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Abstract Understanding the connectivity observed in the brain and how it emerges from local

plasticity rules is a grand challenge in modern neuroscience. In the primary visual cortex (V1) of

mice, synapses between excitatory pyramidal neurons and inhibitory parvalbumin-expressing (PV)

interneurons tend to be stronger for neurons that respond to similar stimulus features, although

these neurons are not topographically arranged according to their stimulus preference. The

presence of such excitatory-inhibitory (E/I) neuronal assemblies indicates a stimulus-specific form of

feedback inhibition. Here, we show that activity-dependent synaptic plasticity on input and output

synapses of PV interneurons generates a circuit structure that is consistent with mouse V1.

Computational modeling reveals that both forms of plasticity must act in synergy to form the

observed E/I assemblies. Once established, these assemblies produce a stimulus-specific

competition between pyramidal neurons. Our model suggests that activity-dependent plasticity can

refine inhibitory circuits to actively shape cortical computations.

Introduction
With the advent of modern optogenetics, the functional role of inhibitory interneurons has devel-

oped into one of the central topics of systems neuroscience (Fishell and Kepecs, 2020). Aside from

the classical perspective that inhibition serves to stabilize recurrent excitatory feedback loops in neu-

ronal circuits (van Vreeswijk and Sompolinsky, 1996; Brunel, 2000; Murphy and Miller, 2009;

Sprekeler, 2017), it is increasingly recognised as an active player in cortical computation

(Isaacson and Scanziani, 2011; Priebe and Ferster, 2008; Rubin et al., 2015; Pouille and Scan-

ziani, 2001; Letzkus et al., 2011; Adesnik et al., 2012; Hennequin et al., 2014; Phillips et al.,

2017; Barron et al., 2016; Barron et al., 2017; Tovote et al., 2015).

Within cortical neurons, excitatory and inhibitory currents are often highly correlated in their

response to stimuli (Wehr and Zador, 2003; Froemke et al., 2007; Tan et al., 2011; Bhatia et al.,

2019), in time (Okun and Lampl, 2008; Dipoppa et al., 2018) and across neurons (Xue et al.,

2014). This co-tuning of excitatory and inhibitory currents has been attributed to different origins. In

topographically organised sensory areas such as cat primary visual cortex (V1), the co-tuning with

respect to sensory stimuli could be a natural consequence of local feedback inhibition and does not

impose strong constraints on inhibitory circuitry (Harris and Mrsic-Flogel, 2013). In the case of feed-

forward inhibition, co-tuning of excitatory and inhibitory currents was suggested to arise from

homeostatic synaptic plasticity in GABAergic synapses (Vogels et al., 2011; Clopath et al., 2016;

Weber and Sprekeler, 2018; Hennequin et al., 2017).

In sensory areas with poor feature topography, such as V1 of rodents (Ohki et al., 2005), feed-

back inhibition has been hypothesised to be largely unspecific for stimulus features, a property

inferred from the dense connectivity (Fino and Yuste, 2011; Packer and Yuste, 2011) and reliable

presence of synapses connecting pyramidal (Pyr) neurons to inhibitory interneurons with dissimilar

stimulus tuning (Harris and Mrsic-Flogel, 2013; Bock et al., 2011; Hofer et al., 2011). However,
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recent results cast doubt on this idea of a ‘blanket of inhibition’ (Fino and Yuste, 2011; Packer and

Yuste, 2011).

In mouse V1, Znamenskiy et al., 2018 report that although the presence of synaptic connections

between Pyr cells and parvalbumin-expressing (PV) interneurons is independent of their respective

stimulus responses, the efficacy of those synapses is correlated with their response similarity, both in

PV ! Pyr and in Pyr ! PV connections. These mutual preferences in synaptic organisation suggest

that feedback inhibition may be more stimulus-specific than previously thought and that Pyr and PV

neurons form specialised—albeit potentially overlapping—excitatory-inhibitory (E/I) assemblies

(Chenkov et al., 2017; Yoshimura et al., 2005; Litwin-Kumar and Doiron, 2012; Litwin-

Kumar and Doiron, 2014). While the presence of such E/I assemblies (Znamenskiy et al., 2018;

Rupprecht and Friedrich, 2018) suggests the need for an activity-dependent mechanism for their

formation and/or refinement (Khan et al., 2018; Najafi et al., 2020), the requirements such a mech-

anism must fulfil remain unresolved.

Here, we use a computational model to identify requirements for the development of stimulus-

specific feedback inhibition. We find that the formation of E/I assemblies requires a synergistic action

of plasticity on two synapse types: the excitatory synapses from Pyr neurons onto PV interneurons

and the inhibitory synapses from those interneurons onto the Pyr cells. Using ‘knock-out experi-

ments’, in which we block plasticity in either synapse type, we show that both must be plastic to

account for the observed functional microcircuits in mouse V1. In addition, after the formation of E/I

assemblies, perturbations of individual Pyr neurons lead to a feature-specific suppression of other

Pyr neurons as recently found in mouse V1 (Chettih and Harvey, 2019). Thus, synergistic plasticity

of the incoming and outgoing synapses of PV interneurons can drive the development of stimulus-

specific feedback inhibition, resulting in a competition between Pyr neurons with similar stimulus

preference.

Results
To understand which activity-dependent mechanisms can generate specific feedback inhibition in cir-

cuits without feature topography—such as mouse V1 (Figure 1a), we studied a rate-based network

model consisting of NE ¼ 512 excitatory Pyr neurons and NI ¼ 64 inhibitory PV neurons. To endow

the excitatory neurons with a stimulus tuning similar to Pyr cells in layer 2/3 of mouse V1

(Znamenskiy et al., 2018), each excitatory neuron receives external excitatory input that is tuned to

orientation, temporal frequency and spatial frequency (Figure 1b). The preferred stimuli of the Pyr

neurons cover the stimulus space evenly. Because we are interested under which conditions feed-

back inhibition can acquire a stimulus selectivity, inhibitory neurons receive external inputs without

stimulus tuning, but are recurrently connected to Pyr neurons. While the network has no stimulus

topography, Pyr neurons are preferentially connected to other Pyr neurons with similar stimulus tun-

ing (Hofer et al., 2011; Cossell et al., 2015), and connection strength is proportional to the signal

correlation of their external inputs. Note that the Pyr ! Pyr connections only play a decisive role for

the results in Figure 4 but are present in all simulations for consistency. Connection probability

across the network is p ¼ 0:6, with the remaining network connectivity (Pyr ! PV, PV ! PV, PV !

Pyr) initialised randomly according to a log-normal distribution (Song et al., 2005;

Loewenstein et al., 2011), with a variability that is similar to that measured in the respective synap-

ses (Znamenskiy et al., 2018).

