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Abstract This study examined records of 2566 consecutive COVID-19 patients at five

Massachusetts hospitals and sought to predict level-of-care requirements based on clinical and

laboratory data. Several classification methods were applied and compared against standard

pneumonia severity scores. The need for hospitalization, ICU care, and mechanical ventilation were

predicted with a validation accuracy of 88%, 87%, and 86%, respectively. Pneumonia severity

scores achieve respective accuracies of 73% and 74% for ICU care and ventilation. When

predictions are limited to patients with more complex disease, the accuracy of the ICU and

ventilation prediction models achieved accuracy of 83% and 82%, respectively. Vital signs, age,

BMI, dyspnea, and comorbidities were the most important predictors of hospitalization. Opacities

on chest imaging, age, admission vital signs and symptoms, male gender, admission laboratory

results, and diabetes were the most important risk factors for ICU admission and mechanical

ventilation. The factors identified collectively form a signature of the novel COVID-19 disease.

Introduction
As a result of the SARS-CoV-2 pandemic, many hospitals across the world have resorted to drastic

measures: canceling elective procedures, switching to remote consultations, designating most beds

to COVID-19, expanding Intensive Care Unit (ICU) capacity, and re-purposing doctors and nurses to

support COVID-19 care. In the U.S., the CDC estimates more than 310,000 COVID-19 hospitaliza-

tions from March 1 to June 13, 2020 (CDC, 2020).

Much of the modeling work related to the pandemic has focused on spread dynamics

(Kucharski et al., 2020). Others have described patients who were hospitalized (Richardson et al.,

2020) (n = 5700) and (Buckner et al., 2020) (n = 105), became critically ill (Gong et al., 2020)

(n = 372), or succumbed to the disease (n = 1625 (Onder et al., 2020), n = 270 [Wu et al., 2020]). In

data from the New York City, 14.2% required ICU treatment and 12.2% mechanical ventilation

(Richardson et al., 2020). With such rates, the logistical and ethical implications of bed allocation

and potential rationing of care delivery are immense (White and Lo, 2020). To date, while state- or

country-level prognostication has developed to examine resource allocation at a mass scale, there is

inadequate evidence based on a large cohort on accurate prediction of the disease progress at the

individual patient level. A string of recent studies developed models to predict severe disease or

mortality based on clinical and laboratory findings, for example (Yan et al., 2020) (n = 485),

(Gong et al., 2020) (n = 372), (Bhargava et al., 2020) (n = 197), (Ji et al., 2020) (n = 208), and

(Wang et al., 2020) (n = 296). In these studies, several variables such as Lactate Dehydrogenase

(LDH) (Gong et al., 2020; Ji et al., 2020; Yan et al., 2020) and C-reactive protein (CRP) have been

identified as important predictors. All of these studies considered relatively small cohorts and, with

the exception of Bhargava et al., 2020, considered patients in China. Although it is believed that
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the virus remains the same around the globe, the physiologic response to the virus and the eventual

course of disease depend on multiple other factors, many of them regional (e.g. population charac-

teristics, hospital practices, prevalence of pre-existing conditions) and not applicable universally. Tri-

age of adult patients with COVID-19 remains challenging with most evidence coming from expert

recommendations; evidence-based methods based on larger U.S.-based cohorts have not been

reported (Sprung et al., 2020).

Leveraging data from five hospitals of the largest health care system in Massachusetts, we seek

to develop personalized, interpretable predictive models of (i) hospitalization, (ii) ICU treatment, and

(iii) mechanical ventilation, among SARS-CoV-2 positive patients. To develop these models, we

developed a pipeline leveraging state-of-the-art Natural Language Processing (NLP) tools to extract

information from the clinical reports for each patient, employing statistical feature selection methods

to retain the most predictive features for each model, and adapting a host of advance machine

learning-based classification methods to develop parsimonious (hence, easier to use and interpret)

predictive models. We found that the more interpretable models can, for the most part, deliver simi-

lar predictive performance compared to more complex, ‘black-box’ models involving ensembles of

many decision trees. Our results support our initial hypothesis that important clinical outcomes can

be predicted with a high degree of accuracy upon the patient’s first presentation to the hospital

using a relatively small number of features, which collectively compose a ‘signature’ of the novel

COVID-19 disease.

Results
We extracted data for all patients (n = 2566) who had a positive RT-PCR SARS-CoV-2 test between

March 4 and April 13, 2020 at five Massachusetts hospitals, included in the same health care system

(Massachusetts General Hospital (MGH), Brigham and Women’s Hospital (BWH), Faulkner Hospital

(FH), Newton-Wellesley Hospital (NWH), and North Shore Medical Center (NSM)). The study was

approved by the pertinent Institutional Review Boards.

eLife digest The new coronavirus (now named SARS-CoV-2) causing the disease pandemic in

2019 (COVID-19), has so far infected over 35 million people worldwide and killed more than 1

million. Most people with COVID-19 have no symptoms or only mild symptoms. But some become

seriously ill and need hospitalization. The sickest are admitted to an Intensive Care Unit (ICU) and

may need mechanical ventilation to help them breath. Being able to predict which patients with

COVID-19 will become severely ill could help hospitals around the world manage the huge influx of

patients caused by the pandemic and save lives.

Now, Hao, Sotudian, Wang, Xu et al. show that computer models using artificial intelligence

technology can help predict which COVID-19 patients will be hospitalized, admitted to the ICU, or

need mechanical ventilation. Using data of 2,566 COVID-19 patients from five Massachusetts

hospitals, Hao et al. created three separate models that can predict hospitalization, ICU admission,

and the need for mechanical ventilation with more than 86% accuracy, based on patient

characteristics, clinical symptoms, laboratory results and chest x-rays.

Hao et al. found that the patients’ vital signs, age, obesity, difficulty breathing, and underlying

diseases like diabetes, were the strongest predictors of the need for hospitalization. Being male,

having diabetes, cloudy chest x-rays, and certain laboratory results were the most important risk

factors for intensive care treatment and mechanical ventilation. Laboratory results suggesting tissue

damage, severe inflammation or oxygen deprivation in the body’s tissues were important warning

signs of severe disease.

