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Abstract Many theories propose recurrent interactions across the cortical hierarchy, but it is

unclear if cortical circuits are selectively wired to implement looped computations. Using

subcellular channelrhodopsin-2-assisted circuit mapping in mouse visual cortex, we compared

feedforward (FF) or feedback (FB) cortico-cortical (CC) synaptic input to cells projecting back to the

input source (looped neurons) with cells projecting to a different cortical or subcortical area. FF and

FB afferents showed similar cell-type selectivity, making stronger connections with looped neurons

than with other projection types in layer (L)5 and L6, but not in L2/3, resulting in selective

modulation of activity in looped neurons. In most cases, stronger connections in looped L5 neurons

were located on their apical tufts, but not on their perisomatic dendrites. Our results reveal that

CC connections are selectively wired to form monosynaptic excitatory loops and support a

differential role of supragranular and infragranular neurons in hierarchical recurrent computations.

Introduction
The complex network of cortical areas can be hierarchically ordered based on the anatomy of inter-

areal cortico-cortical (CC) projections. Lower areas send bottom-up ‘feedforward’ (FF) inputs to

higher areas, which reciprocate with anatomically distinct top-down ‘feedback’ (FB) inputs, while

areas at the same hierarchical level interact through ‘lateral’ or ‘mixed’ inputs (Felleman and Van

Essen, 1991; Markov et al., 2013). The fact that a similar hierarchical architecture is observed

across areas and across species (D’Souza et al., 2020; Felleman and Van Essen, 1991;

Harris et al., 2019) suggests that FF and FB interactions reside at the core of cortical function. As

with local cortical circuits, posited to implement a conserved canonical computation in different cor-

tical areas (Douglas and Martin, 2004; Harris and Shepherd, 2015), long-range cortical connec-

tions could be performing stereotyped functions in different areas and in different species. However,

the precise function of FF and FB interactions in hierarchical processing remains poorly understood.

Several theories of hierarchical computation involve looped interactions between areas, in which

FF and FB pathways selectively influence each other in a bidirectional manner (Bastos et al., 2012;

Guerguiev et al., 2017; Keller and Mrsic-Flogel, 2018; Lillicrap et al., 2016; Rao and Ballard,

1999; Roelfsema and Holtmaat, 2018; Sacramento et al., 2018). It is well established that cortical

areas are densely interconnected and that FF pathways are always reciprocated by FB projections

(Felleman and Van Essen, 1991; Gămănuţ et al., 2018; Oh et al., 2014; Zingg et al., 2014). How-

ever, whether CC connections are wired to selectively facilitate looped computations remains

unknown.

One possibility is that CC inputs specifically modulate neurons projecting back to the source of

those inputs (looped neurons) indirectly via intermediary inhibitory or excitatory cells in the local cir-

cuit. Another possibility, not mutually exclusive to the previous one, is that CC projections selectively

synapse onto looped neurons directly to form interareal monosynaptic loops, which would be excit-

atory since most long-range cortical afferents are glutamatergic.

Cortical projection neurons can be divided into three broad classes: intratelencephalic (IT) neu-

rons, which project to cortical areas, pyramidal tract (PT) neurons, which project to multiple
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subcerebral areas including the midbrain, and corticothalamic (CT) neurons, which project predomi-

nantly to the thalamus (Gerfen et al., 2018; Harris and Shepherd, 2015). Thus, long-range CC pro-

jections could selectively participate in excitatory monosynaptic loops by preferentially contacting

looped IT neurons, while avoiding neighboring non-looped IT, PT, and CT neurons. Previous studies

have found that CC inputs form monosynaptic loops in sensorimotor (Kinnischtzke et al., 2016;

Mao et al., 2011; Yamawaki et al., 2016), frontal (Zhang et al., 2016), and visual cortices

(Johnson and Burkhalter, 1997). There is also evidence that some CC projections selectively inner-

vate IT neurons over PT and CT neurons (Kim et al., 2015; Kinnischtzke et al., 2016; Zhang et al.,

2016), but also evidence that some do not (Yamawaki et al., 2016). However, it remains unknown

whether CC inputs selectively contact looped neurons over closely intermingled IT neurons projec-

ting elsewhere (non-looped IT neurons), or whether they innervate IT neurons equally regardless of

their projection pattern. Furthermore, in order to implement selective recurrent interactions, both FF

and FB connections could be required to specifically engage with looped IT neurons. Yet, whether

the selectivity of CC input between two areas is similar for both ascending and descending projec-

tions or whether it varies also remains unknown.

Here, we measured the strength of CC afferents to different types of projection neurons in mouse

visual cortex to test whether they are wired to specifically engage in monosynaptic looped interac-

tions. Using a combination of subcellular channelrhodopsin-2 (ChR2)-assisted circuit mapping

(sCRACM) (Petreanu et al., 2009) and injections of multiple retrograde tracers, we found that FF

and FB axons selectively provide stronger inputs to looped neurons in layer (L) 5 and L6, while in L2/

3, they remain either unselective for projection type or provide stronger inputs to non-looped neu-

rons. Thus, both ascending and descending hierarchical streams display the same selectivity for spe-

cific looped projection neurons despite their different anatomical profiles. Moreover, preferential

innervation of looped L5 neurons often involved synapses made on their apical, but not basal,

dendrites.

Results

Neurons with different projection patterns are intermingled in visual
areas
We studied CC connections between primary visual cortex (V1), the lowest-order area of mouse

visual cortex, and either the lateral visual areas (V2L) or the medial visual areas (V2M). Using dual

injections of retrograde tracers, we measured the laminar distribution of different projection neurons

in V1 and V2L (Figure 1, Figure 1—figure supplement 1). In each experiment, we compared the

laminar distribution of V2L- or V1-projecting IT neurons with either IT neurons projecting to V2M, PT

neurons projecting to the superior colliculus (SC), or CT neurons projecting to the visual thalamus. In

each case, the different projection neurons were closely intermingled (Figure 1A,B). In both V1 and

V2L, IT neurons were distributed across all layers except L1, including L4 (Harris et al., 2019;

Minamisawa et al., 2018), indicating that FF and FB projections originate from neurons spanning

most of the cortical depth. In contrast, PT and CT neurons were confined to L5 and L5/6, respec-

tively, as previously described (Harris and Shepherd, 2015; Figure 1A,B). In both V1 and V2L, we

found double-labeled IT neurons in L2–6 after injecting tracers in two different cortical areas, indicat-

ing that subpopulations of ascending and descending projection neurons have diverging axons

innervating more than one visual cortical area (Han et al., 2018). However, IT neurons were rarely

double-labeled when tracers were injected in a cortical and subcortical area, confirming that cortical-

and subcortical-projecting neurons constitute different classes of projection neurons

(Economo et al., 2018; Harris and Shepherd, 2015; Tasic et al., 2018). Using AAV encoding green

fluorescent protein (AAV-GFP), we anterogradely traced V1!V2L FF axons and V2L!V1 FB axons

and measured their laminated termination pattern (Figure 1C,D). FF axons in V2L were present in all

layers but were denser in L2/3 and L6. FB axons in V1 arborized in L1 and L6, while avoiding middle

layers. Given the laminar distribution of the different projection neurons and the termination pattern

of CC afferent axons, FF and FB projections could potentially directly innervate both looped and

non-looped IT neurons in each cortical layer, as well as PT and CT neurons in L5 and L6 (Figure 2A).

Moreover, the proximity of looped IT neurons and other projection classes indicates that FF and FB

axons are equally accessible to them. Thus, functional mapping of FF and FB connections is required
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Figure 1. Cortical neurons projecting to different areas are intermingled and accessible to feedforward (FF) and feedback (FB) axons. (A) Distribution of

retrogradely labeled projection neurons in primary visual cortex (V1) after injection of a red-fluorescent tracer in lateral visual areas (V2L) and an

infrared-fluorescent tracer in either medial visual areas (V2M), superior colliculus (SC), or visual thalamus. Left, experimental configuration; center,

representative fluorescent histological section, with infrared fluorescence shown in green; right, colored traces show the mean laminar distribution of

Figure 1 continued on next page
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to reveal any underlying synaptic specificity, since axo-dendritic overlap does not always predict con-

nectivity (Harris and Shepherd, 2015).

Figure 1 continued

the different projection neurons binned in 50 mm increments, while the black trace shows the percentage of retrogradely labeled neurons that are

double-labeled at each depth (n = 3 animals per group). Error bars, standard error; dashed lines, approximate layer boundaries. (B) Distribution of

retrogradely labeled projection neurons in V2L after injection of a red-fluorescent tracer in V1 and an infrared-fluorescent tracer in either V2M, SC, or

visual thalamus (n = 3 animals per group). (C) Distribution of anterogradely labeled V2L FB axons in V1. Left, representative fluorescent histological

section; right, axonal fluorescence across cortical depth binned in 50 mm increments. Individual mice, thin gray traces; average, thick green trace (n = 3

animals). (D) Distribution of anterogradely labeled V1 FF axons in V2L (n = 3 animals).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Histological and in vivo verification of lateral visual (V2L) and medial visual (V2M) area injection sites.

