., 2013) and may promote protein aggrega-

tion. We hypothesize that p62-positive aggregate or oligomer formation in C9-patients contributes

to neurotoxicity by activating downstream signaling pathways that are alleviated by autophagy-

mediated clearance.

While many groups have reported nucleocytoplasmic transport dysfunction in ALS, it has

remained unclear how NCT disruption causes ALS. Stress granules can recruit nuclear pore proteins

to the cytoplasm and cause nucleocytoplasmic transport defects, suggesting that the disruptions in

phase separation of RNA-binding proteins may lie upstream of nucleocytoplasmic transport defects

(Zhang et al., 2018). Recently, Ortega et al. discovered that hyperactivity of nonsense-mediated

decay may lie downstream of nucleocytoplasmic transport, indicating that multiple proteostasis

pathways may be disrupted (Ortega et al., 2020). Additionally, selective autophagy is required for

nuclear pore turnover (Lee et al., 2020), implying that autophagy defects may contribute to the

cytoplasmic nuclear pore pathology found in C9-ALS patients and animal models. Our data show

that in Drosophila, HeLa cells, and human tissue, nucleocytoplasmic transport defects lead to an

inability to activate TFEB translocation to the nucleus, causing widespread autophagy defects and

accumulation of protein aggregates (Figure 8). Interestingly, genetic inhibition of nuclear export or

increase in Mitf expression are able to strongly rescue autophagosome and lysosome phenotypes

and neurodegeneration, but do not result in complete clearance of p62 accumulations (Figures 5–

6). Additional studies will be needed to better understand the relationship between p62 accumula-

tion, autophagy, nucleocytoplasmic transport, and neurodegeneration. Overall, these findings place

nucleocytoplasmic transport defects in ALS upstream of proteostasis defects.

Importantly, TFEB has been previously proposed as a therapeutic target in ALS and other neuro-

degenerative disease (Cortes and La Spada, 2019). Upregulation of TFEB signaling helps clear mul-

tiple types of proteotoxic aggregates found in Alzheimer’s disease, Parkinson’s disease,

Huntington’s disease, ALS and FTD (Decressac et al., 2013; Parr et al., 2012; Polito et al., 2014;

Torra et al., 2018; Vodicka et al., 2016). Our study suggests that modulation of TFEB nucleocyto-

plasmic transport may be an additional therapeutic target, and that targeting both nucleocytoplas-

mic transport and autophagy may act synergistically in ALS and FTD.

Materials and methods

Drosophila genetics
Drosophila were raised on standard cornmeal-molasses food at 25˚C. For eye degeneration, GMR-

GAL4, UAS-30R/CyO, twi-GAL4, UAS-GFP were crossed to UAS-modifier lines or background con-

trols and GMR-GAL4, UAS-30R/UAS-modifier or GMR-GAL4, UAS-30R/+ were selected (where UAS-

modifier can be on any chromosome) from the offspring and aged at 25˚C for 15 days. Eye degener-

ation is quantified using a previously described method (Ritson et al., 2010). Briefly, points were

added if there was complete loss of interommatidial bristles, necrotic patches, retinal collapse, loss

of ommatidial structure, and/or depigmentation of the eye. Eye images were obtained using a Nikon

SMZ 1500 Microscope and Infinity 3 Luminera Camera with Image Pro Insight 9.1 software.

For pupal survival assay, either three males from vGlut-Gal4 or vGlut-Gal4; UAS-30R/TM6G80(Tb)

were crossed to 5–6 female flies containing UAS-modifier lines or background controls. Parental

adult crosses were transferred to fresh vials every 2–3 days. After 15 days, non-tubby pupated flies

that were (either vGlut-Gal4/UAS-modifier, vGlut/+; UAS-30R, or vGlut-Gal4/UAS-modifier; UAS-

30R) were scored as either eclosed (empty pupal case) or non-eclosed (typically a fully developed

pharate adult fly unable to eclose from pupal case due to paralysis).
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For the climbing assay, UAS-30R; elavGS were crossed to experimental or genetic background

controls. Adults were transferred 3–5 days after eclosion to vials containing 200 mM RU486 food or

ethanol vehicle alone and transferred to new vials every 2–3 days. After aging 7–10 days, groups of

10 flies were placed into empty food vials and were tapped to the bottom and then locomotor func-

tion assessed by their negative geotaxis (flies reflexively crawl against gravity) response as measured

by ability to climb 8 cm in 10 seconds. Each cohort of 10 flies was tested 10 times to obtain an aver-

age. N represents individual cohorts of 10 flies.

Drosophila drug feeding
Cornmeal-molasses-yeast fly food was melted and then cooled for 5 min before being mixed with

concentrations of mifepristone (RU486), rapamycin, or trehalose and cooled to room temperature.

Ethanol or DMSO was used as a vehicle control. Parent flies were crossed on normal food, and then

they were transferred to food containing drug every 2–3 days such that their offspring would

develop in food containing drug or adult offspring were transferred to drug food once eclosed as

noted. Wandering third-instar larvae were selected for immunostaining or western blot analysis.

Adult flies were aged on the drug-containing food for 15 days before analyzing their eye morphol-

ogy or assessed for climbing ability on the day noted.