The results provide a more detailed picture of the patients who are likely to suffer from severe

forms of COVID-19. Using the predictive models may help physicians identify patients who appear

okay but need closer monitoring and more aggressive treatment. The models may also help policy

makers decide who needs workplace accommodations such as being allowed to work from home,

which individuals may benefit from more frequent testing, and who should be prioritized for

vaccination when a vaccine becomes available.
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Demographics, pre-hospital medications, and comorbidities were extracted for each patient

based on the electronic medical record. Patient symptoms, vital signs, radiologic findings, and labo-

ratory results were recorded at their first hospital presentation (either clinic or emergency depart-

ment) before testing positive for SARS-CoV-2. A total of 164 features were extracted for each

patient. ICU admission and mechanical ventilation were determined for each patient. Complete

blood count values were considered as absolute counts. Representative statistics comparing hospi-

talized, ICU admitted, and mechanically ventilated patients are provided in Table A1 (Appendix).

Table A2 (Appendix) reports how patients were distributed among the five hospitals.

Among the 2566 patients with a positive test, 930 (36.2%) were hospitalized. Among the hospital-

ized, 273 (29.4% of the hospitalized) required ICU care of which 217 (79.5%) required mechanical

ventilation. The mean age over all patients was 51.9 years (SD: 18.9 years) and 45.6% were male.

Hospitalization
The mean age of hospitalized patients was 62.3 years (SD: 18 years) and 55.3% were male. We

employed linear and non-linear classification methods for predicting hospitalizations. Non-linear

methods included random forests (RF) (Breiman, 2001) and XGBoost (Chen and Guestrin, 2016).

Linear methods included support vector machines (SVM) (Cortes and Vapnik, 1995) and Logistic

Regression (LR); each linear method used either ‘1- or ‘2-norm regularization and we report the

best-performing flavor of each model.

Results are reported in Table 1. We report the Area Under the Curve (AUC) of the Receiver Oper-

ating Characteristic (ROC) and the Weighted-F1 score, both computed out-of-sample (in a test set

not used for training the model). As we detail under Methods, we used two validation strategies.

The ‘Random’ strategy randomly split the patients into a training and a test set and was repeated

five times; from these five splits we report the average and the standard deviation of the test perfor-

mance. The ‘BWH’ strategy trained the models on MGH, FH, NWH, and NSM patients, and evalu-

ated performance on BWH patients.

The hospitalization models used symptoms, pre-existing medications, comorbidities, and patient

demographics. Laboratory results and radiologic findings were not considered since these were not

available for most non-hospitalized patients. Full models used all (106) variables retained after sev-

eral pre-processing steps described in Materials and methods. Applying the statistical variable selec-

tion procedure described in the Appendix (specifically, eliminating variables with a p-value

exceeding 0.05), yields a model with 74 variables. To provide a more parsimonious, highly interpret-

able, and easier to implement model, we used recursive feature elimination (see Appendix) to select

a model with only 11 variables. The best model using the random validation approach has an AUC

of 88% while the best parsimonious (linear) model has an AUC of 83%, being though easier to inter-

pret and implement. Validation on the BWH patients yields an AUC of 84% for the parsimonious

model.

Table 1 also reports the 11 variables in the parsimonious LR model, including their LR coeffi-

cients, and a binarized version of this model as described in Materials and methods. The most

important variables associated with hospitalization were: oxygen saturation, temperature, respiratory

rate, age, pulse, blood pressure, a comorbidity of adrenal insufficiency, BMI, prior transplantation,

dyspnea, and kidney disease.

Additionally, we assessed the role of pre-existing ACE inhibitor (ACEI) and angiotensin receptor

blocker (ARB) medications by adding these variables into the parsimonious binarized model, while

controlling for additional relevant variables (hypertension, diabetes, and arrhythmia comorbidities

and other hypertension medications). We found that while ARBs are not a factor, ACEIs reduce the

odds of hospitalization by 3/4, on average, controlling for other important factors, such as age,

hypertension, and related comorbidities associated with the use of these medications.

ICU admission
The mean age of ICU admitted patients was 63.3 years (SD: 15.1 years) and 63% were male. The

ICU and ventilation prediction models used the features considered for the hospitalization, as well

as laboratory results and radiologic findings. For these models, we excluded patients who required

immediate ICU admission or ventilation (defined as within 4 hr from initial presentation). This was

implemented in order to focus on patients where triaging is challenging and risk prediction would
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be beneficial. There were 2513 and 2525 patients remaining for the ICU and the mechanical ventila-

tion prediction models, respectively.

For the model including 2513 patients (Table 2), we first developed a model using all 130 varia-

bles retained after pre-processing, then employed statistical variable selection to retain 56 of the

variables, and then applied recursive feature elimination with LR to select a parsimonious model

which uses only 10 variables. The following variables were included: opacity observed in a chest

scan, respiratory rate, age, fever, male gender, albumin, anion gap, oxygen saturation, LDH, and

Table 1. Hospitalization prediction model (test performance).

The values inside the parentheses refer to the standard deviation of the corresponding metric. Random refers to test set results from

the five random training/test splits. BWH refers to training on four other hospitals and testing on data from BWH. SVM-L1 and LR-L1

refer to the ‘1-norm regularized SVM and LR models. For the parsimonious model, we list the LR coefficients of each variable (Coef),

the correlation of the variable with the outcome (Y-corr), the mean of the variable (Y1-mean) in the positive class (hospitalized for this

table), and the mean of the variable (Y0-mean) in the negative class (non-hospitalized). Binary Coef denotes the coefficient of the varia-

bles in the binarized model. We report the corresponding odds ratio (OR) and the 95% confidence intervals (CI). Thresholds used for

the binarized model are provided in Appendix 1—table 5.