E/I assemblies are formed by homeostatic plasticity rules in input and
output connections of PV interneurons
In feedforward networks, a stimulus-specific balance of excitation and inhibition can arise from

homeostatic inhibitory synaptic plasticity that aims to minimise the deviation of a neuron’s firing rate

from a target for all stimuli of a given set (Vogels et al., 2011; Clopath et al., 2016; Weber and

Sprekeler, 2018). We wondered whether a stimulus-specific form of homeostasis can also generate

stimulus-specific feedback inhibition by forming E/I assemblies. To that end, we derive synaptic plas-

ticity rules for excitatory input and inhibitory output connections of PV interneurons that are homeo-

static for the excitatory population (see ’Materials and methods’). A stimulus-specific homeostatic

control can be seen as a ‘trivial’ supervised learning task, in which the objective is that all Pyr neu-

rons should learn to fire at a given target rate �0 for all stimuli. Hence, a gradient-based optimisation
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Figure 1. Homeostatic plasticity in input and output synapses of interneurons drives the formation of excitatory-

inhibitory (E/I) assemblies. (a) Emergence of E/I assemblies comprised of pyramidal (Pyr) neurons (triangles) and

parvalbumin-expressing (PV) interneurons (circles) in circuits without feature topography. (b) Network architecture

and stimulus tuning of external inputs to Pyr cells. (c) Stimulus selectivity of Pyr neurons and PV interneurons

(before and after learning). Arrows indicate the median. (d) Example responses of reciprocally connected Pyr cells

and PV interneurons. Examples chosen for large, intermediate, and low response similarity (RS). Numbers

correspond to points marked in (e). (e) Relationship of synaptic efficacies of output (left) and input connections

(centre) of PV interneurons with RS. Relationship of input and output efficacies (right). Black lines are obtained via

linear regression. Reported r and associated p-value are Pearson’s correlation. (f) Stimulus tuning of excitatory and

inhibitory currents onto an example Pyr cell, before and after learning. For simplicity, currents are shown for spatial

and temporal frequency only, averaged across all orientations. (g) Angle between the weight update and the

gradient rule while following the local approximation for input (top) and output (bottom) connections of PV

interneurons. Time course for first 4% of simulation (left) and final distribution (right) shown. Black lines are low-

pass filtered time courses.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Synaptic plasticity and convergence.

Figure supplement 2. Gradient rules also require plasticity of both input and output synapses of parvalbumin-
expressing (PV) interneurons.

Figure supplement 3. Synaptic currents onto pyramidal (Pyr) neurons.

Figure supplement 4. Both input and output synapses must be plastic for feedback alignment to occur.

Figure supplement 5. Some networks contain experimentally undetectable weights.
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would effectively require a backpropagation of error (Rumelhart et al., 1985) through time (BPTT;

Werbos, 1990).

Because backpropagation rules rely on non-local information that might not be available to the

respective synapses, their biological plausibility is currently debated (Lillicrap et al., 2020;

Sacramento et al., 2018; Guerguiev et al., 2017; Whittington and Bogacz, 2019; Bellec et al.,

2020). However, a local approximation of the full BPTT update can be obtained under the following

assumptions: First, we assume that the sensory input to the network changes on a time scale that is

slower than the intrinsic time scales in the network. This eliminates the necessity of backpropagating

information through time, albeit still through the synapses in the network. This assumption results in

what we call the ‘gradient-based’ rules (Equation 15 in Appendix 1), which are spatially non-local.

Second, we assume that synaptic interactions in the network are sufficiently weak that higher-order

synaptic interactions can be neglected. Third and finally, we assume that over the course of learning,

the Pyr ! PV connections and the PV ! Pyr connections become positively correlated

(Znamenskiy et al., 2018), such that we can replace PV ! Pyr synapses by the reciprocal Pyr ! PV

synapse in the Pyr ! PV learning rule, without rotating the update too far from the true gradient

(see Appendix 1).

The resulting learning rule for the output connections of the interneurons is similar to a previously

suggested form of homeostatic inhibitory plasticity (Figure 1—figure supplement 1a, left)

(Vogels et al., 2011). Specifically, PV output synapses WE I undergo Hebbian changes in proportion

to presynaptic interneuron activity rIj and the signed deviation of total postsynaptic Pyr cell input hEi
from the homeostatic target:

DWE I
ij / rIj ðh

E
i � �0Þþweight decay :

In contrast, the PV input synapses W I E are changed such that the total excitatory drive I
E;rec
i

from the Pyr population to each interneuron is close to some target value I0 (Figure 1—figure sup-

plement 1a, right):

DW I E
ij / rEj ðI

E;rec
i � I0Þþweight decay :

Both synapse types are subject to a weak weight decay, to avoid the redundancy that a multipli-

cative rescaling of input synapses can be compensated by a rescaling of the output synapses.

While our main results are obtained using the local approximations, we also simulated the gradi-

ent-based rules to verify that the approximation does not qualitatively change the results (Figure 1—

figure supplement 2).

When we endow the synapses of an initially randomly connected network of Pyr neurons and PV

interneurons with plasticity in both the input and the output synapses of the interneurons, the net-

work develops a synaptic weight structure and stimulus response that closely resemble that of

mouse V1 (Znamenskiy et al., 2018). Before learning, interneurons show poor stimulus selectivity

(Figure 1c), in line with the notion that in a random network, interneurons pool over many Pyr neu-

rons with different stimulus tuning (Harris and Mrsic-Flogel, 2013). The network is then exposed to

randomly interleaved stimuli. By the end of learning, interneurons have developed a pronounced

stimulus tuning, albeit weaker than that of Pyr neurons (Figure 1c,d). Interneurons form strong bidi-

rectional connections preferentially with Pyr neurons with a similar stimulus tuning, whereas connec-

tions between Pyr-PV pairs with dissimilar stimulus tuning are weaker (Figure 1d,e). To make our

results comparable to Znamenskiy et al., 2018, we randomly sample an experimentally feasible

number of synaptic connections from the network (n ¼ 100). Both the efficacy of PV input and output

connections are highly correlated with the response similarity (RS) (see ’Materials and methods’) of

the associated Pyr neurons and interneurons (Figure 1e, left and centre). For bidirectionally con-

nected cell pairs, the efficacies of the respective input and output connections are highly correlated

(Figure 1e, right). The stimulus tuning of the inhibitory inputs onto the Pyr cells—initially flat—

closely resembles that of the excitatory inputs after learning (Figure 1f, Figure 1—figure supple-

ment 3; Tan et al., 2011), that is, the network develops a precise E/I balance (Hennequin et al.,

2017).

Finally, the optimal gradient rules produce very similar results to the local approximations (Fig-

ure 1—figure supplement 2). Over the course of learning, the weight updates by the approximate
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rules align to the updates that would result from the gradient rules (Figure 1g, Figure 1—figure

supplement 4), presumably by a mechanism akin to feedback alignment (Lillicrap et al., 2016;

Akrout et al., 2019).

In summary, these results show that combined homeostatic plasticity in input and output synapses

of interneurons can generate a similar synaptic structure as observed in mouse V1, including the for-

mation of E/I assemblies.

PV! Pyr plasticity is required for the formation of E/I assemblies
Having shown that homeostatic plasticity acting on both input and output synapses of interneurons

are sufficient to learn E/I assemblies, we now turn to the question of whether both are necessary. To

this end, we perform ‘knock-out’ experiments, in which we selectively block synaptic plasticity in

either of the synapses. The motivation for these experiments is the observation that the incoming PV

synapses follow a long-tailed distribution (Znamenskiy et al., 2018). This could provide a sufficient

stimulus selectivity in the PV population for PV! Pyr plasticity alone to achieve a satisfactory E/I bal-

ance. A similar reasoning holds for static, but long-tailed outgoing PV synapses. This intuition is sup-

ported by results from Litwin-Kumar et al., 2017, where for a population of neurons analogous to

our interneurons, the dimensionality of responses in that population can be high for static input syn-

apses, when those are log-normally distributed.

When we knock out output plasticity but keep input plasticity intact, the network fails to develop

E/I assemblies and a stimulus-specific E/I balance. While there is highly significant change in the dis-

tribution of PV interneuron stimulus selectivity (Mann-Whitney U test, U ¼ 1207, p<10�4), the effect is

much stronger when output plasticity is also present (Figure 2a,b). Importantly, excitatory and inhib-

itory currents in Pyr neurons are poorly co-tuned (Figure 2c, Figure 1—figure supplement 3b). In

particular, feedback inhibition remains largely untuned because output connections are still random,

so that Pyr neurons pool inhibition from many interneurons with different stimulus tuning.