Quantitative RT–PCR
For each genotype, mRNA was collected from 5 flies or 30 heads using the TRIzol reagent following

the manufacturer’s protocol. Reverse transcription was performed using SuperScript III First-Strand

synthesis kit following the manufacturer’s protocol. Quantitative PCR was performed using SYBR

Green PCR system on a 7900HT fast Real-Time PCR system (Applied Biosystem). The primers for

G4C2 repeats were designed to amplify a 3’ region immediately after the repeats in the UAS

construct.

Immunofluorescence staining and imaging
For Drosophila ventral nerve cords, wandering third-instar larvae were dissected in HL3

(Stewart et al., 1994) using a standard larval fillet dissection then fixed in 4% paraformaldehyde

(or Bouin’s fixative for UAS-mCherry:Atg8 experiments) (Sigma) for 20 min, followed by wash and

penetration with PBS 0.1% Triton X-100 (PBX) for 3 � 20 min washes. The tissues were blocked for 1

hr at room temperature in PBS with 5% normal goat serum (NGS) and 0.1% PBX, then stained with

primary antibodies at 4C overnight (16 hr). Tissues were washed three times for 20 min each with

0.1% PBX. Secondary antibodies (Goat antibodies conjugated to Alexa Fluor 568, 488, 633) diluted

in 0.1% PBX 5% NGS and incubated for 2 hr and then washed three times for 20 min each with 0.1%

PBX. During one wash, DAPI was added to the prep at a final concentration of 1 mg/mL. Larvae were

mounted in Fluoromount-G (Invitrogen).

Drosophila salivary glands were dissected using a standard protocol and stained as above except-

ing for stronger solubilization with 0.3% PBX. Fixed cells or tissues were analyzed under an LSM780

or LSM800 confocal microscope (Carl Zeiss) with their accompanying software using Plan Apochro-

mat 63 �, NA 1.4 DIC or Plan Apochromat 40�, 1.3 Oil DIC objectives (Carl Zeiss) at room tempera-

ture. Images were captured by an AxioCam HRc camera (Carl Zeiss) and were processed using

ImageJ/Fiji. To quantify fluorescent intensities, after opening the images in ImageJ/Fiji, certain

areas/bands were circled and the intensities were measured. Puncta were counted using the Analyze

Particles function in Image J using the same thresholding across experiments. Images are represen-

tative and experiments were repeated two to five times.

Western blotting
Tissues or cells were homogenized and/or lysed in RIPA buffer (50 mM Tris-HCl pH 7.4, 150 mM

NaCl, 0.1% SDS, 0.5% sodium deoxycholate, and 1% Triton X-100) supplemented with protease

inhibitor cocktail (Complete, Roche) using microcentrifuge pestles, and then were incubated in RIPA

buffer on ice for 20 min. Samples were spun down at 100 g for 5 min to remove carcass and unbro-

ken cells. For protein quantification, solution was diluted and measured by BCA assay (Thermo

Fischer Scientific).
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For nucleocytoplasmic fractionation of autopsy tissue, fractionation was performed with the NE-

PER Nuclear and Cytoplasmic Extraction Kit according to the manufacturer’s protocol. For detection

of proteins in the whole fraction, Drosophila larvae were solubilized in 8M urea. For the soluble and

pelleted fraction, larvae were first solubilized in RIPA buffer as described above. The samples were

spun down at 15000 rpm for 20 min and the soluble supernatant was set aside. Freshly prepared 8M

urea buffer (Sigma) was added to the pellet and dissolved through vortexing. Samples were spun

again at 15000 rpm for 20 min and urea-soluble pellet fraction was collected. A small amount of

sample buffer dye was added and urea-buffered protein samples were run immediately on SDS-

PAGE without heating. For immunoblot, 10–50 mg of total protein sample was mixed with 4x

Laemmli buffer (Bio-Rad) and heated at 98˚C for 10 min. The protein samples were run on 4–15%

SDS Mini-PROTEAN TGX Precast Gels (Bio-Rad) and transferred to nitrocellulose membrane. TBST

(50 mM Tris-HCl pH 7.4, 1% Triton X-100) with 5% non-fat milk (Bio-Rad) was used for blocking.

Electroretinogram (ERG) Assay
For ERG recordings, Rh1-GAL4/UAS-LacZ and Rh1-GAL4/UAS-30R flies were aged at 25˚C in 12 hr

light/12 hr dark cycle. ERG recordings were performed as described (Şentürk et al., 2019). In brief,

adult flies were immobilized on a glass slide by glue. A reference electrode was inserted in the tho-

rax and a recording electrode was placed on the eye surface. Flies were maintained in the darkness

for at least 2 min prior to 1 s flashes of white light pulses (LED source with daylight filter), during

which retinal responses were recorded and analyzed using WinWCP (University of Strathclyde, Glas-

gow, Scotland) software. At least five flies were examined for each genotype and timepoint.

Transmission Electron Microscopy (TEM)
Rh1-GAL4/UAS-lacZ and Rh1-GAL4/UAS-30R flies were aged at 25˚C in 12 hr light/12 hr dark cycle.

Retinae of adult flies were processed for TEM imaging as previously described (Chouhan et al.,

2016). Three flies were examined for each genotype and timepoint.

Plasmids Source and Construction
pSF-CAG-Amp (0G504) was purchased from Oxford Genetics. We generated a mammalian expres-

sion plasmid pSF-(G4C2)47-VFH (V5-Flag-His), which can express 47 G4C2 repeats with three differ-

ent tags to monitor expression of DPRs (polyGP-V5, polyGA-His, and polyGR-Flag). pEGFP-(GA,GR,

or PR)50 was obtained from Davide Trotti (Wen et al., 2014), and the GFP cDNA sequence was

replaced with mCherry by digesting with BamHI and XhoI.

