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Abstract The characterization of prostate epithelial hierarchy and lineage heterogeneity is

critical to understand its regenerative properties and malignancies. Here, we report that the

transcription factor RUNX1 marks a specific subpopulation of proximal luminal cells (PLCs),

enriched in the periurethral region of the developing and adult mouse prostate, and distinct from

the previously identified NKX3.1+ luminal castration-resistant cells. Using scRNA-seq profiling and

genetic lineage tracing, we show that RUNX1+ PLCs are unaffected by androgen deprivation, and

do not contribute to the regeneration of the distal luminal compartments. Furthermore, we

demonstrate that a transcriptionally similar RUNX1+ population emerges at the onset of embryonic

prostate specification to populate the proximal region of the ducts. Collectively, our results reveal

that RUNX1+ PLCs is an intrinsic castration-resistant and self-sustained lineage that emerges early

during prostate development and provide new insights into the lineage relationships of the

prostate epithelium.

Introduction
The prostate is a glandular organ of the mammalian male reproductive system. In mice, prostate

development starts during embryogenesis at embryonic day (E) 15.5–16.5 with the emergence of

the first prostatic buds from the rostral end of the urogenital sinus (UGS) (Bhatia-Gaur et al., 1999;

Georgas et al., 2015; Keil et al., 2012; Toivanen and Shen, 2017). These initial buds grow into the

surrounding mesenchyme to develop postnatally and through puberty into a branched ductal net-

work organized in distinct pairs of lobes, known as the anterior prostate (AP), dorsolateral prostate

(DLP), and ventral prostate (VP) (Sugimura et al., 1986a). Each lobe has distinct branching patterns,

histopathological characteristics, and is thought to contribute differently to the physiological func-

tion of the prostate. The differentiated epithelium of the adult prostate gland is mainly composed of
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basal and luminal cells, interspersed with rare neuroendocrine cells (Shen and Abate-Shen, 2010;

Toivanen and Shen, 2017; Wang et al., 2001). Luminal cells form a layer of polarized tall columnar

cells that depend on androgen signaling and produce the prostatic secretions. Basal cells act as a

supportive layer located between the luminal cells and the surrounding stroma.

Despite being mostly quiescent under homeostatic conditions, the prostate gland encompasses

incredible plasticity. In mice, surgical castration-induced prostate involution has proven an invaluable

tool to identify progenitor castration-resistant cell populations, characterized by their ability to sur-

vive in the absence of androgens, and to fully regenerate an intact adult prostate after re-administra-

tion of testosterone (Barros-Silva et al., 2018; Kwon et al., 2016; McAuley et al., 2019;

Tsujimura et al., 2002; Wang et al., 2015; Wang et al., 2009; Yoo et al., 2016). Such plasticity has

also been shown in defined experimental conditions to stimulate regenerative properties of epithe-

lial subpopulations, including transplantations (Barros-Silva et al., 2018; Burger et al., 2005;

Lawson et al., 2007; Lukacs et al., 2010; Richardson et al., 2004; Wang et al., 2009; Xin et al.,

2005; Yoo et al., 2016), injury repair (Centonze et al., 2020; Horton et al., 2019; Kwon et al.,

2014; Toivanen et al., 2016), and organoid assays (Chua et al., 2014; Höfner et al., 2015;

Karthaus et al., 2014). In addition, several studies have proposed that progenitor populations with

distinct physiological roles and regenerative capacity reside at different locations within the prostate

(Burger et al., 2005; Crowell et al., 2019; Goldstein et al., 2008; Goto et al., 2006; Kwon et al.,

2016; Leong et al., 2008; McNeal, 1981; Tsujimura et al., 2002). However, the precise cellular

hierarchy and how it is established during development remains controversial.

RUNX transcription factors (TF) are master regulators of lineage commitment and cell fate

(Mevel et al., 2019). In particular, RUNX1 is essential for the ontogeny of the hematopoietic system

and alterations of RUNX1 have been associated with a broad spectrum of hematological malignan-

cies. Interestingly, increasing evidence implicates RUNX1 in the biology and pathology of hormone-

associated epithelia (Lie-A-Ling et al., 2020; Riggio and Blyth, 2017; Scheitz and Tumbar, 2013),

including breast (Browne et al., 2015; Chimge et al., 2016; Ferrari et al., 2014; van Bragt et al.,

2014), uterine (Planagumà et al., 2004; Planagumà et al., 2006), ovarian (Keita et al., 2013), and

prostate cancers (Banach-Petrosky et al., 2007; Scheitz et al., 2012; Takayama et al., 2015).

eLife digest The prostate is part of the reproductive organs in male mammals. Many of the cells

lining the inside of the prostate – known as ‘luminal cells’ – need hormones to survive. Certain

treatments for prostate cancer, including surgical and chemical castration, lead to fewer hormones

reaching the prostate, which shrinks as luminal cells die. But some of these luminal cells are able to

survive the damaging effects of castration, rebuilding the prostate upon treatment with hormones,

which can lead to the cancer reappearing. It is unclear which type of luminal cells survive during

periods without hormones and are responsible for regenerating the prostate.

RUNX1 is a protein responsible for switching genes on and off, and is usually found in blood cells,

which it helps to mature and perform their roles, but has also been detected in tissues that depend

on hormones. Since the luminal cells of the prostate rely on hormones, could RUNX1 also be present

in these cells? To answer this question, Mével et al. used mice to determine where and when RUNX1

is found in prostate cells.

Mével et al. detected high levels of RUNX1 in a patch of luminal cells at the base of the prostate.

Samples of these cells were taken for further testing from developing mouse embryos, healthy adult

mice and mice in which the prostate was regenerating after surgical castration. Mével et al. found

that these cells were a distinct subtype of luminal cells that were able to resist the effects of

castration – they survived without hormones. Though these cells were present during the early

stages of prostate embryonic development and in healthy adult prostate tissue, they were not

responsible for rebuilding the prostate after castration.

Mével et al.’s results indicate that, in mice, RUNX1 may act as a marker for a subset of luminal

cells that can survive after castration. Further probing the roles of these castration-resistant luminal

cells in normal and cancerous prostate tissue may improve the outcome of patients with prostate

cancer treated with hormone deprivation therapy.
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Despite the documented importance of RUNX TFs and reports of RUNX1 in PCa, its expression in

the normal prostate gland during development, homeostasis, and regeneration has not been

explored.

In this study, we found that Runx1 marks a discrete subset of luminal cells located in the proximal

region of the prostatic ducts. Using mouse models, combined with lobe-specific single-cell transcrip-

tomic profiling of adult, castrated, and developing prostates, we show that RUNX1+proximal luminal

cells represent a distinct lineage established at the onset of prostate development, displaying intrin-

sic castration-resistant and self-sustaining properties.

Results

RUNX1 marks a subpopulation of prostate proximal luminal cells (PLCs)
We initially sought to characterize the expression pattern of Runx1 in adult mouse prostate. While

RUNX1 was detected in basal cells at multiple spatial locations, its expression was specifically high in

a subset of luminal cells found in the proximal region of all three lobes, also known as periurethral

(Figure 1A,B; Figure 1—figure supplement 1A,B). Sections were co-stained with NKX3.1, a master

regulator of prostate development broadly expressed in luminal cells. Using quantitative image-

based cytometry (QBIC), we found that RUNX1 and NKX3.1 had a largely mutually exclusive expres-

sion pattern, with a sharp transition from RUNX1+ NKX3.1- to RUNX1- NKX3.1+ cells in the proximal

region (Figure 1A,B; Figure 1—figure supplement 1A,B). These proximal luminal cells had a unique

histological profile, with a compact organization, intense nuclear hematoxylin staining, and increased

nuclear-to-cytoplasmic ratio (Figure 1—figure supplement 1C). In contrast, distal luminal cells had a

large cytoplasm with intense pink eosin staining, likely reflecting their secretory function. These

observations suggest that RUNX1 marks a subset of proximal luminal cells, distinct from the abun-

dant NKX3.1+ luminal population lining the rest of the prostate epithelium.

The proximal site of the prostate has been proposed to be enriched in cells with stem/progenitor

properties (Goldstein et al., 2008; Kwon et al., 2016; Tsujimura et al., 2002; Yoo et al., 2016). In

order to study the regenerative potential of Runx1-expressing cells ex vivo, we took advantage of

isoform-specific fluorescent reporter mouse models of Runx1 (Draper et al., 2018;

Sroczynska et al., 2009). Runx1 expression is controlled by two promoters, P1 and P2, that respec-

tively drive the expression of the Runx1c and the Runx1b isoform (Mevel et al., 2019). We found

that Runx1 expression in the prostate was exclusively mediated by the proximal P2 promoter, in up

to 30% of all epithelial EPCAM+ prostate cells (Figure 1—figure supplement 2A–C). Flow-cytometry

profiling confirmed the enrichment of P2-Runx1:RFP in both basal (EPCAM+ CD49fhigh) and luminal

(EPCAM+ CD24high) lineages of the proximal compared to the distal prostate (Figure 1C,D; Fig-

ure 1—figure supplement 2D). Mirroring our QBIC spatial analysis (Figure 1—figure supplement

1B), P2-Runx1:RFP was also detected in a large fraction of the VP epithelium (Figure 1—figure sup-

plement 2D).