Figure 2. Measuring the strength and dendritic distribution of cortico-cortical (CC) inputs to different projection neurons. (A) We probed the strength

of CC inputs to looped and non-looped neurons in different cortical layers. (B) Example experiment configuration. Retrograde tracers are injected in

two areas to label different projection neurons. One cortical area is also co-injected with adeno-associated virus (AAV)-channelrhodopsin-2 (ChR2) to

express ChR2 in a specific CC projection. (C) Example of subcellular channelrhodopsin-2 (ChR2)-assisted circuit mapping (sCRACM) experiment. Pairs of

neighboring retrogradely labeled neurons in the same cortical layer were sequentially recorded. During each recording, a laser beam was scanned over

the dendrites of the cell at different locations in a grid pattern. (D) Brightfield image of an acute coronal cortical slice showing the recording pipette

and photostimulation grid. (E) Excitatory postsynaptic currents (EPSCs) recorded from a pair of neighboring L5 neurons, evoked by photostimulating

ChR2+ V2L!V1 FB terminals on a grid. (F) Left, dendritic morphology staining of the recorded pair. Right, identity of the recorded projection neuron

was confirmed by fluorescence in the soma of both a retrograde tracer and a different-colored dye introduced from the internal patch pipette solution.

(G) sCRACM maps of the recorded pair overlaid on their reconstructed dendrites. Responsive locations are color-coded to represent mean amplitude.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Total input vs. laminar depth across different projections and projection neuron classes.

Figure supplement 2. Analysis of the incidence of retrograde infection of projection neurons by adeno-associated viruses (AAVs).
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Mapping the cell-type specificity of CC connections
To measure the cell-type selectivity of CC connections, we combined sCRACM (Petreanu et al.,

2009) with multiple injections of fluorescent retrograde tracers (Figure 2B). We injected AAV-ChR2

mixed with a retrograde tracer in either V1, V2L, or V2M to express ChR2 in FF or FB axons and to

retrogradely label looped IT neurons projecting back to the source of ChR2-expressing (ChR2+)

axons. We also injected a different retrograde tracer in either a second cortical area, the SC, or the

thalamus to label non-looped IT, PT, or CT neurons (Figure 2A). We recorded from pairs of neigh-

boring neurons in the same cortical layer in either V1 or higher-order visual areas V2L or V2M in

acute brain slices containing FB or FF ChR2+ axons, respectively. For each pair, one cell projected to

the source of ChR2+ inputs and one cell projected to a different cortical or subcortical area, as indi-

cated by the retrograde tracer type in the soma (Figure 2C,F). Double-labeled cells were excluded.

During the recording, we used galvanometer mirrors to rapidly photostimulate ChR2+ terminals with

a blue laser at different locations around the cell to evoke excitatory postsynaptic currents (EPSCs)

in the presence of sodium channel blocker tetrodotoxin (TTX), potassium-channel blocker 4-amino-

pyridine (4-AP), and the NMDA-receptor blocker 3-((R)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic

acid (CPP) (Figure 2C–E). The onset of laser-evoked EPSCs was delayed relative to laser pulse onset

in 96% (225/235) of the recorded neurons labeled with retrograde tracers, indicating that retrograde

AAV-mediated transfection of ChR2 was rare, consistent with histological analyses

(Materials and methods, Figure 2—figure supplement 2). Thus, sCRACM maps provide a measure

of both the strength and location of monosynaptic CC inputs with minimal contamination from local

collaterals. We then compared the strength of monosynaptic FF or FB inputs in defined dendritic

compartments in pairs of neurons projecting to different areas (Figure 2E–G; D’Souza et al., 2016;

Morgenstern et al., 2016; Petreanu et al., 2009; Yang et al., 2013). We measured input strength

of 4 CC projections (FF: V1!V2L and V1!V2M; FB: V2M!V1 and V2L!V1) to looped IT neurons in

three layers (L2/3, L5, and L6), and compared it to non-looped IT, PT, or CT neurons in their vicinity

(Figure 2—figure supplement 1).

FF and FB inputs innervate specific dendritic compartments of
projection neurons
We detected monosynaptic FF and FB inputs in every cell type and analyzed their dendritic distribu-

tion (Figure 3). Individual sCRACM maps were normalized to their maximum response, aligned rela-

tive to pia (Figure 3) or soma position (Figure 3—figure supplement 1) and averaged. They thus

represent the relative distribution of CC inputs within the dendritic tree for each class of projection

neuron. Input strength to distal dendrites is underestimated in sCRACM maps as inputs are filtered

and attenuated when measured from the soma due to the passive cable properties of dendritic

arbors (Petreanu et al., 2009; Stuart and Spruston, 2015; Williams and Mitchell, 2008). In L2/3,

FF inputs were largely confined to perisomatic dendrites. In L6, while FF connections also targeted

perisomatic dendrites in both CT and IT neurons, we could detect additional FF input on the apical

dendrites of IT neurons extending across L5 (Figure 3A, Figure 4F). Similarly, FF input contacted L5

IT neurons in both the perisomatic dendrites and along their apical dendritic trunk spanning L4 and

L2/3 (Figure 3A, Figure 5B). Thus, like other long-range inputs (Petreanu et al., 2009), FF axons

innervate several dendritic domains of L5 pyramidal neurons, revealing that targeting of apical den-

drites is not an exclusive property of FB axons (see below).

As with FF inputs, FB afferents innervated the perisomatic compartments of all recorded cell

types. However, when compared to FF inputs, a larger fraction of FB to L2/3 and L5 neurons was

located on their distal dendrites in L1 (Figure 3B), consistent with previous measurements

(Petreanu et al., 2009; Yang et al., 2013) and with the laminar profile of FB axons (Figure 1C). Api-

cal tuft inputs were more readily detected in L5 IT neurons than in PT neurons, suggesting differen-

tial innervation by FB fibers (Figure 2G, Figure 3B and Figure 5N, see below).

CC inputs are selectively stronger in looped L6 neurons
We first measured the connectivity of FF and FB inputs to L6 neurons projecting to different areas.

We compared the input strength to looped IT neurons (i.e., neurons projecting back to the FF or FB

input source) vs. either neighboring non-looped IT neurons projecting to another cortical area or CT

neurons (Figure 4). We measured both total input strength, summing responses over all
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Figure 3. Dendritic distribution of feedforward (FF) and feedback (FB) inputs to different projection neuron

classes. (A) Left, group averages of subcellular channelrhodopsin-2 (ChR2)-assisted circuit mapping (sCRACM)

maps aligned by pia position showing primary visual cortex (V1) FF input to the different cell types (combining

V1!V2L and V1!V2M inputs in the case of intratelencephalic [IT] neurons). Triangles, soma position. Right,

Figure 3 continued on next page
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photostimulated locations, and input strength to the perisomatic area (L6 and lower L5) and apical

dendritic area (upper L5 and L4). Relative input strength between the looped IT neuron and the

paired neuron was quantified using the sCRACM Response Index (SRI), which ranges from �1 to 1.

The SRI has a value of 0 if input strength in the two cells is equal, �1 if there is input in the looped IT

neuron but no input in the paired neuron, and 1 in the opposite case (see Materials and methods).

We first compared V1 FF inputs to looped and non-looped L6 IT neurons. For V1!V2L inputs,

total strength was greater in looped IT neurons (Figure 4—figure supplement 1; SRI: �0.49 ± 0.23,

p=0.002). This stronger innervation was present in both perisomatic (SRI: �0.50 ± 0.21, p=0.0001)

and apical areas (SRI: �0.45 ± 0.45, p=0.0364) (Figure 4A–D). For V1!V2M inputs, we did not

detect a difference in total strength between looped and non-looped IT neurons (Figure 4—figure

supplement 1, SRI: �0.32 ± 0.48, p=0.064), but looped IT neurons again received significantly stron-

ger input in the perisomatic area (Figure 4C; SRI: �0.36 ± 0.46, p=0.038). V1!V2M inputs in apical

dendrites were mostly weak and not different between cell types (Apical SRI: 0.33 ± 0.69, p=0.247).

We next compared V1 FF inputs to looped L6 IT neurons and same-layer CT neurons in V2L. Total

input to looped neurons was consistently stronger than to CT neurons (Figure 4—figure supple-

ment 1, SRI: �0.64 ± 0.23, p=1.2�10�5) and inputs were weaker in both perisomatic and apical

areas of CT neurons (Figure 4E–H, Perisomatic SRI: �0.64 ± 0.26, p=2.4�10�5; Apical SRI:

�0.69 ± 0.40, p=0.018).

Likewise, FB inputs to V1 also selectively targeted looped L6 neurons in many cases (Figure 4I–

P). For the looped vs. non-looped comparison among IT neurons, FB from V2M preferentially con-

nected to IT neurons projecting back to the source of FB, both when measuring total and periso-

matic input (Figure 4—figure supplement 1, Figure 4I–L, Total SRI: �0.39 ± 0.36, p=0.031;

Perisomatic SRI: �0.40 ± 0.36, p=0.028), but no difference was detected in the apical area (SRI:

�0.27 ± 0.85, p=0.56). FB from V2L was not significantly different in looped and non-looped L6 IT

neurons (total SRI: �0.18 ± 0.35, p=0.098; perisomatic SRI: �0.14 ± 0.35, p=0.182; apical SRI:

�0.02 ± 0.90, p=0.958). However, looped neurons received stronger perisomatic input from V2L

compared to neighboring CT neurons (Figure 4M–P; total SRI: �0.40 ± 0.42, p=0.003, perisomatic

SRI: �0.41 ± 0.45, p=0.005). Thus, we found that in most experiments (three out of four), FF and FB

connections to L6 neurons were significantly stronger in looped IT cells than in non-looped ones. FF

and FB connections were also stronger in looped IT neurons than in CT neurons.