TFEB:GFP HeLa cell culture, transfection, and immunofluorescence
analysis
HeLa cell line with stable expressing TFEB:GFP was a gift from Dr. Shawn Ferguson at Yale Univer-

sity. Hela cells were grown in DMEM media (Invitrogen) supplemented with 10% fetal bovine serum

(Hyclone Laboratories Inc). The cell line was authenticated by observing nuclear translocation of

TFEB:GFP in the presence of starvation (Figure 7). Absence of mycoplasma contamination was con-

firmed by staining with DAPI. Transfection was performed using Lipofectamine 2000 (Invitrogen)

according to the manufacturer’s instructions. Briefly, 1–2 mg of cDNA was diluted into 100 ml of

Opti-MEM I Medium (Invitrogen) and mixed gently. Lipofectamine 2000 mixture was prepared by

diluting 2–4 ml of Lipofectamine 2000 in 100 ml of Opti-MEM I Medium. The ratio of DNA to Lipo-

fectamine 2000 used for transfection was 1:two as indicated in the manual. The DNA-Lipofectamine

2000 mixture was mixed gently and incubated for 20 min at room temperature. Cells were directly

added to the 200 ml of DNA-Lipofectamine 2000 mixture. After 48 hr, transfected HeLa cells were

treated with EBSS medium for 3 hr for starvation. HeLa cells were fixed with 4% PFA at room tem-

perature for 15 min, washed three times with PBS, permeabilized for 10 min with 1% PBTX, washed

another three times with PBS, and blocked for 1 hr at room temperature with 10% normal goat

serum (Sigma) diluted in 0.1% PBTX. Cells were then incubated overnight at 4˚C with primary anti-

body mouse anti-Flag antibody. After three washes in PBS (5 min each), cells were incubated for 1 hr

at room temperature with secondary antibodies (goat anti-Alexa Fluor 568) diluted in the blocking

solution. Cells were washed three times in PBS and mounted with Prolong Gold anti-fade reagent

with DAPI (Cell Signaling).
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Collection of human autopsied tissue
Human autopsied tissue used for these data are described in detail in Supplementary file 2. The

use of human tissue and associated decedents’ demographic information was approved by the

Johns Hopkins University Institutional Review Board and ethics committee (HIPAA Form five exemp-

tion, Application 11-02-10-01RD) and from the Ravitz Laboratory (UCSD) through the Target ALS

Consortium.

Statistics
All quantitative data were derived from independent experiments. Each n value representing biolog-

ical replicates is indicated in the figure legends. Statistical tests were performed in Prism version

8.3.1 or Microsoft Excel 16.34 and were performed as marked in the figure legends. All statistical

tests were two-sided. Results were deemed significant when the P value a = 0.05. No statistical

methods were used to predetermine sample size. The investigators were not blinded during

experiments.
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Appendix 1

Appendix 1—key resources table

Reagent type
(species) or
resource Designation Source or reference Identifiers Additional information

Genetic
reagent
(D.
melanogaster)

GMR-Gal4 Bloomington
Drosophila Stock Center

BDSC:1104 w*; P{GAL4-ninaE.GMR}12

Genetic
reagent
(D.
melanogaster)

30R Peng Jin (Xu et al., 2013) FlyBase:
FBal0294759

w[1118];UAS-(G4C2)30

Genetic
reagent
(D.
melanogaster)

TRiP
background
control

Bloomington Drosophila
Stock Center

BDSC: 36303 y[1] v[1]; P{y[+t7.7]=CaryP}attP2

Genetic
reagent
(D.
melanogaster)

UAS-ref(2)
PRNAi#1

Bloomington Drosophila
Stock Center

BDSC: 36111 y[1] sc[*] v[1] sev[21];
P{y[+t7.7] v[+t1.8]=TRiP.
HMS00551}attP2

Genetic
reagent
(D.
melanogaster)

UAS-ref(2)
PRNAi #2

Bloomington Drosophila
Stock Center

BDSC: 33978 y[1] sc[*] v[1] sev[21];
P{y[+t7.7] v[+t1.8]=TRiP.
HMS00938}attP2

Genetic
reagent
(D.
melanogaster)

UAS-ref(2)P-
HA

L.M. Martins
(de Castro et al., 2013)

Flybase:
FBtp0089618

Genetic
reagent
(D.
melanogaster)

vGlut-Gal4 Bloomington Drosophila
Stock Center

Flybase:
FBal0194519

w[1118]; P{w[+mW.hs]
=GawB}VGlut[OK371]

Genetic
reagent
(D.
melanogaster)

elavGS Adrian Isaacs Flybase:
FBtp0015149

w[*]; P{elav-Switch.O}
GSG301

Genetic
reagent
(D.
melanogaster)

UAS-poly
(GR)36

Adrian Isaacs
(Mizielinska et al., 2014)

BDSC: 58692 w[1118]; P{{y[+t7.7] w[+mC]
=UAS poly-GR.PO-36}attP40

Genetic
reagent
(D.
melanogaster)

Act-Gal4 Bloomington Drosophila
Stock Center

Flybase:
FBti0183703

y[1] w[*]; P{Act5C-GAL4}
17bFO1/TM6B, Tb1

Genetic
reagent
(D.
melanogaster)

UAS-ref(2)P:
GFP

Thomas Neufeld
(Chang and Neufeld,
2009)

