1. Physics of Living Systems
  2. Structural Biology and Molecular Biophysics
Download icon

Phase Separation: Restricting the sizes of condensates

  1. Furqan Dar
  2. Rohit Pappu  Is a corresponding author
  1. Department of Physics, Washington University in St. Louis, United States
  2. Center for Science and Engineering of Living Systems, Washington University in St. Louis, United States
  3. Department of Biomedical Engineering, Washington University in St. Louis, United States
Insight
Cite this article as: eLife 2020;9:e59663 doi: 10.7554/eLife.59663
1 figure

Figures

Two timescales determine the size of condensates.

(A) Models in which macromolecules are composed of stickers and spacers can be used to predict the phase behavior of proteins (Choi et al., 2019). This schematic shows the interactions between two such macromolecules, with the stickers in one macromolecule (red shapes) forming bonds (reversible, non-covalent crosslinks) with the stickers in the other macromolecule (blue shapes); the spacers are shown as grey and black circles. Bonds between the stickers are made and broken on a time scale of tbond. (B) Free macromolecules (small orange spheres) diffuse and collide on a timescale of tdifffusion, sometimes sticking together to form condensates (large orange spheres). (C) When these two timescales are roughly equal, a phenomenon known as Ostwald ripening leads to the formation of a dominant condensate that continues to grow by absorbing smaller condensates. (D) Ranganathan and Shakhnovich predict that when the timescale for diffusion is much faster than the timescale for making and breaking bonds, condensates cannot grow beyond a certain size, which results in a large number of small- and medium-sized condensates.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)