To investigate whether the model without output plasticity is consistent with the synaptic struc-

ture of mouse V1, we repeatedly sample an experimentally feasible number of synapses (n ¼ 100,

Figure 2d) and plot the distribution of the three pairwise Pearson’s correlation coefficients between

the two classes of synaptic weights and RS (Figure 2e). When both forms of plasticity are present in

the network, a highly significant positive correlation (p<0:01) is detected in all samples for all three

correlation types (Figure 2f). When output plasticity is knocked out, we still find a highly significant

positive correlation between input weights and RS in 99% of the samples (Figure 2d–f). In contrast,

correlations between input and output synapses are weaker and cannot reliably be detected (2% of

samples). Notably, we find a correlation between output weights and RS in <0.01% of samples

(Figure 2f). Finally, for an experimentally realistic sample size of n ¼ 100, the probability of a correla-

tion coefficient equal or higher than that observed by Znamenskiy et al., 2018 is <0.01% for the

correlation between output weights and RS (r ¼ 0:55), and <0.01% for the correlation between input

and output synapses (r ¼ 0:52).

The non-local gradient rule for the PV input synapses alone also does not permit the formation of

E/I assemblies (Figure 1—figure supplement 2). While the selectivity of interneurons increases

more than for the local approximation (Figure 1—figure supplement 2b), feedback inhibition still

remains untuned in the absence of output plasticity (Figure 1—figure supplement 2c,d).

We therefore conclude that input plasticity alone is insufficient to generate the synaptic micro-

structure observed in mouse V1.

Pyr! PV plasticity is required for assembly formation
When we knock out input plasticity but keep output plasticity intact, we again observe no formation

of E/I assemblies. This remains true even when using the gradient-based rule (Figure 1—figure sup-

plement 2). The underlying reason is that input weights remain random. Interneurons collect excita-

tion from many Pyr neurons with different preferences, and absent plasticity on their input synapses,

they maintain their initial poor stimulus selectivity (Figure 3a–c). Because of the poor stimulus tuning

of the interneurons, output plasticity cannot generate stimulus-specific inhibitory inputs to the Pyr

neurons (Figure 3d). Instead, they essentially receive a tonic, unspecific background inhibition that is

weakly modulated by the stimulus (Figure 1—figure supplement 3b). While this weak modulation is
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Figure 2. Knock-out (KO) of plasticity in parvalbumin-expressing (PV) interneuron output connections prevents

inhibitory co-tuning. (a) Example responses of reciprocally connected pyramidal (Pyr) cells and PV interneurons.

Numbers correspond to points marked in (d). (b) Stimulus selectivity of Pyr cells and PV interneurons (before and

after learning; Mann-Whitney U test, p<10�4). Arrows indicate median. (c) Stimulus tuning of excitatory and

inhibitory input currents in a Pyr cell before and after learning. For simplicity, currents are shown for spatial and

temporal frequency only, averaged across all orientations. (d) Relationship of output (left) and input (centre)

synaptic efficacies of PV interneurons with response similarity. Relationship of input and output efficacies (right).

Plotted lines are obtained via linear regression. Reported r and associated p-value are the Pearson’s correlation.

(e) Distribution of Pearson’s correlation coefficients for multiple samples as shown in (d). Dashed line marks

threshold of high significance (p<0:01). (f) Fraction of samples with highly significant positive correlation before

plasticity, after plasticity in both input and output connections, and for KO of plasticity in PV output connections

(based on 10,000 random samples of 100 synaptic connections).
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correlated with the excitatory inputs, the overall similarity between excitatory and inhibitory input

remains low (Figure 1—figure supplement 3c).

This modulation is made possible by the fact that interneurons still possess a weak, but consistent

stimulus tuning arising from random variations in their input weights. A particularly strong input con-

nection will cause the postsynaptic interneuron to prefer similar stimuli to the presynaptic Pyr.

Because of the resulting correlated activity, the Hebbian nature of the output plasticity potentiates

inhibitory weights for such cell pairs that are reciprocally connected. The tendency of strong input

Figure 3. Plasticity of parvalbumin-expressing (PV) interneuron input connections is required for inhibitory stimulus

selectivity and current co-tuning. (a) Example responses of reciprocally connected pyramidal (Pyr) cells and PV

interneurons. (b) Stimulus selectivity of Pyr cells and PV interneurons (before and after learning). Arrows indicate

median. (c) Violin plots of inhibitory stimulus selectivity before plasticity, after learning with plasticity in both input

and output connections of PV interneurons and for knock-out (KO) of plasticity in PV input connections. (d)

Stimulus tuning of excitatory and inhibitory currents in a Pyr cell before and after learning. Dimensions correspond

to spatial and temporal frequency of the stimuli averaged across all orientations. (e) Fraction of samples with

highly significant (p<0:01) positive correlation before plasticity, after plasticity in both input and output

connections, and for KO of plasticity in PV input connections (based on 10,000 random samples of 100 synaptic

connections).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Correlation between weights and response similarity.

Figure supplement 2. Long-tailed Pyr! PV weight distribution does not reproduce experimentally observed
correlations.
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synapses to generate a strong corresponding output synapse is reflected in a positive correlation

between output synapses and RS (Figure 3e, Figure 3—figure supplement 1), despite the fact that

input synapses remain random.

This effect further increases when input synapses are drawn from a distribution with an even

heavier tail, beyond what is observed in mouse V1 (Znamenskiy et al., 2018; Figure 3—figure sup-

plement 2a). In this case, the stimulus tuning of the interneurons is dominated by a small number of

very large synapses. The resulting higher selectivity of the interneurons (Figure 3—figure supple-

ment 2b) allows a better co-tuning of excitation and inhibition in Pyr neurons (Figure 3—figure sup-

plement 2c), in line with theoretical arguments for sparse connectivity (Litwin-Kumar et al., 2017).

However, the dominance of a small number of large synapses also makes it unlikely that those synap-

ses are observed in an experiment in which a finite number of synapses are sampled. As a result, a

heavier tail does not yield the correlation of reciprocal input and output synapses observed by

Znamenskiy et al., 2018 (Figure 3—figure supplement 2d,e), although it increases the probability

of observing correlations between input synapses and RS when weak synapses are discarded. See

Appendix 1 for a more extensive discussion.

Collectively, these results indicate that plasticity of both the inhibitory output and the excitatory

input synapses of PV interneurons is required for the formation of E/I assemblies in cortical areas

without feature topography, such as mouse V1.

Single-neuron perturbations
Our findings demonstrate that in networks without feature topography, only a synergy of excitatory

and inhibitory plasticity can account for the emergence of E/I assemblies. But how does stimulus-

specific feedback inhibition affect interactions between excitatory neurons? In layer 2/3 of V1, simi-

larly tuned excitatory neurons tend to have stronger and more frequent excitatory connections

(Ko et al., 2011). It has been hypothesised that this tuned excitatory connectivity supports reliable

stimulus responses by amplifying the activity of similarly tuned neurons (Cossell et al., 2015). How-

ever, the presence of co-tuned feedback inhibition could also induce the opposite effect, such that

similarly tuned excitatory neurons are in competition with each other (Chettih and Harvey, 2019;

Moreno-Bote and Drugowitsch, 2015).

To investigate the effect of stimulus-specific inhibition in our network, we simulate the perturba-

tion experiment of Chettih and Harvey, 2019: First, we again expose the network to the stimulus

set, with PV input and output plasticity in place to learn E/I assemblies. Second, both before and

after learning, we probe the network with randomly selected stimuli from the same stimulus set,

while perturbing a single Pyr cell with additional excitatory input, and measure the resulting change

in activity of other Pyr neurons in the network (Figure 4a).