FF and FB inputs are selectively stronger in looped L5 neurons
We next asked whether the strength of CC inputs differed among L5 pyramidal neuron types (Fig-

ure 5). FF and FB inputs innervated L5 neurons in both perisomatic and apical dendritic regions (Fig-

ure 3, Figure 3—figure supplement 1 and Figure 5B,F,J,N). As before, we analyzed input strength

in these two innervation domains separately. First, we compared V1!V2L or V1!V2M FF inputs to

looped IT neurons projecting back to V1 vs. non-looped IT neurons (Figure 5A–D). In V2L, total

input strength did not differ between looped and non-looped L5 IT neurons (Figure 5—figure sup-

plement 1; SRI: �0.03 ± 0.35, p=0.783), and neither did perisomatic input (Figure 5C; SRI:

�0.02 ± 0.36, p=0.82). However, FF inputs terminating on the apical dendrites of L5 neurons were

stronger in looped IT neurons (Figure 5D; SRI: �0.40 ± 0.43, p=0.009). In V2M, looped neurons

received stronger V1 input than neighboring non-looped IT neurons on both their perisomatic and

apical dendrites (Figure 5—figure supplement 1 and Figure 5C,D; total SRI: �0.42 ± 0.32,

p=0.002; perisomatic SRI: �0.42 ± 0.35, p=0.002; apical SRI: �0.37 ± 0.43, p=0.0174).

We then compared the strength of FF inputs to looped IT and PT neurons. FF fibers innervated

the perisomatic dendrites of looped neurons more strongly, with no difference observed in apical

Figure 3 continued

vertical profiles of input strength. Error bars, s.e.m.; n, number of neurons; N, number of mice. (B) Group averages

and vertical profiles of sCRACM maps showing FB input to the different cell types in V1 (combining V2L!V1 and

V2M!V1 inputs in the case of IT neurons).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Soma-aligned dendritic distribution of feedforward (FF) and feedback (FB) inputs to

different projection neuron classes.
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Figure 4. Most feedforward (FF) and feedback (FB) inputs are stronger in looped intratelencephalic (IT) neurons than in neighboring non-looped IT or

corticothalamic (CT) neurons in L6. (A) Configuration of experiments comparing strength of primary visual cortex (V1) FF input to pairs of L6 looped and

non-looped IT neurons in lateral visual area (V2L) or medial visual area (V2M). (B) Example pair of subcellular channelrhodopsin-2 (ChR2)-assisted circuit

mapping (sCRACM) maps overlaid on reconstructed dendrites showing monosynaptic V1 FF inputs to a looped IT neuron (left) and an adjacent non-

looped IT neuron (right) recorded in V2L. (C) Left, paired comparisons of perisomatic FF input to looped vs. non-looped IT neurons (n, number of cell

pairs; N, number of mice); black dots, V1!V2L inputs; gray dots, V1!V2M inputs. Traces were generated by averaging the mean perisomatic excitatory

postsynaptic current (EPSC) of each neuron across all neurons in the same projection class. Colors correspond to (A). Blue tick, laser pulse. Scale bars in

all panels, 2 pA and 20 ms. Right, sCRACM Response Index (SRI) of the same data. Number of cell pairs and animals are the same as in the left plot

unless otherwise specified. Horizontal line, mean. *, p<0.05, see text for exact value. (D) Same as C for apical inputs (SRI: V1!V2L, n = 7, N = 6;

V1!V2M, n = 7, N = 6). (E) Configuration of experiment comparing strength of V1 FF input to pairs of L6 looped IT and CT neurons in V2L. (F) Example

pair of sCRACM maps overlaid on reconstructed dendrites showing monosynaptic V1 FF inputs to a looped IT neuron (left) and an adjacent CT neuron

(right) recorded in V2L. (G) Paired comparisons and SRI of perisomatic FF input to looped IT vs. CT neurons. (H) Paired comparisons and SRI (n = 5,

N = 5) of apical FF input to looped IT vs. CT neurons. (I) Configuration of experiments comparing strength of V2L or V2M FB input to pairs of L6 looped

and non-looped IT neurons in V1. (J) Example pair of sCRACM maps overlaid on reconstructed dendrites showing monosynaptic V2L FB inputs to a

looped IT neuron (left) and an adjacent non-looped IT neuron (right) recorded in V1. (K) Paired comparisons and SRI of perisomatic FB input to looped

vs. non-looped IT neurons. Dark green dots, V2L!V1 inputs; light green dots, V2M!V1 inputs. (L) Paired comparisons and SRI (V2L!V1, n = 5, N = 5;

V2M!V1, n = 4, N = 4) of apical FB input to looped vs. non-looped IT neurons. (M) Configuration of experiment comparing strength of V2L FB input to

pairs of L6 looped IT and CT neurons in V1. (N) Example pair of sCRACM maps overlaid on reconstructed dendrites showing monosynaptic V2L FB

Figure 4 continued on next page
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inputs (Figure 5—figure supplement 1 and Figure 5E–H; total SRI: �0.43 ± 0.41, p=0.003; periso-

matic SRI: �0.46 ± 0.43, p=0.002; apical SRI: �0.14 ± 0.65, p=0.49). We conclude that FF inputs are

selectively stronger in looped L5 neurons when compared to non-looped IT or PT neurons, and that

this selectivity may result from inputs impinging on the perisomatic dendrites (V1!V2L, IT vs. PT),

the apical dendrites (V1!V2L, IT vs. IT), or both regions (V1!V2M, IT vs. IT).

We next measured the strength of FB inputs to L5 neurons with different projection targets

(Figure 5I–P). We transfected V2L or V2M FB axons with ChR2 and recorded different L5 cell types

in V1. We first compared the strength of V2L!V1 and V2M!V1 FB inputs to looped vs. non-looped

L5 IT neurons (Figure 5I–L). In both projections, total input (Figure 5—figure supplement 1;

V2L!V1 SRI: �0.15 ± 0.54, p=0.284; V2M!V1 SRI: �0.19 ± 0.56, p=0.222) and perisomatic input

(Figure 5K; V2L!V1 SRI: �0.09 ± 0.60, p=0.557; V2M!V1 SRI: �0.22 ± 0.57, p=0.152) were indis-

tinguishable between the two projection types. However, inputs targeting the distal tufts in L1 were

stronger in looped than non-looped IT neurons for both projections (Figure 5L; V2L!V1 SRI:

�0.47 ± 0.51, p=0.012; V2M!V1 SRI: �0.48 ± 0.58, p=0.022). This resulted in looped neurons

receiving a larger fraction of total FB input in their L1 apical domain (mean fraction of total input in

L1; V2L!V1: looped, 23.1 ± 16.6%, non-looped, 11.0 ± 10.6%, p=0.01, signed-rank test; V2M!V1:

looped, 18.1 ± 23.0%, non-looped, 9.4 ± 18.2%, p=0.01, signed-rank test). The presence of stronger

apical inputs in looped neurons could not be explained by differences in dendritic filtering. First,

V2L- and V2M-projecting populations had similar apical dendritic morphologies, with slender tufts

that were indistinguishable in L1 (Figure 5—figure supplement 2). Second, the cell type receiving

the largest fraction of distal input switched from V2L-projecting neurons in the V2L!V1 experiment

to V2M-projecting neurons in the V2M!V1 experiment.

As with the looped vs. non-looped IT comparison, V2L!V1 total and perisomatic inputs did not

distinguish between looped IT and PT neurons (Figure 5—figure supplement 1, Figure 5M–P; total

SRI: �0.20 ± 0.52, p=0.195; perisomatic SRI: �0.19 ± 0.62, p=0.28), but looped neurons received

stronger FB input in their L1 apical compartment (Figure 5P; SRI: �0.46 ± 0.62, p=0.026), despite

having less total dendritic length in L1 (Figure 5—figure supplement 2). Simulations showed that

the weaker sCRACM responses in distal tufts of PT neurons cannot be explained by differences in

passive dendritic filtering between the two cell types. In the absence of connectional selectivity, the

thicker apical shafts and richer apical tuft arborization of PT neurons (Figure 5—figure supplement

2) predict that distal FB input arriving at the soma would be larger, not smaller (Figure 5—figure

supplement 3). We also confirmed that the weaker distal FB input in PT neurons was not due to dif-

ferent levels of hyperpolarization-activated current (Ih) between the two cell types (Harris and Shep-

herd, 2015), since looped IT neurons still received stronger FB input in the apical tuft when

measured in the presence of Ih blockers (Figure 5—figure supplement 4). Thus, the stronger

sCRACM signals detected in L1 reflect synaptic selectivity for the terminal tufts of looped IT neurons.

We conclude that the apical dendrites of L5 neurons have privileged access to FB axons when the

neurons loop back to the source of those axons. Conversely, FB inputs to the basal dendrites of L5

neurons do not favor looped neurons over non-looped IT or PT neurons.