Algorithm

AUC F1-weighted

Random BWH Random BWH

Models using all 106 features

LR-L2 87.0% (1.7%) 85.9% 81.6% (1.3%) 84.2%

SVM-L1 87.0% (1.6%) 85.8% 81.5% (1.5%) 83.9%

XGBoost 87.8% (1.9%) 87.7% 80.9% (1.8%) 83.3%

RF 88.2% (1.6%) 88.1% 81.2% (1.1%) 83.2%

Models using 74 statistically selected features

LR-L2 87.1% (1.7%) 86.0% 82.0% (1.3%) 83.9%

SVM-L1 87.1% (1.7%) 85.8% 82.0% (1.4%) 84.0%

XGBoost 87.9% (1.9%) 87.6% 81.2% (1.9%) 84.2%

RF 88.0% (1.7%) 88.1% 80.8% (1.7%) 83.9%

Parsimonious Model using 11 features

LR-L2 83.4% (1.7%) 83.7% 78.7% (0.9%) 81.0%

SVM-L1 83.4% (1.7%) 83.8% 78.1% (1.1%) 79.9%

Variables for the Parsimonious Model

Variable Coef Y1 mean Y0 mean p-value Y-corr Coef binary OR
OR 95% CI

SpO2 (%) �11.90 95.44 97.11 <0.001 �0.29 1.74 5.67 3.97 8.12

Temperature 10.36 37.21 37.06 <0.001 0.08 0.86 2.36 1.76 3.18

Respiratory
Rate

7.20 22.82 20.83 <0.001 0.18 �0.13 0.88 0.69 1.13

Age 5.14 62.31 46.02 <0.001 0.41 0.88 2.4 1.86 3.11

Pulse 4.60 90.09 90.4 <0.001 �0.01 0.7 2.01 1.49 2.71

Diastolic
BP

�3.56 73.07 77.21 <0.001 �0.23 1.51 4.51 2.88 7.06

Adrenal
Insufficiency

3.09 0.013 0.001 <0.001 0.08 2.58 13.14 1.57 110.37

BMI 2.30 31.34 31.64 <0.001 �0.04 �0.09 0.91 0.71 1.17

Transplantation 1.90 0.023 0.002 <0.001 0.1 1.43 4.19 1.04 16.87

Dyspnea 1.85 0.17 0.02 <0.001 0.26 2 7.41 4.85 11.32

CKD 1.55 0.14 0.02 <0.001 0.25 0.81 2.25 1.35 3.74

Intercept �2.51

SpO2: oxygen saturation; BP: Blood pressure; BMI: Body Mass Index; CKD: Chronic Kidney Disease.
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calcium. In addition, we generated a binarized version of the parsimonious model. The parsimonious

model for all 2513 patients has an AUC of 86%, almost as high as the model with all 130 features.

For comparison purposes against well-established scoring systems, we implemented two com-

monly used pneumonia severity scores, CURB-65 (Lim et al., 2003) and the Pneumonia Severity

Index (PSI) (Fine et al., 1997). Predictions based on the PSI and CURB-65 scores, have AUCs of 73%

and 67%, respectively.

We also developed a model for a more restrictive set of patients. Specifically, the number of miss-

ing lab values for some patients is substantial. Given the importance of LDH and CRP, as revealed

by our models, the more restricted patient set contains 669 patients with non-missing LDH and CRP

Table 2. ICU prediction model (test performance).

Abbreviations are as in Table 1. Thresholds for the binarized model, PSI and CURB-65 scores are in the Appendix.

ICU prediction results with 2513 patients

Algorithm

AUC F1-weighted

Random BWH Random BWH

Models using all 130 features

XGBoost 86.0% (2.8%) 83.1% 90.0% (1.7%) 91.7%

SVM-L1 85.9% (2.5%) 80.2% 89.9% (1.0%) 89.2%

LR-L1 84.6% (2.8%) 76.8% 89.7% (1.0%) 89.9%

RF 86.9% (2.4%) 83.7% 90.4% (1.1%) 91.1%

Models using 56 statistically selected features

XGBoost 86.8% (3.1%) 82.8% 90.4% (1.4%) 91.3%

SVM-L1 86.2% (2.6%) 82.6% 90.6% (1.2%) 90.8%

LR-L1 85.8% (2.9%) 81.8% 90.2% (1.3%) 91.3%

RF 86.7% (2.0%) 83.2% 90.5% (1.7%) 91.5%

Parsimonious Model using 10 features

LR-L1 85.8% (2.6%) 83.9% 90.0% (1.4%) 89.1%

LR-L1 (binarized model) 84.2% (2.2%) 82.5% 89.8% (1.1%) 88.1%

Model using PSI or CURB-65 score

PSI score 72.9% (4.9%) 78.8% 86.8% (0.7%) 88.2%

CURB-65 score 67.0% (5.0%) 75.4% 87.0% (0.5%) 88.1%

Variables for the parsimonious model

Variable Coef Y1 mean Y0 mean p-value Y-corr Coef binary OR
OR 97.5% CI

Radiology
Opacities

0.54 0.76 0.27 <0.001 0.30 1.41 4.08 2.83 5.89

Respiratory
Rate

0.46 24.61 21.37 <0.001 0.16 0.50 1.66 1.14 2.41

Age 0.45 62.61 50.58 <0.001 0.18 0.56 1.76 1.27 2.43

Fever 0.40 0.64 0.33 <0.001 0.18 0.61 1.83 1.32 2.55

Male 0.35 0.64 0.44 <0.001 0.12 0.50 1.65 1.21 2.26

Albumin �0.34 3.68 3.84 <0.001 �0.16 0.58 1.78 1.10 2.90

Anion
Gap

0.33 16.40 15.35 <0.001 0.13 �0.05 0.95 0.46 1.98

SpO2 (%) �0.22 94.72 96.72 <0.001 �0.24 0.83 2.29 1.63 3.21

LDH 0.22 400.40 327.48 <0.001 0.15 0.96 2.62 1.74 3.94

Calcium �0.21 8.84 9.01 <0.001 �0.10 0.55 1.73 1.21 2.48

Intercept �0.93

SpO2: oxygen saturation; LDH: Lactate dehydrogenase.
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values. After removing patients who required intubation or ICU admission within 4 hr of hospital pre-

sentation, we included 628 patients and 635 patients for the restricted ICU admission and ventilation

models, respectively.

The best restricted model for the 628 patients (Table 3) is the nonlinear XGBoost model using 29

statistically selected features with an AUC of 83%, with a linear parsimonious LR model close behind

(AUC 80%). An RF model using all variables yields an AUC of 77% when tested on BWH data. PSI-

and CURB-65 models have AUCs below 59%.

Mechanical ventilation
The mean age of patients requiring mechanical ventilation was 63.3 years (SD: 14.7 years) and 63.6%

were male. Again, we excluded patients who were intubated within 4 hr of their hospital admission.

For the model including 2525 patients (Table 4), we used statistical feature selection to select 55

variables, and recursive feature elimination with LR to select a parsimonious model with only eight

variables. The following variables were included: lung opacities, albumin, fever, respiratory rate,

Table 3. Restricted ICU prediction model (test performance).

Abbreviations are as in Table 1. Thresholds for the binarized model, PSI and CURB-65 scores are in the Appendix.

