3d virtual pathohistology of lung tissue from COVID-19 patients based on phase contrast x-ray tomography

  1. Marina Eckermann
  2. Jasper Frohn
  3. Marius Reichardt
  4. Markus Osterhoff
  5. Michael Sprung
  6. Fabian Westermeier
  7. Alexandar Tzankov
  8. Christopher Werlein
  9. Mark Kühnel
  10. Danny Jonigk  Is a corresponding author
  11. Tim Salditt  Is a corresponding author
  1. Georg-August-Universität Göttingen, Germany
  2. Deutsches Elektronen-Synchrotron (DESY), Germany
  3. Universitätsspital Basel, Switzerland
  4. Medizinische Hochschule Hannover (MHH), Germany

Abstract

We present a three-dimensional (3d) approach for virtual histology and histopathology based on multi-scale phase contrast x-ray tomography, and use this to investigate the parenchymal architecture of unstained lung tissue from patients who succumbed to Covid-19. Based on this first proof-of-concept study, we propose multi-scale phase contrast x-ray tomography as a tool to unravel the pathophysiology of Covid-19, extending conventional histology by a third dimension and allowing for full quantification of tissue remodeling. By combining parallel and cone beam geometry, autopsy samples with a maximum cross section of 4mm are scanned and reconstructed at a resolution and image quality which allows for the segmentation of individual cells. Using the zoom capability of the cone beam geometry, regions-of-interest are reconstructed with a minimum voxel size of 167 nm. We exemplify the capability of this approach by 3d visualisation of the DAD with its prominent hyaline membrane formation, by mapping the 3d distribution and density of lymphocytes infiltrating the tissue, and by providing histograms of characteristic distances from tissue interior to the closest air compartment.

Data availability

All datasets were uploaded to zenodo: 10.5281/zenodo.3892637

The following data sets were generated

Article and author information

Author details

  1. Marina Eckermann

    Institute for x-ray physics, Georg-August-Universität Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Jasper Frohn

    Institute for x-ray physics, Georg-August-Universität Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Marius Reichardt

    Institute for x-ray physics, Georg-August-Universität Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Markus Osterhoff

    Institute for x-ray physics, Georg-August-Universität Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael Sprung

    Petra III, P10, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Fabian Westermeier

    Petra III, P10, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Alexandar Tzankov

    Institut für Medizinische Genetik und Pathologie, Universitätsspital Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Christopher Werlein

    Medizinische Hochschule Hannover (MHH), Hannover, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Mark Kühnel

    Medizinische Hochschule Hannover (MHH), Hannover, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Danny Jonigk

    Medizinische Hochschule Hannover (MHH), Hannover, Germany
    For correspondence
    Jonigk.Danny@mh-hannover.de
    Competing interests
    The authors declare that no competing interests exist.
  11. Tim Salditt

    Institute for x-ray physics, Georg-August-Universität Göttingen, Göttingen, Germany
    For correspondence
    tsaldit@gwdg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4636-0813

Funding

Bundesministerium für Bildung und Forschung (05K19MG2)

  • Tim Salditt

H2020 European Research Council (771883)

  • Danny Jonigk

Max-Planck School (Matter to Life)

  • Marius Reichardt
  • Tim Salditt

Deutsche Forschungsgemeinschaft (-EXC 2067/1-390729940)

  • Tim Salditt

Botnar Research Center of Child Health (BRCCH)

  • Alexandar Tzankov

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mone Zaidi, Icahn School of Medicine at Mount Sinai, United States

Ethics

Human subjects: The study was approved by and conducted according to requirements of the ethics committees at the Hannover Medical School (vote Nr. 9022 BO K 2020).

Version history

  1. Received: June 25, 2020
  2. Accepted: August 17, 2020
  3. Accepted Manuscript published: August 20, 2020 (version 1)
  4. Accepted Manuscript updated: August 25, 2020 (version 2)
  5. Version of Record published: September 4, 2020 (version 3)

Copyright

© 2020, Eckermann et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,398
    views
  • 588
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marina Eckermann
  2. Jasper Frohn
  3. Marius Reichardt
  4. Markus Osterhoff
  5. Michael Sprung
  6. Fabian Westermeier
  7. Alexandar Tzankov
  8. Christopher Werlein
  9. Mark Kühnel
  10. Danny Jonigk
  11. Tim Salditt
(2020)
3d virtual pathohistology of lung tissue from COVID-19 patients based on phase contrast x-ray tomography
eLife 9:e60408.
https://doi.org/10.7554/eLife.60408

Share this article

https://doi.org/10.7554/eLife.60408

Further reading

    1. Immunology and Inflammation
    Xiaozhuo Yu, Wen Zhou ... Yanhong Ji
    Research Article

    The evolutionary conservation of non-core RAG regions suggests significant roles that might involve quantitative or qualitative alterations in RAG activity. Off-target V(D)J recombination contributes to lymphomagenesis and is exacerbated by RAG2’ C-terminus absence in Tp53−/− mice thymic lymphomas. However, the genomic stability effects of non-core regions from both Rag1c/c and Rag2c/c in BCR-ABL1+ B-lymphoblastic leukemia (BCR-ABL1+ B-ALL), the characteristics, and mechanisms of non-core regions in suppressing off-target V(D)J recombination remain unclear. Here, we established three mouse models of BCR-ABL1+ B-ALL in mice expressing full-length RAG (Ragf/f), core RAG1 (Rag1c/c), and core RAG2 (Rag2c/c). The Ragc/c (Rag1c/c and Rag2c/c) leukemia cells exhibited greater malignant tumor characteristics compared to Ragf/f cells. Additionally, Ragc/c cells showed higher frequency of off-target V(D)J recombination and oncogenic mutations than Ragf/f. We also revealed decreased RAG cleavage accuracy in Ragc/c cells and a smaller recombinant size in Rag1c/c cells, which could potentially exacerbate off-target V(D)J recombination in Ragc/c cells. In conclusion, these findings indicate that the non-core RAG regions, particularly the non-core region of RAG1, play a significant role in preserving V(D)J recombination precision and genomic stability in BCR-ABL1+ B-ALL.

    1. Cell Biology
    2. Immunology and Inflammation
    Kevin Portmann, Aline Linder, Klaus Eyer
    Research Article

    Cytokine polyfunctionality is a well-established concept in immune cells, especially T cells, and their ability to concurrently produce multiple cytokines has been associated with better immunological disease control and subsequent effectiveness during infection and disease. To date, only little is known about the secretion dynamics of those cells, masked by the widespread deployment of mainly time-integrated endpoint measurement techniques that do not easily differentiate between concurrent and sequential secretion. Here, we employed a single-cell microfluidic platform capable of resolving the secretion dynamics of individual PBMCs. To study the dynamics of poly-cytokine secretion, as well as the dynamics of concurrent and sequential polyfunctionality, we analyzed the response at different time points after ex vivo activation. First, we observed the simultaneous secretion of cytokines over the measurement time for most stimulants in a subpopulation of cells only. Second, polyfunctionality generally decreased with prolonged stimulation times and revealed no correlation with the concentration of secreted cytokines in response to stimulation. However, we observed a general trend towards higher cytokine secretion in polyfunctional cells, with their secretion dynamics being distinctly different from mono-cytokine-secreting cells. This study provided insights into the distinct secretion behavior of heterogenous cell populations after stimulation with well-described agents and such a system could provide a better understanding of various immune dynamics in therapy and disease.