While the activity of the perturbed neuron increases, many of the other Pyr neurons are inhibited

in response to the perturbation (Figure 4b). Although comparing the pairwise influence of Pyr neu-

rons on each other does not reveal any apparent trend (Figure 4c), recent experiments report that

the influence a single-cell perturbation has on other neurons depends on the similarity of their stimu-

lus feature tuning (Chettih and Harvey, 2019). To test whether we observe the same feature-spe-

cific suppression, we compute the influence of perturbing a Pyr on the rest of the network as a

function of the receptive field correlation of the perturbed cell and each measured cell. In line with

recent perturbation studies (Chettih and Harvey, 2019; Sadeh and Clopath, 2020), we observe

that—on average—neurons are more strongly inhibited if they have a similar tuning to the perturbed

neuron (Figure 4d). The opposite holds before learning: the effect of single-neuron perturbations on

the network is increasingly excitatory as receptive field correlation increases. Notably, the networks

in which input or output plasticity was knocked out during learning (and therefore did not develop

E/I assemblies) show the same excitatory effect (Figure 4d, Figure 4—figure supplement 1b). This

confirms that a ‘blanket of inhibition’ does not account for feature-specific suppression between

excitatory neurons (Sadeh and Clopath, 2020).

To better understand this behaviour, we use the Pyr-Pyr receptive field correlations to compute

the coefficient of determination for all pairs (R2, which quantifies how well the receptive field of one

Pyr neuron predicts that of another). Learning changes the correlative structure in the network (Fig-

ure 4—figure supplement 1a) and thereby decreases the coefficient of determination on average,

indicating a reduction in Pyr-Pyr correlations within the network (E½R2� ¼ 0:06 before learning, 0.02
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after). Thus, plasticity suppresses some of the strongest correlations, resulting in ‘feature competi-

tion’ which is believed to aid sensory processing (Lochmann et al., 2012; Moreno-Bote and Drugo-

witsch, 2015).

While on average the network exhibits feature competition, the influence of individual Pyr neu-

rons on the rest of the network is highly variable. According to recent modelling work (Sadeh and

Clopath, 2020), the strength of Pyr! PV synapses strongly influences whether a network will exhibit

feature competition. In our network, the total outgoing weight of a Pyr cell onto the PV neurons

indeed predicts the average influence that neuron will have on the rest of the network when per-

turbed (Figure 4e; r ¼ �0:6).

Figure 4. Single-neuron perturbations suppress responses of similarly tuned neurons. (a) Perturbation of a single

pyramidal (Pyr) neuron. Responses of other Pyr neurons are recorded for different stimuli, both with and without

perturbation. (b) Perturbation-induced change in activity (D Act.) of a subset of Pyr cells, for a random subset of

stimuli (with neuron 1 being perturbed). (c) Influence of perturbing a Pyr neuron on the other Pyr neurons,

averaged across all stimuli, for a subset of Pyr neurons. (d) Dependence of influence among Pyr neurons on their

receptive field correlation (Pearson’s r), across all neurons in the network (see ’Materials and methods’). Dotted

lines indicate plasticity knock-out (KO) experiments; see Figure 4—figure supplement 1b for details. Error bars

correspond to the standard error of the sample mean, but are not visible due to their small values. (e) Total

strength of output synapses from a Pyr neuron predicts the average effect perturbing it has on other neurons.

Dashed line is the result of a linear regression, while r and its associated p-value correspond to the Pearson’s

correlation.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Input and output plasticity together change correlations between pyramidal (Pyr) neurons,
while plasticity knock-out (KO) eliminates feature competition.
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In summary, the stimulus-specific feedback inhibition that emerges in the model also captures the

paradoxical suppression of similarly tuned excitatory neurons observed in single-cell perturbation

experiments.

Discussion
The idea that feedback inhibition serves as a ‘blanket of inhibition’ (Packer and Yuste, 2011;

Fino and Yuste, 2011) that can be selectively broken (Karnani et al., 2016) has been gradually

relaxed over recent years and replaced by the notion that feedback inhibition can be rather selective

(Rupprecht and Friedrich, 2018) and could thereby support specific neuronal computations

(Vogels and Abbott, 2009; Hennequin et al., 2014; Denève and Machens, 2016; Najafi et al.,

2020), even in networks without topographic organisation (Znamenskiy et al., 2018;

Rupprecht and Friedrich, 2018). Here, we used a computational model to show that the develop-

ment of E/I assemblies similar to those observed in mouse V1 (Znamenskiy et al., 2018) or zebrafish

olfactory areas (Rupprecht and Friedrich, 2018) can be driven by a homeostatic form of plasticity of

the incoming and outgoing synapses of inhibitory interneurons. Based on the results of virtual

knock-out experiments, we suggest that, on their own, input or output plasticity of interneurons are

insufficient to explain the Pyr-PV microcircuitry in mouse V1 and that input and output plasticity in

interneurons must act in synergy for stimulus-specific feedback inhibition to develop. To investigate

how the presence of E/I assemblies affects interactions between excitatory neurons, we mimicked a

perturbation experiment and found that—as in mouse visual cortex—stimulating single excitatory

cells paradoxically suppresses similarly tuned neurons (Chettih and Harvey, 2019). Our findings sug-

gest that, by driving the development of tuned feedback inhibition, plasticity of interneurons can

fundamentally shape cortical processing.

The learning rules for the input and output synapses of PV interneurons are based on a single

homeostatic objective that aims to keep the net synaptic current onto Pyr neurons close to a given

target for all stimuli. The two forms of plasticity fulfil different purposes, however. Plasticity of input

synapses is required for interneurons to acquire a stimulus selectivity, whereas plasticity of output

synapses can exploit interneuron selectivity to shape inhibitory currents onto excitatory cells. The

output plasticity we derived for our recurrent network is very similar to a previously suggested form

of inhibitory plasticity (Vogels et al., 2011; Sprekeler, 2017). Homeostatic plasticity rules for inhibi-

tory synapses are now used regularly in computational studies to stabilise model circuits

(Vogels et al., 2011; Hennequin et al., 2017; Landau et al., 2016). In contrast, a theoretically

grounded approach for the plasticity of excitatory input synapses onto inhibitory neurons is missing.

Homeostatic changes in excitatory synapses onto interneurons in response to lesions or sensory

deprivation have been reported (Keck et al., 2011; Takesian et al., 2013; Kuhlman et al., 2013),

but the specific mechanisms and functions of this form of interneuron plasticity are not resolved. The

plasticity rule we derived for the input synapses of interneurons effectively changes the selectivity of

those neurons according to the demands of the Pyr cells, that is, such that the interneurons can best

counteract deviations of Pyr activity from the target. By which mechanisms such a (nearly teleologi-

cal) form of plasticity can be achieved is at its core a problem of credit assignment, whose biological

implementation remains open (Lillicrap et al., 2016; Guerguiev et al., 2017; Sacramento et al.,

2018).

Here, we used a local approximation of the gradient, backpropagation rules, which produces

qualitatively similar results, and which we interpret as a recurrent variant of feedback alignment,

applied to the specific task of a stimulus-specific E/I balance (Lillicrap et al., 2016; Akrout et al.,

2019). The excitatory input connections onto the interneurons serve as a proxy for the transpose of

the output connections. The intuition why this replacement is reasonable is the following: The task of

balancing excitation by feedback inhibition favours symmetric connections, because excitatory cells

that strongly drive a particular PV interneuron should receive a strong feedback connection in return.