The strength of CC inputs in looped and non-looped L2/3 neurons
Finally, we examined whether CC projections to supragranular neurons would also exhibit a prefer-

ence for looped connectivity. In addition to total input strength (Figure 6—figure supplement 1),

we analyzed inputs terminating in L1 and in the perisomatic region (Figure 6). FF input from V1 was

equally strong in looped and non-looped L2/3 IT neurons in both V2L and V2M when assessing total

input strength (Figure 6—figure supplement 1; V1!V2L SRI: �0.04 ± 0.30, p=0.65; V1!V2M SRI:

�0.05 ± 0.35, p=0.683) and perisomatic innervation (Figure 6C; V1!V2L SRI:�0.06 ± 0.30, p=0.564;

V1!V2M SRI: �0.17 ± 0.34, p=0.167). However, when considering FF connections in L1, V1!V2M

Figure 4 continued

inputs to a looped IT neuron (left) and an adjacent CT neuron (right) recorded in V1. (O) Paired comparisons and SRI of perisomatic FB input to looped

IT vs. CT neurons. (P) Paired comparisons and SRI (n = 8, N = 7) of apical FB input to looped IT vs. CT neurons.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Total subcellular channelrhodopsin-2 (ChR2)-assisted circuit mapping (sCRACM) input to L6 neurons.
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Figure 5. Feedforward (FF) and feedback (FB) inputs are stronger in looped intratelencephalic (IT) neurons than in neighboring non-looped IT or

pyramidal tract (PT) neurons in L5. (A) Configuration of experiments comparing strength of primary visual cortex (V1) FF input to pairs of L5 looped and

non-looped IT neurons in lateral visual (V2L) or medial visual (V2M) areas. (B) Example pair of subcellular channelrhodopsin-2 (ChR2)-assisted circuit

mapping (sCRACM) maps overlaid on reconstructed dendrites showing monosynaptic V1 FF inputs to a looped IT neuron (left) and an adjacent non-

looped IT neuron (right) recorded in V2L. (C) Left, paired comparisons of perisomatic FF input to looped vs. non-looped IT neurons; black dots,

V1!V2L inputs; gray dots, V1!V2M inputs. Traces were generated by averaging the mean perisomatic excitatory postsynaptic current (EPSC) of each

neuron across all neurons in the same projection class. Blue tick, laser pulse. Scale bars in all panels, 2 pA and 20 ms. Right, sCRACM Response

Index (SRI) of the same data. Number of cell pairs and animals are the same as in the left plot unless otherwise specified. Horizontal line, mean. *,

p<0.05, see text for exact value. (D) Same as C for apical inputs (SRI: V1!V2L, n = 12, N = 8; V1!V2M, n = 11, N = 7). (E) Configuration of experiment

comparing strength of V1 FF input to pairs of L5 looped IT and PT neurons in V2L. (F) Example pair of sCRACM maps overlaid on reconstructed

dendrites showing monosynaptic V1 FF inputs to a looped IT neuron (left) and an adjacent PT neuron (right) recorded in V2L. (G) Paired comparisons

and SRI of perisomatic FF input to looped IT vs. PT neurons. (H) Paired comparisons and SRI (n = 11, N = 7) of apical FF input to looped IT vs. PT

neurons. (I) Configuration of experiments comparing strength of V2L or V2M FB input to pairs of L5 looped and non-looped IT neurons in V1. (J)

Example pair of sCRACM maps overlaid on reconstructed dendrites showing monosynaptic V2L FB inputs to a looped IT neuron (left) and an adjacent

non-looped IT neuron (right) recorded in V1. (K) Paired comparisons and SRI of perisomatic FB input to looped vs. non-looped IT neurons. Dark green

dots, V2L!V1 inputs; light green dots, V2M!V1 inputs. (L) Paired comparisons and SRI (V2L!V1, n = 11, N = 10; V2M!V1, n = 11, N = 10) of FB input

in L1 to looped vs. non-looped IT neurons. (M) Configuration of experiment comparing strength of V2L FB input to pairs of L5 looped IT and PT

neurons in V1. (N) Example pair of sCRACM maps overlaid on reconstructed dendrites showing monosynaptic V2L FB inputs to a looped IT neuron (left)

and an adjacent PT neuron (right) recorded in V1. (O) Paired comparisons and SRI of perisomatic FB input to looped IT vs. PT neurons. (P) Paired

comparisons and SRI (n = 12, N = 9) of FB input in L1 to looped IT vs. PT neurons.

Figure 5 continued on next page
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inputs were significantly stronger in non-looped neurons projecting to V2L, while V1!V2L inputs

showed no preference (Figures 6A,B,D; V1!V2L SRI: �0.03 ± 0.66, p=0.892; V1!V2M SRI:

0.68 ± 0.52, p=0.013). This resulted in non-looped V2M L2/3 neurons receiving a larger fraction of

total V1 FF input in L1 compared to their looped neighbors (mean fraction of total input in L1;

V1!V2M inputs: looped, 2.1 ± 3.7%, non-looped, 12.6 ± 13.0%, p=0.039, signed-rank test). Simi-

larly, we measured the strength of V2M and V2L FB inputs to different L2/3 IT neurons in V1. Total

input was indistinguishable between looped and non-looped neurons, as were perisomatic and L1

inputs (Figure 6—figure supplement 1, Figure 6E–H; V2L!V1, total SRI: �0.13 ± 0.51, p=0.36,

perisomatic SRI: �0.13 ± 0.54, p=0.394, L1 input SRI: �0.12 ± 0.64, p=0.553; V2M!V1, total SRI:

�0.04 ± 0.36, p=0.67, perisomatic SRI: 0.03 ± 0.48, p=0.826, L1 input SRI: �0.04 ± 0.66, p=0.86). In

summary, most (3/4) FF and FB inputs did not show projection-type specificity when innervating L2/

3 neurons, with the exception of V1!V2M FF inputs, which were weaker, not stronger, when

Figure 5 continued

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Total subcellular channelrhodopsin-2 (ChR2)-assisted circuit mapping (sCRACM) input to L5 neurons.

Figure supplement 2. Dendritic morphology of the different L5 projection neuron types in primary visual cortex (V1).

Figure supplement 3. Simulations of the dendritic filtering of distal apical inputs.

Figure supplement 4. Feedforward (FB) input to looped L5 intratelencephalic (IT) neurons vs. pyramidal tract (PT) neurons in the presence of Ih
blockers.

Figure 6. Feedforward (FF) and feedback (FB) connections are similar or weaker in looped L2/3 neurons. (A) Configuration of experiments comparing

strength of primary visual cortex (V1) FF input to pairs of L2/3 looped and non-looped intratelencephalic (IT) neurons in lateral visual area (V2L) or

medial visual area (V2M). (B) Example pair of subcellular channelrhodopsin-2 (ChR2)-assisted circuit mapping (sCRACM) maps overlaid on reconstructed

dendrites showing monosynaptic V1 FF inputs to a looped IT neuron (left) and an adjacent non-looped IT neuron (right) recorded in V2L. (C) Left,

paired comparisons of perisomatic FF input to looped vs. non-looped IT neurons; black dots, V1!V2L inputs; gray dots, V1!V2M inputs. Traces were

generated by averaging the mean perisomatic excitatory postsynaptic current (EPSC) of each neuron across all neurons in the same projection class.

Blue tick, laser pulse. Scale bars in all panels, 2 pA and 20 ms. Right, sCRACM Response Index (SRI) of the same data. Number of cell pairs and animals

are the same as in the left plot unless otherwise specified. Horizontal line, mean. *, p<0.05, see text for exact value. (D) Same as C for inputs in L1 (SRI:

V1!V2L, n = 11, N = 7; V1!V2M, n = 7, N = 5). (E) Configuration of experiments comparing strength of V2L or V2M FB input to pairs of L2/3 looped

and non-looped IT neurons in V1. (F) Example pair of sCRACM maps overlaid on reconstructed dendrites showing monosynaptic V2L FB inputs to a

looped IT neuron (left) and an adjacent non-looped IT neuron (right) recorded in V1. (G) Paired comparisons and SRI of perisomatic FB input to looped

vs. non-looped IT neurons. Dark green dots, V2L!V1 inputs; light green dots, V2M!V1 inputs. (H) Same as G for inputs in L1 (SRI: V2L!V1, n = 11,

N = 10; V2M!V1, n = 12, N = 11).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Total subcellular channelrhodopsin-2 (ChR2)-assisted circuit mapping (sCRACM) input to L2/3 neurons.
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contacting dendrites of looped neurons in L1, in contrast to the looped preference observed in L5

and L6.

Selectivity for looped IT neurons differs across infragranular and
supragranular layers
We then searched for common patterns in the synaptic selectivity of CC projections to different IT

neurons. In each layer, we plotted the strength of FF or FB projections to looped IT neurons relative

to non-looped IT neurons in the perisomatic or apical compartments, as measured using the SRI (Fig-

ure 7). While there was some variability across individual projections as previously described, there

were some common patterns shared across projections. When comparing inputs to looped and non-

looped IT neurons in L5 and L6, in seven out of eight FF/FB projections we found stronger inputs to

looped IT neurons, either in the perisomatic or apical areas, or both. On the contrary, none of the

four FF/FB projections to L2/3 showed stronger inputs to looped IT neurons, and in the only case in

which input strength differed between looped and non-looped neurons, inputs were weaker in

looped neurons rather than in non-looped ones. When comparing looped IT neurons and PT or CT

neurons, we found that in all cases CC inputs were stronger in looped IT neurons. We conclude that

most FF and FB connections are selectively wired to strongly innervate looped IT neurons in L5 and

L6. In L5, this selectivity involved synapses on apical, but not basal, dendrites in most cases (1/3 and

Figure 7. Summary of relative input strength across all experiments. The sCRACM Response Index (SRI) of

feedforward (FF) and feedback (FB) inputs to the different cell types is represented by arrow thickness. The top

and bottom arrows to L5 neurons indicate inputs to apical and perisomatic domains, respectively. Inputs to

looped intratelencephalic (IT) cells in each cortical layer are assigned an SRI of 0 (medium arrow thickness). *

signifies significant difference (p<0.05) from the looped IT population.
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3/3 of FF and FB connections tested, respectively). By contrast, inputs to L2/3 were either equally

strong in looped and non-looped IT neurons or weaker in looped ones.