Flybase:
FBtp0041098

Genetic
reagent
(D.
melanogaster)

UAS-mCherry-
Atg8

Bloomington Drosophila
Stock Center

BDSC: 37749 y[1] w[1118]; P{w[+mC]=UASp-
GFP-mCherry-Atg8a}2

Genetic
reagent
(D.
melanogaster)

UAS-GFP:
Lamp1

Helmut Kramer
(Pulipparacharuvil et al.,
2005)

Flybase:
FBtp0041063

w[*]; P{w[+mC]=UAS-GFP-LAMP}2

Continued on next page
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Appendix 1—key resources table continued

Reagent type
(species) or
resource Designation Source or reference Identifiers Additional information

Genetic
reagent
(D.
melanogaster)

UAS-3R; UAS-
(G4C2)3

Adrian Isaacs
(Mizielinska et al., 2014)

BDSC: 58687 w[1118]; P{{y[+t7.7]
w[+mC]=UAS GGGGCC.3}attP40

Genetic
reagent
(D.
melanogaster)

UAS-36R; UAS-
(G4C2)36

Adrian Isaacs
(Mizielinska et al., 2014)

BDSC: 58688 w[1118]; P{{y[+t7.7]
w[+mC]=UAS GGGGCC.36}attP40

Genetic
reagent
(D.
melanogaster)

UAS-44R; UAS-
LDS(G4C2)44

Nancy Bonini
(Goodman et al., 2019b)

BDSC: 84723 w[1118]; P{w[+mC]=UAS-LDS-
(G4C2)44.GR-GFP}9

Genetic
reagent
(D.
melanogaster)

UAS-LacZ Bloomington Drosophila
Stock Center

BDSC: 3956 w[1118]; P{w[+mC]=UAS-lacZ.NZ}
J312

Genetic
reagent
(D.
melanogaster)

Rh1-Gal4 Bloomington Drosophila
Stock Center

BDSC: 8961 P{ry[+t7.2]=rh1 GAL4}3, ry[506]

Genetic
reagent
(D.
melanogaster)

gRab7-YFP Bloomington Drosophila
Stock Center

BDSC: 62545 w[1118]; TI{TI}Rab7[EYFP]

Genetic
reagent
(D.
melanogaster)

UAS-Rab7-
GFP

Bloomington Drosophila
Stock Center

BDSC: 42706

Genetic
reagent
(D.
melanogaster)

UAS-
luciferaseRNAi

Bloomington Drosophila
Stock Center

BDSC: 31603 y[1] v[1];
P{y[+t7.7] v[+t1.8]=TRiP.
JF01355}attP2

Genetic
reagent
(D.
melanogaster)

UAS-S-GFP; Bloomington Drosophila
Stock Center

BDSC: 7032 w[1118]; P{w[+mC]=UAS-NLS-NES
[+]-GFP}5A

Genetic
reagent
(D.
melanogaster)

UAS-RanGAP Zhang et al., 2015a

Genetic
reagent
(D.
melanogaster)

UAS-
RanGAPRNAi;

Bloomington Drosophila
Stock Center

BDSC: 29565 y[1] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.JF03244}attP2
/TM3, Sb[1]

Genetic
reagent
(D.
melanogaster)

UAS-CD8:GFP Bloomington Drosophila
Stock Center

Flybase:
FBti0012685

y[1] w[*]; P{w[+mC]
=UAS-mCD8::GFP.L}LL5

Genetic
reagent
(D.
melanogaster)

UAS-Mitf-HA Francesca Pignoni
(Zhang et al., 2015b)

Genetic
reagent
(D.
melanogaster)

daGS Bloomington Drosophila
Stock Center

Flybase:
FBtp0057039

w[*]; P{w[+mC]=da-GSGAL4.T}

Continued on next page
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Appendix 1—key resources table continued

Reagent type
(species) or
resource Designation Source or reference Identifiers Additional information

Genetic
reagent
(D.
melanogaster)

UAS-
embargoed
RNAi

Bloomington Drosophila
Stock Center

BDSC: 31353 y[1] v[1];
P{y[+t7.7] v[+t1.8]=TRiP.
JF01311}attP2

Genetic
reagent
(D.
melanogaster)

Mitf
duplication;
MitfSI-RES

Francesca Pignoni
(Zhang et al., 2015b)

Flybase:
FBtp0115483

Genetic
reagent
(D.
melanogaster)

UAS-Mitf RNAi Bloomington Drosophila
Stock Center

BDSC: 43998 y[1] sc[*] v[1] sev[21];
P{y[+t7.7] v[+t1.8]=TRiP.
HMS02712}attP2

Genetic
reagent
(D.
melanogaster)

UAS-Rab7WT Bloomington Drosophila
Stock Center

BDSC: 23641 y[1] w[*];
P{w[+mC]=UASp YFP.
Rab7}21/SM5

Genetic
reagent
(D.
melanogaster)

UAS-Cp1EP Bloomington Drosophila
Stock Center

BDSC: 15957 y[1] w[67c23];
P{w[+mC] y[+mDint2]=EPgy2}Cp1
[EY05806]

Genetic
reagent
(D.
melanogaster)

UAS-Vha100-
1EP

Bloomington Drosophila
Stock Center

BDSC: 63269 w[1118]; P{w[+mC]=EP}Vha100-1
[G4514]/TM6C, Sb[1]

Genetic
reagent
(D.
melanogaster)