We therefore used the P2-Runx1:RFP mouse line to isolate Runx1 positive (RFP+) and negative

(RFP-) epithelial cells from the basal and luminal compartments of all three prostate lobes and evalu-

ated their regenerative potential in organoid culture assays (Drost et al., 2016; Figure 1E). The

proximal and distal regions of the AP were analyzed separately. In line with previous reports, basal

cells were more efficient at forming organoids compared to all luminal fractions (Drost et al., 2016,

Kwon et al., 2016). Importantly, in the luminal fraction, proximal RFP+ luminal cells of the AP consis-

tently displayed higher Organoid Formation Capacity (OFC) than the RFP- fraction (Figure 1F). Lumi-

nal RFP+ sorted cells of the DLP and VP also had a greater OFC than RFP- cells (Figure 1—figure

supplement 3A). In contrast, no significant differences in OFC were observed between basal

enriched subsets and distal luminal RFP+ and RFP- cells. Brightfield assessment revealed that virtually

all organoids had a ‘solid’ aspect, except for the predominantly ‘hollow’ organoids derived from

proximal RFP+ luminal cells (Figure 1—figure supplement 3B). To further characterize their lineage

potential, we classified organoids into three types based on the expression of specific lineage

markers: unipotent ‘basal-like’ Keratin 5+ (K5+), unipotent ‘luminal-like’ Keratin 8+ (K8+), or multipo-

tent K5+ K8+ (Figure 1G,H; Figure 1—figure supplement 3C). Interestingly, AP proximal luminal

RFP+-derived organoids were predominantly small unipotent K8+, while the remainder fraction
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Figure 1. RUNX1 marks a subpopulation of mouse proximal prostate luminal cells (PLCs). (A) Co-immunostaining of RUNX1, NKX3.1, CDH1 in the

mouse Anterior Prostate (AP). Higher magnification images of (i) proximal AP and (ii) distal AP are shown. Arrows indicate RUNX1+ NKX3.1- cells,

arrowheads show RUNX1- NKX3.1+ cells. Scale bars: 500 mm (yellow) and 50 mm (white). (B) Quantification of RUNX1 and NKX3.1 nuclear intensity (log10)

in CDH1+ epithelial cells by QBIC in proximal and distal AP. n = 6–8 mice. (C, D) Flow-cytometry analysis of P2-Runx1:RFP mice, and corresponding

quantification of the percentages of RFP+ and RFP cells in the basal and luminal fractions of the proximal and distal AP. n = 7 mice. (E) Experimental

Figure 1 continued on next page
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mainly gave larger unipotent K5+ organoids (Figure 1H; Figure 1—figure supplement 3D–E). Few

multipotent K5+ K8+ organoids were also identified in nearly all populations.

Together, our results show that RUNX1 marks a specific subset of proximal luminal cells (PLCs),

and that its expression in the prostate is mediated by the P2 promoter. RUNX1+ PLCs have a partic-

ular predisposition to form unipotent K8+ hollow organoids, suggesting a lineage bias toward the

luminal identity, and highlighting differences within the luminal compartment of proximal and distal

regions.

Runx1-expressing cells are enriched in the castrated prostate
epithelium
In mice, androgen-deprivation can be modeled by surgical castration which leads to prostate regres-

sion and enriches for castration-resistant cells (Toivanen and Shen, 2017; Zhang et al., 2018). This

process is accompanied by the death of luminal androgen-dependent cells and a small proportion of

basal cells (English et al., 1987; Sugimura et al., 1986b). To track changes in Runx1 expression fol-

lowing androgen withdrawal, we surgically castrated P2-Runx1:RFP mice and harvested tissue �4

weeks post-surgery (Figure 2A). While intact prostates contained 22.8 ± 6.0% RFP+ epithelial cells,

their frequency increased to 87 ± 6.0% following castration (Figure 2B,C). High RUNX1 levels were

no longer restricted to the proximal region, and RFP was detected in virtually all basal cells of the

AP, DLP, and VP, as well as more than 75% of the luminal castration-resistant cells (Figure 2D; Fig-

ure 2—figure supplement 1A). RUNX1-expressing cells often co-expressed TROP2 (Figure 2E),

known to be widely expressed in castrated prostate epithelium (Goldstein et al., 2008; Wang et al.,

2007). Several castration-resistant luminal populations have been identified in mice (Barros-

Silva et al., 2018; Kwon et al., 2016; McAuley et al., 2019; Tsujimura et al., 2002; Wang et al.,

2015; Wang et al., 2009; Yoo et al., 2016), including rare castration-resistant Nkx3-1-expressing

cells (CARNs). Accordingly, we observed low, but detectable, levels of NKX3.1 in some luminal cells,

but only occasional RUNX1+ NKX3.1+ luminal cells in the distal regions of the castrated prostate

(Figure 2D; Figure 2—figure supplement 1B,C). Importantly, the clear transition from RUNX1+ to

NKX3.1+ cells identified in the proximal luminal layer of intact mice was conserved after castration

(Figure 2D,ii).

Together, these results show that RUNX1 is expressed in the majority of the castration-resistant

cells. The RUNX1+ NKX3.1- subset identified in the proximal luminal epithelium of the intact prostate

remain NKX3.1- following castration, supporting the notion that RUNX1+ PLCs constitute a distinct

lineage from distal NKX3.1+ cells.

scRNA-seq profiling of Runx1+ and Runx1- cells in individual lobes of
the intact and castrated prostate
To further characterize the RUNX1+ and RUNX1- fractions residing at different anatomical locations

of the prostate, we performed droplet-based single cell (sc)RNA-seq. We sorted EPCAM+ RFP+ and

RFP- cells from individually dissected lobes of intact and castrated prostates isolated from P2-Runx1:

Figure 1 continued

strategy to grow organoids from sorted RFP+ and RFP cells from the basal (CD49fhigh) and luminal (CD24high) lineages of P2-Runx1:RFP mouse

reporters. (F) Organoid Forming Capacity (OFC) of RFP+ and RFP- basal and luminal sorted cells after 7 days in culture. n = 4 mice. (G) Whole-mount

immunostaining of unipotent K5+, unipotent K8+ or multipotent K5+ K8+ organoids. Scale bar: 50 mm. (H) Quantification of the type of organoids

characterized by whole-mount immunostaining, as in G. Numbers of organoids quantified are shown above the graph. p Value is indicated for the

proportion of K8+ organoids between Proximal AP Luminal RFP+ versus RFP- derived subset. Other comparisons were not statistically significant. n = 2

mice per group. Source files are available in Figure 1—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Source data files for Figure 1.

Figure supplement 1. RUNX1 is enriched in the mouse prostate epithelium.

Figure supplement 1—source data 1. Source data files for Figure 1—figure supplement 1.

Figure supplement 2. Runx1 expression is mediated by the P2 promoter in the mouse prostate epithelium.

Figure supplement 2—source data 1. Source data files for Figure 1—figure supplement 2.

Figure supplement 3. Characterization of P2-Runx1:RFP derived mouse prostate organoids.

Figure supplement 3—source data 1. Source data files for Figure 1—figure supplement 3.
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RFP reporter mice (Figure 3A). Sorted populations were multiplexed using MULTI-seq lipid-tagged

indices to minimize technical confounders such as doublets and batch effects (McGinnis et al.,

2019b). We retrieved a total of 3825 prostate epithelial cells from all sorted populations, with a

median of 2846 genes per cell (see Materials and methods; Figure 3—figure supplements 1 and

2A–G). We identified nine in silico computed clusters expressing canonical epithelial, basal, and

luminal markers (Figure 3—figure supplement 2H–J). A large population of basal cells was anno-

tated by merging three tightly connected subclusters broadly expressing Krt5, Krt14, and Trp63

(Figure 3B–D; Figure 3—figure supplement 2E,J). Luminal populations expressed surprisingly het-

erogeneous levels of canonical luminal markers such as Cd26/Dpp4, Cd24a, Krt8, and Krt18 (Fig-

ure 3—figure supplement 2I). We annotated those distinct clusters as Luminal-A (Lum-A), Lum-B,

Lum-C, Lum-D, Lum-E, and Lum-F (Figure 3B). Differential gene expression analysis revealed genes

strongly associated with each luminal subpopulation (Figure 3C and D; Figure 3—figure supple-

ment 3A; Supplementary file 2).

Initially, we sought to evaluate the effect of androgen withdrawal on lobe-specific cellular hetero-

geneity. Lum-A/B/C/D were largely enriched in luminal cells originating from intact prostates,

whereas Lum-E/F contained mainly castrated luminal cells (Figure 3E; Figure 3—figure supplement

3B). Interestingly, Lum-A/C/F mainly contained VP cells, while Lum-B/D/E had a majority of AP and

DLP cells, indicating that the lobular identity of luminal cells in the intact prostate is conserved fol-

lowing castration (Figure 3F; Figure 3—figure supplement 3C). These results suggest that a subset

of intact Lum-A/C might undergo partial reprogramming during castration-induced regression and
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Figure 2. RUNX1-expressing cells are enriched in the castrated prostate epithelium. (A) P2-Runx1:RFP reporter mice were surgically castrated between

6 and 12 weeks of age and analyzed at least 4 weeks post-castration. (B, C) Flow-cytometry analysis and corresponding quantification of the proportion

of RFP+ and RFP- cells in the EPCAM+ fraction of intact and castrated prostates of P2-Runx1:RFP mice. n = 3 mice per group. Int: Intact, Cas: Castrated.

(D) Co-immunostaining of RUNX1, NKX3.1, CDH1 in the castrated wild-type mouse prostate. Higher magnification images of (i) proximal, (ii)

intermediate, and (iii) distal AP are shown. Arrows indicate RUNX1- NKX3.1+ cells, arrowheads show a luminal cell co-stained for RUNX1 and NKX3.1.

Amp: ampullary gland. Scale bars: 500 mm (yellow) and 50 mm (white). Int: Intact, Cas: Castrated. (E) Co-immunostaining of RUNX1 and TROP2 showing

colocalization of the two markers in both proximal (bottom) and distal (top) castrated AP. Scale bars: 50 mm (white). Source files are available in

Figure 2—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Source data files for Figure 2.

Figure supplement 1. Characterization of RUNX1 expression in the castrated mouse prostate.

Figure supplement 1—source data 1. Source data files for Figure 2—figure supplement 1.
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gives rise to the Lum-F cluster. Similarly, surviving Lum-B/D may predominantly reprogram into

Lum-E cells upon castration. Alternatively, the small fraction of intact cells observed in Lum-E and

Lum-F clusters might give rise to the expanded Lum-E/F clusters upon castration. In contrast to lumi-

nal cells, castrated basal cells were minimally affected by androgen-deprivation and clustered

together with intact basal cells (Figure 3E). Overall, these results highlight the dramatic changes

occurring upon androgen deprivation in the representation of distinct luminal subpopulations.