ICU prediction results with 628 patients

Algorithm

AUC F1-weighted

Random BWH Random BWH

Models using all 130 features

XGBoost 82.5% (1.9%) 67.3% 81.4% (0.7%) 72.6%

SVM-L1 77.8% (3.8%) 72.8% 79.7% (1.2%) 73.6%

LR-L1 75.9% (3.6%) 69.7% 79.2% (2.5%) 73.7%

RF 80.9% (2.7%) 76.9% 78.8% (1.9%) 73.6%

Models using 29 statistically selected features

XGBoost 82.7% (2.7%) 76.2% 80.6% (2.1%) 72.6%

SVM-L1 77.9% (3.7%) 73.1% 78.5% (1.4%) 73.6%

LR-L1 78.4% (4.1%) 71.5% 79.5% (2.6%) 74.4%

RF 82.1% (2.8%) 74.1% 79.0% (2.4%) 75.4%

Parsimonious Model using 8 features

LR-L1 80.1% (2.9%) 74.2% 80.9% (2.1%) 77.2%

LR-L1 (binarized model) 72.5% (5.4%) 69.9% 73.4% (2.8%) 69.7%

Model using PSI or CURB-65 score

PSI score 58.8% (7.4%) 68.3% 66.7% (2.2%) 65.3%

CURB-65 score 56.8% (4.5%) 76.9% 66.2% (1.5%) 63.8%

Variables for the parsimonious model

Variable Coef Y1 mean Y0 mean p-value Y-corr Coef binary OR
OR 97.5% CI

LDH 0.53 519.88 304.40 <0.001 0.15 1.59 4.88 2.65 8.99

CRP (mg/L) 0.47 127.17 67.43 <0.001 0.35 0.76 2.13 0.70 6.47

Calcium �0.35 8.83 9.01 <0.001 �0.13 0.71 2.03 1.25 3.31

IDDM 0.30 0.25 0.12 0.003 0.15 1.00 2.73 1.62 4.60

SpO2 (%) �0.29 94.13 95.59 0.003 �0.22 0.34 1.41 0.92 2.16

Radiology Opacities 0.25 0.88 0.71 <0.001 0.16 0.62 1.86 1.05 3.29

Anion Gap 0.20 16.66 15.28 <0.001 0.20 0.34 1.40 0.48 4.12

Sodium �0.16 136.13 137.53 <0.001 �0.14 0.47 1.60 1.05 2.43

Intercept �0.34

LDH: Lactate dehydrogenase; CRP: C-reactive protein; IDDM: Insulin-dependent diabetes mellitus; SpO2: oxygen saturation.

Hao, Sotudian, Wang, et al. eLife 2020;9:e60519. DOI: https://doi.org/10.7554/eLife.60519 6 of 23

Research article Medicine Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.60519


glucose, male gender, LDH, and anion gap. In addition, we generated a binarized version of the par-

simonious model. The best model for all 2525 patients was a nonlinear RF model using the 55 statis-

tically selected variables and yielding an AUC of 86%. The best linear model was the parsimonious

LR model with an AUC of 85%. PSI- and CURB-65 models yield AUCs of 74% and 67%, respectively.

The best model for the restricted case of 635 patients (Table 5) was the linear parsimonious LR

model (with just five variables) achieving an AUC of 82%. PSI- and CURB-65 models do not exceed

AUC of 58%.

Time period between ICU/ventilation model prediction and
corresponding outcomes
Table 6 reports the mean and the median time interval (in hours) between hospital admission time

and ICU/ventilation outcomes. Specifically, we report statistics for ICU admission or intubation

Table 4. Ventilation prediction model (test performance).

Abbreviations are as in Table 1. Thresholds for the binarized model, PSI and CURB-65 scores are in the Appendix.

Ventilation prediction results with 2525 patients

Algorithm

AUC F1-weighted

Random BWH Random BWH

Models using all 130 features

XGBoost 85.8% (4.0%) 83.8% 91.0% (0.4%) 91.6%

SVM-L1 82.6% (4.9%) 83.8% 90.9% (0.8%) 91.6%

LR-L1 80.7% (5.4%) 81.7% 90.4% (1.2%) 91.4%

RF 85.7% (3.9%) 83.7% 91.2% (0.9%) 91.8%

Models using 55 statistically selected features

XGBoost 85.7% (3.3%) 86.3% 91.1% (0.6%) 91.6%

SVM-L1 83.9% (3.7%) 84.8% 90.9% (1.1%) 91.7%

LR-L1 83.3% (4.0%) 83.9% 90.8% (1.3%) 91.4%

RF 86.4% (3.4%) 86.7% 91.4% (1.1%) 91.3%

Parsimonious Model using 8 features

LR-L1 85.2% (2.3%) 87.0% 90.3% (0.3%) 90.7%

LR-L1 (binarized model) 81.3% (3.1%) 82.6% 90.0% (0.6%) 90.2%

Model using PSI or CURB-65 score

PSI score 73.6% (4.1%) 80.7% 89.4% (0.4%) 90.3%

CURB-65 score 66.8% (3.1%) 75.9% 89.7% (0.1%) 90.0%

Variables for the Parsimonious Model

Variable Coef Y1 mean Y0 mean p-value Y-corr Coef binary OR OR 97.5% CI

Radiology
opacities

0.86 0.77 0.28 <0.001 0.27 1.58 4.86 3.25 7.25

Albumin �0.45 3.65 3.83 <0.001 �0.16 1.07 2.91 1.80 4.72

Fever 0.43 0.66 0.33 <0.001 0.17 0.72 2.05 1.42 2.95

Respiratory
rate

0.42 24.70 21.44 <0.001 0.15 0.50 1.64 1.09 2.47

Glucose 0.38 170.17 138.32 <0.001 0.15 0.97 2.63 1.71 4.06

Male 0.34 0.64 0.44 <0.001 0.10 0.43 1.54 1.09 2.18

LDH 0.33 408.56 328.78 <0.001 0.14 0.91 2.48 1.58 3.89

Anion
gap

0.31 16.50 15.37 <0.001 0.13 0.27 1.31 0.53 3.25

Intercept �1.06

LDH: Lactate dehydrogenase.
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outcomes from the correct ICU/intubation predictions made by our models trained on four hospitals

(MGH, NWH, NSM, FH) and applied to BWH patients (both the models making predictions for all

patients and the restricted models). As we have noted earlier, our models use the lab results closest

to admission (either on admission date or the following day). We also report the time interval

between the last lab result used by the model and the corresponding ICU/intubation outcome.

Discussion
We developed three models to predict need for hospitalization, ICU admission, and mechanical ven-

tilation in patients with COVID-19. The prediction models are not meant to replace clinicians’ judg-

ment for determining level of care. Instead, they are designed to assist clinicians in identifying

patients at risk of future decompensation. Patient vital signs were the most important predictors of

hospitalization. This is expected as vital signs reflect underlying disease severity, the need for cardio-

respiratory resuscitation, and the risk of future decompensation without adequate medical support.

