Vascular control of the CO2/H+ dependent drive to breathe

  1. Colin M Cleary
  2. Thiago S Moreira
  3. Ana C Takakura
  4. Mark T Nelson
  5. Thomas A Longden
  6. Daniel K Mulkey  Is a corresponding author
  1. University of Connecticut, United States
  2. University of São Paulo, Brazil
  3. University of Vermont, United States
  4. University of Maryland, United States

Abstract

Respiratory chemoreceptors regulate breathing in response to changes in tissue CO2/H+. Blood flow is a fundamental determinant of tissue CO2/H+, yet little is known regarding how regulation of vascular tone in chemoreceptor regions contributes to respiratory behavior. Previously, we showed in rat that CO2/H+-vasoconstriction in the retrotrapezoid nucleus (RTN) supports chemoreception by a purinergic-dependent mechanism (Hawkins et al. 2017). Here, we show in mice that CO2/H+ dilates arterioles in other chemoreceptor regions, thus demonstrating CO2/H+ vascular reactivity in the RTN is unique. We also identify P2Y2 receptors in RTN smooth muscle cells as the substrate responsible for this response. Specifically, pharmacological blockade or genetic deletion of P2Y2 from smooth muscle cells blunted the ventilatory response to CO2, and re-expression of P2Y2 receptors only in RTN smooth muscle cells fully rescued the CO2/H+ chemoreflex. These results identify P2Y2 receptors in RTN smooth muscle cells as requisite determinants of respiratory chemoreception.

Data availability

source data files are included for all data sets that do not have individual points on summary figures

Article and author information

Author details

  1. Colin M Cleary

    Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0305-1324
  2. Thiago S Moreira

    Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9789-8296
  3. Ana C Takakura

    Department of Pharmacology, University of São Paulo, São Paulo, Brazil
    Competing interests
    No competing interests declared.
  4. Mark T Nelson

    Department of Pharmacology, University of Vermont, Burlington, United States
    Competing interests
    Mark T Nelson, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6608-8784
  5. Thomas A Longden

    Department of Physiology, University of Maryland, United States
    Competing interests
    No competing interests declared.
  6. Daniel K Mulkey

    Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
    For correspondence
    daniel.mulkey@uconn.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7040-3927

Funding

National Institutes of Health (HL104101)

  • Daniel K Mulkey

São Paulo Research Foundation (2015/23376-1)

  • Thiago S Moreira

Conselho Nacional de Desenvolvimento Científico e Tecnológico (408647/2018-3)

  • Ana C Takakura

Conselho Nacional de Desenvolvimento Científico e Tecnológico (301219/2016-8)

  • Ana C Takakura

Conselho Nacional de Desenvolvimento Científico e Tecnológico (301904/2015-4)

  • Thiago S Moreira

Fondation Leducq

  • Mark T Nelson

European Union Horizon 2020 Research and Innovation Programme

  • Mark T Nelson

Henry M. Jackson Foundation (HU0001-18-2-001)

  • Mark T Nelson

National Institutes of Health (HL137094)

  • Daniel K Mulkey

National Institutes of Health (NS099887)

  • Daniel K Mulkey

National Institutes of Health (NS110656)

  • Mark T Nelson

National Institutes of Health (HL140027)

  • Mark T Nelson

National Institutes of Health (HL142227)

  • Colin M Cleary

American Heart Association (17SDG33670237)

  • Thomas Longden

American Heart Association (19IPLOI34660108)

  • Thomas Longden

São Paulo Research Foundation (2016/23281-3)

  • Ana C Takakura

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were performed in accordance with National Institutes of Health and University of Connecticut Animal Care and Use Guidelines as described in protocols A19-048 and A20-016.

Copyright

© 2020, Cleary et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,320
    views
  • 241
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Colin M Cleary
  2. Thiago S Moreira
  3. Ana C Takakura
  4. Mark T Nelson
  5. Thomas A Longden
  6. Daniel K Mulkey
(2020)
Vascular control of the CO2/H+ dependent drive to breathe
eLife 9:e59499.
https://doi.org/10.7554/eLife.59499

Share this article

https://doi.org/10.7554/eLife.59499

Further reading

    1. Neuroscience
    Cassandra Avila, Martin Sarter
    Research Article

    Turning on cue or stopping at a red light requires attending to such cues to select action sequences, or suppress action, in accordance with learned cue-associated action rules. Cortico-striatal projections are an essential part of the brain’s attention–motor interface. Glutamate-sensing microelectrode arrays were used to measure glutamate transients in the dorsomedial striatum (DMS) of male and female rats walking a treadmill and executing cued turns and stops. Prelimbic–DMS projections were chemogenetically inhibited to determine their behavioral necessity and the cortico-striatal origin of cue-evoked glutamate transients. Furthermore, we investigated rats exhibiting preferably goal-directed (goal trackers, GTs) versus cue-driven attention (sign-trackers, STs), to determine the impact of such cognitive-motivational biases on cortico-striatal control. GTs executed more cued turns and initiated such turns more slowly than STs. During turns, but not missed turns or cued stops, cue-evoked glutamate concentrations were higher in GTs than in STs. In STs, turn cue-locked glutamate concentrations frequently peaked twice or three times, contrasting with predominately single peaks in GTs. In GTs, but not STs, inhibition of prelimbic–DMS projections attenuated turn rates and turn cue-evoked glutamate concentrations and increased the number of turn cue-locked glutamate peaks. These findings indicate that turn cue-evoked glutamate release in GTs is tightly controlled by cortico-striatal neuronal activity. In contrast, in STs, glutamate release from DMS glutamatergic terminals may be regulated by other striatal circuitry, preferably mediating cued suppression of action and reward tracking. As cortico-striatal dysfunction has been hypothesized to contribute to a wide range of disorders, including complex movement control deficits in Parkinson’s disease and compulsive drug taking, the demonstration of phenotypic contrasts in cortico-striatal control implies the presence of individual vulnerabilities for such disorders.

    1. Neuroscience
    Georgin Jacob, RT Pramod, SP Arun
    Research Article

    Most visual tasks involve looking for specific object features. But we also often perform property-based tasks where we look for specific property in an image, such as finding an odd item, deciding if two items are same, or if an object has symmetry. How do we solve such tasks? These tasks do not fit into standard models of decision making because their underlying feature space and decision process is unclear. Using well-known principles governing multiple object representations, we show that displays with repeating elements can be distinguished from heterogeneous displays using a property we define as visual homogeneity. In behavior, visual homogeneity predicted response times on visual search, same-different and symmetry tasks. Brain imaging during visual search and symmetry tasks revealed that visual homogeneity was localized to a region in the object-selective cortex. Thus, property-based visual tasks are solved in a localized region in the brain by computing visual homogeneity.