Runx1-expressing luminal cells are transcriptionally similar to castration-
resistant cells
We next specifically focused our attention on RUNX1+ luminal cells. The Lum-D cluster predomi-

nantly consisted of AP-derived RFP+ cells, as well as a small number of RFP+ DLP and VP cells

(Figure 3F,H; Figure 3—figure supplements 2E, 3B and C). High Runx1 expression in Lum-D
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Figure 3. scRNA-seq profiling of intact and castrated Runx1+ cells reveals transcriptomic similarity between proximal luminal cells and castration-

resistant cells. (A) Experimental strategy for scRNA-seq on RFP+ and RFP- cells individually dissected lobes of intact and castrated prostates isolated

from P2-Runx1:RFP reporter mice. (B) UMAP visualization (left) and graph-abstracted representation (PAGA, right) of prostate epithelial cells (n = 3,825

cells from three independent experiments). Colors represent different clusters. In PAGA, clusters are linked by weighted edges that represent a

statistical measure of connectivity. (C) Dot plot showing the expression of selected marker genes associated with each cluster. (D–H) UMAP visualization

of prostate epithelial cells. Cells in D and G are colored by a gradient of log-normalized expression levels for each gene indicated. Cell colors in E

represent the treatment of origin (intact, castrated), in F individual lobes of origin (AP, DLP, VP), and in H RFP FACS gate of origin (RFP+, RFP-).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Pre-processing of the scRNA-seq dataset of adult intact and castrated mouse prostates.

Figure supplement 2. Characterization of the scRNA-seq prostate epithelial subset.

Figure supplement 3. Characterization of the scRNA-seq prostate epithelial dataset.

Figure supplement 4. Gene Ontology and differential expression analysis within the scRNA-seq prostate epithelial dataset.
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correlated with higher levels of Tacstd2/Trop2, Ly6 family members as well as Runx2 (Figure 3D,G;

Figure 3—figure supplement 3D,E). In contrast, Runx1 was barely detected in clusters Lum-B/C

which expressed high levels of Nkx3-1 while Lum-A cells expressed low levels of both Runx1 and

Nkx3-1. These results suggest that the Lum-D cluster corresponds to the distinct RUNX1+ luminal

cells identified in the proximal region of all three prostate lobes (Figure 1).

To further characterize the specificities of those populations, we performed gene ontology analy-

sis. In line with the secretory role of distal luminal cells, clusters Lum-A/B/C were enriched in enzy-

matic activity and protein synthesis functions. In contrast, the Lum-D cluster was enriched in terms

related to epithelial developmental processes, similar to Lum-E/F (Figure 3—figure supplement

4A–I). This was supported by partition-based graph abstraction (Wolf et al., 2019), which uncovered

a strong degree of connectivity between the mainly intact Lum-D and castrated Lum-E population

(Figure 3B). Additionally, the Lum-D cluster contained a small, but defined, subpopulation of cas-

trated epithelial cells, suggesting the preservation of its identity upon androgen deprivation

(Figure 3E,F). In this population, we found very few genes significantly differentially expressed

between intact and castrated cells (n = 103; Supplementary file 3). As expected, androgen-regu-

lated genes including Psca and Tspan1 were downregulated in the castrated subset, while strong

contributors of the Lum-D identity such as Tacstd2/Trop2, Krt4 and Runx1 did not vary (Figure 3—

figure supplement 4J). These observations further support the hypothesis that Lum-D/RUNX1+

PLCs maintain their identity following androgen-deprivation.

Overall, our single-cell transcriptomic analysis highlighted a vast degree of heterogeneity within

and between the luminal compartments of both intact and castrated mouse prostates. The tight

transcriptional relationship observed between high Runx1 expressing clusters Lum-D and Lum-E/F

suggest that the Lum-D population, which corresponds to PLCs, may contain intrinsically castration-

resistant luminal cells.

Lineage tracing of Runx1-expressing cells establishes the intrinsic
castration-resistant properties of the proximal luminal lineage
To determine if RUNX1+ PLCs were enriched in castration-resistant cells, we combined prostate

regression-regeneration assays with genetic lineage tracing using Runx1mER-CRE-mERRosaLox-Stop-Lox-

tdRFP mice (Luche et al., 2007; Samokhvalov et al., 2007), henceforth Runx1CreER Rosa26LSL-RFP

(Figure 4A). Using this model, we could genetically label an average of 4.70 ± 2.8% prostate epithe-

lial Runx1-expressing cells with RFP upon tamoxifen injection (Figure 4B,C; Figure 4—figure sup-

plement 1A). This corresponded to 0.54 ± 0.2‰ of the total epithelium (Figure 4E). Consistent with

the expression pattern of Runx1, the majority of labeled cells were located in the proximal region of

the prostate (Figure 4C), and co-expressed Keratin 4 (K4) (Figure 4—figure supplement 1D,E), pre-

viously found enriched in Lum-D cells (Figure 3D).

Following surgical castration, we found that the absolute number of RFP+ marked cells remained

stable (Figure 4—figure supplement 1C,D). However, the frequency of RFP+ cells in the epithelial

compartment increased by ~4.3 fold (Figure 4E; Figure 4—figure supplement 1B) indicating that

Runx1-expressing cells have an enhanced capacity to survive castration compared to Runx1-negative

cells. Next, we investigated whether these intrinsically castration-resistant Runx1-expressing cells

were involved in epithelial regeneration upon testosterone addback (Figure 4B, bottom). Surpris-

ingly, only 0.71 ± 0.2‰ RFP+ epithelial cells were found in the regenerated prostate, which was com-

parable to the intact state (Figure 4E; Figure 4—figure supplement 1B–D). Although the majority

of RFP+ clones consisted of single cells, we did observe a minor ~2-fold increase in the frequency of

larger clones (2–4 cells) after regeneration, highlighting a modest contribution of RFP labeled cells

during prostate regeneration (Figure 4F,G). We found that most RFP marked cells were luminal K8+

in intact, castrated, and regenerated prostates (Figure 4F,H), with only a few basal K5+ RFP+ cells

detected in distal areas (Figure 4F). Strikingly, more than 90% of all RFP+ cells remained negative

for NKX3.1 in all experimental arms (Figure 4I).

Thus, these results indicate that RFP+ cells, including PLCs, are mostly unaffected by fluctuations

in androgen levels during regression-regeneration assays. RUNX1 expression marks intrinsically cas-

tration-resistant luminal cells that do not contribute substantially to the expansion of luminal

NKX3.1+ cells during prostate regeneration.

Mevel et al. eLife 2020;9:e60225. DOI: https://doi.org/10.7554/eLife.60225 8 of 27

Research article Developmental Biology Stem Cells and Regenerative Medicine

https://doi.org/10.7554/eLife.60225


A

F

C D

B

STOP

Runx1

Rosa26 RFP

mER mERCre

RFP
Tam

Runx1CreERRosa26LSL-RFP Intact 8 weeks

Birth Analysis

Tam

Castrated 6 weeks

2 weeks

Birth AnalysisCastration

Tam

2 weeks

Regenerated

Birth AnalysisRegenerationCastration

Tam
6 weeks 6 weeks

In
ta
c
t

Proximal AP Distal AP DLVP

C
a
s
tr
a
te
d

R
e
g
e
n
e
ra
te
d

G

H

I

R
F
P
+
c
lo
n
e
s
(%
)

(2
-4
c
e
lls
)

E

R
F
P
+
e
p
it
h
e
lia
l
c
e
lls
(�
)

Int. Cas. Rgn.

p=0.003

p=0.01

p=0.29

Intact

Castrated

Regenerated

p=0.04

p<0.001

p=0.002

R
F
P
+
e
p
it
h
e
lia
l
c
e
lls
(%
)

Int. Cas. Rgn.

Int. Cas. Rgn.

R
F
P
+
e
p
it
h
e
lia
l
c
e
lls
(%
)

Int. Cas. Rgn.

DAPI RFP RUNX1 CDH1

P
ro
x
im
a
lA
P

In
ta
ct

R
eg
re
ss
ed

R
eg
en
er
at
ed

0

50

100

In
ta
ct

R
eg
re
ss
ed

R
eg
en
er
at
ed

0

50

100

DAPI K5 K8 RFP
Intact

Castrated

Regenerated

K5+

K8+

NKX3.1-

NKX3.1+

p=0.02 p=0.41

p=0.03

n.s.

In
ta
ct

R
eg
re
ss
ed

R
eg
en
er
at
ed

0

50

100
R
F
P
+
e
p
it
h
e
lia
l
c
e
lls
(%
)

Int. Cas. Rgn.

Distal

Proximal

n.s.