FB inputs selectively influence the activity of looped neurons in V1
These sCRACM measurements of input strength suggest that CC inputs exert different influences on

their target neurons depending on their looped connectivity. To test the functional implications of

the selective innervation of infragranular looped IT neurons, we performed experiments in current

clamp in the absence of channel blockers. We injected the same AAV-ChR2 in V2M and measured

voltage changes and spiking activity of V2M-projecting L6 neurons in V1 upon photostimulation,

comparing their responses to those of neighboring V2L-projecting neurons (Figure 8). The resting

potential of both projection types was similar (looped: �72.35 ± 5.85 mV, non-

looped: �74.52 ± 3.58 mV, p=0.38). In the absence of current injection, a brief LED light pulse

resulted in depolarizations, but not spiking activity, in the recorded cells under these illumination

conditions. Depolarizations were larger in looped IT L6 neurons than in non-looped ones

(Figure 8A–C; mean amplitude; looped IT, 10.2 ± 4.8 mV; non-looped IT, 4.3 ± 3.2 mV, p=0.004,

signed-rank test). We compared the relative magnitude of the evoked postsynaptic potentials using

the CRACM Response Index (CRI), analogous to the SRI used in the sCRACM experiments

(Materials and methods). The relative difference in input strength between looped and non-looped

cells measured with current-clamp LED-induced responses was similar to that measured with

Figure 8. Feedback (FB) inputs in L6 can selectively modulate activity in looped intratelencephalic (IT) neurons. (A) Experiment configuration. In the

absence of channel blockers, V2M!V1 FB axons were photostimulated using an LED during current-clamp recordings of looped and non-looped IT

neurons in L6. (B) Example of excitatory postsynaptic potentials (EPSPs) from an example pair. Blue shade, light pulse. (C) Left, paired comparisons of

EPSP amplitudes evoked in looped vs. non-looped IT neurons. Inset traces represent group averages for each projection class. Blue shade, light pulse.

Right, CRACM Response Index (CRI) of the same data (n = 10, N = 7). (D) Example traces of FB modulation in a looped IT neuron. Cells were driven by

a sustained positive current injection. Black traces, LED OFF trials; blue traces, LED ON trials. Blue bar, duration of the LED light pulse. Gray shading,

time period used to analyze spiking activity in (E). (E) Spike rate difference between LED-ON and LED-OFF trials in looped and non-looped IT neurons

as a function of the amount of current injected during the depolarization step. *, p=0.0273, paired t-test with Bonferroni correction for seven

comparisons.
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sCRACM (Figure 8C, Figure 4—figure supplement 1 and Figure 2—figure supplement 2; current-

clamp CRI: �0.38 ± 0.35; sCRACM total input SRI with AAV2/1: �0.39 ± 0.36; sCRACM total input

SRI with AAV5: �0.52 ± 0.39), indicating that sCRACM reflects actual input strength in the function-

ing circuit. We then asked how V2M!V1 FB combines with bottom-up input in looped and non-

looped L6 IT neurons. We injected steps of positive current at the soma through the recording

pipette to mimic bottom-up depolarization, and measured evoked spiking activity while photostimu-

lating FB axons (Figure 8D–E). Photoactivation of V2M!V1 axons induced additional spiking activity

over a range of current injections (Figure 8D–E). Looped neurons spiked more frequently upon FB

photoactivation than their non-looped neighbors (Figure 8E). Thus, stronger FB innervation of

looped IT neurons in L6 can selectively modify their spiking activity when they are concurrently depo-

larized by other inputs.

Discussion
We comprehensively measured the connection strength of several ascending and descending pro-

jections to the three major classes of cortical projection neurons across layers and across areas. We

found that both FF and FB preferentially innervated looped over non-looped neurons in the infragra-

nular layers, but not in the supragranular layers, resulting in a selective modulation of spiking activity

in looped neurons. Furthermore, by mapping the dendritic locations of CC synaptic inputs, we show

that targeting of looped neurons is often highly subcellular, with many projections showing selectiv-

ity for the apical domains of looped neurons, but not for their basal domains.

Looped connectivity in CC interactions
Consistent with previous reports, we found that CC axons provide inputs to all neurons regardless of

their projection type (DeNardo et al., 2015; Kim et al., 2015; Kinnischtzke et al., 2016;

Yamawaki et al., 2016). However, input strength was consistently different across projection classes.

When comparing looped IT neurons with neighboring subcortical-projecting PT or CT neurons, both

FF and FB inputs always innervated looped IT neurons more strongly. Given the distinct gene-

expression profiles of IT, PT, and CT neurons (Tasic et al., 2018), the preferential wiring of FF and

FB axons to IT neurons could be guided by projection-type specific molecular cues. These findings

accord with rabies virus (RV)-mediated trans-synaptic retrograde tracing experiments reporting that

V1 IT neurons receive a larger proportion of their monosynaptic inputs from higher visual cortices

than do V1 PT neurons (Kim et al., 2015). They are also consistent with studies showing that FF

inputs from V1 to frontal cortices preferentially innervate looped neurons over PT neurons

(Zhang et al., 2016) and that looped IT neurons in L6 of somatosensory cortex receive stronger

input from motor cortex than subcortically projecting neurons (Kinnischtzke et al., 2016). Con-

versely, inputs from retrosplenial cortex to primary motor cortex do not show a preference for IT

over CT or PT neurons (Yamawaki et al., 2016). Similarly, while we found a strong preference of

V2L inputs for IT over CT neurons, single-cell RV tracings in V1 L6 found that CT neurons had a

greater fraction of presynaptic partners from other cortical areas than IT neurons (Vélez-Fort et al.,

2014). It remains to be elucidated to what extent these dissimilarities are due to differing selectivity

across CC pathways for projection neuron types. Alternatively, since in many cases we found that

projection-type specificity was present only for inputs terminating in the apical dendrites (Figure 5,

Figure 5—figure supplement 1), selectivity for IT neurons may have been missed in previous studies

using methods that cannot distinguish input strength in different dendritic compartments.

All the projections in this study contacted looped IT neurons, consistent with previous reports

from the visual (Johnson and Burkhalter, 1997; Kim et al., 2020), somatosensory

(Kinnischtzke et al., 2016), frontal (Zhang et al., 2016), and motor (Mao et al., 2011;

Yamawaki et al., 2016) cortices. We extended these previous observations by comparing inputs to

looped and non-looped IT neurons, and finding selectively stronger connections in looped over non-

looped neurons in seven out of eight tested projections targeting infragranular layers. Thus, for all

CC visual afferents in this study, IT neurons were the principal excitatory targets in deep layers, and

in most of these cases, looped IT neurons were the main recipients.

The specificity of CC connections for looped neurons in infragranular layers was not absolute, as

we detected monosynaptic CC inputs in all cell types. However, our measurements likely underesti-

mate the selectivity of CC inputs for looped neurons. First, many, if not most, projection neurons
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target multiple cortical areas (Economo et al., 2016; Han et al., 2018). Thus, since retrograde tracer

injections only label a fraction of neurons projecting to the injection site, some non-looped neurons

might in fact send a looped projection despite not being retrogradely labeled, thereby reducing our

observed specificity for looped neurons. Second, looped connectivity would also be underestimated

if it only involves CC afferents originating from a specific layer, as we expressed ChR2 non-specifi-

cally in projection neurons spanning multiple layers. Future experiments with layer-specific trans-

genic mouse lines (Harris et al., 2019) will make it possible to compare the specificity of projections

with different laminar origins.

FF and FB connections to L2/3 neurons were consistently different from those targeting deeper

neurons as they showed either no predilection for forming monosynaptic loops (three out of four

projections), or were stronger, not weaker, when contacting non-looped IT neurons (V1!V2M). Pairs

of L2/3 neurons were biased to upper L2/3 when measuring FB inputs and biased to lower L2/3

when measuring FF inputs (Figure 2—figure supplement 1). Thus, we cannot discard that FB con-

nections also show a preference for non-looped neurons when targeting lower L2/3, as V1!V2M FF

inputs do. While the axons of most L2/3 neurons branch to innervate multiple cortical areas, espe-

cially those of V1 neurons projecting to V2L (Han et al., 2018), the absence of loop specificity in L2/

3 is unlikely to be caused by looped neurons being misattributed as non-looped neurons due to

incomplete labeling from tracer injections. This is because L5 showed looped connectivity despite

having a larger percentage of neurons with bifurcating axons (Figure 1). A recent report using RV-

mediated monosynaptic input tracing found that looped L2/3 neurons in V1 had a greater percent-

age of presynaptic partner cells in visual areas to which they projected (Kim et al., 2020). Given that

FB input strength in looped and non-looped L2/3 cells is similar, the presence of more presynaptic

partners in the higher visual areas to which L2/3 neurons project would be consistent with our results

if FB synapses in looped cells were fewer or weaker than in non-looped ones, since number of pre-

synaptic partners does not necessarily reflect input strength. Thus, the connectivity rules of CC pro-

jections in L2/3 are different from those in deep layers, in which neurons consistently received

stronger inputs from areas they innervated.

