Vascular control of the CO2/H+ dependent drive to breathe

  1. Colin M Cleary
  2. Thiago S Moreira
  3. Ana C Takakura
  4. Mark T Nelson
  5. Thomas A Longden
  6. Daniel K Mulkey  Is a corresponding author
  1. University of Connecticut, United States
  2. University of São Paulo, Brazil
  3. University of Vermont, United States
  4. University of Maryland, United States

Abstract

Respiratory chemoreceptors regulate breathing in response to changes in tissue CO2/H+. Blood flow is a fundamental determinant of tissue CO2/H+, yet little is known regarding how regulation of vascular tone in chemoreceptor regions contributes to respiratory behavior. Previously, we showed in rat that CO2/H+-vasoconstriction in the retrotrapezoid nucleus (RTN) supports chemoreception by a purinergic-dependent mechanism (Hawkins et al. 2017). Here, we show in mice that CO2/H+ dilates arterioles in other chemoreceptor regions, thus demonstrating CO2/H+ vascular reactivity in the RTN is unique. We also identify P2Y2 receptors in RTN smooth muscle cells as the substrate responsible for this response. Specifically, pharmacological blockade or genetic deletion of P2Y2 from smooth muscle cells blunted the ventilatory response to CO2, and re-expression of P2Y2 receptors only in RTN smooth muscle cells fully rescued the CO2/H+ chemoreflex. These results identify P2Y2 receptors in RTN smooth muscle cells as requisite determinants of respiratory chemoreception.

Data availability

source data files are included for all data sets that do not have individual points on summary figures

Article and author information

Author details

  1. Colin M Cleary

    Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0305-1324
  2. Thiago S Moreira

    Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9789-8296
  3. Ana C Takakura

    Department of Pharmacology, University of São Paulo, São Paulo, Brazil
    Competing interests
    No competing interests declared.
  4. Mark T Nelson

    Department of Pharmacology, University of Vermont, Burlington, United States
    Competing interests
    Mark T Nelson, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6608-8784
  5. Thomas A Longden

    Department of Physiology, University of Maryland, United States
    Competing interests
    No competing interests declared.
  6. Daniel K Mulkey

    Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
    For correspondence
    daniel.mulkey@uconn.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7040-3927

Funding

National Institutes of Health (HL104101)

  • Daniel K Mulkey

São Paulo Research Foundation (2015/23376-1)

  • Thiago S Moreira

Conselho Nacional de Desenvolvimento Científico e Tecnológico (408647/2018-3)

  • Ana C Takakura

Conselho Nacional de Desenvolvimento Científico e Tecnológico (301219/2016-8)

  • Ana C Takakura

Conselho Nacional de Desenvolvimento Científico e Tecnológico (301904/2015-4)

  • Thiago S Moreira

Fondation Leducq

  • Mark T Nelson

European Union Horizon 2020 Research and Innovation Programme

  • Mark T Nelson

Henry M. Jackson Foundation (HU0001-18-2-001)

  • Mark T Nelson

National Institutes of Health (HL137094)

  • Daniel K Mulkey

National Institutes of Health (NS099887)

  • Daniel K Mulkey

National Institutes of Health (NS110656)

  • Mark T Nelson

National Institutes of Health (HL140027)

  • Mark T Nelson

National Institutes of Health (HL142227)

  • Colin M Cleary

American Heart Association (17SDG33670237)

  • Thomas Longden

American Heart Association (19IPLOI34660108)

  • Thomas Longden

São Paulo Research Foundation (2016/23281-3)

  • Ana C Takakura

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were performed in accordance with National Institutes of Health and University of Connecticut Animal Care and Use Guidelines as described in protocols A19-048 and A20-016.

Copyright

© 2020, Cleary et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,335
    views
  • 242
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Colin M Cleary
  2. Thiago S Moreira
  3. Ana C Takakura
  4. Mark T Nelson
  5. Thomas A Longden
  6. Daniel K Mulkey
(2020)
Vascular control of the CO2/H+ dependent drive to breathe
eLife 9:e59499.
https://doi.org/10.7554/eLife.59499

Share this article

https://doi.org/10.7554/eLife.59499

Further reading

    1. Neuroscience
    Damian Koevoet, Laura Van Zantwijk ... Christoph Strauch
    Research Article

    What determines where to move the eyes? We recently showed that pupil size, a well-established marker of effort, also reflects the effort associated with making a saccade (‘saccade costs’). Here, we demonstrate saccade costs to critically drive saccade selection: when choosing between any two saccade directions, the least costly direction was consistently preferred. Strikingly, this principle even held during search in natural scenes in two additional experiments. When increasing cognitive demand experimentally through an auditory counting task, participants made fewer saccades and especially cut costly directions. This suggests that the eye-movement system and other cognitive operations consume similar resources that are flexibly allocated among each other as cognitive demand changes. Together, we argue that eye-movement behavior is tuned to adaptively minimize saccade-inherent effort.

    1. Evolutionary Biology
    2. Neuroscience
    Jenny Chen, Phoebe R Richardson ... Hopi E Hoekstra
    Research Article

    Genetic variation is known to contribute to the variation of animal social behavior, but the molecular mechanisms that lead to behavioral differences are still not fully understood. Here, we investigate the cellular evolution of the hypothalamic preoptic area (POA), a brain region that plays a critical role in social behavior, across two sister species of deer mice (Peromyscus maniculatus and P. polionotus) with divergent social systems. These two species exhibit large differences in mating and parental care behavior across species and sex. Using single-nucleus RNA-sequencing, we build a cellular atlas of the POA for males and females of both Peromyscus species. We identify four cell types that are differentially abundant across species, two of which may account for species differences in parental care behavior based on known functions of these cell types. Our data further implicate two sex-biased cell types to be important for the evolution of sex-specific behavior. Finally, we show a remarkable reduction of sex-biased gene expression in P. polionotus, a monogamous species that also exhibits reduced sexual dimorphism in parental care behavior. Our POA atlas is a powerful resource to investigate how molecular neuronal traits may be evolving to give rise to innate differences in social behavior across animal species.