TY - JOUR TI - Central processing of leg proprioception in Drosophila AU - Agrawal, Sweta AU - Dickinson, Evyn S AU - Sustar, Anne AU - Gurung, Pralaksha AU - Shepherd, David AU - Truman, James W AU - Tuthill, John C A2 - Calabrese, Ronald L A2 - Marder, Eve A2 - Fujiwara, Terufumi VL - 9 PY - 2020 DA - 2020/12/02 SP - e60299 C1 - eLife 2020;9:e60299 DO - 10.7554/eLife.60299 UR - https://doi.org/10.7554/eLife.60299 AB - Proprioception, the sense of self-movement and position, is mediated by mechanosensory neurons that detect diverse features of body kinematics. Although proprioceptive feedback is crucial for accurate motor control, little is known about how downstream circuits transform limb sensory information to guide motor output. Here we investigate neural circuits in Drosophila that process proprioceptive information from the fly leg. We identify three cell types from distinct developmental lineages that are positioned to receive input from proprioceptor subtypes encoding tibia position, movement, and vibration. 13Bα neurons encode femur-tibia joint angle and mediate postural changes in tibia position. 9Aα neurons also drive changes in leg posture, but encode a combination of directional movement, high frequency vibration, and joint angle. Activating 10Bα neurons, which encode tibia vibration at specific joint angles, elicits pausing in walking flies. Altogether, our results reveal that central circuits integrate information across proprioceptor subtypes to construct complex sensorimotor representations that mediate diverse behaviors, including reflexive control of limb posture and detection of leg vibration. KW - proprioception KW - motor control KW - electrophysiology KW - behavior KW - sensorimotor JF - eLife SN - 2050-084X PB - eLife Sciences Publications, Ltd ER -