Older age and BMI were also important predictors for hospitalization. Age has been recognized as

an important factor associated with severe COVID-19 in previous series (Grasselli et al., 2020;

Guan et al., 2020; Richardson et al., 2020). However, it is not known whether age itself or the

Table 5. Restricted ventilation prediction model (test performance).

Abbreviations are as in Table 1.Thresholds for the binarized, PSI and CURB-65 scores are in the Appendix.

Ventilation prediction results with 635 patients

Algorithm AUC F1-weighted

Random BWH Random BWH

Models using all 130 features

XGBoost 80.6% (1.9%) 74.7% 79.4% (2.6%) 75.7%

SVM-L1 79.4% (5.2%) 71.3% 80.8% (2.0%) 75.7%

LR-L1 76.9% (3.9%) 68.2% 78.6% (3.2%) 73.4%

RF 81.0% (3.1%) 75.8% 79.8% (4.2%) 72.7%

Models using 29 statistically selected features

XGBoost 81.6% (3.2%) 76.9% 79.0% (2.9%) 71.7%

SVM-L1 79.1% (4.6%) 69.4% 80.6% (2.5%) 75.7%

LR-L1 80.9% (3.6%) 70.9% 80.4% (2.2%) 75.7%

RF 81.3% (2.6%) 75.4% 79.2% (1.7%) 69.6%

Parsimonious Model using 5 features

LR-L1 82.4% (3.7%) 75.2% 81.8% (1.7%) 71.7%

LR-L1 (binarized model) 71.4% (6.2%) 65.5% 76.6% (3.5%) 68.3%

Model using PSI or CURB-65 score

PSI score 57.6% (4.5%) 67.4% 73.2% (1.3%) 71.2%

CURB-65 score 56.9% (7.1%) 74.0% 72.4% (0.2%) 68.3%

Variables for the parsimonious model

Variable Coef Y1 mean Y0 mean p-value Y-corr Coef binary OR
OR 97.5% CI

CRP (mg/L) 0.60 134.52 69.62 <0.001 0.35 0.42 1.53 0.51 4.59

LDH 0.55 550.41 311.01 <0.001 0.16 1.87 6.47 3.19 13.10

Calcium �0.39 8.82 9.00 <0.001 �0.13 0.58 1.79 1.07 2.98

IDDM 0.36 0.26 0.12 0.002 0.15 1.18 3.26 1.90 5.58

Anion Gap 0.29 16.81 15.32 <0.001 0.19 18.66 1.27E+08 0.00 inf

Intercept �0.39

CRP: C-reactive protein; LDH: Lactate dehydrogenase; IDDM: Insulin-dependent diabetes mellitus.
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presence of comorbidities place patients at risk for severe disease. Our results demonstrate that age

is a stronger predictor of severe COVID-19 than a host of underlying comorbidities.

In terms of patient comorbidities, adrenal insufficiency, prior transplantation, and chronic kidney

disease were strongly associated with need for hospitalization. Diabetes mellitus was associated with

a need for ICU admission and mechanical ventilation, which might be due to its detrimental effects

on immune function.

For the ICU and ventilation prediction models screening all at-risk (COVID-19-positive patients),

opacities observed in a chest scan, age, and male gender emerge as important variables. Males

have been found to have worse in-hospital outcomes in other studies as well (Palaiodimos et al.,

2020).

We also identified several routine laboratory values that are predictive of ICU admission and

mechanical ventilation. Elevated serum LDH, CRP, anion gap, and glucose, as well as decreased

serum calcium, sodium, and albumin were strong predictors of ICU admission and mechanical venti-

lation. LDH is an indicator of tissue damage and has been found to be a marker of severity in P. jiro-

vecii pneumonia (Zaman and White, 1988). Along with CRP, it was among the two most important

predictors of ICU admission and ventilation in the parsimonious model among patients who had

LDH and CRP measurements on admission. This finding is consistent with previous reports identify-

ing LDH as an important prognostic factor (Gong et al., 2020; Ji et al., 2020; Mo et al., 2020;

Yan et al., 2020). In addition, lower serum calcium is associated with cell lysis and tissue destruction,

as it is often seen as part of the tumor lysis syndrome. Elevated serum anion gap is a marker of met-

abolic acidosis and ischemia, suggesting that tissue hypoxia and hypoperfusion may be components

of severe disease.

For all three prognostic models, we developed predicting hospitalizations, ICU care, and mechan-

ical ventilation, AUC ranges within 86–88%, which indicates strong predictive power. Interestingly,

we can achieve AUC within 85–86% for ICU and ventilation prediction with a parsimonious linear

model utilizing no more than 10 variables. In all cases, we can also develop a parsimonious model

with binarized variables using medically suggested normal and abnormal variable thresholds. These

binarized models have similar performance with their continuous counterparts. The ICU and ventila-

tion models using all patients are very accurate, but, arguably, make a number of ‘easier’ decisions

since more than 60% of the patients are never hospitalized. Many of these patients are younger,

healthy, and likely present with mild-to-moderate symptoms. To test the robustness of the models

to patients with potentially more ‘complex’ disease, we developed ICU and ventilation models on a

restricted set of patients. This is the subset of patients who are hospitalized and most of the crucial

labs are available for them (specifically CRP and LDH which emerged as important from our models).

The best AUC for these models drops, but not below 82%, which indicates robustness of the model

even when dealing with arguably harder to assess cases. LDH, CRP, calcium, lung opacity, anion

gap, SpO2, sodium, and a comorbidity of insulin-controlled diabetes appear as the most significant

for these patients. Interestingly, the corresponding binarized models have about 10% lower AUC;

apparently, for the more severely ill, clinical variables deviate substantially from normal and knowing

the exact values is crucial.

The models have been validated with two different approaches, using random splits of the data

into training and testing, as well as training in some hospitals and testing at a different hospital. Per-

formance metrics are relatively consistent with these two approaches. We also compared the models

against standard pneumonia severity scores, PSI and CURB-65, establishing that our models are sig-

nificantly stronger, which highlights the different clinical profile of COVID-19.

Table 6. Mean and median hours between reference date/lab results to outcomes in full/restricted ICU and ventilation model

prediction.