While, overall, the selectivity for looped neurons followed similar laminar-specific patterns across

CC projections as described above, there was some variability in the connectivity rules (Figure 7).

One possibility is that our measurements are underpowered to detect weaker selectivity in some

projections that would result in a more coherent picture across cortical inputs. Alternatively, the

selectivity of CC inputs for looped neurons might vary across individual cortical projections. This

would be consistent with the stronger selectivity we observed for IT over PT/CT neurons in visual

cortices and the lack of such selectivity reported in motor cortex (Yamawaki et al., 2016).

A role for the apical tufts of IT neurons in looped hierarchical
interactions
We found that both FF and FB inputs innervated the perisomatic and apical dendrites of L5 IT pyra-

midal neurons, but that they differed in their apical distribution. FB innervated the distal dendritic

tufts in L1 while FF inputs extended along the apical shaft up to L2 (Figure 3, Figure 3—figure sup-

plement 1). For both FF and FB projections to looped L5 neurons, we observed stronger selectivity

for apical dendrites than for perisomatic ones (Figure 5, Figure 7). This preference was found in

three out of the four CC projections studied (including in all FB pathways) when comparing looped

with non-looped IT neurons, suggesting an important role for the apical dendritic trees of L5 IT neu-

rons in many looped hierarchical interactions. Inputs to apical tufts might be selectively involved in

recurrent computations, while perisomatic inputs might mediate other hierarchical exchanges.

Through a dynamic interplay of active and passive membrane properties, the apical arbors of L5

pyramidal neurons can perform complex computations combining inputs from different dendritic

compartments (Larkum, 2013; London and Häusser, 2005; Stuart and Spruston, 2015). The apical

dendrites of L5 IT neurons are less well understood than those of PT neurons, being thinner and less

experimentally tractable. Understanding hierarchical computations will require elucidating how

looped L5 IT neurons integrate CC inputs in their distal tufts with inputs arriving in other dendritic

regions.

While inputs to L2/3 neurons were for the most part equally strong in looped and non-looped IT

neurons, FF inputs to V2M were selectively stronger, not weaker, when contacting dendrites of non-
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looped IT neurons in L1 (Figure 6D). Thus, as with L5 neurons, distal input in L2/3 neurons might

also be selectively involved in looped interactions, albeit with different rules.

Functional implications
The stronger innervation of looped neurons resulted in the selective modulation of their spiking and

subthreshold activity in an ex vivo functioning circuit (Figure 8), showing that the connectional selec-

tivity measured using sCRACM has functional consequences in cortical networks. The selective

engagement of looped neurons by both FF and FB afferents supports several theories advocating

looped computations in CC circuitry (Bastos et al., 2012; Guerguiev et al., 2017; Keller and Mrsic-

Flogel, 2018; Mumford, 1992; Rao and Ballard, 1999; Richards and Lillicrap, 2019;

Roelfsema and Holtmaat, 2018; Sacramento et al., 2018). Our observations suggest that L5/6 IT

neurons might be preferential players in the implementation of these long-range loops. CC inputs

and postsynaptic neurons in their target area have similar tuning properties (Glickfeld et al., 2013;

Huh et al., 2018; Zhang et al., 2018) and overlapping receptive fields (Marques et al., 2018). Thus,

given the prominence of looped connectivity in FF and FB visual pathways, related visual signals are

likely relayed back and forth between interconnected neurons located at different hierarchical levels.

According to recent models, looped FB innervation could allow neurons embedded in a hierarchi-

cal network to optimize synaptic weights toward the global desired output, akin to the backpropa-

gation algorithm used to train artificial neural networks (Guerguiev et al., 2017; Lillicrap et al.,

2016; Richards and Lillicrap, 2019; Roelfsema and Holtmaat, 2018; Sacramento et al., 2018).

The apical dendrites of looped neurons are integral to many such models, wherein apical inputs trig-

ger synaptic plasticity of basal inputs to instruct learning. Thus, selective targeting of the apical com-

partments of looped neurons by descending inputs, as observed here, may allow L5 IT neurons to

update synaptic strengths based on activity in the higher-order areas that they project to. Such a

role in looped interactions does not negate the involvement of apical dendrites in other non-looped

computations. For example, we found that L5 PT neurons received weaker FB inputs in their distal

tufts compared to L5 IT neurons (Figure 5), despite having more extensive dendrites in L1 (Fig-

ure 5—figure supplement 2). Since L5 PT neurons receive more inputs from frontal and associative

areas than IT neurons (Kim et al., 2015), their thicker apical dendrites might be specialized in medi-

ating top-down processes that do not require excitatory looped connectivity, such as brain state-

dependent and attentional modulations of perceptual saliency (Manita et al., 2015;

Takahashi et al., 2020; Takahashi et al., 2016; Zhang et al., 2014).

Models in which descending projections modulate plasticity in lower-order synapses to optimize

the global output of the network result in alignment of FF and FB weights, such that synaptic

strengths between pairs of reciprocally connected neurons tend to become similar

(Guerguiev et al., 2017; Lillicrap et al., 2016; Sacramento et al., 2018). Whether the neocortex

follows such rules is a matter of speculation (Lillicrap et al., 2020; Richards and Lillicrap, 2019;

Roelfsema and Holtmaat, 2018; Whittington and Bogacz, 2019). In the presence of weight sym-

metry, FF and FB projection neurons would be expected to receive minimal input from areas they

do not project to, and to receive strong input from areas that they do. Thus, alignment of synaptic

weights between neuron pairs will lead to stronger average synaptic input to looped neurons from

both ascending and descending pathways, as observed here. While our results are consistent with

some degree of weight alignment in neocortical circuits, our experimental approach cannot prove

the existence of symmetric synaptic weights in pairs of neurons at different hierarchical levels. It

remains unknown whether the monosynaptic loops that we unveil here arise from pairs of neurons

selectively targeting each other in a recurrent loop. Given that ChR2 was expressed in multiple pre-

synaptic neurons, our experiments measured the selectivity of afferent populations and do not have

the resolution to resolve interareal loops with single-cell resolution. There is evidence that L5/6 corti-

cal neurons receive long-range CC inputs preferentially from L5/6 neurons (DeNardo et al., 2015).

Moreover, L6 IT neurons innervate deep layers in their target areas (Tasic et al., 2018), and L5 IT

neurons have access to corresponding L5 IT neurons in distant cortical regions, as indicated by their

axonal arborization pattern (Harris et al., 2019; Tasic et al., 2018). Thus, while our findings and the

laminar distribution of CC connections are consistent with pairs of same-layer neurons in different

cortical areas selectively engaging in bidirectional monosynaptic loops, the prevalence of such a cir-

cuit arrangement has yet to be determined. Since input strength in L2/3 neurons was either indepen-

dent of looped connectivity or weaker in looped neurons, synaptic weight symmetry, if present,
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might selectively involve deep cortical layers and not superficial ones. Thus, hierarchical learning

resulting in synaptic weight symmetry could also be laminar-specific.

Our observations reported here suggest that recurrent interareal cortical interactions may play

different roles in supragranular and infragranular layers. They also provide a framework for future

work on the role of projection neurons in different cortical layers in recurrent hierarchical processes.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation Source or reference Identifiers Additional information

Strain, strain
background
(Mus musculus)

C57BL/6 Jackson Laboratory JAX:000664,
RRID:IMSR_JAX:
000664

Bred in-house

Antibody Anti-GFP (rabbit
polyclonal)

Thermo Fisher Catalog #
A-6455, RRID:
AB_221570

(1:1000)

Antibody Alexa Fluor 488-
conjugated
secondary
antibody

Thermo Fisher Catalog #
A-11008,
RRID:AB_143165

(1:1000)

Recombinant
DNA reagent

AAV-2/1-CAG-
ChR2-Venus

Addgene RRID:Addgene_
20071

Recombinant
DNA reagent

AAV5-CaMKIIa-
hChR2(H134R)-
EYFP

Addgene RRID:Addgene_
26969

Recombinant
DNA reagent

AAV2/1-
synapsin-EGFP

UPenn Vector
Core

RRID:Addgene_
105539

Peptide,
recombinant
protein

Cholera toxin
B (Alexa Fluor
647)

Thermo Fisher Catalog #:
C34778

1 mg/ml

Chemical
compound, drug

Red Retrobeads
IX

Lumafluor

Software,
algorithm

Ephus Vidrio Technologies
Suter et al., 2010

PMID:21960959

Animal surgeries
All procedures were reviewed by the Champalimaud Centre for the Unknown Ethics Committee and

performed in accordance with the Portuguese Veterinary General Direction guidelines. Surgeries

were conducted in either male or female C57BL/6J mice (P26�P28) under anesthesia (intraperito-

neal, 37.5 mg/kg ketamine, 0.5 mg/kg medetomidine). Virus expressing ChR2 (AAV-2/1-CAG-Chan-

nelrhodopsin-2-Venus, Addgene #20071; 20–25 nl, titer ~5�1012 vg/ml) was delivered intracortically

either to V1 to label FF projections or V2L/V2M to label FB projections, and co-injected with red-

fluorescent microspheres (Red Retrobeads IX, Lumafluor; 10–12.5 nl) to retrogradely label cells pro-

jecting to the source of FF/FB input. A second retrograde tracer (Cholera toxin subunit B, Alexa