Therefore, E/I balance favours a positive correlation between the incoming and outgoing synapses

of PV neurons and thus the two weight matrices will be aligned in a final balanced state

(Lillicrap et al., 2016; Akrout et al., 2019). This weight replacement effectively replaces the ‘true’

feedback errors by a deviation of the total excitatory input to the PV neurons from a target

(Hertäg and Sprekeler, 2020). The rule therefore has the structure of a homeostatic rule for the

recurrent excitatory drive received by PV neurons.
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A cellular implementation of such a plasticity rule would require the following ingredients: (i) a

signal that reflects the cell-wide excitatory current and (ii) a mechanism that changes Pyr ! PV syn-

apses in response to variations in this signal. For the detection of excitatory inputs, postsynaptic

sodium or calcium concentrations are natural candidates. Due to the lack of spines in PV dendrites,

both are expected to diffuse more broadly in the dendritic arbor than in spiny neurons (Hu et al.,

2014; Kullmann and Lamsa, 2007) and may thus provide a signal for overall dendritic excitatory cur-

rents. Depending on how excitatory inputs are distributed on PV interneuron dendrites (Larkum and

Nevian, 2008; Jia et al., 2010; Grienberger et al., 2015), the integration of the excitatory currents

may not need to be cell-wide—which could limit the temporal resolution of the plasticity—but could

be local, for example, to a dendrite, if local excitatory input is a sufficient proxy for the global input.

Notably, in PV interneurons, NMDA receptors are enriched in excitatory feedback relative to feed-

forward connections (Le Roux et al., 2013), suggesting those two sources of excitation are differen-

tially treated on the postsynaptic side. As for many other excitatory synapses (Sjöström et al.,

2008), postsynaptic calcium is likely a key factor also for the plasticity of excitatory input synapses

onto interneurons. Blocking NMDA receptors interferes with Hebbian long-term plasticity in some of

these synapses (Lamsa et al., 2007; Kullmann and Lamsa, 2007), as does a block of excitatory input

(Le Roux et al., 2013). Furthermore, NMDAR-dependent plasticity in Pyr ! PV synapses is

expressed postsynaptically and seems to require presynaptic activation (Kullmann and Lamsa,

2007). In summary, we believe that there are no conceptual issues that would rule out an implemen-

tation of the suggested plasticity rule for excitatory inputs onto PV interneurons.

We also expect that the rules we suggest here are only one set of many that can establish E/I

assemblies. Given that the role of the input plasticity in the interneurons is the formation of a stimu-

lus specificity, it is tempting to assume that this could equally well be achieved by classical forms of

plasticity like the Bienenstock-Cooper-Munro (BCM) rule (Bienenstock et al., 1982), which is com-

monly used in models of receptive field formation. However, in our hands, the combination of BCM

plasticity in Pyr ! PV synapses with homeostatic inhibitory plasticity in the PV ! Pyr synapses

showed complex dynamics, an analysis of which is beyond the scope of this article. In particular, this

combination of rules often did not converge to a steady state, probably for the following reason.

BCM rules tend to make the postsynaptic neuron as stimulus-selective as possible. Given the limited

number of interneurons in our circuit, this can lead to a situation in which parts of stimulus space are

not represented by any interneurons. As a result, Pyr neurons that respond to those stimuli cannot

recruit inhibition and maintain a high firing rate far above the target. Other Pyr cells, which have

access to interneurons with a similar stimulus tuning, can recruit inhibition to gradually reduce their

firing rates towards the target rate. Because the BCM rule is Hebbian, it tends to strengthen input

synapses from Pyr neurons with high activity. This shifts the stimulus tuning of the interneurons to

those stimuli that were previously underrepresented. However, this in turn renders a different set of

stimuli uncovered by inhibition and withdraws feedback inhibition from the corresponding set of Pyr

cells, which can now fire at high rates.

We suspect that this instability can also arise for other Hebbian forms of plasticity in interneuron

input synapses when they are combined with homeostatic inhibitory plasticity (Vogels et al., 2011)

in their output synapses. The underlying reason is that for convergence, the two forms of plasticity

need to work synergistically towards the same goal, that is, the same steady state. For two arbitrary

synaptic plasticity rules acting in different sets of synapses, it is likely that they aim for two different

overall network configurations. Such competition can easily result in latching dynamics with a con-

tinuing turn-over of transiently stable states, in which the form of plasticity that acts more quickly

gets to reach its goal transiently, only to be undermined by the other one later.

Both Pyr ! PV and PV! Pyr plasticity have been studied in slice (for reviews, see, e.g.,

Kullmann and Lamsa, 2007; Vogels et al., 2013), but mostly in isolation. The idea that the two

forms of plasticity should act in synergy suggests that it may be interesting to study both forms in

the same system, for example, in reciprocally connected Pyr-PV pairs.

Like all computational models, the present one contains simplifying design choices. First, we did

not include stimulus-specific feedforward inhibition, because the focus lay on the formation of stimu-

lus-specific feedback inhibition. The model could be enriched by feedforward inhibition in different

ways. In particular, we expect that the two forms of plasticity will establish E/I assemblies even in the

presence of stimulus-selective external inputs to the interneurons, because stimulus-specific external

excitation should always be more supportive of the homeostatic objective than unspecific inputs. It
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may be worth exploring whether adding feedforward inhibition leaves more room for replacing the

PV input plasticity that we used by classical Hebbian rules, because the activity of the external inputs

remains unaltered by the plasticity in the network (such that the complex instability described above

may be mitigated). Given that the focus of this work was on feedback inhibition, an extensive evalua-

tion of the different variants of feedforward inhibition is beyond the scope of the present article.

Second, we neglected much of the complexity of cortical interneuron circuits by including only

one class of interneurons. We interpret these interneurons as PV interneurons, given that PV inter-

neurons provide local feedback inhibition (Hu et al., 2014) and show a stimulus-selective circuitry

akin to E/I assemblies (Znamenskiy et al., 2018). With their peri-somatic targets on Pyr cells, PV-

expressing (basket) cells are also a prime candidate for the classical feedback model of E/I balance

(van Vreeswijk and Sompolinsky, 1996). Note that our results do not hinge on any assumptions

that are specific to PV neurons and may thus also hold for other interneuron classes that provide

feedback inhibition (Tremblay et al., 2016). Given that the division of labour of the various cortical

interneuron classes is far from understood, an extension to complex interneuron circuits (Litwin-

Kumar et al., 2016; Hertäg and Sprekeler, 2019) is clearly beyond the present study.

Similarly tuned Pyr cells tend to be recurrently connected (Cossell et al., 2015; Harris and Mrsic-

Flogel, 2013), in line with the notion that excitatory cells with similar tuning mutually excite each

other. This notion is questioned by a recent perturbation experiment demonstrating feature-specific

suppression between Pyr cells with similar tuning (Chettih and Harvey, 2019). It has been sug-

gested that this apparently paradoxical effect requires strong and tuned connections between excit-

atory and inhibitory neurons (Sadeh and Clopath, 2020). The E/I assemblies that develop in our

model provide sufficiently strong and specific inhibitory feedback to cause a suppression between

similarly tuned Pyr neurons in response to perturbations. Hence, despite the presence of stimulus-

specific excitatory recurrence, Pyr neurons with similar stimulus preference effectively compete.

Computational arguments suggest that this feature competition may be beneficial for stimulus proc-

essing, for example, by generating a sparser and more efficient representation of the stimuli

(Olshausen and Field, 2004; Denève and Machens, 2016).

In addition to predicting that knocking out plasticity of inhibitory input or output synapses should

prevent the development of E/I assemblies, our model also predicts different outcomes for single-

neuron perturbation experiments in juvenile and adult mice. Given that in rodents, stimulus tuning of

inhibitory currents occurs later in development than that of excitation (Dorrn et al., 2010), we

expect that in juvenile mice single-cell perturbations would not cause feature-specific suppression

but amplification due to excitatory recurrence and unspecific feedback inhibition.

