Alcohol potentiates a pheromone signal in flies

  1. Annie Park  Is a corresponding author
  2. Tracy Tran
  3. Elizabeth A Scheuermann
  4. Dean P Smith
  5. Nigel S Atkinson  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. University of Texas at Austin, United States
  3. University of Texas Southwestern Medical Center, United States

Abstract

For decades, numerous researchers have documented the presence of the fruit fly or Drosophila melanogaster on alcohol-containing food sources. Although fruit flies are a common laboratory model organism of choice, there is relatively little understood about the ethological relationship between flies and ethanol. In this study, we find that when male flies inhabit ethanol-containing food substrates they become more aggressive. We identify a possible mechanism for this behavior. The odor of ethanol potentiates the activity of sensory neurons in response to an aggression-promoting pheromone. Finally, we observed that the odor of ethanol also promotes attraction to a food-related citrus odor. Understanding how flies interact with the complex natural environment they inhabit can provide valuable insight into how different natural stimuli are integrated to promote fundamental behaviors.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Annie Park

    Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, United Kingdom
    For correspondence
    annie.park@dpag.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5618-2286
  2. Tracy Tran

    Institute for Neuroscience, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Elizabeth A Scheuermann

    Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Dean P Smith

    Pharmacology and Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4271-0436
  5. Nigel S Atkinson

    Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, United States
    For correspondence
    nigela@utexas.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute on Alcohol Abuse and Alcoholism (2R01AA01803706A1)

  • Nigel S Atkinson

National Institute on Alcohol Abuse and Alcoholism (F31AA027160)

  • Annie Park

National Institute on Alcohol Abuse and Alcoholism (T32AA07471)

  • Annie Park

National Institutes of Health (R01DC015230)

  • Dean P Smith

National Institutes of Health (5T32GM008203)

  • Elizabeth A Scheuermann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Park et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,508
    views
  • 381
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Annie Park
  2. Tracy Tran
  3. Elizabeth A Scheuermann
  4. Dean P Smith
  5. Nigel S Atkinson
(2020)
Alcohol potentiates a pheromone signal in flies
eLife 9:e59853.
https://doi.org/10.7554/eLife.59853

Share this article

https://doi.org/10.7554/eLife.59853

Further reading

    1. Neuroscience
    Kayson Fakhar, Fatemeh Hadaeghi ... Claus C Hilgetag
    Research Article

    Efficient communication in brain networks is foundational for cognitive function and behavior. However, how communication efficiency is defined depends on the assumed model of signaling dynamics, e.g., shortest path signaling, random walker navigation, broadcasting, and diffusive processes. Thus, a general and model-agnostic framework for characterizing optimal neural communication is needed. We address this challenge by assigning communication efficiency through a virtual multi-site lesioning regime combined with game theory, applied to large-scale models of human brain dynamics. Our framework quantifies the exact influence each node exerts over every other, generating optimal influence maps given the underlying model of neural dynamics. These descriptions reveal how communication patterns unfold if regions are set to maximize their influence over one another. Comparing these maps with a variety of brain communication models showed that optimal communication closely resembles a broadcasting regime in which regions leverage multiple parallel channels for information dissemination. Moreover, we found that the brain’s most influential regions are its rich-club, exploiting their topological vantage point by broadcasting across numerous pathways that enhance their reach even if the underlying connections are weak. Altogether, our work provides a rigorous and versatile framework for characterizing optimal brain communication, and uncovers the most influential brain regions, and the topological features underlying their influence.

    1. Neuroscience
    Poortata Lalwani, Thad Polk, Douglas D Garrett
    Research Article

    Moment-to-moment neural variability has been shown to scale positively with the complexity of stimulus input. However, the mechanisms underlying the ability to align variability to input complexity are unknown. Using a combination of behavioral methods, computational modeling, fMRI, MR spectroscopy, and pharmacological intervention, we investigated the role of aging and GABA in neural variability during visual processing. We replicated previous findings that participants expressed higher variability when viewing more complex visual stimuli. Additionally, we found that such variability modulation was associated with higher baseline visual GABA levels and was reduced in older adults. When pharmacologically increasing GABA activity, we found that participants with lower baseline GABA levels showed a drug-related increase in variability modulation while participants with higher baseline GABA showed no change or even a reduction, consistent with an inverted-U account. Finally, higher baseline GABA and variability modulation were jointly associated with better visual-discrimination performance. These results suggest that GABA plays an important role in how humans utilize neural variability to adapt to the complexity of the visual world.