UAS-Trpml Kartik Venkatachalam Flybase:
FBti0162438

Genetic
reagent
(D.
melanogaster)

UAS-Vha44EP Bloomington Drosophila
Stock Center

BDSC: 20140 y[1] w[67c23]; P{w[+mC] y[+mDint2]
=EPgy2}Vha44[EY02202]

Genetic
reagent
(D.
melanogaster)

UAS-
VhaSFDEP

Bloomington Drosophila
Stock Center

BDSC: 15758 y[1] w[67c23]; P{w[+mC]
y[+mDint2]=EPgy2}VhaSFD
[EY04644]/CyO

Genetic
reagent
(D.
melanogaster)

UAS-Rab7DN Bloomington Drosophila
Stock Center

BDSC: 9778 y[1] w[*]; P{w[+mC]=UASp YFP.
Rab7.T22N}06

Genetic
reagent
(D.
melanogaster)

UAS-Cp1RNAi Bloomington Drosophila
Stock Center

BDSC: 32932 y[1] sc[*] v[1] sev[21];
P{y[+t7.7] v[+t1.8]=TRiP.
HMS00725}attP2

Genetic
reagent
(D.
melanogaster)

UAS-Vha100-
1RNAi

Bloomington Drosophila
Stock Center

BDSC: 26290 y[1] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.JF02059}attP2

Genetic
reagent
(D.
melanogaster)

UAS-TrpmlRNAi Bloomington Drosophila
Stock Center

BDSC: 31294 y[1] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.JF01239}attP2

Genetic
reagent
(D.
melanogaster)

UAS-
Vha44RNAi

Bloomington Drosophila
Stock Center

BDSC: 33884 y[1] sc[*] v[1] sev[21]; P{y[+t7.7]
v[+t1.8]=TRiP.HMS00821}attP2
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Appendix 1—key resources table continued

Reagent type
(species) or
resource Designation Source or reference Identifiers Additional information

Genetic
reagent
(D.
melanogaster)

UAS-
VhaSFDRNAi

Bloomington Drosophila
Stock Center

BDSC: 40896 y[1] sc[*] v[1] sev[21]; P{y[+t7.7]
v[+t1.8]=TRiP.HMS02144}attP40

Genetic
reagent
(D.
melanogaster)

UAS-Atg6RNAi Bloomington Drosophila
Stock Center

BDSC: 35741 y[1] sc[*] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.HMS01483}attP2

Genetic
reagent
(D.
melanogaster)

UAS-
Atg18aRNAi

Bloomington Drosophila
Stock Center

BDSC: 34714 y[1] sc[*] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.HMS01193}attP2

Genetic
reagent
(D.
melanogaster)

UAS-Atg1 Bloomington Drosophila
Stock Center

BDSC: 51655 y[1] w[*]; P{w[+mC]=UAS-
Atg1.S}6B

Genetic
reagent
(D.
melanogaster)

UAS-Atg7 Bloomington Drosophila
Stock Center

NA w[1118]; P{w[+mC]=UAS-Atg7}

Genetic
reagent
(D.
melanogaster)

UAS-
Atg101RNAi

Bloomington Drosophila
Stock Center

BDSC: 34360 y[1] sc[*] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.HMS01349}attP2

Genetic
reagent
(D.
melanogaster)

UAS-
Atg8aRNAi

Bloomington Drosophila
Stock Center

BDSC: 34340 y[1] sc[*] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.HMS01328}attP2

Genetic
reagent
(D.
melanogaster)

UAS-Atg5RNAi Bloomington Drosophila
Stock Center

BDSC: 27551 y[1] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.JF02703}attP2

Genetic
reagent
(D.
melanogaster)

UAS-Atg5RNAi Bloomington Drosophila
Stock Center

BDSC: 34899 y[1] sc[*] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.HMS01244}attP2

Genetic
reagent
(D.
melanogaster)

UAS-
Atg8aRNAi

Bloomington Drosophila
Stock Center

BDSC: 28989 y[1] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.JF02895}attP2
e[*]/TM3, Sb[1]

Genetic
reagent
(D.
melanogaster)

UAS-
Atg14RNAi

Bloomington Drosophila
Stock Center

BDSC: 55398 y[1] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.HMC04086}attP2

Genetic
reagent
(D.
melanogaster)

UAS-
Atg16RNAi

Bloomington Drosophila
Stock Center

BDSC: 34358 y[1] sc[*] v[1] sev[21]; P{y[+t7.7]
v[+t1.8]=TRiP.HMS01347}attP2

Genetic
reagent
(D.
melanogaster)

UAS-
Atg16RNAi

Bloomington Drosophila
Stock Center

BDSC: 58244 y[1] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.HMJ22265}att
P40/CyO

Genetic
reagent (D.
melanogaster)

UAS-
Atg17RNAi

Bloomington Drosophila
Stock Center

BDSC: 36918 y[1] sc[*] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.HMS01611}attP2/
TM3, Sb[1]
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Appendix 1—key resources table continued

Reagent type
(species) or
resource Designation Source or reference Identifiers Additional information

Genetic
reagent
(D.
melanogaster)

UAS-Atg6RNAi Bloomington Drosophila
Stock Center

BDSC: 28060 y[1] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.JF02897}attP2

Genetic
reagent
(D.
melanogaster)

UAS-
Atg8bRNAi

Bloomington Drosophila
Stock Center

BDSC: 34900 y[1] sc[*] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.HMS01245}attP2

