Excitatory and inhibitory receptors utilize distinct post- and trans-synaptic mechanisms in vivo

  1. Taisuke Miyazaki
  2. Megumi Morimoto-Tomita
  3. Coralie Berthoux
  4. Kotaro Konno
  5. Yoav Noam
  6. Tokiwa Yamasaki
  7. Matthijs Verhage
  8. Pablo E Castillo
  9. Masahiko Watanabe
  10. Susumu Tomita  Is a corresponding author
  1. Hokkaido University, Japan
  2. Yale University, United States
  3. Albert Einstein College of Medicine, United States
  4. Amsterdam University Medical Center, Netherlands

Abstract

Ionotropic neurotransmitter receptors at postsynapses mediate fast synaptic transmission upon binding of the neurotransmitter. Post- and trans-synaptic mechanisms through cytosolic, membrane, and secreted proteins have been proposed to localize neurotransmitter receptors at postsynapses. However, it remains unknown which mechanism is crucial to maintain neurotransmitter receptors at postsynapses. In this study, we ablated excitatory or inhibitory neurons in adult mouse brains in a cell-autonomous manner. Unexpectedly, we found that excitatory AMPA receptors remain at the postsynaptic density upon ablation of excitatory presynaptic terminals. In contrast, inhibitory GABAA receptors required inhibitory presynaptic terminals for their postsynaptic localization. Consistent with this finding, ectopic expression at excitatory presynapses of neurexin 3alpha, a putative trans-synaptic interactor with the native GABAA receptor complex, could recruit GABAA receptors to contacted postsynaptic sites. These results establish distinct mechanisms for the maintenance of excitatory and inhibitory postsynaptic receptors in the mature mammalian brain.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file. Source Data files showing all raw values for each figure and the original images of uncropped blots for Figure 6B have been provided.

Article and author information

Author details

  1. Taisuke Miyazaki

    Anatomy, Hokkaido University, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Megumi Morimoto-Tomita

    Cellular and Molecular Physiology, Neuroscience, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Coralie Berthoux

    Albert Einstein College of Medicine, Bronx, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kotaro Konno

    Department of Anatomy, Hokkaido University, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Yoav Noam

    Cellular and Molecular Physiology, Neuroscience, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Tokiwa Yamasaki

    Cellular and Molecular Physiology, Neuroscience, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Matthijs Verhage

    Department of Clinical Genetics, Amsterdam University Medical Center, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  8. Pablo E Castillo

    Albert Einstein College of Medicine, Bronx, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9834-1801
  9. Masahiko Watanabe

    Department of Anatomy, Hokkaido University, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5037-7138
  10. Susumu Tomita

    Cellular and Molecular Physiology, Neuroscience, Yale University, New Haven, United States
    For correspondence
    susumu.tomita@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8344-259X

Funding

NIH Office of the Director (MH115705)

  • Susumu Tomita

NIH Office of the Director (MH077939)

  • Susumu Tomita

Grant-in-Aid for Scientific Research (MEXT 17K08485)

  • Taisuke Miyazaki

Grant-in-Aid for Scientific Research (MEXT 18K06813)

  • Taisuke Miyazaki

NIH Office of the Director (F32NS093952)

  • Yoav Noam

NIH Office of the Director (NS113600)

  • Pablo E Castillo

NIH Office of the Director (MH125772)

  • Pablo E Castillo

NIH Office of the Director (MH125772)

  • Pablo E Castillo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal handling was in accordance with protocols approved by the Institutional Animal Care and Use Committee (IACUC) of Yale University (Animal Welfare Assurance# A3230-01, Animal protocol number 2021-11029), the Albert Einstein College of Medicine (Animal Welfare Assurance# A3312-011, Animal protocol number 00001043) and Hokkaido University, Japan (Approval number, #19-0111). Animal care and housing were provided by the Yale Animal Resource Center (YARC), in compliance with the Guide for the Care and Use of Laboratory Animals (National Academy Press, Washington, D.C., 1996).

Copyright

© 2021, Miyazaki et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,653
    views
  • 399
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Taisuke Miyazaki
  2. Megumi Morimoto-Tomita
  3. Coralie Berthoux
  4. Kotaro Konno
  5. Yoav Noam
  6. Tokiwa Yamasaki
  7. Matthijs Verhage
  8. Pablo E Castillo
  9. Masahiko Watanabe
  10. Susumu Tomita
(2021)
Excitatory and inhibitory receptors utilize distinct post- and trans-synaptic mechanisms in vivo
eLife 10:e59613.
https://doi.org/10.7554/eLife.59613

Share this article

https://doi.org/10.7554/eLife.59613

Further reading

    1. Neuroscience
    Rongxin Fang, Aaron Halpern ... Xiaowei Zhuang
    Tools and Resources

    Multiplexed error-robust fluorescence in situ hybridization (MERFISH) allows genome-scale imaging of RNAs in individual cells in intact tissues. To date, MERFISH has been applied to image thin-tissue samples of ~10 µm thickness. Here, we present a thick-tissue three-dimensional (3D) MERFISH imaging method, which uses confocal microscopy for optical sectioning, deep learning for increasing imaging speed and quality, as well as sample preparation and imaging protocol optimized for thick samples. We demonstrated 3D MERFISH on mouse brain tissue sections of up to 200 µm thickness with high detection efficiency and accuracy. We anticipate that 3D thick-tissue MERFISH imaging will broaden the scope of questions that can be addressed by spatial genomics.

    1. Neuroscience
    Sam E Benezra, Kripa B Patel ... Randy M Bruno
    Research Article

    Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior. Mice were trained to discriminate two orthogonal directions of whisker stimulation. Reinforcement learning, but not repeated stimulus exposure, enhanced tuft selectivity for both directions equally, even though only one was associated with reward. Selective tufts emerged from initially unresponsive or low-selectivity populations. Animal movement and choice did not account for changes in stimulus selectivity. Enhanced selectivity persisted even after rewards were removed and animals ceased performing the task. We conclude that learning produces long-lasting realignment of apical dendrite tuft responses to behaviorally relevant dimensions of a task.