Materials and methods

Network and stimuli
We use custom software to simulate a rate-based recurrent network model containing NE ¼ 512

excitatory and NI ¼ 64 inhibitory neurons. The activation of the neurons follows Wilson-Cowan

dynamics:

t E

d

dt
h
E ¼�hEþWE E

r
E �WE I

r
Iþ Ibgþ IðsÞ (1a)

t I

d

dt
h
I ¼�hIþW I E

r
E�W I I

r
Iþ Ibg : (1b)

Here, rE ¼ ½hE�þ, r
I ¼ ½hI�þ denote the firing rates of the excitatory and inhibitory neurons, which

are given by their rectified activation. WY X denotes the matrix of synaptic efficacies from popula-

tion X to population Y (X;Y 2 fE; Ig). The external inputs IðsÞ to the excitatory neurons have a bell-

shaped tuning in the three-dimensional stimulus space consisting of spatial frequency, temporal

frequency, and orientation (Znamenskiy et al., 2018). To avoid edge effects, the stimulus space is

periodic in all three dimensions, with stimuli ranging from -p to p. The stimulus tuning of the exter-

nal inputs is modelled by a von Mises function with a maximum of 50 Hz and a tuning width k¼ 1.

The preferred stimuli of the NE ¼ 512 excitatory cells cover the stimulus space evenly on a

12� 12� 12 grid. All neurons receive a constant background input of Ibg ¼ 5 Hz.
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Recurrent connections WE E among excitatory neurons have synaptic weight between neurons i

and j that grows linearly with the signal correlation of their external inputs:

WE E
ij ¼ corrðIiðsÞ; IjðsÞÞ�C

� �

þ
: (2)

The cropping threshold C is chosen such that the overall connection among the excitatory neu-

rons probability is 0.6. The remaining synaptic connections (E!I, I!E, I!I) are initially random, with

a connection probability p¼ 0:6 and log-normal weights. For parameters, please refer to Table 1.

During learning, we repeatedly draw all 12 � 12 � 12 preferred stimuli of the Pyr neurons, in ran-

dom order. This procedure is repeated 500 times to ensure convergence of synaptic weights. To

reduce simulation time, we present each stimulus long enough for all firing rates to reach steady

state and only then update the synaptic weights.

Synaptic plasticity
The PV! Pyr and Pyr ! PV synapses follow plasticity rules that aim to minimise the deviation of the

excitatory activations from a target rate �0 (�0 ¼ 1 Hz):

E h
E

� �

¼
1

2

X

NE

j¼1

hEj � �0

� �2

* +

s

; (3)

where h�i
s
denotes the average over all stimuli. When plastic, synaptic weights change according to

DWE I
ji / hEj � �0

� �

rIi ; (4a)

DW I E
ij /

X

NE

k¼1

W I E
ik hEk � �0
� �

" #

rEj (4b)

»

X

NE

k¼1

W I E
ik rEk � �0
� �

" #

rEj

¼ I
E;rec
i � I0
� �

rEj : (4c)

After every update of the Pyr ! PV matrix, the incoming weights for each PV interneuron are

Table 1. Model parameters.

NE 512 NI 64 Number of exc. and inh. neurons.

t E 50 ms t I 25 ms Rate dynamics time constants

dt 1 ms Numerical integration time step

pE X 0.6 pI X 0.6 Connection probability to exc. and inh. neurons

JE E
i

2 JI E
i

5 Total of exc. weights onto neuron i:
P

j W
X E
ij

JE I
i

1 JI I
i

1 Total of inh. weights onto neuron i:
P

j W
X I
ij

sE X 0.65 sI X 0.65 Std. deviation of the logarithm of the weights

�E I
10
�4 �I E

10
�4 Experimental detection threshold for synapses

Ibg 5 Hz max IðsÞð Þ 50 Hz Background and maximum stimulus-specific input

NS 12� 12� 12 Ntrials 500 Number of stimuli and trials

RS 2p � 2p � 2p k 1 Range of stimuli and Pyr RF von Mises width

DI 10 Hz Change of input for perturbation experiments

hApprox: 10
�5 hGrad: 10

�3 Learning rates (approximate and gradient rules)

dE I 0.1 dI E 0.1 Weight decay rates

�0 1 Hz Homeostatic plasticity target

b1 0.9 b2 0.999 Adam parameters for gradient rules

� 10
�9
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multiplicatively scaled such that their sum is JI E (Akrout et al., 2019). In that case, the rule in

Equation 4b is approximately local in that it compares the excitatory input current IE;reci received by

the postsynaptic PV neuron to a target value I0 ¼ JI E�0, and adjusts the incoming synapses in pro-

portion to this error and to presynaptic activity (see Equation 4c).

Both plasticity rules are approximations of the gradient of the objective function Equation 3.

Interested readers are referred to Appendix 1 for their mathematical derivation. For the results in

Figure 1—figure supplement 2, we use the Adaptive Moment Estimation (Adam) algorithm

(Kingma and Ba, 2014) to improve optimisation performance.

We used a standard reparameterisation method to ensure the sign constraints of an E/I network.

Moreover, all weights are subject to a small weight-dependent decay term, which aids to keep the

firing rates of the interneurons in a reasonable range. For details, please refer to Appendix 1 . The

learning rule Equation 4a for the output synapses of the inhibitory neurons is similar to the rule pro-

posed by Vogels et al., 2011, wherein each inhibitory synapse increases in strength if the deviation

of the postsynaptic excitatory cell from the homeostatic target �0 is positive (and decreases it when

negative). In contrast, the learning rule Equation 4b increases activated input synapses for an inter-

neuron if the weighted sum of deviations in its presynaptic excitatory population is positive (and

decreases them if it is negative). Though it is local, when operating in conjunction with the plasticity

of Equation 4a, this leads to feedback alignment in our simulations and effectively performs back-

propagation without the need for weight transport (Akrout et al., 2019).

Note that the objective function Equation 3 can also be interpreted differently. The activation hE

of a neuron is essentially the difference between its excitatory and inhibitory inputs. Therefore, the

objective function Equation 3 is effectively the mean squared error between excitation and inhibi-

tion, aside from a small constant offset �0. The derived learning rules can therefore be seen as super-

vised learning of the inhibitory inputs, with excitation as the label. They hence aim to establish the

best co-tuning of excitation and inhibition that is possible given the circuitry.

Perturbation experiments
The perturbation experiments in Figure 4 are performed in a network in which both forms of plastic-

ity have converged. The network is then exposed to different stimuli, while the afferent drive to a

single excitatory cell i is transiently increased by DI ¼ 10 Hz. For each stimulus, we compute the

steady-state firing rates rj of all excitatory cells both with and without the perturbation. The influence

of the perturbation of neuron i on neuron j is defined as the difference between these two firing

rates, normalised by the pertubation magnitude (Sadeh and Clopath, 2020). This stimulation proto-

col is repeated for 90 randomly selected excitatory neurons. The dependence of the influence on

the tuning similarity (Figure 4d) is obtained by binning the influence of the perturbed neuron i and

the influenced neuron j according to their stimulus response correlation, and then averaging across

all influences in the bin. During the perturbation experiments, synaptic plasticity was disabled.

Quantitative measures
The response similarity (RS) of the stimulus tuning of two neurons i and j is measured by the dot

product of their steady-state firing rates in response to all stimuli, normalised by the product of their

norms (Znamenskiy et al., 2018):

RSðri; rjÞ ¼

P

s
riðsÞrjðsÞ

P

s
riðsÞð Þ2

P

s
rjðsÞ
� �2

� �1=2
: (5)

The same measure is used for the similarity of synaptic currents onto excitatory neurons in Fig-

ure 1—figure supplement 3c and Figure 1—figure supplement 2d.