Genetic
reagent
(D.
melanogaster)

UAS-bchsRNAi Bloomington Drosophila
Stock Center

BDSC: 42517 y[1] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.HMJ02083}attP40

Genetic
reagent
(D.
melanogaster)

UAS-
Atg8bRNAi

Bloomington Drosophila
Stock Center

BDSC: 27554 y[1] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.JF02706}attP2

Genetic
reagent
(D.
melanogaster)

UAS-Atg9RNAi Bloomington Drosophila
Stock Center

BDSC: 28055 y[1] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.JF02891}attP2

Genetic
reagent
(D.
melanogaster)

UAS-
Atg18aRNAi

Bloomington Drosophila
Stock Center

BDSC: 28061 y[1] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.JF02898}attP2

Genetic
reagent
(D.
melanogaster)

UAS-GyfRNAi Bloomington Drosophila
Stock Center

BDSC: 28896 y[1] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.HM05106}attP2

Genetic
reagent
(D.
melanogaster)

Atg600096 Bloomington Drosophila
Stock Center

BDSC: 11487 ry[506] P{ry[+t7.2]=PZ}Atg6
[00096]/TM3, ry[RK] Sb[1] Ser[1]

Genetic
reagent
(D.
melanogaster)

UAS-
Atg4bRNAi

Bloomington Drosophila
Stock Center

BDSC: 56046 y[1] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.HMS04249}attP2

Genetic
reagent
(D.
melanogaster)

UAS-Atg17EP Bloomington Drosophila
Stock Center

BDSC: 15618 y[1] w[67c23]; P{w[+mC]
y[+mDint2]=EPgy2}Atg
17[EY03045]

Genetic
reagent
(D.
melanogaster)

bchs58 Bloomington Drosophila
Stock Center

BDSC: 9887 y[1] w[*]; P{w[+mC]=EP}
EP2299, bchs[58]/CyO

Genetic
reagent
(D.
melanogaster)

UAS-
Atg4aRNAi

Bloomington Drosophila
Stock Center

BDSC: 35740 y[1] sc[*] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.HMS01482}attP2

Genetic
reagent
(D.
melanogaster)

UAS-
Atg4aRNAi

Bloomington Drosophila
Stock Center

BDSC: 44421 y[1] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.GLC01355}attP40

Genetic
reagent
(D.
melanogaster)

UAS-
Atg10RNAi

Bloomington Drosophila
Stock Center

BDSC: 40859 y[1] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.HMS02026}attP40
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Appendix 1—key resources table continued

Reagent type
(species) or
resource Designation Source or reference Identifiers Additional information

Genetic
reagent
(D.
melanogaster)

UAS-
Atg16RNAi

Bloomington Drosophila
Stock Center

BDSC: 34358 y[1] sc[*] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.HMS01347}attP2

Genetic
reagent
(D.
melanogaster)

UAS-Atg9RNAi Bloomington Drosophila
Stock Center

BDSC: 34901 y[1] sc[*] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.HMS01246}attP2

Genetic
reagent
(D.
melanogaster)

UAS-ltRNAi Bloomington Drosophila
Stock Center

BDSC: 34871 y[1] sc[*] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.HMS00190}attP2
/TM3, Sb[1]

Genetic
reagent
(D.
melanogaster)

UAS-Atg7RNAi Bloomington Drosophila
Stock Center

BDSC: 34369 y[1] sc[*] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.HMS01358}attP2/
TM3, Sb[1]

Genetic
reagent
(D.
melanogaster)

Atg7d06996 Bloomington Drosophila
Stock Center

BDSC: 19257 w[1118]; P{w[+mC]=XP}
Atg7[d06996]/CyO

Genetic
reagent
(D.
melanogaster)

UAS-
Atg4aRNAi

Bloomington Drosophila
Stock Center

BDSC: 28367 y[1] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.JF03003}attP2

genetic
reagent
(D.
melanogaster)

UAS-
Atg8aRNAi

Bloomington Drosophila
Stock Center

BDSC: 58309 y[1] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.HMJ22416}attP40

Genetic
reagent
(D.
melanogaster)

Bchs17 Bloomington Drosophila
Stock Center

BDSC: 9888 y[1] w[*]; P{w[+mC]=EP}
EP2299, bchs[17]/CyO

Genetic
reagent
(D.
melanogaster)

UAS-Atg8aEP Bloomington Drosophila
Stock Center

BDSC: 10107 w[1118] P{w[+mC]=EP}
Atg8a[EP362]

Genetic
reagent
(D.
melanogaster)

UAS-Atg2EP Bloomington Drosophila
Stock Center

BDSC: 17156 w[1118];
P{w[+mC]=EP}Atg2[EP3697]/
TM6B, Tb[1]

Genetic
reagent
(D.
melanogaster)

UAS-Atg7RNAi Bloomington Drosophila
Stock Center

BDSC: 34369 y[1] sc[*] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.HMS01358}attP2
/TM3, Sb[1]

Genetic
reagent
(D.
melanogaster)

UAS-
Atg13RNAi

Bloomington Drosophila
Stock Center

BDSC: 40861 y[1] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.HMS02028}attP40

Genetic
reagent
(D.
melanogaster)

UAS-
Atg14RNAi

Bloomington Drosophila
Stock Center

BDSC: 40858 y[1] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.HMS02025}att
P40/CyO

Genetic
reagent
(D.
melanogaster)