In
ta
ct

R
eg
re
ss
ed

R
eg
en
er
at
ed

0

1

2

3

4

5

In
ta
ct

R
eg
re
ss
ed

R
eg
en
er
at
ed

0

5

10

15

20

Figure 4. Lineage tracing of Runx1-expressing cells establishes the intrinsic castration-resistant properties of the proximal luminal lineage. (A)

Schematic summary of the genetic lineage-tracing system employed. (B) Experimental strategy for lineage-tracing experiments. (C) Co-immunostaining

of RFP, RUNX1, CDH1 in the proximal AP. Arrows indicate RFP labeled RUNX1+ cells. Scale bar: 50 mm. (D) Quantification of the percentage of

epithelial RFP+ cells in proximal and distal regions of the prostate in intact (n = 5), castrated (n = 4) and regenerated (n = 4) mice. (E) Quantification of

the percentage of epithelial RFP+ cells in intact (n = 5), castrated (n = 5) and regenerated (n = 4) mice. (F) Co-immunostaining of RFP, K5, K8 in the

proximal AP, distal AP, and DLVP (DLP + VP). Arrowheads indicate RFP labeled basal cells (K5+) found in distal AP, the white arrow indicates a luminal

(K8+) RFP+ clone made of two cells. Scale bar: 50 mm. (G) Quantification of the percentage of epithelial RFP+ clones comprising between two and four

Figure 4 continued on next page
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Runx1 marks proximal cells during prostate development
Given the singular identity of proximal luminal Runx1-expressing cells in the adult prostate, we then

asked if this luminal lineage was already emerging during prostate development. At E18.5, once the

first prostate buds have emerged, RUNX1 was mainly found in the K8high inner layers of the stratified

urogenital epithelium (UGE) (Figure 5A). Interestingly, these cells also co-expressed K4 (Figure 5—

figure supplement 1A), previously found in the Lum D population (Figure 3D), as well as LY6D,

recently shown to mark a subset of adult luminal progenitors (Barros-Silva et al., 2018; Figure 5—

figure supplement 1B). In contrast, RUNX1 expression was low in p63+ and K5+ cells, either lining

the outer UGE or found in the tips of premature NKX3.1+ prostate buds (Figure 5A–C). At postnatal

day 14 (P14), a prepubescent stage when most of the initial branching events have already occurred

(Sugimura et al., 1986a; Tika et al., 2019), RUNX1 was broadly expressed in the proximal region

(Figure 5D), mainly in K4+ luminal cells and in some K5+ or p63+ cells (Figure 5—figure supplement

1C–E). Conversely, NKX3.1+ cells were found in distal locations, largely distinct from RUNX1+ cells.

The specific spatial expression pattern of RUNX1 in proximal luminal cells, largely mutually exclusive

with NKX3.1, suggests that these two transcription factors already mark distinct cellular lineages dur-

ing embryonic prostate organogenesis.

To study the dynamic emergence of RUNX1+ cells during prostate development, we utilized an

explant culture system (Berman et al., 2004; Doles et al., 2005; Kruithof-de Julio et al., 2013;

Lopes et al., 1996). Dissected E15.5 UGS were cultured for up to 7 days in the presence of dihydro-

testosterone (Figure 5E,F). Bud formation was initiated within 2 days of culture (Figure 5G) and

composed of a double positive K5+ K8+ stratified epithelium, partially diversifying by day 7 (Fig-

ure 5—figure supplement 2A,B). On day 0 (E15.5), RUNX1 was detected at the rostral end of the

UGE, particularly within the inner layers of the stratified epithelium. After 1 day in culture, NKX3.1

expression emerged in RUNX1+ cells located in the outer layers of the UGE, while defined budding

was yet to be observed. On day 2, NKX3.1+ prostate buds were evident and had reduced or absent

RUNX1 expression. This pattern was conserved in the mature explant, in which distal tips were

mainly NKX3.1+, whereas the proximal area remained RUNX1+ (Figure 5G,H), and co-expressed

LY6D and K4 (Figure 5—figure supplement 2C,D). Cellular proliferation marked by Ki67 was more

substantial in distal regions, suggesting that most of the expansion did not take place in the

RUNX1+ compartment (Figure 5—figure supplement 2E).

These results suggest that prostate budding originates from a subset of cells located in the outer

layers of the stratified UGE, transiently marked by RUNX1 and NKX3.1. During embryonic prostate

development, Runx1 expression is already primarily confined to the proximal region of the prostatic

ducts, in a distinct compartment from NKX3.1+ cells.

scRNA-seq of explant cultures reveals the specification of the proximal
luminal lineage during embryonic prostate development
The characterization by immunostainings of continuous developmental processes is generally con-

strained to a small number of markers at a time. To further study the specification of RUNX1 and

NKX3.1 lineages, we performed scRNA-seq on UGS explant cultures collected at successive time

points: E15.5 (D0), day 1 (D1), day 3 (D3), and day 6 (D6) (Figure 6A). After data processing, 3937

developing prostatic cells were retained, with a median of 3608 genes per cell (see

Materials and methods; Figure 6—figure supplement 1).

Visualization of the dataset using a force-directed layout highlighted the progressive cellular

diversification taking place from D0 to D6 (Figure 6B). Cellular populations were divided into nine

Figure 4 continued

cells in intact (n = 5), castrated (n = 5) and regenerated (n = 4) mice. (H, I) Quantification of the percentage of RFP+ cells being K5+ or K8+ in H, or

NKX3.1+ or NKX3.1- in I, in intact (n = 5), castrated (n = 5) and regenerated (n = 4) mice. Int: Intact, Cas: Castrated, Rgn: Regenerated. Source files are

available in Figure 4—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Source data files for Figure 4.

Figure supplement 1. Lineage tracing of RUNX1-expressing cells labeled in intact mice.

Figure supplement 1—source data 1. Source data files for Figure 4—figure supplement 1.
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Figure 5. RUNX1 marks proximal cells during embryonic prostate development. (A–C) Co-immunostainings of the mouse urogenital sinus at E18.5 for

RUNX1, K5, K8 in A, RUNX1, p63, CDH1 in B, RUNX1, NKX3.1, CDH1 in C. Scale bar: 50 mm. (D) Co-immunostainings of RUNX1, NKX3.1, CDH1 at

postnatal (P) day 14. Higher magnification images of (p) proximal, (i) intermediate, and (d) distal regions are shown. Scale bars: 200 mm (yellow) and 50

mm (white). Amp: ampullary gland; Sv: seminal vesicles; Ur: urethra; p: proximal; i: intermediate; d: distal. (E) Scheme of the protocol to culture ex vivo

explants of mouse UGS harvested at E15.5. (F) Representative images of UGS explants at E15.5 (day 0), day 3, day 5, and day 7 of culture showing the

formation of premature prostate buds. (G) Co-immunostaining of RUNX1, NKX3.1, CDH1 in UGS explants harvested at day 0, day 1, day 2, and day 7.

Higher magnification images of each square (left) are shown for each time point. Chevron arrows show RUNX1+ NKX3.1+ cells, closed arrows indicate

RUNX1- NKX3.1+ cells, arrowheads show RUNX1+ NKX3.1- cells. Scale bars: 200 mm (yellow) and 50 mm (white). (H) Quantification of RUNX1 and NKX3.1

nuclear intensity (log10) in CDH1+ epithelial cells of UGS explants by QBIC. Quantification was performed within the boundaries delimited in G by

dotted lines, at day 0 (n = 3 explants), day 1 (n = 7 explants), day 2 (n = 6 explants), and day 7 (n = 6 explants). Source files are available in Figure 5—

source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Source data files for Figure 5.

Figure supplement 1. Characterization of RUNX1 expression during prostate development in vivo.

Figure supplement 2. Characterization of RUNX1 expression during prostate development in UGS explant cultures.

Figure supplement 2—source data 1. Source data files for Figure 5—figure supplement 2.
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clusters, annotated C0 to C8 (Figure 6C–E). C0/C1 contained the majority of D0 and D1 derived

cells, while C2-C8 emerged and expanded at later time points. Due to the primitive nature of the

UGE at these time points, the classical basal and luminal lineages were not fully established yet

(Figure 6F; Figure 6—figure supplement 2A–E; Supplementary file 4). Nevertheless, C4-C6 had a

more pronounced ‘basal’ identity compared to the other clusters. Krt5/Krt14 marked mainly C4, and

additional basal markers including Trp63, Dcn, Apoe, or Vcan were higher in C5/C6. Overall, known

regulators of prostate development (Toivanen and Shen, 2017) displayed a variable expression pat-

tern across the different clusters. For example, Foxa1 and Shh were strongly expressed in C0/C1,

Notch1 was higher in C3, and Sox9 in C7 (Figure 6—figure supplement 2C), highlighting the poten-

tial of this dataset to interrogate specific features of prostate development.

Consistent with our previous results, Runx1 was highly expressed in clusters having lower Nkx3-1

levels, including C0, C1, C2, and C4 (Figure 6G). To determine how these clusters relate to differen-

tiated prostate lineages, we interrogated population-specific gene signatures previously identified in

the adult (Figure 3). The ‘Basal’ signature was enriched across all clusters, especially in C4/C6

(Figure 6I; Figure 6—figure supplement 2F,G). Strikingly, the ‘Lum-D’ derived signature was highly
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Figure 6. scRNA-seq of UGS explant cultures shows specification of the proximal luminal lineage during embryonic prostate development. (A)

Experimental strategy for scRNA-seq of UGS explant cultures at day 0, day 1, day 3 and day 6. (B, C) Force directed visualization of the developing

prostatic epithelium in UGS explant cultures. In B cells are colored by experimental time points, and in C cells are colored by clusters. (D) PAGA

representation of the clusters as in C. Weighted edges between cluster nodes represent a statistical measure of connectivity. (E) Fraction of cells per

cluster at each experimental time point, displaying a progressive cellular diversification. (F–H) PAGA representations with cluster nodes colored by a

gradient representing the mean log-normalized expression levels of each gene. (I) Force directed visualization of the developing prostatic epithelium in

UGS explant cultures. Color gradient represents AUC scores per cell. Per-cell AUC scores were calculated using the ‘AUCell’ package. Gene signatures

for ‘Lum-D’ (left) and ‘Basal’ (right) were generated using the list of differentially upregulated genes previously obtained from our adult mouse prostate

clusters.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Pre-processing of the scRNA-seq dataset of UGS explant cultures.

Figure supplement 2. Characterization of the developing prostatic epithelium in the scRNA-seq dataset of UGS explant culture.
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enriched in C2 compared to all the other adult luminal population signatures, suggesting that the

‘Lum-D’ fate is determined early during prostate development. The singular identity of C2 was char-

acterized by genes previously found highly expressed in the adult ‘Lum-D’ population, including

Tacstd2/Trop2, Krt4, Psca, as well as Ly6d and Nupr1 (Figure 6H; Figure 6—figure supplement

2A).

Collectively, our scRNA-seq analysis show that adult ‘Lum-D’/PLCs share strong similarities with

the unique C2 population identified in embryonic explant cultures. This suggests that the distinct

proximal luminal lineage is established at the very onset of prostate specification.