There is no structural plasticity, that is, synapses are never added or pruned. However, when cal-

culating Pearson’s correlation between synaptic weights and RS, we exclude synapses that are too

weak to be detected using the experimental protocol employed by Znamenskiy et al., 2018. The

threshold values �E I and �I E were chosen to be approximately four orders of magnitude weaker

than the strongest synapses in the network. The rules that we investigate here tend to produce

bimodal distributions of weights, with the lower mode well below this threshold (Figure 1—figure

supplement 5).
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The stimulus selectivity of the neurons is measured by the skewness of their response distribution

across all stimuli:

gi ¼
riðsÞ��rið Þ3

D E

s

riðsÞ��rið Þ2
D E3=2

s

(6)

where �ri ¼ riðsÞh i
s
. Both the RS Equation 5 and the stimulus selectivity Equation 6 are adapted from

Znamenskiy et al., 2018.

Finally, the angle � between the gradient G from Equation 15 and its approximation A from

Equation 4 is given by

�¼ arccos

P

ijGijAij

P

ijG
2
ij

P

ijA
2
ij

� �1=2

0

B

@

1

C

A
(7)
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Appendix 1

Plasticity rules
The general framework we follow to derive homeostatic rules is to minimise the mean squared devia-

tion of individual excitatory (Pyr) neuron activations from a target for all stimuli. More specifically, we

perform gradient descent on the following objective function:

E h
E

� �

¼
1

2

X

NE

j¼1

hEj � �0

� �2

* +

s

:

Note that the activations hE are given by the difference between the excitatory and the inhibitory

inputs to the excitatory neurons. Our approach can hence be interpreted as supervised learning of

the inhibitory circuitry, with the goal of minimising the mean squared loss between the inhibitory

and the excitatory inputs (plus the constant target �0). In this sense, the derived gradient rules aim

to generate the best possible E/I balance across stimuli that is possible with the circuitry at hand.

For reasons of readability, we will first simply state the derived rules. The details of their deriva-

tion can be found in the following section.

The sign constraints in excitatory-inhibitory networks require all synaptic weights to remain posi-

tive. To ensure this, we reparameterised all plastic weights of the network by a strictly positive soft-

plus function W ¼ sþðVÞ ¼ a�1 ln 1þ expaVð Þ and optimised the weight parameter V by gradient

descent.

In summary, the derived learning rules for the synaptic weight parameters between excitatory

neuron j and inhibitory interneuron i are given by

DVE I
ji ¼ hI hEj � �0

� �qWE I
ji

qVE I
ji

rIi � dIWE I
ji ; (8a)

DV I E
ij ¼ hE

X

NE

k¼1

W I E
ik hEk � �0
� �

" #

qrIi
qhIi

qW I E
ij

qV I E
ij

rEj � dEW I E
ij : (8b)

Please note that we added a small weight decay to both learning rules. The purpose of this decay

term is to avoid an ambiguity in the solution. When the firing rates of the interneurons are increased,

but their output weights are decreased accordingly, the firing rates of the excitatory population

remain unchanged. Pure gradient-based rules can therefore generate extreme values for the synap-

tic weights, in which the interneurons have biologically unrealistic firing rates. The additional decay

terms in the learning rules solve this issue.

Finally, we replaced the derivative qr
qh

(which should be a Heaviside function, because rates are the

rectified activations) by the derivative of a soft-plus function with finite sharpness (a ¼ 1). This allows

interneurons to recover from a silent state, in which all gradients vanish. Note that this replacement

is done only in the learning rules. The firing rates are still the rectified activations. This method is sim-

ilar to recent surrogate gradient approaches in spiking networks (Neftci et al., 2019).

Derivation of the homeostatic plasticity rules in recurrent networks

The challenging aspect of the derivation of the learning rules lies in the recurrence of the network.

The effects of changes in individual synapses can percolate through the network and thereby change

the firing rates of all neurons. Moreover, the temporal dynamics of the network would in principle

require a backpropagation of the gradient through time. We circumvent this complication by assum-

ing that the external stimuli to the network change slowly compared to the dynamical time scales of

the network, and that the network adiabatically follows the fixed point in its dynamics as the stimulus

changes. This assumption significantly simplifies the derivation of the gradient.

The goal is to minimise the total deviation of the excitatory activations h
E from the homeostatic

target value �0. To this end, we calculate the gradient of the objective function in Equation 3 with

respect to a given synaptic weight parameter v 2 fV I E
ij , VE I

ji g:
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q

qv
EðhEÞ ¼ h

E� �0
� �>qh

E

qv

� �

s

: (9)

We therefore need the gradient of the activations hE of excitatory cells with respect to a parame-

ter v. In the steady state, the activations are given by

h
E ¼WE E

r
E�WE I

r
Iþ Ibgþ IðsÞ : (10)

The gradient of the activations hE is therefore given by the following implicit condition:

qh
E

qv
¼WE EDE qh

E

qv
�

qWE I

qv
r
IþWE IDI qh

I

qv

� �

; (11)

where we introduced the diagonal matrices D
E=I
ij :¼ dijqr

E=I
i =qh

E=I
i for notational convenience, dij being

the Kronecker symbol. Derivatives of expressions that do not depend on any of the synaptic weights

in question are excluded.

Equation 11 requires the gradient qh
I

qv
of the inhibitory activations with respect to the parameter

v, which can be calculated by a similar approach:

qh
I

qv
¼

q

qv
W I E

r
E�W I I

r
Iþ Ibg

� �

¼
qW I E

qv
r
EþW I EDE qh

E

qv

� �

�W I IDI qh
I

qv
:

Introducing the effective interaction matrixM :¼ IþW I IDI among the interneurons (I being the

identity matrix) allows to solve for the gradient of hI:

qh
I

qv
¼M�1 W I EDE qh

E

qv
þ
qW I E

qv
r
E

� �

Inserting this expression into Equation 11 yields

qh
E

qv
¼ WE EDE�WE IDIM�1W I EDE
� �qh

E

qv
�
qWE I

qv
r
I�WE IDIM�1 qW

I E

qv
r
E:

Introducing the effective interaction matrix W¼ I�WE EDEþWE IDIM�1W I EDE among the

excitatory neurons yields an explicit expression for the gradient of hE:

qh
E

qv
¼�W�1

qWE I

qv
r
I�W�1WE IDIM�1 qW

I E

qv
r
E: (12)

To obtain gradients with respect to a particular network parameter, we simply substitute the cho-

sen parameter into Equation 12. For the parameters V I E
ij of the input synapses to the interneurons,

the gradient reduces to

qh
E

qV I E
¼�W�1WE IDIM�1 qW

I E

qV I E
r
E ; (13)

and for the parameters VE I
ij of the output synapses from the interneurons we get

qh
E

qV I E
¼�W�1

qWE I

qVE I
r
I : (14)

By inserting these expressions into Equation 9 and dropping the average, we obtain online learn-

ing rules for the input and output synapses of the interneurons:

DV I E / ðhE� �0Þ
>
W�1WE IDIM�1

h i

qW I E

qV I E
r
E (15a)

DVE I / ðhE� �0Þ
>
W�1

h i

qWE I

qVE I
r
I : (15b)
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Note that the same approach also yields learning rules for the threshold and the gain of the trans-

fer function of the inhibitory interneurons, if those are parameters of the system. Although we did

not use such intrinsic plasticity rules, we include them here for the interested reader. We assumed a

threshold linear transfer function of the interneurons: rIi ¼ gi h
I
i � �i

� �þ
, where gi is the gain of the neu-

ronal transfer function and �i a firing threshold. While the firing threshold can become negative, gain

is reparameterised via the strictly positive soft-plus gi ¼ sþðvgi Þ. The gradient-based learning rule for

the firing thresholds �i of the interneurons is given by

D�i /� h
E� �0

� �>

W�1WE IM�1
h i

i

qrIi
q�i

; (16)

and the corresponding learning rule for the interneuron gain gi is

Dv
g
i /� h

E� �0
� �>

W�1WE IM�1
h i

i

qrIi
qgi

qgi

qv
g
i

: (17)

Approximating the gradient rules

In the gradient-based rules derived in the previous section, the W�1 andM�1 terms account for the

fact that a change in a given synaptic connections percolates through the network. As a result, the

learning rules are highly non-local and hard to implement in a biologically plausible way. To resolve

this challenge, we begin by noting that

W�1 ¼ I�Ŵ
� ��1

¼
X

¥

k¼0

Ŵk;

which holds if Ŵ






<1. Ŵ is a matrix that depends on the synaptic weights in the network. A similar

relation holds forM�1. Since those matrices are contained in Equation 15a, we substitute the equiv-

alent sums into the relevant sub-expression and truncate the geometric series after the zeroth order,

as in

W�1WE IDIM�1 ¼
P

¥

k¼0 Ŵ
k

� �

WE IDI
P

¥

k¼0M̂
k

� �

¼WE IDIþŴWE IDIþWE IDIM̂þ
X

¥

k¼1

Ŵk

 !