Fluor 647 Conjugate, Thermo Fisher, 50–60 nl, 1.0 mg/ml) was injected elsewhere to label cells pro-

jecting to a different cortical or subcortical area. For axonal quantification, we used AAV2/1-synap-

sin-EGFP (Penn Vector Core p1696, ~5�1012 vg/ml). For Figure 2—figure supplement 2, we

replaced AAV-2/1-CAG-Channelrhodopsin-2-Venus with AAV5-CaMKIIa-hChR2(H134R)-EYFP (Addg-

ene #26969, ~0.5�1012 vg/ml) when injecting in V2M. Pulled glass injection pipettes (Drummond Sci-

entific) had tip diameter of 15–20 mm. Stereotaxic coordinates for V1 and V2L were measured from

the midline and from the posterior-most point of the transverse sinus (lateral of midline/anterior of

transverse sinus/depth in mm): V1 (2.3/1.3/0.775), V2L (3.5/1.7/0.9). Stereotaxic coordinates for V2M

and SC were measured from the midline and from the sinus confluence, the point at which the trans-

verse sinuses meet the superior sagittal sinus (lateral of midline/anterior of sinus confluence/depth in

mm): V2M (1.6/1.25/0.8), SC (0.5/0.4/1.5 and 1.8). We verified the accuracy of V2L and V2M
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coordinates by identifying the borders of visual areas relative to the injection sites in vivo in a subset

of animals (Figure 1—figure supplement 1). Animals were injected in V2L and V2M with red-fluores-

cent latex microspheres as described above. Approximately 30 days later, a circular craniotomy was

performed over the visual cortex (diameter: 4 mm) and an imaging window was embedded into the

craniotomy and secured in place using black dental cement. A custom-designed iron headpost was

attached to the skull with dental acrylic. Intrinsic signal imaging was performed to identify the posi-

tion of the visual areas relative to the injection sites as previously described (Garrett et al., 2014;

Marques et al., 2018; Figure 1—figure supplement 1). In 7/7 mice screened, both V2L and V2M

injections were located outside the borders of V1. V2L injections targeted mainly the lateromedial

(LM) visual cortex, while V2M injections labeled the anteromedial (AM) and/or anterior part of the

posteromedial (PM) visual cortices (Wang and Burkhalter, 2007). To label CT neurons, injections of

retrograde tracers were targeted to the dorsal lateral geniculate nucleus (dLGN) for V1 recordings,

and the lateral posterior nucleus (LP) of the thalamus for V2L recordings. Stereotactic coordinates

were measured from the midline and from bregma (lateral of midline/posterior of bregma/depth in

mm): dLGN (2.3/1.75/2.8), LP (1.35/1.75/2.65 and 2.85). We cannot discard the possibility that chol-

era toxin injections were not entirely confined to either dLGN or LP and encompassed both nuclei in

some cases. Animals were maintained at 37˚C on a heating pad during surgery and returned to their

home cages after surgery (maximum of five animals per cage). All animals were housed in a room

with a regular 12 hr light/dark cycle.

Slice preparation
Fourteen to 20 days (age range P40–P48) after the surgery, mice were decapitated under deep

anesthesia (isoflurane) and brains were dissected in ice-cold choline chloride solution (110 mM cho-

line chloride, 25 mM NaHCO3, 25 mM D-glucose, 11.6 mM sodium ascorbate, 7 mM MgCl2, 3.1 mM

sodium pyruvate, 2.5 mM KCl, 1.25 mM NaH2PO4, and 0.5 mM CaCl2 [Sigma]; aerated with 95% O2/

5% CO2) and sectioned in 300-mm-thick coronal slices using a Leica VT1200S vibratome. Slices were

then incubated for 30 min at 37˚C in artificial cerebrospinal fluid (127 mM NaCl, 25 mM NaHCO3, 25

mM D-glucose, 2.5 mM KCl, 1 mM MgCl2, 2 mM CaCl2, and 1.25 mM NaH2PO4 (Sigma); aerated

with 95% O2/5% CO2).

Electrophysiology and photostimulation
Neurons were patched with borosilicate pipettes (resistance 3–5 MW, Werner Instruments) filled with

potassium gluconate intracellular solution (128 mM potassium gluconate, 4 mM MgCl2, 10 mM

HEPES, 1 mM EGTA, 4 mM Na2ATP, 0.4 mM Na2GTP, 10 mM sodium phosphocreatine, 3 mM

sodium L-ascorbate, 3 mg/ml biocytin [Sigma] and 5 mg/ml Alexa Fluor 488 dye [Thermo Fisher Sci-

entific]; pH 7.25, 290 mOsm). All sCRACM recordings were performed at room temperature (22–24˚

C) and with the presence of TTX (1 mM), CPP (5 mM), and 4-AP (100 mM) in the bath. For Figure 5—

figure supplement 4, ZD7288 (10 mM) was also applied to control for Ih differences between cell

types. Areas V2L and V2M were identified by the presence of Venus-expressing FF axons. When

measuring FB input strength, we verified that V2L or V2M injections resulted in the expected laminar

distribution of Venus-expressing axons in V1 (Figure 1C and Figure 2—figure supplement 2) in the

recorded slice. For sCRACM mapping, fluorescent-positive cells were recorded sequentially in volt-

age clamp (�70 mV) at depths of >30 mm in the same slice. Double-labeled cells were not recorded.

A blue laser (473 nm, Cobolt Laser) was used for photostimulation to evoke EPSCs. Duration (1 or 4

ms) and intensity (0.1–1.1 mW) of light pulses were controlled with a Pockels cell (ConOptics) and a

shutter (Thorlabs). The laser beam (diameter ~15 mm, not taking into account tissue scattering) was

rapidly repositioned using galvanometer mirrors (Thorlabs) and delivered through an air immersion

objective (Olympus 4X, NA 0.1) on either a 16 � 16 grid (L2/3 cells) or a 12 � 24 grid (L5 and L6

cells) with 50 mm spacing and 400 ms inter-stimulus interval. Stimuli were given in a spatial sequence

pattern designed to maximize the time between neighboring locations. The stimulus pattern was

flipped and rotated between maps to avoid sequence-specific responses. sCRACM maps were

repeated two to five times for each cell. Laser power was manually adjusted in each experiment

using a graduated neutral density filter (Edmund Optics) so that peak amplitudes smaller than 100

pA were evoked in the most excitable locations for the first recorded cell in the pair. Pairs of differ-

ent projection neurons recorded at similar cortical depths in the same layer and in close proximity
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(mean ± s.d.: 73.27 ± 47.41 mm) were photostimulated using the same laser power and pulse dura-

tion. The order in which cell types were recorded alternated between pairs. Data were acquired with

a Multi clamp 700B amplifier (Axon Instruments) and digitalized with National Instruments acquisi-

tion boards controlled under Matlab using Ephus (Suter et al., 2010).

Current-clamp experiments
To examine the functional impact of selective looped interactions (Figure 8), recordings were per-

formed in current clamp in the absence of channel blockers and at near-physiological temperatures

(34˚C). Neurons were photostimulated with 20 ms pulses from a blue LED (Cairn Research) through a

water immersion objective (Olympus 60X, NA1.0, 20 mW at the focal point). Steps of positive current

(0–200 pA, 500 ms duration) were injected every second. Trials with and without the LED pulses

were interleaved. In trials with current injection, the LED light pulse began 200 ms after current step

onset. We compared the mean amplitude of the LED-evoked excitatory postsynaptic potentials in

trials without current injection to measure synaptic strength (Figure 8C). Spike frequency in a 0–50

ms window after LED onset was averaged across five trials and compared in Figure 8E.

Immunohistochemistry and dendritic reconstructions
After whole-cell recordings, biocytin-filled neurons were fixed overnight in 4% paraformaldehyde

(PFA) at 4˚C and transferred to phosphate-buffered saline the following day. Prior to staining, slices

were rinsed in phosphate buffer (PB) 0.1 M. Endogenous peroxidases were quenched with 1% H2O2

(Sigma) in PB 0.1 M for 45 min at room temperature. Slices were rinsed again in PB 0.1 M and incu-

bated in the ABC reaction (Vector Laboratories) for ~12 hr at room temperature (22–24˚C). After suc-

cessive PB 0.1 M and Tris-buffered saline (TBS) washings, slices were subjected to the

diaminobenzidine (DAB) reaction for 30–50 min (using 30 ml of TBS, 90 ml 3% H2O2, 225 ml of NiCl2
(250 mM), and 7 mg of DAB [Sigma]). The DAB reaction was stopped with TBS. Slices were mounted

and coverslipped with Mowiol mounting medium. Dendrites were reconstructed with Neurolucida

software (MBF Bioscience) using the 40x magnification objective lens of an Olympus BX61 micro-

scope. Tracings were imported into Matlab, corrected for shrinkage and analyzed using custom rou-

tines. Dendritic length density was calculated in 50 mm bins and interpolated for display.

Laminar distribution of projection neuron subtypes and FF/FB axons
Injected animals were intracardially perfused with 4% PFA 14 days post-surgery and cryostat-sec-

tioned in 20-mm-thick coronal slices. Slices were stained with 40,6-diamidino-2-phenylindole

dihydrochloride (DAPI) and imaged with the 20� objective of a Zeiss AxioImager M2 widefield fluo-

rescence microscope. For quantification of different projection neurons in V1/V2L cortex (Figure 1A,

B), three animals were used per dataset (eight slices per animal). Cells were counted within a 1000 �

1000 mm (V1) or 600 � 1000 mm (V2L) area. To normalize cell depth, fractional cortical depth (pia–

cell distance/pia–white matter distance) was multiplied by average cortical thickness across the eight

slices. For quantification of axons (Figure 1C,D), three animals were analyzed for both FF and FB

datasets (eight slices per animal). Vertical fluorescence profiles of GFP-expressing axons were mea-

sured using ImageJ after subtracting background fluorescence from a hippocampal area devoid of

labeled axons or somata.