RUNX1+ cells contribute to the establishment of the proximal luminal
lineage during embryonic prostate development
To trace the fate of RUNX1+ cells during embryonic prostate specification, we cultured UGS explants

isolated from the Runx1CreER Rosa26LSL-RFP lineage-tracing model. We performed 2 pulses of tamoxi-

fen treatment on day 0 and 1 of culture and analyzed the explants on day 2 and day 7 (Figure 7A).

The majority of the RFP labeled cells were in the most proximal RUNX1+ subset and rarely found in

the distal area of the branches, where RUNX1- cells reside (Figure 7B,C). Accordingly, the propor-

tion of RFP+ RUNX1+ cells remained stable between days 2 and 7 (Figure 7D). Also, the fraction of

RFP+ cells co-expressing p63 remained unchanged throughout the culture (Figure 7—figure supple-

ment 1A–C), while a small fraction diversified into either K5+ or K8+ cells (Figure 7—figure supple-

ment 1D,E). The scattered RFP+ RUNX1- cells detected in distal branches by day 7 often co-

expressed NKX3.1 (Figure 7E,F). Overall, this indicates that Runx1-expressing cells only marginally

contribute to the expansion of the NKX3.1 compartment (Figure 7G). Finally, we wondered whether

RUNX1+ cells contributed to the establishment of the proximal luminal lineage. We evaluated the

proportion of RFP-labeled cells co-expressing K4, previously identified as a marker of the developing

C2 and adult Lum-D populations (Figures 3D and 6H). Interestingly, the fraction of K4+ RFP labeled

cells increased from 56.9 ± 10.6% to 74.1 ± 3.0% between day 2 and 7 (Figure 7F,G). There was also

an increase of RFP+ cells expressing Nupr1, another marker of the C2 cluster (Figure 7—figure sup-

plement 1F–H). Taken together, these results show that only a small subset of Runx1-expressing

cells contributes to the expansion of NKX3.1+ lineage, found in the distal region of the developing

prostatic buds. Instead, the majority of Runx1-expressing cells preferentially remain in the proximal

region of the premature buds, where the proximal luminal lineage is established.

Discussion
In this study, we identified RUNX1 as a new marker of a luminal population enriched in the proximal

region of the prostatic ducts. By combining scRNA-seq profiling and genetic lineage tracing of

Runx1-expressing cells, we show that RUNX1+ PLCs present in the intact prostate constitute a devel-

opmentally distinct and intrinsically castration-resistant luminal lineage. We propose that proximal

and distal lineages are separate luminal entities from the earliest stages of prostate development.

As such, our study provides novel insights into the cellular composition and developmental hierarchy

of the mouse prostate epithelium.

Until the recent advances in single-cell technologies, the prostate epithelial hierarchy was mainly

defined based on anatomical features of the basal and luminal layers, their histological characteris-

tics and the expression of a small subset of markers (Shen and Abate-Shen, 2010; Toivanen and

Shen, 2017). Here, we present two comprehensive scRNA-seq dataset covering both the adult and

the developing prostate. To our knowledge, this constitutes the first comprehensive single-cell atlas

covering both intact and castrated adult mouse prostates, annotated by their lobe of origin. These

datasets can be browsed interactively at http://shiny.cruk.manchester.ac.uk/pscapp/. In particular,

our adult scRNA-seq dataset highlighted an extensive degree of cellular heterogeneity, in particular

within the luminal epithelia. Several studies recently made similar observations either focusing on the

AP (Karthaus et al., 2020), the intact prostate (Crowley et al., 2020; Joseph et al., 2020), or both

the intact and castrated prostates (Guo et al., 2020). Integration of these multiple datasets will pro-

vide a more global view of the transcriptional landscape of the prostate epithelium.

Although mainly known as a master regulator of hematopoiesis, RUNX1 is increasingly implicated

in hormone-associated epithelia including malignant conditions such as prostate cancer (Banach-

Petrosky et al., 2007; Lie-A-Ling et al., 2020; Scheitz et al., 2012; Takayama et al., 2015). Here,
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we identified a subset of RUNX1+ luminal cells located in the proximal region of the developing and

adult prostate, referred to as RUNX1+ PLCs, and corresponding to the Lum-D cluster identified in

our adult scRNA-seq dataset. Of note, this subset appears to be the equivalent of the ‘L2’

(Karthaus et al., 2020) or ‘LumP’ (Crowley et al., 2020), or ‘Lum-C’ (Guo et al., 2020) clusters
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Figure 7. RUNX1+ cells contribute to the establishment of the proximal luminal lineage during embryonic prostate development. (A) Strategy for

lineage tracing of RUNX1+ cells in UGS explant cultures. Tamoxifen was applied on day 0 and day 1 and washed out on day 2. (B, C) Co-

immunostaining of RFP, RUNX1, CDH1 in UGS explants harvested at day 2 (B) and day 7 (C). Higher magnification images of proximal (i) and (ii) distal

regions are shown for day 7. Arrows show RFP+ RUNX1-low cells, arrowheads show RFP+ RUNX1+ cells. Scale bars: 200 mm (yellow) and 50 mm (white).

(C) Quantification of the percentage of epithelial RUNX1+ cells in the RFP subset at day 2 (n = 7) and day 7 (n = 3) of UGS explant cultures.

Quantification was performed within the boundaries delimited in B by dotted lines. (E, F) Co-immunostaining of RFP, NKX3.1, CDH1 in UGS explants

harvested at day 2 (E) and day 7 (F). Higher magnification images of (i) proximal and (ii) distal regions are shown for day 7. Arrows show RFP+ NKX3.1+

cells, arrowheads show RFP+ NKX3.1- cells. Scale bars: 200 mm (yellow) and 50 mm (white). (G) Quantification of the percentage of epithelial NKX3.1+

cells in the RFP subset at day 2 (n = 6) and day 7 (n = 4) of UGS explant cultures. Quantification was performed within the boundaries delimited in F by

dotted lines. (H, I) Co-immunostaining of RFP, K4, CDH1 in UGS explants harvested at day 2 (H) and day 7 (I). Higher magnification images of (i)

proximal and (ii) distal regions are shown for day 7. Arrows show RFP+ K4 cells, arrowheads show RFP+ K4+ cells. Scale bars: 200 mm (yellow) and 50 mm

(white). (J) Quantification of the percentage of epithelial K4+ cells in the RFP subset at day 2 (n = 3) and day 7 (n = 3) of UGS explant cultures.

Quantification was performed within the boundaries delimited in I by dotted lines. Source files are available in Figure 7—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Source data files for Figure 7.

Figure supplement 1. Lineage tracing of RUNX1-expressing cells in UGS explants.

Figure supplement 1—source data 1. Source data files for Figure 7—figure supplement 1.
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identified in recent studies. In light of the extensive contribution of RUNX transcription factors to

developmental processes (Mevel et al., 2019), our study suggests that Runx1, but also Runx2, may

be involved in the development and maintenance of specific subpopulations of the prostate epithe-

lium. Future work should therefore aim at characterizing the functional role played by RUNX factors

in the prostate, in particular in PLCs.

We demonstrate that these RUNX1+ PLCs exhibit a greater organoid forming potential compared

to the remaining luminal fraction, consistent with previous reports isolating similar proximal popula-

tions using different markers such as SCA-1, TROP2 or CD26 (Crowley et al., 2020;

Goldstein et al., 2008; Guo et al., 2020; Karthaus et al., 2020; Kwon et al., 2016). Furthermore,

RUNX1+ PLCs predominantly formed unipotent K8+ hollow organoids demonstrating their preferen-

tial commitment to the luminal fate. The greater clonogenicity of RUNX1+ PLCs may in fact be linked

to the gene expression profile of the corresponding Lum-D population, suggesting a more immature

epithelial state, committed to the luminal lineage but not the secretory function of the prostate. Sim-

ilar to the enhanced regenerative potential of glandular basal cells under specific regenerative condi-

tions (Centonze et al., 2020), it is tempting to speculate that these cells act as a latent niche of

‘facultative’ luminal stem cells (Clevers and Watt, 2018), primed to generate a structured prostatic

epithelium under defined conditions.

Further characterization of RUNX1 expression in prostate development revealed a consistent

expression pattern with the adult. RUNX1+ luminal cells were restricted to the most proximal region

of the developing prostate buds, both in embryos and UGS explant cultures. Our scRNA-seq of the

developing prostate revealed a broad basal identity, supporting the presence of multipotent basal

progenitors during embryonic development (Ousset et al., 2012; Pignon et al., 2013), switching to

unipotency postnatally (Tika et al., 2019). However, we observed a distinct cluster (C2) that strongly

resembled the adult Lum-D population, suggesting an early branching event towards the proximal

luminal fate at the onset of prostate development. Subsequent lineage-tracing experiments indi-

cated that Runx1-expressing cells preferentially populate the emerging proximal luminal identity. It

would be interesting to determine if the adult Lum-A, Lum-B, and Lum-C derive from multipotent-

basal progenitors or from any specific clusters identified in the developing prostate. This appears to

be the case at least for the adult Lum-D/RUNX1+ PLCs which already emerges during embryonic

specification.

Our data also sheds a light on the regenerative potential of specific epithelial populations. Basal

and luminal lineages have previously been shown to be largely self-sustained using generic basal

and luminal Cre drivers (Choi et al., 2012; Ousset et al., 2012). However, whether distinct subpopu-

lations of luminal cells contribute to the regeneration of the others remains poorly understood

(Wang et al., 2009; Yoo et al., 2016). Our characterization of RUNX1+ PLCs and the detection of a

wide variety of luminal populations in our adult prostate scRNA-seq data highlights the possible

existence of multiple self-contained luminal populations. Indeed, Runx1-driven genetic-tracing

experiments in regression-regeneration assays revealed that RUNX1+ PLCs did not contribute sub-

stantially to the regeneration of distal NKX3.1+ cells. It was however evident that RUNX1+ PLCs are

intrinsically castration resistant and capable of sustaining their own lineage in the regenerated pros-

tate. Recently, it was proposed that prostate epithelial regeneration is driven by almost all luminal

cells persisting in castrated prostates (Karthaus et al., 2020). Our results are compatible with this

model, but we further demonstrate that not all luminal subsets retain the same in vivo regenerative

potential in response to androgen stimulation. Thus, we suggest that the model of self-sustained

basal and luminal populations might be extended to individual luminal subpopulations. This hypoth-

esis should be tested in the future using a more specific Lum-D Cre driver (e.g. Krt4/Psca). It will also

be of interest to investigate the self-sustenance of other luminal compartments using Lum-A, Lum-B,

and Lum-C specific Cre drivers.

