Excitatory and inhibitory receptors utilize distinct post- and trans-synaptic mechanisms in vivo
Abstract
Ionotropic neurotransmitter receptors at postsynapses mediate fast synaptic transmission upon binding of the neurotransmitter. Post- and trans-synaptic mechanisms through cytosolic, membrane, and secreted proteins have been proposed to localize neurotransmitter receptors at postsynapses. However, it remains unknown which mechanism is crucial to maintain neurotransmitter receptors at postsynapses. In this study, we ablated excitatory or inhibitory neurons in adult mouse brains in a cell-autonomous manner. Unexpectedly, we found that excitatory AMPA receptors remain at the postsynaptic density upon ablation of excitatory presynaptic terminals. In contrast, inhibitory GABAA receptors required inhibitory presynaptic terminals for their postsynaptic localization. Consistent with this finding, ectopic expression at excitatory presynapses of neurexin 3alpha, a putative trans-synaptic interactor with the native GABAA receptor complex, could recruit GABAA receptors to contacted postsynaptic sites. These results establish distinct mechanisms for the maintenance of excitatory and inhibitory postsynaptic receptors in the mature mammalian brain.
Data availability
All data generated or analyzed during this study are included in the manuscript and supporting file. Source Data files showing all raw values for each figure and the original images of uncropped blots for Figure 6B have been provided.
Article and author information
Author details
Funding
NIH Office of the Director (MH115705)
- Susumu Tomita
NIH Office of the Director (MH077939)
- Susumu Tomita
Grant-in-Aid for Scientific Research (MEXT 17K08485)
- Taisuke Miyazaki
Grant-in-Aid for Scientific Research (MEXT 18K06813)
- Taisuke Miyazaki
NIH Office of the Director (F32NS093952)
- Yoav Noam
NIH Office of the Director (NS113600)
- Pablo E Castillo
NIH Office of the Director (MH125772)
- Pablo E Castillo
NIH Office of the Director (MH125772)
- Pablo E Castillo
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All animal handling was in accordance with protocols approved by the Institutional Animal Care and Use Committee (IACUC) of Yale University (Animal Welfare Assurance# A3230-01, Animal protocol number 2021-11029), the Albert Einstein College of Medicine (Animal Welfare Assurance# A3312-011, Animal protocol number 00001043) and Hokkaido University, Japan (Approval number, #19-0111). Animal care and housing were provided by the Yale Animal Resource Center (YARC), in compliance with the Guide for the Care and Use of Laboratory Animals (National Academy Press, Washington, D.C., 1996).
Reviewing Editor
- Eunjoon Kim, Institute for Basic Science, Korea Advanced Institute of Science and Technology, Republic of Korea
Version history
- Received: June 3, 2020
- Accepted: September 19, 2021
- Accepted Manuscript published: October 18, 2021 (version 1)
- Version of Record published: October 27, 2021 (version 2)
Copyright
© 2021, Miyazaki et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,165
- Page views
-
- 365
- Downloads
-
- 3
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Decisions about noisy stimuli are widely understood to be made by accumulating evidence up to a decision bound that can be adjusted according to task demands. However, relatively little is known about how such mechanisms operate in continuous monitoring contexts requiring intermittent target detection. Here, we examined neural decision processes underlying detection of 1 s coherence targets within continuous random dot motion, and how they are adjusted across contexts with weak, strong, or randomly mixed weak/strong targets. Our prediction was that decision bounds would be set lower when weak targets are more prevalent. Behavioural hit and false alarm rate patterns were consistent with this, and were well captured by a bound-adjustable leaky accumulator model. However, beta-band EEG signatures of motor preparation contradicted this, instead indicating lower bounds in the strong-target context. We thus tested two alternative models in which decision-bound dynamics were constrained directly by beta measurements, respectively, featuring leaky accumulation with adjustable leak, and non-leaky accumulation of evidence referenced to an adjustable sensory-level criterion. We found that the latter model best explained both behaviour and neural dynamics, highlighting novel means of decision policy regulation and the value of neurally informed modelling.
-
- Genetics and Genomics
- Neuroscience
A hexanucleotide repeat expansion in C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). A hallmark of ALS/FTD pathology is the presence of dipeptide repeat (DPR) proteins, produced from both sense GGGGCC (poly-GA, poly-GP, poly-GR) and antisense CCCCGG (poly-PR, poly-PG, poly-PA) transcripts. Translation of sense DPRs, such as poly-GA and poly-GR, depends on non-canonical (non-AUG) initiation codons. Here, we provide evidence for canonical AUG-dependent translation of two antisense DPRs, poly-PR and poly-PG. A single AUG is required for synthesis of poly-PR, one of the most toxic DPRs. Unexpectedly, we found redundancy between three AUG codons necessary for poly-PG translation. Further, the eukaryotic translation initiation factor 2D (EIF2D), which was previously implicated in sense DPR synthesis, is not required for AUG-dependent poly-PR or poly-PG translation, suggesting that distinct translation initiation factors control DPR synthesis from sense and antisense transcripts. Our findings on DPR synthesis from the C9ORF72 locus may be broadly applicable to many other nucleotide repeat expansion disorders.