From reference date (mean) From reference date (median) From lab results (mean) From lab results (median)

Restricted ICU 38.13 28.08 22.55 9.90

Restricted intubation 35.36 26.40 22.37 10.39

Full ICU 22.86 17.28 15.86 12.99

Full intubation 25.62 22.20 10.23 8.97
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We also examined how much in advance of the ICU or ventilation outcomes our models are able

to make a prediction. Of course, this is not entirely in our control; it depends on what state the

patients get admitted and how soon their condition deteriorates to require ICU admission and/or

ventilation. Table 6 reports the corresponding statistics. For example, the restricted ICU and ventila-

tion models are making a correct prediction upon admission (using the lab results closest to that

time) for outcomes that on average occur 38 and 35 hr later, respectively.

To further test the accuracy of the restricted ICU and ventilation models well in advance of the

corresponding event, we considered an extended BWH test set (adding 11 more patients) and com-

puted the accuracy of the models when the test set was restricted to patients whose outcome (ICU

admission or ventilation) was more than x hours after the admission lab results based on which the

prediction was made, with x being 6 hr, or 12 hr, or 18 hr, or 24 hr, or even 48 hr. The ICU model

reaches an AUC of 87% and a weighted F1-score of 86% at x = 18 hr. The ventilation model reaches

an AUC of 64% and an F1-score of 72% at x = 48 hr. These results demonstrate that the predictive

models can indeed make predictions well into the future, when physicians would be less certain

about the course of the disease and when there is potentially enough time to intervene and improve

outcomes.

A manual review of the predictions by the models indicates that they performed well at predict-

ing future ICU admissions for patients who presented with mild disease several days before ICU

admission was necessary. Such patients were hemodynamically stable and had minimal oxygen

requirements on the floor, before clinical deterioration necessitated ICU admission. We identified

several such patients. A typical case is that of a 51-year-old male with a history of hypertension, obe-

sity, and insulin-dependent type 2 diabetes mellitus, who presented with a 3-day history of dyspnea,

cough and myalgias. In the emergency department, he was hemodynamically stable, saturating at

96–97% on 2 L of nasal cannula. The patient was admitted to the floor and did well for 3 days, satu-

rating at 93–96% on room air. On the fourth day of hospitalization, he had increasing oxygen

requirements and the decision was made to transfer him to the ICU. He was intubated and venti-

lated for 30 days. Our prediction models accurately predicted at the time of his presentation that he

would eventually require ICU admission and mechanical ventilation. This prediction was based on

such variables as an elevated LDH (241 U/L) and the presence of insulin-dependent diabetes melli-

tus. Another such case is that of a 59-year-old male without a significant prior medical history who

presented with 2 days of dyspnea, nausea, and diarrhea. At the emergency department, he was

tachycardic at 110 beats per minute and saturating at 96% on room air, and the patient was admit-

ted. For 2 days, the patient was hemodynamically stable, saturating at 94–97% on room air. On the

third day of hospitalization, he had increasing oxygen requirements, eventually requiring transfer to

the ICU. He was intubated and ventilated for the next 14 days. Our prediction model predicted the

patient’s decompensation at his presentation, due to elevations in LDH (348 U/L) and CRP (102.3

mg/L).

We also considered the role of ACEIs and ARBs and their potential association with the out-

comes. It has been speculated that ACEIs may worsen COVID-19 outcomes because they upregulate

the expression of ACE2, which the virus targets for cell entry. No such evidence has been reported

in earlier studies (Kuster et al., 2020; Patel and Verma, 2020). In fact, a smaller study

(Zhang et al., 2020) (n = 1128 vs. 2566 in our case) reported a beneficial effect and (Rossi et al.,

2020) warn of potential harmful effects of discontinuing ACEIs or ARBs due to COVID-19. Our hospi-

talization model suggests that ACEIs do not increase hospitalization risk and may slightly reduce it

(OR 95% CI is (0.52,1.04) with a mean of 0.73). In the ICU and ventilation models, the role of these

two medications is statistically weaker to observe any meaningful association.

The models we derived can be used for a variety of purposes: (i) guiding patient triage to appro-

priate inpatient units, (ii) guiding staffing and resource planning logistics, and (iii) understanding

patient risk profiles to inform future policy decisions, such as targeted risk-based stay-at-home

restrictions, testing, and vaccination prioritization guidelines once a vaccine becomes available.

Calculators implementing the parsimonious models corresponding to each of the Tables 1,

2, 3, 4, 5 have been made available online (Hao et al., 2020).
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Materials and methods

Data extraction
Natural Language Processing (NLP) was used to extract patient comorbidities (see Appendix for

details), pre-existing medications, admission vital signs, hospitalization course, ICU admission, and

mechanical intubation.

Pre-processing
The categorical features were converted to numerical by ‘one-hot’ encoding. Each categorical fea-

ture, such as gender and race, was encoded as an indicator variable for each category. Features

were standardized by subtracting the mean and dividing by the standard deviation.

Several pre-processing steps, including variable imputation, outlier elimination, and removal of

highly correlated variables were undertaken (see Appendix). After completing these procedures,

106 variables for each patient remained to be used by the hospitalization model. For the ICU and

ventilation prediction models, we added laboratory results and radiologic findings. We removed var-

iables with more than 90% missing values out of the roughly 2500 patients retained for these mod-

els; the remaining missing values were imputed as described above. These pre-processing steps

retained 130 variables for the ICU and ventilation models.

Classification methods
We employed nonlinear ensemble methods including Random forests (RF) (Breiman, 2001) and

XGBoost (Chen and Guestrin, 2016). We also employed ‘custom’ linear methods which yield inter-

pretable models; specifically, support vector machines (SVM) (Cortes and Vapnik, 1995) and Logis-

tic Regression (LR). In both cases, the variants we computed were robust to noise and the presence

of outliers (Chen and Paschalidis, 2018), using proper regularization. LR, in addition to a prediction,

provides the likelihood associated with the predicted outcome, which can be used as a confidence

measure in decision making. Further details on these methods are in the Appendix.

For each outcome, we used the statistical feature selection and recursive feature elimination pro-

cedures described in the Appendix to develop an LR parsimonious model. The LR coefficients are

comparable since the variables are standardized. Hence, a larger absolute coefficient indicates that

the corresponding variable is a more significant predictor. Positive (negative) coefficients imply posi-

tive (negative) correlation with the outcome. We also developed a version of this model by convert-

ing all continuous variables into binary variables, using medically motivated thresholds (see

Appendix). We report the coefficients of the ‘binarized’ model and the implied odds ratio (OR), rep-

resenting how the odds of the outcome are scaled by having a specific variable being abnormal vs.

normal, while controlling for all other variables in the model.