UAS-Atg3EP Bloomington Drosophila
Stock Center

BDSC: 16429 y[1] w[67c23]; P{w[+mC]
y[+mDint2]=EPgy2}Atg3
[EY08396]
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Appendix 1—key resources table continued

Reagent type
(species) or
resource Designation Source or reference Identifiers Additional information

Genetic
reagent
(D.
melanogaster)

UAS-
Atg18bRNAi

Bloomington Drosophila
Stock Center

BDSC: 34715 y[1] sc[*] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.HMS01194}attP2

Genetic
reagent
(D.
melanogaster)

UAS-Atg2RNAi Bloomington Drosophila
Stock Center

BDSC: 27706 y[1] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.JF02786}attP2

Genetic
reagent
(D.
melanogaster)

Snap29B6-21 Bloomington Drosophila
Stock Center

BDSC: 56818 w[*]; P{ry[+t7.2]=neoFRT}42D
Snap29[B6-21]/CyO, P{w[+mC]
=GAL4 twi.G}2.2, P{w[+mC]=UAS-
2xEGFP}AH2.2

Genetic
reagent
(D.
melanogaster)

UAS-Atg3RNAi Bloomington Drosophila
Stock Center

BDSC: 34359 y[1] sc[*] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.HMS01348}attP2

Genetic
reagent
(D.
melanogaster)

UAS-Atg2RNAi Bloomington Drosophila
Stock Center

BDSC: 34719 y[1] sc[*] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.HMS01198}attP2

Genetic
reagent
(D.
melanogaster)

UAS-
Atg18bRNAi

Bloomington Drosophila
Stock Center

BDSC: 34715 y[1] sc[*] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.HMS01194}attP2

Genetic
reagent
(D.
melanogaster)

Atg4bP0997 Bloomington Drosophila
Stock Center

BDSC: 36340 y[1] w[*]; P{w[+mC]
=lacW}Atg4b[P0997]

Genetic
reagent
(D.
melanogaster)

UAS-bchs-HA Bloomington Drosophila
Stock Center

BDSC: 51636 y[1] w[*]; P{w[+mC]
=UAS bchs.HA}32

Cell line
(Homo
sapiens)

HeLa stably
expressing
TFEB:GFP

Shawn Ferguson
(Roczniak-
Ferguson et al., 2012)

Biological
sample
(Homo
sapiens)

Control (non-
neurological)
and ALS
postmortem
motor cortex
tissue

Ravitz laboratory (UCSD)
through Target ALS
Consortium; Brain
Resource
Center at JHMI

Antibody Rabbit
polyclonal
anti-dsRed

Clontech Cat#63249,
RRID:AB_
10013483

1:1000 for IF

Antibody Mouse
monoclonal
anti- poly-
ubiquitin

Enzo Life Sciences Cat#BML-
PW8805, RRID:
AB_10541434

1:200 for IF

Antibody Rabbit
polyclonal
anti-ref(2)P

Gabor Juhasz
laboratory
(Pircs et al., 2012)

1:1000 for IF;
1:1000 for WB

Antibody Guinea pig
polyclonal
anti-Mitf

Francesca Pignoni
laboratory
(Zhang et al., 2015b)

1:500 for IF

Antibody Rat
monoclonal
anti-HA

Roche Cat#
11867423001,
RRID:AB_390918

1:200 for IF
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Appendix 1—key resources table continued

Reagent type
(species) or
resource Designation Source or reference Identifiers Additional information

Antibody Chicken
polyclonal
anti-GFP

Abcam Cat# ab13970,
RRID:AB_300798

1:1000 for IF; 1:1000 for WB

Antibody Guinea pig
polyclonal
anti-Cp1

Patrick Dolph laboratory
(Kinser and Dolph, 2012)

1:2500 for WB

Antibody Mouse
monoclonal
anti- beta actin
(clone C4)

EMD Millipore Cat# MAB1501,
RRID:AB_
2223041

1:1000 for WB

Antibody Rabbit
polyclonal
anti- TFEB

Bethyl Biosciences Cat# A303-673A,
RRID:AB_
11204751

1:2000 for WB

Antibody Rabbit
polyclonal
anti-Histone
H3

Cell Signaling Cat# 9715,
RRID:AB_331563

1:1000 for WB

Antibody Mouse
monoclonal
anti-FLAG

Sigma Aldrich Cat# F3165,
RRID:AB_259529

1:1000 for IF

Recombinant
DNA reagent

pSF-CAG-
Amp

Oxford Genetics Cat# 0G504

Sequence-
based reagent

Actin forward Integrated DNA
Technologies

q-RT-PCR primer 5’- GCGCGGTTACTCTTTCACCA-
3’

Sequence-
based reagent

Actin reverse Integrated DNA
Technologies

q-RT-PCR primer 5’- ATGTCACGGACGATTTCACG-
3’

Sequence-
based reagent

G4C2 repeats
forward
(UAS-30R)

Integrated DNA
Technologies

q-RT-PCR primer 5’-
GGGATCTAGCCACCATGGAG-3’

Sequence-
based reagent

G4C2 repeats
reverse
(UAS-30R)

Integrated DNA
Technologies

q-RT-PCR primer 5’-
TACCGTCGACTGCAGAGATTC-3’

Sequence-
based reagent

Mitf forward Integrated DNA
Technologies

q-RT-PCR primer 5’-
AGTATCGGAGTAGATGTGCCAC-
3’