Quantification of retrograde infection of ChR2-expressing AAVs
We verified that AAV-2/1-CAG-Channelrhodopsin-2-Venus led to minimal retrograde infection in

several ways (Figure 2—figure supplement 2). While Venus-labeled axons were clearly visible in tar-

get regions in unstained sections, Venus-positive somata were undetectable in these regions. In cor-

onal slices stained with rabbit anti-GFP polyclonal antibody (1:1000 dilution, Thermo Fisher, catalog

#A-6455) and Alexa Fluor 488-conjugated secondary antibody (1:1000 dilution, Thermo Fisher, cata-

log #A-11008) to boost Venus fluorescence, we detected a very small number of Venus-positive

somata (Figure 2—figure supplement 2). In 20 mm sections of V1, we found 2.60 ± 0.94 Venus-

expressing neurons/mm2 (n = 3, V2M-injected mice). We also stained sections (n = 3 mice) for the

neural marker NeuN (rabbit monoclonal, 1:1500 dilution, Abcam, catalog #ab177487), followed by

an Alexa Fluor 647-conjugated secondary antibody (donkey polyclonal, 1:800 dilution, Jackson

ImmunoResearch, catalog #711-605-152) and measured the density of neurons in V1 sections using
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Cellpose (Stringer et al., 2021). From these counts we estimate that retrogradely infected neurons

expressing ChR2 comprise 1 out of every 1282 ± 578 NeuN+ V1 neurons (n = 3). In addition to these

anatomical analyses, we also analyzed the onset of the sCRACM response in looped neurons to ver-

ify that they did not express ChR2 (Figure 2—figure supplement 2). We were able to detect early-

onset (<2 ms) responses, consistent with a non-synaptic ChR2-induced current, in 10/235 (4.2%) of

the recorded looped IT neurons. These 10 neurons were removed from further analysis. Together,

these analyses suggest that, given their sparsity, collaterals of neurons retrogradely infected with

ChR2 are unlikely to contribute to our measurements. We also conducted additional recordings

using AAV5-ChR2 (AAV5-CaMKIIa-hChR2(H134R)-EYFP) to examine whether the small number of

neurons retrogradely infected with AAV2/1-ChR2 could nevertheless be contributing to the stronger

inputs in looped IT neurons (Figure 2—figure supplement 2). Consistent with previous results

(Kinnischtzke et al., 2014), we found that the AAV5 resulted in less retrograde infection than AAV-

2/1-CAG-Channelrhodopsin-2-Venus in sections immunostained with anti-GFP antibody (number of

retrogradely infected neurons per mm2 in 20-mm-thick V1 sections, 0.49 ± 0.20; fraction of NeuN+

V1 neurons, 1 in 7009 ± 3434, n = 3 mice). None of the recorded looped IT neurons displayed early

EPSC onset with AAV5 (n = 11, Figure 2—figure supplement 2). Despite the significantly lower

density of retrogradely infected cells expressing ChR2 in AAV5 compared to AAV2/1 (AAV2/1-AAV5

density ratio = 5.6, p=0.0465, t-test), the relative strength of V2M!V1 inputs in looped vs. non-

looped L6 IT neurons was similar using the two AAVs (Figure 2—figure supplement 2; total SRI,

AAV2/1, �0.39 ± 0.36; AAV5, �0.52 ± 0.39, p=0.476). We conclude that local collaterals from the

small number of neurons retrogradely infected with AAV2/1-ChR2 do not contribute significantly to

the measurement of CC input strength.

Data analysis
In electrophysiological recordings, the boundaries between layers were established as L1: pia�90

mm; L2/3: 90–350 mm; L4: 350–450 mm; L5: 450–650 mm; L6 650–950 mm. To correct for differences

in cortical thickness due to variability in slicing angle of brain sections, the fractional cortical depth

of each recorded neuron was positioned on a reference cortical slice with a thickness of 950 mm.

Only pairs of cells with an intersomatic distance of <200 mm were included in analyses. In cases

where multiple cells were recorded in the same slice, cells nearest each other were paired. Traces

were baseline-substracted (baseline period: 50 ms before laser onset) and averaged across succes-

sive sCRACM maps. Average responses at each location were calculated as the mean EPSC 0–75 ms

after laser onset and are therefore a measure of charge (D’Souza et al., 2016; Petreanu et al.,

2009). In Figure 3 and Figure 3—figure supplement 1, sCRACM maps were aligned by pia and

soma position, respectively, and linearly interpolated for display. To calculate input strength, input

at responsive locations (EPSC amplitude >5 standard deviations above baseline) was summed across

the entire map or within the perisomatic or apical regions. The sign was flipped so that stronger

inputs resulted in larger values. Pairs in which neither cell showed detectable input (total sCRACM

input <20 pA) were discarded. To calculate the SRI, we required at least one cell with summed

inputs >5 pA in the region of interest. The SRI was calculated as follows:
P

Responsesof non loopedneuron �
P

responsesof loopedneuron
P

Responsesof non looped neuronþ
P

responsesof looped neuron

For inclusion in fraction-to-apical analyses, both cells in the pair required detectable input. Periso-

matic and apical responses in neurons of different layers were calculated by summing inputs within a

given cortical depth (L2/3: perisomatic 150–650 mm, L1: 0–50 mm; L5: perisomatic: 400–900 mm, L1:

0–150 mm for FB inputs, apical: 0–300 mm for FF inputs; L6: perisomatic: 600–950 mm, apical: 0–500

mm). For L5 datasets, pairs with any cut apical dendrites were discarded. Since many L2/3 neurons

were located in upper L2/3, apical and perisomatic dendrites may be intermingled in L1 in some

cases. Thus, responses in L1 could include inputs made on perisomatic and apical dendrites. We

therefore refer to these as ‘inputs in L1’. As the resolution of sCRACM is ~60 mm (Petreanu et al.,

2009), to better distinguish inputs in L1 from those in L2/3, we removed responses in the two rows

flanking the L1–L2/3 boundary when analyzing inputs in L1 and the perisomatic area of L2/3 neurons.

For L6 neurons, we could not always verify the integrity of apical dendrites, thus when no difference

in apical input is observed across cell types, this may be due to incomplete arbors. To compute
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average traces in Figures 4–6, Figure 4—figure supplement 1, Figure 5—figure supplement 1,

Figure 5—figure supplement 4 and Figure 6—figure supplement 1, EPSCs at all locations in a

given region of interest (perisomatic, apical, L1, or total) were averaged for each neuron, regardless

of whether the location had a detectable light-evoked response, and subsequently averaged across

neurons of the same projection class. To visualize the average subcellular distribution of inputs (Fig-

ure 3), only cells with sCRACM input >10 pA for at least one location were included.

To quantify relative synaptic strength in the current-clamp experiments (Figure 8C), we calculated

the CRI as follows:

EPSPamplitude innon loopedneuron�EPSPamplitude in looped neuron

EPSPamplitude innon loopedneuronþEPSPamplitude looped neuron

SRI and CRI values were tested using the two-tailed Student’s t-test, and fraction of inputs in the

apical region were tested using the two-tailed Wilcoxon signed-rank test for paired samples. Data in

the text is mean ± standard deviation. No statistical tests were used to predetermine the number of

cell pairs, but our sample sizes are comparable to those in similar studies (D’Souza et al., 2016;

Kinnischtzke et al., 2016; Mao et al., 2011; Morgenstern et al., 2016; Yamawaki et al., 2016;

Yang et al., 2013). All statistical analyses were performed with Matlab.

Simulations of passive dendritic filtering of L1 inputs
Traced dendrites of L5 neurons in V1 were imported into the NEURON simulation environment

(Hines and Carnevale, 1997). We set the diameter of the somata, apical trunks, and apical tuft

branches for the different projection neurons using manual measurements from biocytin-stained

arbors (Figure 5—figure supplement 2). For each cell belonging to a given projection type, seg-

ments from the same dendritic compartment were assigned the same diameter value (apical trunk

width, mm: SC-projecting, 1.7, V2M-projecting, 1.14; V2L-projecting, 1; apical tuft branch width, mm:

SC-projecting, 0.7, V2M-projecting, 0.4, V2L-projecting, 0.43). The biophysical properties used for

simulations were as follows: cytoplasmic resistivity, Ra = 35.4 cm; specific membrane capacitance,

Cm = 1 F/cm2; resting conductance, gpas = 1/20,000; resting potential, Epas=–65 mV. We applied a

synaptic density of 0.2 synapses per mm of apical dendritic segment when distributing passive synap-

ses over the apical tree. The location of synapses along individual dendritic segments was randomly

determined, and synaptic conductance was approximated by an alpha function, with parameters

t=0.1 ms and gmax = 1 mS. For each neuron, we then simulated responses to apical tuft inputs under

single-electrode voltage-clamp at the soma (�70 mV, 10 MW resistance), assuming no axonal selec-

tivity for postsynaptic cell types. We conducted 100 simulations for each neuron and quantified the

mean charge or amplitude measured at the soma (Figure 5—figure supplement 3). To measure

input resistance (Figure 5—figure supplement 3E), we simulated somatic voltage-clamp recordings

and measured input resistance using a �5 mV voltage step.
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