Finally, our study suggests that the emerging C2/Lum-D population retains a more embryonic-like

program, which may relate to their intrinsic castration-resistant potential and have broader relevance

to cancer treatment. Along these lines, recent work by Guo and colleagues indicates that Pten loss

induced in Psca-expressing cells of the proximal prostate can initiate prostatic intraepithelial neopla-

sia (Guo et al., 2020). These results warrant future investigation of this luminal subset in the context

of cancer development, tumor aggressiveness and treatment responses.

In conclusion, we characterized the expression pattern of Runx1 in the developing, normal and

castrated mouse prostate. We observed that Runx1 marks proximal luminal cells, which is a distinct
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luminal lineage emerging early during prostate specification, displaying intrinsic castration-resistant

and self-sustaining properties. Our results therefore reveal strong intrinsic lineage differences within

the luminal compartment of the prostate epithelium.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Strain, strain
background
(Mus musculus, male)

ICR (CD-1) wild-type Envigo Hsd:ICR
(CD-1)

7–15 week old males

Strain, strain
background
(Mus musculus, male)

P1-Runx1:GFP Georges Lacaud lab 7–15 week old males

Strain, strain
background
(Mus musculus, male)

P2-Runx1:RFP Georges Lacaud lab 7–15 week old males

Strain, strain
background
(Mus musculus, male)

Runx1mER-CRE-mER

Runx1CreER Rosa26LSL-RFP
RIKEN (Japan)
Samokhvalov et al., 2007

Runx1-MER-
Cre-MER

C57Bl/6J background
7–15 week old males

Strain, strain
background
(Mus musculus, male)

Rosa26Lox-Stop-Lox-tdRFP

Runx1CreER Rosa26LSL-RFP
European Mouse
Mutant Archive
Luche et al., 2007

B6.Cg-Thy1
Gt(ROSA)26
Sortm1Hjf

C57Bl/6J background
7–15 week old males

Antibody Anti-RUNX1
(rabbit monoclonal)

Cell Signaling Cat: 8529
RRID:AB_10950225

IHC/IF (1:100)

Antibody Anti-NKX3.1
(rabbit polyclonal)

Athenaes Cat: AES-0314 IHC/IF (1:200)

Antibody Anti-CDH1
(goat polyclonal)

R and D Systems Cat: AF748
AB_355568

IHC/IF (1:400)

Antibody Anti-p63
(rabbit monoclonal)

Cell Signaling Cat: 39692
RRID:AB_2799159

IHC/IF (1:800)

Antibody Anti-K5
(rabbit monoclonal)

Abcam Cat: ab52635
RRID:AB_869890

IHC/IF (1:400)

Antibody Anti-K8
(rabbit monoclonal)

Abcam Cat: ab53280
RRID:AB_869901

IHC/IF (1:400)

Antibody Anti-K4
(mouse monoclonal)

Abcam Cat: Ab9004
RRID:AB_306932

IHC/IF (1:100)

Antibody Anti-LY6D
(rabbit polyclonal)

Proteintech Cat: 17361–1-AP IHC/IF (1:100)

Antibody Anti-TROP-2
(goat polyclonal)

R and D Systems Cat: AF1122
RRID:AB_2205662

IHC/IF (1:200)

Antibody Anti-BrdU
(rat monoclonal)

Abcam Cat: ab6326
RRID:AB_305426

IHC/IF (1:400)

Antibody Anti-Ki67
(rabbit monoclonal)

Abcam Cat: ab15580
RRID:AB_443209

IHC/IF (1:800)

Antibody Anti-RFP
(rabbit polyclonal)

Rockland Cat: 600-402-379
RRID:AB_828391

IHC/IF (1:400)

Antibody Anti-RFP
(rabbit monoclonal)

MBL Cat: PM005
RRID:AB_591279

IF (1:200)

Antibody Anti-GFP
(rabbit polyclonal)

MBL Cat: 598
RRID:AB_591816

IF (1:200)

Antibody EnVision+/HRP
Anti-Rabbit

Dako (Agilent) Cat: K4003
RRID:AB_2630375

IHC/IF
Ready to use

Antibody EnVision+/HRP
Anti-Rabbit

Dako (Agilent) Cat: K4001
RRID:AB_2827819

IHC/IF
Ready to use

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Antibody ImmPRESS
HRP Anti-Goat

Vector Laboratories Cat: MP-7405
RRID:AB_2336526

IHC/IF
Ready to use

Antibody ImmPRESS
HRP Anti-Rat

Vector Laboratories Cat: MP-7444
RRID:AB_2336530

IHC/IF
Ready to use

Antibody Donkey anti-
Goat IgG 647

ThermoFischer
Scientific

Cat: A-21447
RRID:AB_141844

IF (1:400)

Antibody Anti-CD16/32
Fc block

Biolegend Cat: 101301
Clone: 93
RRID:AB_312800

FACS (1:200)

Antibody Anti-CD45
SB436

ThermoFischer
Scientific

Cat: 62-0451-82
Clone: 30-F11
RRID:AB_2744774

FACS (1:200)

Antibody Anti-EPCAM
BV421

Biolegend Cat: 118225
Clone: G8.8
RRID:AB_2563983

FACS (1:200)

Antibody Anti-EPCAM
APC

Biolegend Cat: 118214
Clone: G8.8
RRID:AB_1134102

FACS (1:200)

Antibody Anti-CD49f
FITC

Biolegend Cat: 313606
Clone: GoH3
RRID:AB_345300

FACS (1:200)

Antibody Anti-CD49f
APC

Biolegend Cat: 313616
Clone: GoH3
RRID:AB_1575047

FACS (1:200)

Antibody Anti-CD24
BV786

BD Biosciences Cat: 744470
Clone: M1/69
RRID:AB_2742258

FACS (1:200)

Sequence-based reagent MULTI-seq
reagents

Zev Gartner lab
McGinnis et al., 2019b

Software, algorithm R v3.6.3 CRAN R Project SCR_001905 https://cran.
r-project.org

Software, algorithm deMULTIplex McGinnis et al., 2019b https://github.com/
chris-mcginnis-ucsf/
MULTI-seq

Software, algorithm DoubletFinder McGinnis et al., 2019a SCR_018771 https://github.com/
chris-mcginnis-ucsf/
DoubletFinder

Software, algorithm Seurat v3.1.5 Satija et al., 2015;
Rahul Satija lab

SCR_016341 https://github.com/
satijalab/seurat

Software, algorithm Scanpy v1.4.6
PAGA

Wolf et al., 2019 SCR_018139 https://scanpy.readthedocs.io/
en/stable/

Software, algorithm AUCell v1.8.0 Aibar et al., 2017 https://github.com/
aertslab/AUCell

Software, algorithm scater v1.14.6 Bioconductor SCR_015954 https://bioconductor.org/
packages/release/bioc/
html/scater.html

Software, algorithm QuPath v0.2 Bankhead et al., 2017 SCR_018257 https://qupath.github.io/

Software, algorithm Cellranger v3.1.0 10x Genomics SCR_017344

Software, algorithm FlowJo v10 BD Life Sciences SCR_008520

Software, algorithm Harmony PerkinElmer SCR_018809

Software, algorithm Graphpad
Prism v8.4.2

Graphpad SCR_002798
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Animal work
Animal experiments were approved by the Animal Welfare and Ethics Review Body (AWERB) of the

Cancer Research UK Manchester Institute and conducted according to the UK Home Office Project

Licence (PPL 70/8580). Genetic lineage-tracing experiments were performed at the Beatson Biologi-

cal Services Unit (PPL 70/8645 and P5EE22AEE) and approved by the University of Glasgow AWERB.

Mice were maintained in purpose-built facility in a 12 hr light/dark cycle with continual access to

food and water.

Immunocompetent wild-type ICR (CD-1) mice were purchased from Envigo. P1-Runx1:GFP and

P2-Runx1:RFP have been described previously (Draper et al., 2018; Sroczynska et al., 2009). Colo-

nies were maintained on a ICR (CD-1) background. C57Bl/6J Runx1mER-CRE-mER (Samokhvalov et al.,

2007) were provided by RIKEN (Japan). C57Bl/6J Rosa26lox-stop-lox-tdRFP mice (Luche et al., 2007)

were acquired from the European Mouse Mutant Archive (EMMA). For all transgenic lines, routine

genotyping was undertaken at weaning (3 weeks of age) by automated PCR genotyping (Transne-

tyx). For timed mating experiments, vaginal plug detection was considered as embryonic day (E) 0.5.

All animal procedures were performed on adult males at least 7 weeks of age. Surgical castration

was carried out under aseptic conditions. For prostate regeneration assays, testosterone pellets

(Belma Technologies) were implanted subcutaneously. For in vivo genetic lineage-tracing experi-

ments, tamoxifen (Sigma, T5648) was resuspended in ethanol and diluted in corn oil at a concentra-

tion of 10 mg/mL and administered via intra-peritoneal injections daily for 4 consecutive days using

the following regimen: 3 mg, 2 mg, 2 mg, 2 mg.