Outcomes and performance metrics
Model performance metrics included the Area Under the Curve (AUC) of the Receiver Operating

Characteristic (ROC) and the Weighted-F1 score. The ROC plots the true positive rate (a.k.a. recall

or sensitivity) against the false positive rate (equal to one minus the specificity). We optimized algo-

rithm parameters to maximize AUC.

The F1 score is the harmonic mean of precision and recall. Precision (or positive predictive value)

is defined as the ratio of true positives over true and false positives. The Weighted-F1 score is com-

puted by weighting the F1-score of each class by the number of patients in that class.

Model validation
The data were split into a training (80%) and a test set (20%). Algorithm parameters were optimized

on the training (derivation) set using fivefold cross-validation. Performance metrics were computed

on the test set. This process was repeated five times, each time with a random split into training/

testing sets. In columns labeled as Random in Tables 1, 2, 3, 4, 5, we report the average (and stan-

dard deviation) of the test performance metrics over the five random splits. We also performed a dif-

ferent type of validation. We trained the models on MGH, FH, NWH, and NSM patients, and

evaluated performance on BWH patients. These results are reported under the columns BWH in the

tables.
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Appendix 1

1. Representative statistics of patients and variables highly correlated
with the outcomes
Characteristics of the 2566 patients who tested positive for SARC-CoV2 with key statistics for each

cohort (hospitalized vs. not, ICU admitted vs. not, and mechanically ventilated vs. not) are provided

in Appendix 1—table 1. For each variable we provide a mean value of the variable (or percentage

for categorical variables) in each cohort and its complement and a p-value computed using a chi-

squared test for categorical variables and a Kolmogorov-Smirnov (KS) test for continuous variables.

A low p-value supports rejection of the null hypothesis, implying that the corresponding variable is

statistically different in a cohort compared to its complement (e.g., hospitalized vs. not).

Appendix 1—table 2 reports how the entire patient cohort is distributed across the five different

hospitals according to the various outcome groups.

Appendix 1—table 1. Representative patient statistics.

Admitted (36.2%) ICU (10.6%) Intubated (8.5%)

Yes No
p-
value Yes No

p-
value Yes No

p-
value

Age 62.3 46.0 <0.001 63.3 50.6 <0.001 63.3 50.9 <0.001

Gender (male) 55.3% 40.1% <0.001 63.0% 43.5% <0.001 63.6% 43.9% <0.001

Asian 3.7% 4.0% 0.97 3.7% 3.9% 1 3.7% 3.9% 1

Black/African American 15.7% 17.8% 0.61 14.7% 17.3% 0.75 14.3% 17.3% 0.74

Hispanic/Latino 4.9% 5.9% 0.81 6.6% 5.4% 0.88 6.9% 5.4% 0.83

White 45.4% 43.9% 0.91 39.6% 45.0% 0.40 39.6% 44.9% 0.53

Hypertension 61.7% 26.4% <0.001 62.3% 36.5% <0.001 61.8% 37.1% <0.001

Diabetes 34.2% 9.7% <0.001 40.7% 15.9% <0.001 42.9% 16.3% <0.001

Alzheimer 6.7% 0.6% <0.001 2.6% 2.8% 1 3.2% 2.7% 0.98

Congestive Heart Failure (CHF) 11.3% 0.8% <0.001 9.5% 4.0% <0.001 8.8% 4.2% 0.025

Chronic Kidney Disease (CKD) 14.4% 1.7% <0.001 12.8% 5.5% <0.001 11.5% 5.8% 0.011

ACE Inhibitors (ACEIs) 17.5% 8.4% <0.001 20.5% 10.7% <0.001 19.8% 11.0% 0.002

Acetaminophen
Tylenol

39.8% 17.8% <0.001 31.9% 25.1% 0.12 30.4% 25.4% 0.45

Amiodarone 1.6% 0.1% <0.001 1.5% 0.5% 0.32 0.9% 0.6% 0.95

Anticoagulants 9.4% 1.7% <0.001 9.9% 3.8% <0.001 11.1% 3.8% <0.001

Anti-depressants 25.4% 16.7% <0.001 20.5% 19.8% 0.99 22.6% 19.6% 0.77

Angiotensin Receptor Blockers (ARBs) 12.0% 5.2% <0.001 15.4% 6.8% <0.001 17.1% 6.8% <0.001

Aspirin related 32.3% 11.6% <0.001 33.7% 17.4% <0.001 33.2% 17.8% <0.001

Beta-Blockers 28.1% 10.4% <0.001 25.6% 15.7% <0.001 25.8% 16.0% 0.003

Calcium Chanel Blockers (CCBs) 2.6% 0.7% 0.001 4.4% 1.0% <0.001 4.6% 1.1% <0.001

Coumadin
warfarin

3.5% 0.7% <0.001 1.8% 1.7% 1 1.8% 1.7% 1

Diuretics 16.0% 4.5% <0.001 13.9% 8.1% 0.015 13.4% 8.3% 0.089

Immuno- suppressants 5.3% 2.6% 0.005 3.7% 3.5% 1 4.1% 3.5% 0.97

Insulin related 14.6% 3.5% <0.001 19.0% 6.2% <0.001 21.2% 6.3% <0.001

Metformin related 19.5% 8.6% <0.001 23.8% 11.2% <0.001 24.9% 11.4% <0.001

Nonsteroidal anti-inflammatory drugs
(NSAIDs)

21.9% 21.0% 0.95 19.0% 21.6% 0.82 18.0% 21.6% 0.66

Proton Pump Inhibitors (PPIs) 26.6% 15.0% <0.001 24.5% 18.5% 0.13 25.8% 18.6% 0.081

Statins 45.1% 17.3% <0.001 47.6% 24.9% <0.001 45.6% 25.7% <0.001

Continued on next page
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Appendix 1—table 1 continued

Admitted (36.2%) ICU (10.6%) Intubated (8.5%)

