3d virtual pathohistology of lung tissue from COVID-19 patients based on phase contrast x-ray tomography

  1. Marina Eckermann
  2. Jasper Frohn
  3. Marius Reichardt
  4. Markus Osterhoff
  5. Michael Sprung
  6. Fabian Westermeier
  7. Alexandar Tzankov
  8. Mark Kühnel
  9. Danny Jonigk  Is a corresponding author
  10. Tim Salditt  Is a corresponding author
  1. Georg-August-Universität Göttingen, Germany
  2. Deutsches Elektronen-Synchrotron (DESY), Germany
  3. Universitätsspital Basel, Switzerland
  4. Medizinische Hochschule Hannover (MHH), Germany

Abstract

We present a three-dimensional (3d) approach for virtual histology and histopathology based on multi-scale phase contrast x-ray tomography, and use this to investigate the parenchymal architecture of unstained lung tissue from patients who succumbed to Covid-19. Based on this first proof-of-concept study, we propose multi-scale phase contrast x-ray tomography as a tool to unravel the pathophysiology of Covid-19, extending conventional histology by a third dimension and allowing for full quantification of tissue remodeling. By combining parallel and cone beam geometry, autopsy samples with a maximum cross section of 4mm are scanned and reconstructed at a resolution and image quality which allows for the segmentation of individual cells. Using the zoom capability of the cone beam geometry, regions-of-interest are reconstructed with a minimum voxel size of 167 nm. We exemplify the capability of this approach by 3d visualisation of the DAD with its prominent hyaline membrane formation, by mapping the 3d distribution and density of lymphocytes infiltrating the tissue, and by providing histograms of characteristic distances from tissue interior to the closest air compartment.

Data availability

All datasets were uploaded to zenodo: 10.5281/zenodo.3892637

The following data sets were generated

Article and author information

Author details

  1. Marina Eckermann

    Institute for x-ray physics, Georg-August-Universität Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Jasper Frohn

    Institute for x-ray physics, Georg-August-Universität Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Marius Reichardt

    Institute for x-ray physics, Georg-August-Universität Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Markus Osterhoff

    Institute for x-ray physics, Georg-August-Universität Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael Sprung

    Petra III, P10, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Fabian Westermeier

    Petra III, P10, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Alexandar Tzankov

    Institut für Medizinische Genetik und Pathologie, Universitätsspital Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Mark Kühnel

    Pathology, Medizinische Hochschule Hannover (MHH), Hannover, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Danny Jonigk

    Pathology, Medizinische Hochschule Hannover (MHH), Hannover, Germany
    For correspondence
    Jonigk.Danny@mh-hannover.de
    Competing interests
    The authors declare that no competing interests exist.
  10. Tim Salditt

    Institute for x-ray physics, Georg-August-Universität Göttingen, Göttingen, Germany
    For correspondence
    tsaldit@gwdg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4636-0813

Funding

Bundesministerium für Bildung und Forschung (05K19MG2)

  • Tim Salditt

H2020 European Research Council (771883)

  • Danny Jonigk

Max-Planck School (Matter to Life)

  • Marius Reichardt
  • Tim Salditt

Deutsche Forschungsgemeinschaft (-EXC 2067/1-390729940)

  • Tim Salditt

Botnar Research Center of Child Health (BRCCH)

  • Alexandar Tzankov

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study was approved by and conducted according to requirements of the ethics committees at the Hannover Medical School (vote Nr. 9022 BO K 2020).

Reviewing Editor

  1. Mone Zaidi, Icahn School of Medicine at Mount Sinai, United States

Publication history

  1. Received: June 25, 2020
  2. Accepted: August 17, 2020
  3. Accepted Manuscript published: August 20, 2020 (version 1)
  4. Accepted Manuscript updated: August 25, 2020 (version 2)
  5. Version of Record published: September 4, 2020 (version 3)

Copyright

© 2020, Eckermann et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,976
    Page views
  • 542
    Downloads
  • 25
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marina Eckermann
  2. Jasper Frohn
  3. Marius Reichardt
  4. Markus Osterhoff
  5. Michael Sprung
  6. Fabian Westermeier
  7. Alexandar Tzankov
  8. Mark Kühnel
  9. Danny Jonigk
  10. Tim Salditt
(2020)
3d virtual pathohistology of lung tissue from COVID-19 patients based on phase contrast x-ray tomography
eLife 9:e60408.
https://doi.org/10.7554/eLife.60408

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Sharon A McGrath-Morrow, Jarrett Venezia ... Alan L Scott
    Research Article

    Bacterial pneumonia in neonates can cause significant morbidity and mortality when compared to other childhood age groups. To understand the immune mechanisms that underlie these age-related differences, we employed a mouse model of E. coli pneumonia to determine the dynamic cellular and molecular differences in immune responsiveness between neonates (PND 3-5) and juveniles (PND 12-18), at 24, 48, and 72 hours. Cytokine gene expression from whole lung extracts was also quantified at these time points, using qRT-PCR. E. coli challenge resulted in rapid and significant increases in neutrophils, monocytes, and γδT cells, along with significant decreases in dendritic cells and alveolar macrophages in the lungs of both neonates and juveniles. E. coli challenged juvenile lung had significant increases in interstitial macrophages and recruited monocytes that were not observed in neonatal lungs. Expression of IFNg-responsive genes was positively correlated with the levels and dynamics of MHCII-expressing innate cells in neonatal and juvenile lungs. Several facets of immune responsiveness in the wild-type neonates were recapitulated in juvenile MHCII-/- juveniles. Employing a pre-clinical model of E. coli pneumonia, we identified significant differences in the early cellular and molecular dynamics in the lungs that likely contribute to the elevated susceptibility of neonates to bacterial pneumonia and could represent targets for intervention to improve respiratory outcomes and survivability of neonates.

    1. Immunology and Inflammation
    Yu Li, Pablo Guaman Tipan ... Lauren IR Ehrlich
    Research Article

    Central tolerance ensures autoreactive T cells are eliminated or diverted to the regulatory T cell lineage, thus preventing autoimmunity. To undergo central tolerance, thymocytes must enter the medulla to test their TCRs for autoreactivity against the diverse self-antigens displayed by antigen presenting cells (APCs). While CCR7 is known to promote thymocyte medullary entry and negative selection, our previous studies implicate CCR4 in these processes, raising the question of whether CCR4 and CCR7 play distinct or redundant roles in central tolerance. Here, synchronized positive selection assays, 2-photon timelapse microscopy, and quantification of TCR-signaled apoptotic thymocytes, demonstrate that CCR4 and CCR7 promote medullary accumulation and central tolerance of distinct post-positive selection thymocyte subsets in mice. CCR4 is upregulated within hours of positive selection signaling and promotes medullary entry and clonal deletion of immature post-positive selection thymocytes. In contrast, CCR7 is expressed several days later and is required for medullary localization and negative selection of mature thymocytes. In addition, CCR4 and CCR7 differentially enforce self-tolerance, with CCR4 enforcing tolerance to self-antigens presented by activated APCs, which express CCR4 ligands. Our findings show that CCR7 expression is not synonymous with medullary localization and support a revised model of central tolerance in which CCR4 and CCR7 promote early and late stages of negative selection, respectively, via interactions with distinct APC subsets.