Isolation of mouse prostate cells
All dissections were performed under a stereo microscope in sterile PBS. Dissociated murine pros-

tate cells were obtained by digesting pre-minced prostate tissue for 1 hr at 37˚C in digestive

medium prepared in prepared in ADMEM/F12 (Gibco), and containing 1 mg/mL Collagenase Type I

(ThermoFischer Scientific, #17018029), 1 mg/mL Dispase II (ThermoFischer Scientific, #17105041),

10% Fetal Bovine Serum (Gibco), 1% Penicillin-Streptomycin-Glutamine (Sigma), and 10 mM Y-27632

dyhydrochloride (Chemdea, #CD0141). For embryonic urogenital sinuses (UGS), dissociation time

was reduced to 30 min. Single cells were obtained after an additional 10 min incubation in TrypLE

(Gibco) at 37˚C before mechanical dissociation with a syringe and needle (25G). Cells were then fil-

tered through a 50-mm cell strainer.

Flow-cytometry and cell-sorting
Single cell suspensions were kept in Advanced DMEM/F-12 (Gibco) containing 5% FBS supple-

mented with 10 mM Y-27632. Cells were incubated for 10 min using unconjugated anti-mouse CD16/

32 antibody (Biolegend, C93, #101301) at 4 ˚C prior to labeling with specific fluorochrome-labeled

antibodies. Details of FACS reagents and antibodies are listed in the Key Resources Table. Cells

were filtered through a 50 mm cell strainer prior to acquisition. Hoechst 33258 or Sytox blue (Ther-

moFischer Scientific) were used as viability stains. Single-cell suspensions were analyzed on a For-

tessa (BD Biosciences) and sorts were performed on a FACSAriaIII (BD Biosciences). FACS data were

analyzed using FlowJo software (BD Life Sciences).

Organoid formation assays
In vitro organoid formation assays were performed as described in Drost et al., 2016. Single cells

were resuspended in 40 mL drops of phenol red-free Cultrex RGF BME Type 2 (BME 2, Amsbio,

#3533-005-02), and seeded in CellCarrier-96 Ultra Microplates (PerkinElmer, #6055302). Defined

organoid culture medium was prepared with Advanced DMEM/F-12 (Gibco), supplemented with 10

mM Hepes (Sigma), Gutamax (Gibco), Penicillin/Streptomycin (Sigma), B27 (Life Technologies,

17504–044), 50 mg/mL EGF (PeproTech, #AF-100–15), 500 ng/mL R-spondin 1 (R and D Systems,

#4645-RS), 100 ng/mL Noggin (R and D Systems, #6057 NG), 10 mM Y-27632 dyhydrochloride

(Chemdea, #CD0141), 200 nM A83-01 (Tocris Bioscience, #2939), 1.25 mM N-Acetylcystein (Sigma),

and 1 nM Dihydrotestosterone (DHT, Sigma #730637). Medium was refreshed every 2–3 days, and

organoid cultures were scored after 7 days.
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UGS explant cultures
UGS explant cultures were performed as described previously (Kruithof-de Julio et al., 2013).

Briefly, E15.5 embryos were obtained from timed matings. Urogenital sinuses (UGS) were isolated

from the embryos and cultured using a Durapore Membrane Filter 0.65 mm (#DVPP02500) placed on

a stainless-steel mesh for up to 7 days in Ham’s F-12/DMEM (Gibco) supplemented with Insulin-

Transferrin-Sodium Selenite Supplement (Roche) and 10 mM dihydrotestosterone (Sigma). Media

were renewed every 2–3 days. For lineage-tracing experiments, tamoxifen-induced labeling was per-

formed using 0.5 mM 4-hydroxytamoxifen (#T176, Sigma).

Immunohistochemistry
Prostate tissues were harvested and fixed in 10% buffered formalin for 24 hr. Fixed tissues were

processed using standard procedures and embedded in paraffin. Formalin-fixed paraffin-embedded

(FFPE) sections (4 mm) were cut and dried overnight at 37˚C. Multiplexed immunofluorescent stain-

ings of FFPE sections were performed on an automated Leica BOND RX platform using the Opal

multiplexing workflow (PerkinElmer). In brief, sections were dewaxed, and rehydrated, and endoge-

nous peroxidase activity was quenched by 10 min pre-treatment with 3% hydrogen peroxide diluted

in TBS-T (Tris-Buffered Saline 0.05% Tween-20). Following on-board heat-induced epitope retrieval

with citrate buffer (pH 6.0) for 20 min, sections were incubated for 10 min with 10% Casein (Vector

Laboratories) diluted in TBS-T. Each staining cycle included a primary antibody incubation for 30

min, followed by buffer washes, and 30 min incubation with HRP -labeled secondary antibodies (Key

Resources Table). After further washes, the Tyramide labeled with a fluorophore (Opal 520, Opal

570 or Opal 650, PerkinElmer) was added for a final 10 min. Subsequent antibody stainings were

performed by repeating the same procedure, separated by heat-mediated antibody denaturation

using citrate buffer (pH 6.0) for 5 min at 95˚C. Nuclei were counterstained with DAPI (Sigma) and

slides were sealed using ProLong Gold Antifade Mountant (ThermoFischer Scientific). In situ hybrid-

ization (ISH) to detect Nupr1 (ACD, LS 2.5 Mm-Nupr1 #434818) was done using the Multiplex Fluo-

rescent detection kit (ACD) on the automated Leica BOND RX platform following the manufacturer’s

instructions. Pre-treatment was done using an EDTA based pH 9.0 epitope retrieval solution for 15

min at 88˚C followed by 10 min protease incubation. After ISH, antibody staining was carried out

using an anti-RFP antibody for 1 hr detected with EnVision HRP anti-rabbit secondary (Agilent) fol-

lowed by incubation with Tyramide-conjugated Opal 570 (PerkinElmer) as described above. Anti-

CDH1 antibody was applied for 1 hr and detected using an anti-goat Alexa Fluor 647 secondary anti-

body (ThermoFischer Scientific, #A-21447). Staining of frozen sections was performed as described

previously (Thambyrajah et al., 2016). The list of antibodies used is available in the Key Resources

Table.

Image acquisition and analysis
Whole-slide images were acquired on an Olympus VS120 slide scanner. Images were analyzed using

QuPath v0.2 (Bankhead et al., 2017). Briefly, annotations were drawn manually to select areas of

interest. Nuclear detection was achieved using the ‘cell detection’ module on the DAPI channel. A

classifier was then trained for each batch of images using the random forest algorithm, to detect the

epithelial layers based on either CDH1 or K5/K8 stainings. Single-cell intensity measurements were

analyzed using R (3.6.3). For Quantitative Imaged-Based Cytometry (QBIC), single-cell intensity

measurements were log10 transformed and plotted using the ‘geom_hex’ function of the ggplot2 R

package. QuPath was used to extract representative high-quality raw images of selected areas from

whole slide images using the ‘Send region to ImageJ’ tool. Images used for publication were proc-

essed with ImageJ (NIH Image, Maryland, USA). Confocal images were acquired using a Leica TCS

SP8 confocal microscope and LAS X Leica software. Images of whole UGS explant culture were taken

using a Leica MZ FLIII microscope.

Whole-mount immunofluorescent staining of organoids
Whole-mount staining was adapted from Yokomizo et al., 2012. Organoids were fixed directly in

96-well plates using 4% paraformaldehyde for 1 hr at 4˚C. After three washes of 5 min in PBS, orga-

noids were incubated in PBS-BST, containing PBS, 1% milk, 1% BSA, 10% goat serum (Agilent,

#X090710), 0.4% Triton X-100. Pre-conjugated primary antibodies, K5 Alexa Fluor 647 (#ab193895,
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Abcam) and K8 Alexa Fluor 488 (#ab192467, Abcam) were diluted at 1/400 in PBS-BST and incu-

bated with the organoids overnight at 4˚C on a rocking platform. After three washes of 1 hr in PBS-

BST at 4˚C, organoids were stained with DAPI at 2 mg/mL diluted in PBS-BST and incubated for

another 30 min at 4˚C on a rocking platform. Images were acquired on an Opera Phenix High Con-

tent Screening System using the 10x air and 20x water lenses. Quantitative analysis was performed

using the Harmony software on maximum projection images.

scRNA-seq sample preparation
A detailed description of the samples, replicates, and the corresponding cellular populations used

for each sequencing run is provided in Supplementary file 1. For the adult mouse prostate dataset,

AP, DLP, and VP lobes were micro dissected and pooled from P2-Runx1:RFP reporter mice after dis-

sociation. Single live EPCAM+ cells from RFP+ and RFP- fractions of each lobes were sorted sepa-

rately (containing a mix of CD49fhigh basal and CD24high luminal cells). For the UGS explant culture

dataset, the middle regions of the explants were micro dissected to enrich for prostatic branching

events and pooled by time point after dissociation. Single live EPCAM+ cells were sorted for each

independent time point.

scRNA-seq sample multiplexing
Individually sorted populations were multiplexed using the MULTI-seq protocol (McGinnis et al.,

2019b). Reagents were kindly provided by Dr. Zev Gartner. In brief, after sorting, cells were washed

once in cold serum- and BSA-free PBS. A lipid-modified DNA oligonucleotide and a specific sample

barcode oligonucleotide were then mixed and added to the cells at a final concentration of 200 nM

each, and incubated in cold PBS for 5 min. Each individual sample to be multiplexed received an

independent sample barcode. Next, a common lipid-modified co-anchor was added at 200 nM to

each sample to stabilize the membrane bound barcodes. After an additional 5 min incubation on

ice, cells were washed two times with PBS containing 1% FBS 1% BSA in order to quench unbound

barcodes. Samples were then pooled together and washed once with PBS 1% FBS 1% BSA. After

cell counting, cells were loaded in a Chromium Single Cell 3’ GEM Library and Gel Bead Kit v3 (10x

Genomics). scRNA-seq library preparation, sequencing and pre-processing.

Gene expression (cDNA) libraries were prepared according to the manufacturer’s protocol.