Sequence-
based reagent

Mitf reverse Integrated DNA
Technologies

q-RT-PCR primer 5’-
CGCTGAGATATTGCCTCACTTG-
3’

Sequence-
based reagent

Vha16-1
forward

Integrated DNA
Technologies

q-RT-PCR primer 5’- TCTATGGCCCCTTCTTCGGA-
3’

Sequence-
based reagent

Vha16-1
reverse

Integrated DNA
Technologies

q-RT-PCR primer 5’- AATGGCAATGATACCCGCCA-
3’

Sequence-
based reagent

Vha68-2
forward

Integrated DNA
Technologies

q-RT-PCR primer 5’-
CAAATATGGACGTGTCTTCGCT-
3’

Sequence-
based reagent

Vha68-2
reverse

Integrated DNA
Technologies

q-RT-PCR primer 5’- CCGGATCTCCGACAGTTACG-
3’

Sequence-
based reagent

Vha55 forward Integrated DNA
Technologies

q-RT-PCR primer 5’- CGGGACTTTATCTCCCAGCC-
3’

Sequence-
based reagent

Vha55 reverse Integrated DNA
Technologies

q-RT-PCR primer 5’-
TGACCTCATCGAGAATGACCAG-
3’

Sequence-
based reagent

Vha44 forward Integrated DNA
Technologies

q-RT-PCR primer 5’-
TGGACTCGGAGTACCTGACC-3’
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Appendix 1—key resources table continued

Reagent type
(species) or
resource Designation Source or reference Identifiers Additional information

Sequence-
based reagent

Vha44 reverse Integrated DNA
Technologies

q-RT-PCR primer 5’-
CGTCACGTTGAACAGGCAGTA-
3’

Sequence-
based reagent

Vha100-2
forward

Integrated DNA
Technologies

q-RT-PCR primer 5’-
TGTTCCGTAGTGAGGAGATGG-
3’

Sequence-
based reagent

Vha100-2
reverse

Integrated DNA
Technologies

q-RT-PCR primer 5’-
TCACGTTCACATTCAAGTCGC-3’

Sequence-
based reagent

Atg8a forward Integrated DNA
Technologies

q-RT-PCR primer 5’-
GGTCAGTTCTACTTCCTCATTCG-
3’

Sequence-
based reagent

Atg8a reverse Integrated DNA
Technologies

q-RT-PCR primer 5’-
GATGTTCCTGGTACAGGGAGC-
3’

Sequence-
based reagent

Atg9 forward Integrated DNA
Technologies

q-RT-PCR primer 5’- ACACGCCTCGAAACAGTGG-
3’

Sequence-
based reagent

Atg9 reverse Integrated DNA
Technologies

q-RT-PCR primer 5’-
TCAAGGTCCTCGATGTGGTTC-3’

Sequence-
based reagent

ref(2)P forward Integrated DNA
Technologies

q-RT-PCR primer 5’ - ATGCCGGAGAAGCTGTTGAA
- 3’

Sequence-
based reagent

ref(2)P reverse Integrated DNA
Technologies

q-RT-PCR primer 5’ -
ATCAGCGTCGATCCAGAAGG -
3’

Commercial
assay or kit

SuperScript III
First-
Strand
Synthesis
System

Thermo Fischer
Scientific

Cat #18080051

Commercial
assay or kit

NE-PER
Nuclear and
Cytoplasmic
Extraction
Kit

Thermo Fischer
Scientific

Cat #78833

Commercial
assay or kit

BCA Assay Thermo Fischer
Scientific

Cat #23227

Commercial
assay or kit

4–15% Mini-
PROTEAN
TGX Precast
Gel

Bio-Rad Cat #4561083

Commercial
assay or kit

One Shot
TOP10
Chemically
Competent
E. coli

Thermo Fischer
Scientific

Cat# C404006

Commercial
assay or kit

Faststain G-Biosciences Cat #786–34

Commercial
assay or kit

SYBR Select
Master Mix

Thermo Fischer
Scientific

Cat #4472908

Chemical
compound,
drug

Blotting Grade
Blocker
(nonfat dry
milk)

Bio-Rad Cat #1706404

Chemical
compound,
drug

Lipofectamine
2000

Thermo Fischer
Scientific

Cat #11668019

Continued on next page
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Appendix 1—key resources table continued

Reagent type
(species) or
resource Designation Source or reference Identifiers Additional information

Chemical
compound,
drug

Mifepristone
(RU486)

Millipore Sigma Cat #M8046

Chemical
compound,
drug

Rapamycin Selleckchem Cat #S1039

Chemical
compound,
drug

D-(+)-
Trehalose
dihydrate

Millipore Sigma Cat #T0167

Chemical
compound,
drug

TRIzol Thermo Fischer
Scientific

Cat #15596018

Chemical
compound,
drug

Protease
Inhibitor
Cocktail

Roche Cat#11873580001

Software,
algorithm

ImageJ https://imagej.nih.gov/ij/

Software,
algorithm

GraphPad
Prism 8

https://www.graphpad.
com/scientific-software/
prism/

Software,
algorithm

IMARIS 9 https://imaris.oxinst.com/

Software,
algorithm

Adobe
Illustrator CC
2018

https://www.adobe.com/
products/illustrator

Software,
algorithm

Image Pro
Insight 9.1

http://www.mediacy.com/
imagepro

Software,
algorithm

WinWCP https://pureportal.strath.
ac.uk
/en/datasets/strathclyde-
electrophysiology-
software
-winwcp-winedr
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