WE IDI
X

¥

k¼1

M̂k

 !

»WE IDI:

The truncation to zeroth order in the last line should yield an acceptable approximation if synap-

ses are sufficiently weak. The effect of higher-order interactions in the network can then be ignored.

This approximation can be substituted into Equation 15a and yields an equation that resembles a

backpropagation rule in a feedforward network (E! I! E) with one hidden layer—the interneurons.

The final, local approximation used for the simulations in the main text is then reached by replacing

the output synapses of the interneurons by the transpose of their input synapses. While there is no

mathematical argument why this replacement is valid, it turns out to be in the simulations, presum-

ably because of a mechanism akin to feedback alignment (Lillicrap et al., 2016; see discussion in the

main text). In feedback alignment, the matrix that backpropagates the errors is replaced by a ran-

dom matrix B. Here, we instead use the feedforward weights in the layer below. Similar to the exten-

sion to feedback alignment of Akrout et al., 2019, those weights are themselves plastic. However,

we believe that the underlying mechanism of feedback alignment still holds. The representation in

the hidden layer (the interneurons) changes as if the weights to the output layer (the Pyr neurons)

were equal to the weight matrix they are replaced with (here, the input weights to the PV neurons).

To exploit this representation, the weights to the output layer then align to the replacement

weights, justifying the replacement post hoc (Figure 1G).

Note that the condition for feedback alignment to provide an update in the appropriate direction

(eTBTWe>0, where e denotes the error, W the weights in the second layer, and B the random feed-

back matrix) reduces to the condition that WE IW I E is positive definite (assuming the errors are full

rank). One way of assuring this is a sufficiently positive diagonal of this matrix product, that is, a
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sufficiently high correlation between the incoming and outgoing synapses of the interneurons. A

positive correlation of these weights is one of the observations of Znamenskiy et al., 2018 and also

a result of learning in our model.

While such a positive correlation is not necessarily present for all learning tasks or network mod-

els, we speculate that it will be for the task of learning an E/I balance in networks that obey Dale’s

law.

The same logic of using a zeroth order approximation of W�1 that neglects higher-order interac-

tions is employed to recover the inhibitory synaptic plasticity rule of Vogels et al., 2011 from

Equation 15b.

Overall, the local approximation of the learning rule relies on three assumptions: slowly varying

inputs, weak synaptic weights, and alignment of input and output synapses of the interneurons.

These assumptions clearly limit the applicability of the learning rules for other learning tasks. In par-

ticular, the learning rules will not allow the network to learn temporal sequences.

The effect of static but heavy-tailed PV input weights

We investigated whether plasticity is required on both input and output synapses. The main argu-

ment why plasticity may not be required is that a static but heavy-tailed weight distribution for Pyr

! PV synapses might provide sufficient stimulus selectivity in PV neurons, such that plasticity of out-

put synapses alone can account for the experimental data of Znamenskiy et al., 2018. To test this,

we sampled weights from a log-normal distribution (Loewenstein et al., 2011), with parameters

that are in line with the data reported by Znamenskiy et al., 2018. Weights spanned approximately

two orders of magnitude. For this setting, PV neurons do not have sufficient stimulus selectivity for

output plasticity alone to co-tune inhibitory currents with excitatory currents, when Pyr ! PV plastic-

ity is knocked out. Moreover, if we sample PV input and output synapses, correlations between

excitatory input synapse strength and RS are not reliably found, nor are correlations between input

and output synapse strength (Figure 3).

Nevertheless, one could expect that a sufficiently heavy-tailed distribution of PV excitatory input

weights could account for the experimentally observed correlations, even in the absence of Pyr !

PV plasticity. We therefore repeated the simulations of Figure 3 with a weight distribution that

spans almost five orders of magnitude (Figure 3—figure supplement 2). We also tested other distri-

butions, but the results remain qualitatively unchanged.

With this heavy-tailed distribution of excitatory input weights, PV neurons indeed exhibit

increased stimulus selectivity (Figure 3—figure supplement 2b, cf. Figure 3c). This increased selec-

tivity enables greater stimulus-specific co-tuning of inhibitory and excitatory currents (Figure 3—fig-

ure supplement 2c, cf. Figure 1—figure supplement 2d). Despite this, repeated random sampling

of excitatory input synaptic weights (n ¼ 100 drawn 104 times) produces positive correlations with RS

only about half the time, and for reciprocally connected Pyr-PV cell pairs, input synaptic weights are

unlikely to be correlated with output weights (Figure 3—figure supplement 2d). Observing the cor-

relations of Znamenskiy et al., 2018 is therefore unlikely in the absence of some kind of PV input

plasticity.

Note that the setting in Figure 3—figure supplement 2 is conservative in that we chose parame-

ters that made the observation of positive correlations likely. In particular, it is important to note

that—similar to the results of Figure 3—we consider synapses below a chosen threshold as too

weak to be detected during the sampling procedure. We set the threshold of detectability to be

approximately two orders of magnitude below the strongest weights (dashed lines in Figure 3—fig-

ure supplement 2e). For lower thresholds, the fraction of significant Exc-RS and Exc-Inh correlations

rapidly decreases, to essentially zero if we include all weights. This is due to the fact that the inhibi-

tory stimulus tuning is determined by a small number of large weights, and if samples are drawn

from all synapses, the probability of sampling one of these large weights is small.

In summary, randomly drawn input weights to PV neurons from the distribution observed by

Znamenskiy et al., 2018 are not sufficiently sparse to ensure enough PV selectivity for the observed

E/I assemblies, and sampling from even sparser distributions makes the observation of the few influ-

ential weights too unlikely. This suggests that the input weights to PV neurons are not random, but

that these synaptic weights and the stimulus tuning of their inputs are correlated, consistent with the

presence of synaptic plasticity.

Mackwood et al. eLife 2021;10:e59715. DOI: https://doi.org/10.7554/eLife.59715 23 of 24

Research article Neuroscience

https://doi.org/10.7554/eLife.59715


Of course, the question whether random connectivity is sufficient for selectivity not only depends

on the weight distribution, but also on the total number of synapses received by the PV neurons and

the stimulus selectivity of the Pyr neurons they receive input from. Even when the weights are not

sparsely distributed, a small number of inputs combined with sufficiently sparse inputs could gener-

ate substantial selectivity. We did not explore these additional parameters (in-degree of PV neurons,

Pyr selectivity) in detail here, because we believe that our choices are already rather conservative.

Due to the small size of the network, PV neurons receive only about 300 excitatory inputs, which is

unlikely to be an overestimate, and the stimulus tuning of the Pyr neurons in the model is compara-

ble to V1 (Znamenskiy et al., 2018, Figure 1), although the diversity of the Pyr neuron selectivity in

the data is of course higher.
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