MULTI-seq barcode libraries were separated from the cDNA libraries during the first round of size

selection, and PCR amplified prior to sequencing according to the MULTI-seq library preparation

protocol (McGinnis et al., 2019b). For the adult mouse prostate dataset, cDNA libraries of ‘run 1’

and ‘run 2’ were sequenced on Illumina NovaSeq 6000 System, and ‘run 3’ was sequenced on Illu-

mina HiSeq 2500. The UGS mouse prostate explant run was also sequenced on Illumina HiSeq 2500.

Sequencing data of cDNA libraries were processed using Cellranger v3.1.0 and mapped onto mm10

mouse reference genome. Pre-processing of the MULTI-seq library fastq files was performed using

the ‘deMULTIplex’ (v1.0.2) R package (https://github.com/chris-mcginnis-ucsf/MULTI-seq) to gener-

ate a sample barcode UMI count matrix. Detailed quality control metrics of each sequencing run are

provided in Supplementary file 1.

Adult mouse prostate dataset analysis
Quality control and barcode demultiplexing of individual runs
Each run was pre-processed individually prior data integration. Cellranger outputs were loaded into

the R package Seurat (v3.1.5). Cells were kept if they had more than 750 detected genes, less than

7500 UMIs and less than 10% mitochondrial transcripts. Sample barcodes were demultiplexed using

the HTODemux function implemented in Seurat. Briefly, a negative binomial distribution was used

to estimate the background levels based on k-means clustering of the barcode normalized counts.

Barcodes with values above the 99% quantile were considered ‘positive’ for a given sample. Cells

positive for more than one barcode were considered as ‘doublets’. Doublets and negative cells were

excluded for all downstream analyses. Thresholds were empirically adjusted to remove additional

cells with possible ambiguous classification (Supplementary file 1). Of note, in both ‘run 1’ and ‘run

2’, a large number of cells were classified ‘negative’ due to the failed labeling of ‘Bar3’ (correspond-

ing to ‘Intact DLP RFP+’ sample). For these runs, we used DoubletFinder (McGinnis et al., 2019a) to

remove predicted doublets missed out as a consequence of the failed labeling of ‘Bar3’. After

Mevel et al. eLife 2020;9:e60225. DOI: https://doi.org/10.7554/eLife.60225 20 of 27

Research article Developmental Biology Stem Cells and Regenerative Medicine

https://github.com/chris-mcginnis-ucsf/MULTI-seq
https://doi.org/10.7554/eLife.60225


classification, barcodes were represented in UMAP space to confirm the purity of the barcode

assignment obtained for each sample (Figure 3—figure supplement 1A). We obtained a total of

4499 cells from three independent experiments.

Integration, low dimensional embedding, and clustering
Data aggregation was performed according to the standard integration procedure implemented in

Seurat. In brief, each dataset was log normalized, and 3000 variable features were initially computed

using the ‘vst’ method. For integration, 2000 features and 50 dimensions were used as anchors. Inte-

grated data were scaled and the first 50 principal components (PC) were calculated for downstream

analyses. Uniform Manifold Approximation and Projection (UMAP) (McInnes et al., 2018) was used

for visualization. Graph-based louvain clustering was performed on a shared nearest neighbor graph

constructed using 20 nearest neighbors for every cell, and a resolution of 0.4, which gave a reason-

able segmentation of the data (Figure 3—figure supplement 1B,C). Extensive exploration of each

cluster based on known marker genes was then carried out to subset prostate epithelial cells. We

found 10 prostate epithelial clusters (Epcam, Krt8, Cd24a, Spink1, Krt19, Tacstd2, Psca, Krt4, Tgm4,

Nkx3-1, Pbsn, Msmb, Piezo2, Trp63, Krt5, Krt14), 3 clusters of hematopoietic cells (Vim, Ptprc,

Cd74, Itgam, Cd3d), 1 cluster of endothelial cells (Pecam1), 1 cluster of fibroblasts (Vim, Col1a1) and

1 cluster of mesonephric derivatives (Svs2, Pax2) (Figure 3—figure supplement 1D, E).

Analysis of prostate epithelial populations
The same dimension reduction approach described above was performed on the selected prostate

epithelial clusters, using a resolution of 0.3 for graph-based louvain clustering. We annotated one

large population of basal cells by merging three subclusters highly expressing Krt5, Krt14 and Trp63

as we did not discuss the heterogeneity of the basal compartment in this study (Figure 3B–D; Fig-

ure 3—figure supplement 2F,I). We annotated the different luminal clusters expressing higher lev-

els of Cd26/Dpp4, Cd24a, Krt8 and Krt18, as Lum-A, Lum-B, Lum-C, Lum-D, Lum-E and Lum-F.

Several genes specifically marked each cluster, including Sbp/Spink1 in Lum-A, Tgm4 in Lum-B,

Msmb in Lum-C, Psca/Krt4 in Lum-D, Basp1/Lpl in Lum-E, and Crym in Lum-F (Figure 3C,D; Fig-

ure 3—figure supplement 3A). Data were then imported in Scanpy (v1.4.6) to infer lineage relation-

ships between cellular populations via partition-based graph abstraction (PAGA) implemented in the

tl.paga function (Wolf et al., 2019). Briefly, a single-cell neighborhood graph (n_neighbors = 50)

was computed using the integrated principal components previously calculated in Seurat. PAGA was

generated based on our annotated clusters. The final UMAP representation was generated using

PAGA-initialized positions to better preserve the global topology of the data. All final data visualiza-

tions were generated in R.

Differential gene expression analysis and gene ontology
Differential gene expression analyses between clusters were performed using the MAST method

(Finak et al., 2015) implemented in Seurat within the ‘FindAllMarkers’ and ‘FindMarkers’ functions.

Testing was limited to genes detected in at least 25% of the tested populations (min.pct = 0.25) and

showing at least ±0.25 log fold change difference (logfc.threshold = 0.25). The ‘g:GOSt’ function of

the gprofiler2 R package was used to perform functional enrichment analysis on gene ontology

terms (GO:BP, biological processes). Genes showing at least 0.50 log fold change enrichment in the

group tested were kept.

UGS explant cultures dataset
A similar strategy was applied for the analysis of the UGS explant culture dataset, with some altera-

tions described below.

Quality control and barcode demultiplexing
Cells were kept if they had more than 1000 detected genes, and less than 7.5% mitochondrial tran-

scripts. Barcode classification was performed as above, using the 90% quantile in ‘HTODemux’ (Fig-

ure 6—figure supplement 1A). We obtained a total of 5,122 cells that passed quality control from

the four time points.
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Low dimensional embedding and clustering
The first 50 principal components and 20 neighbors were used for UMAP visualization. Graph-based

clustering was done using a resolution parameter of 0.3. We noticed a strong effect of cell cycle

using cell cycles genes defined in Tirosh et al., 2016. This was particularly evident using the ‘CellCy-

cleScoring’ function implemented in Seurat (Figure 6—figure supplement 1B). To minimize the

impact of cell cycle on downstream analyses, the cell cycle scores were regressed out during data

scaling. We identified six main clusters, that we annotated based on the expression of several marker

genes (Figure 6—figure supplement 1C-E). We identified 2 clusters of developing mesonephric

derivatives (Hoxb7, Wfdc2, Gata3, Sox17, Pax2, Pax8, Lhx1), 1 cluster of developing bladder urothe-

lium (Upk3a, Foxq1, Plaur, Krt7, Krt20), 1 cluster of mesenchymal cells (Vim, Col3a1, Col1a1, Pdgfra,

Zeb1) and 1 cluster corresponding to the developing prostatic epithelium (Epcam, Krt8, Krt5, Krt14,

Krt15, Shh, Hoxb13, Hoxd13, Nkx3-1). We also identified one cluster largely associated with hypoxia

and cellular stress ontologies (Figure 6—figure supplement 1F).

Analysis of the developing prostatic epithelium
The same dimension reduction approach was initially applied on the developing prostatic cluster.

After graph-based clustering using a resolution of 0.5, 10 clusters were identified and visualized via

UMAP (Figure 6—figure supplement 1G-J). We computed diffusion components using ‘runDiffu-

sionMap’ (ncomponents = 20, k = 20) implemented in the scater (v1.14.6) R package. We found the

small cluster C9 to be largely diverging from the remainder fraction in diffusion space, therefore it

was excluded for downstream analysis (Figure 6—figure supplement 1K). We then imported the

data in Scanpy and used the first 10 diffusion components to compute a neighborhood graph

(n_neighbors = 20) which was used for PAGA. We finally computed a force-direct layout (ForceAt-

las2) using PAGA-initialized positions.

Analysis of gene set activity
Gene signatures were generated from the list of differentially expressed genes by keeping those

showing at least 0.50 log fold change enrichment in each given group. Gene lists were used as cus-

tom gene sets (Supplementary file 5) in the AUCell (Aibar et al., 2017) R package (v1.8.0). Briefly,

AUCell uses the Area Under the Curve to evaluate the enrichment of a given gene set in each cell, in

a ranking-based manner. It outputs an AUC score for each individual cell, which is used to explore

the relative expression of the signature. Per cell AUC scores of each signatures were overlayed on

the dimension reduction layout and plotted as boxplots to visualize enrichments across the different

cellular subsets.

Data availability
Raw sequencing files and processed gene expression matrices have been deposited in the NCBI

Gene Expression Omnibus under the accession number GSE151944. The processed datasets for

both mouse adult prostate and UGS prostate explant cultures can be accessed via a searchable R

Shiny application available at http://shiny.cruk.manchester.ac.uk/pscapp/. All codes used to process

data and generate figures are available on a public GitHub repository at https://github.com/gla-

caud/prostate-scRNAseq (Mevel, 2020 copy archived at swh:1:dir:

c8a38de85e999a595715a4e0a41585fd6b94c44f).

Statistical analyses
Statistical analyses were performed using Graphpad/Prism (v8.4.2). Data are represented as

mean ± SD. Unless otherwise specified in the corresponding figure legend, two-tailed unpaired t-

tests were used to compare means between two groups. Statistical significance was set at p<0.05.

For animal model studies, no statistical method was used to pre-determine the sample size. No ran-

domization or blinding was used for in vivo studies.
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