1. Immunology and Inflammation
  2. Medicine
Download icon

3d virtual pathohistology of lung tissue from COVID-19 patients based on phase contrast x-ray tomography

  1. Marina Eckermann
  2. Jasper Frohn
  3. Marius Reichardt
  4. Markus Osterhoff
  5. Michael Sprung
  6. Fabian Westermeier
  7. Alexandar Tzankov
  8. Mark Kühnel
  9. Danny Jonigk  Is a corresponding author
  10. Tim Salditt  Is a corresponding author
  1. Georg-August-Universität Göttingen, Germany
  2. Deutsches Elektronen-Synchrotron (DESY), Germany
  3. Universitätsspital Basel, Switzerland
  4. Medizinische Hochschule Hannover (MHH), Germany
Research Article
  • Cited 6
  • Views 3,937
  • Annotations
Cite this article as: eLife 2020;9:e60408 doi: 10.7554/eLife.60408

Abstract

We present a three-dimensional (3d) approach for virtual histology and histopathology based on multi-scale phase contrast x-ray tomography, and use this to investigate the parenchymal architecture of unstained lung tissue from patients who succumbed to Covid-19. Based on this first proof-of-concept study, we propose multi-scale phase contrast x-ray tomography as a tool to unravel the pathophysiology of Covid-19, extending conventional histology by a third dimension and allowing for full quantification of tissue remodeling. By combining parallel and cone beam geometry, autopsy samples with a maximum cross section of 4mm are scanned and reconstructed at a resolution and image quality which allows for the segmentation of individual cells. Using the zoom capability of the cone beam geometry, regions-of-interest are reconstructed with a minimum voxel size of 167 nm. We exemplify the capability of this approach by 3d visualisation of the DAD with its prominent hyaline membrane formation, by mapping the 3d distribution and density of lymphocytes infiltrating the tissue, and by providing histograms of characteristic distances from tissue interior to the closest air compartment.

Data availability

All datasets were uploaded to zenodo: 10.5281/zenodo.3892637

The following data sets were generated

Article and author information

Author details

  1. Marina Eckermann

    Institute for x-ray physics, Georg-August-Universität Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Jasper Frohn

    Institute for x-ray physics, Georg-August-Universität Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Marius Reichardt

    Institute for x-ray physics, Georg-August-Universität Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Markus Osterhoff

    Institute for x-ray physics, Georg-August-Universität Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael Sprung

    Petra III, P10, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Fabian Westermeier

    Petra III, P10, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Alexandar Tzankov

    Institut für Medizinische Genetik und Pathologie, Universitätsspital Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Mark Kühnel

    Pathology, Medizinische Hochschule Hannover (MHH), Hannover, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Danny Jonigk

    Pathology, Medizinische Hochschule Hannover (MHH), Hannover, Germany
    For correspondence
    Jonigk.Danny@mh-hannover.de
    Competing interests
    The authors declare that no competing interests exist.
  10. Tim Salditt

    Institute for x-ray physics, Georg-August-Universität Göttingen, Göttingen, Germany
    For correspondence
    tsaldit@gwdg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4636-0813

Funding

Bundesministerium für Bildung und Forschung (05K19MG2)

  • Tim Salditt

H2020 European Research Council (771883)

  • Danny Jonigk

Max-Planck School (Matter to Life)

  • Marius Reichardt
  • Tim Salditt

Deutsche Forschungsgemeinschaft (-EXC 2067/1-390729940)

  • Tim Salditt

Botnar Research Center of Child Health (BRCCH)

  • Alexandar Tzankov

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study was approved by and conducted according to requirements of the ethics committees at the Hannover Medical School (vote Nr. 9022 BO K 2020).

Reviewing Editor

  1. Mone Zaidi, Icahn School of Medicine at Mount Sinai, United States

Publication history

  1. Received: June 25, 2020
  2. Accepted: August 17, 2020
  3. Accepted Manuscript published: August 20, 2020 (version 1)
  4. Accepted Manuscript updated: August 25, 2020 (version 2)
  5. Version of Record published: September 4, 2020 (version 3)

Copyright

© 2020, Eckermann et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,937
    Page views
  • 425
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Immunology and Inflammation
    Anders Laustsen et al.
    Tools and Resources Updated

    Plasmacytoid dendritic cells (pDCs) constitute a rare type of immune cell with multifaceted functions, but their potential use as a cell-based immunotherapy is challenged by the scarce cell numbers that can be extracted from blood. Here, we systematically investigate culture parameters for generating pDCs from hematopoietic stem and progenitor cells (HSPCs). Using optimized conditions combined with implementation of HSPC pre-expansion, we generate an average of 465 million HSPC-derived pDCs (HSPC-pDCs) starting from 100,000 cord blood-derived HSPCs. Furthermore, we demonstrate that such protocol allows HSPC-pDC generation from whole-blood HSPCs, and these cells display a pDC phenotype and function. Using GMP-compliant medium, we observe a remarkable loss of TLR7/9 responses, which is rescued by ascorbic acid supplementation. Ascorbic acid induces transcriptional signatures associated with pDC-specific innate immune pathways, suggesting an undescribed role of ascorbic acid for pDC functionality. This constitutes the first protocol for generating pDCs from whole blood and lays the foundation for investigating HSPC-pDCs for cell-based immunotherapy.

    1. Cell Biology
    2. Immunology and Inflammation
    Janine JG Arts et al.
    Research Article Updated

    Upon inflammation, leukocytes rapidly transmigrate across the endothelium to enter the inflamed tissue. Evidence accumulates that leukocytes use preferred exit sites, alhough it is not yet clear how these hotspots in the endothelium are defined and how they are recognized by the leukocyte. Using lattice light sheet microscopy, we discovered that leukocytes prefer endothelial membrane protrusions at cell junctions for transmigration. Phenotypically, these junctional membrane protrusions are present in an asymmetric manner, meaning that one endothelial cell shows the protrusion and the adjacent one does not. Consequently, leukocytes cross the junction by migrating underneath the protruding endothelial cell. These protrusions depend on Rac1 activity and by using a photo-activatable Rac1 probe, we could artificially generate local exit-sites for leukocytes. Overall, we have discovered a new mechanism that uses local induced junctional membrane protrusions to facilitate/steer the leukocyte escape/exit from inflamed vessel walls.