Yes No
p-
value Yes No

p-
value Yes No

p-
value

Steroids 30.5% 23.0% <0.001 30.8% 25.2% 0.26 30.4% 25.3% 0.44

Cough 65.6% 29.6% <0.001 68.1% 39.6% <0.001 69.1% 40.2% <0.001

Dyspnea 16.6% 2.2% <0.001 21.6% 5.7% <0.001 23.5% 5.9% <0.001

Chest pain 21.1% 5.6% <0.001 22.0% 9.9% <0.001 24.4% 10.0% <0.001

Fever 57.4% 23.7% <0.001 61.2% 32.9% <0.001 63.6% 33.4% <0.001

SpO2 95.2 97.4 <0.001 93.4 96.7 <0.001 93.3 96.7 <0.001

Diastolic BP 72.5 78.1 <0.001 72.0 75.6 <0.001 70.9 75.6 <0.001

Pulse 90.6 88.3 <0.001 93.3 88.8 0.003 94.1 88.9 0.01

Respiratory Rate (RR) 23.1 20.3 <0.001 25.6 21.2 <0.001 25.9 21.3 <0.001

Temperature (oC) 37.2 37.0 <0.001 37.3 37.1 0.001 37.3 37.1 0.001

Anion Gap 15.8 17.0 15.1 <0.001 17.1 15.1 <0.001

Sodium 137.0 136.3 137.4 <0.001 136.2 137.3 <0.001

Calcium 9.0 8.8 9.0 <0.001 8.8 9.0 <0.001

Lactic acid 1.8 2.1 1.6 <0.001 2.1 1.6 <0.001

Glomerular filtration rate (GFR) 67.0 64.8 72.3 <0.001 64.7 71.9 <0.001

Chloride 98.1 97.2 98.8 <0.001 97.1 98.8 <0.001

Glucose 149.6 171.5 135.8 <0.001 173.9 137.2 <0.001

Lactate Dehydrogenase (LDH) 377.2 524.6 303.9 <0.001 551.8 310.6 <0.001

Albumin 3.8 3.6 3.9 <0.001 3.6 3.9 <0.001

D-Dimer 1373.5 1525.0 1223.7 <0.001 1614.5 1214.0 <0.001

C-reactive Protein (CRP) 89.6 133.1 65.5 <0.001 140.1 68.1 <0.001

Blood Urea Nitrogen (BUN) 21.4 24.3 18.5 <0.001 23.8 18.9 <0.001

Creatine Kinase (CK) 385.2 563.4 282.7 <0.001 620.3 285.1 <0.001

Ferritin 854.2 1349.5 601.6 <0.001 1477.1 621.8 <0.001

Mean Platelet Volume (MPV) 10.5 10.6 10.5 <0.001 10.6 10.5 <0.001

Atelectasis 19.0% 4.6% <0.001 15.8% 9.2% 0.008 16.6% 9.2% 0.007

Consolidation 5.9% 0.6% <0.001 10.3% 1.6% <0.001 11.1% 1.7% <0.001

Nodule 4.9% 0.6% <0.001 4.4% 1.9% 0.072 3.7% 2.0% 0.47

Opacity 64.8% 13.7% <0.001 78.4% 26.7% <0.001 80.6% 27.8% <0.001

Pleural Effusion 8.8% 1.1% <0.001 11.7% 3.0% <0.001 13.8% 3.0% <0.001

Appendix 1—table 2. Distribution of patients in different hospitals and outcome groups.

Hospital Positive Admitted ICU Intubated

Brigham and Women’s Hospital (BWH) 648 171 67 56

Newton-Wellesley Hospital (NWH) 434 145 33 18

Massachusetts General Hospital (MGH) 1195 475 144 121

North Shore Medical Center (NSM) 97 63 16 12

Faulkner Hospital (FH) 192 76 13 10

Total 2566 930 273 217
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2. Natural Language Processing (NLP) of clinical notes
The de-identified data consisted of demographics, lab results, history and physical examination (H

and P) notes, progress notes, radiology reports, and discharge notes. We extracted all variables

needed for each patient and built a profile using NLP tools. There were mainly two difficulties. First,

many important features such as vitals and medical history (prior conditions, medications) were not

in a table format and were extracted from the report text using different regular expression tem-

plates, post-processing the results to eliminate errors due to non-uniformity in the reports (e.g., a

line break may separate a date from the field indicating the type). Second, the negations in the text

should be recognized. Simply recognizing a medical term such as ‘cough’ or ‘fever’ is not sufficient

since the report may include ‘Patient denies fever or cough’. We applied multiple NLP schemes to

overcome these difficulties.

Regular expression matching is the basic strategy we used to extract features such as body tem-

perature values (with or without decimal followed by ‘?C/?F’) and blood pressure values (‘xx(x)/xx(x)’

even if they are mixed up with a date ‘mm/dd/yyyy’ having similar symbols). Extracting pulse and

respiratory rates is challenging since it is easy to mismatch the corresponding values; thus, we also

matched the indicators ‘RR:’ (respiratory rate) or ‘P’ (pulse rate) in the vicinity of the number.

To extract symptoms in H and P notes and findings in radiology reports, we used two NLP mod-

els: a Named Entity Recognition (NER) model, and a Natural Language Inference (NLI) model

(Zhu et al., 2018). The first model aims at finding all the symptoms/disease named entities in the

report. The key motivation of NER is that it is hard to list all possible disease names and search for

them in each sentence; instead, NER models use the context to infer the possible targets, thus, even

abbreviations like ‘N/V’ will be recognized. We used the spaCy NER model (Kiperwasser and Gold-

berg, 2016) trained on the BC5CDR corpus. The NLI model is used to detect negations, by checking

if a sentence as a premise supports the hypothesis that the patient truly has the disease/symptoms

in it. We applied a fine-tuned RoBERTa model (Liu et al., 2019) to perform NLI.

For medication extraction, we used the Unified Medical Language System (UMLS) (UMLS, 2019),

which comprehensively contains medical terms and their relationships. We added a medication to

the patient’s prior to admission medication list only If the medication or brand name is found in the

UMLS ‘Pharmacologic Substance’ or ‘Clinical Drug’ category.

Symptoms, medical history, and prior medications from H and P notes are often described using

different terminology or acronyms that imply the same condition or medication (e.g., dyspnea and

SOB). We manually mapped these non-unique descriptors to distinct categories. An appropriate

classification was also used for comorbidities, prior medications, radiological findings, and laborato-

ries. The entire list of variables extracted and used in the analysis is provided in Appendix 1—table

3.

Appendix 1—table 3. List of 164 features used for hospitalization, ICU, and ventilation models.

Category Features

Demographics Marital status, Gender, Race, Age, Language, Tobacco, Alcohol, Height, Weight, BMI

Vitals Systolic BP, Diastolic BP, Temperature, Pulse, Respiratory Rate, SpO2 percentage

Symptoms Fever, Cough, Dyspnea, Fatigue, Diarrhea, Nausea, Vomiting, Abdominal pain, Loss of smell,
Loss of taste, Chest pain, Headache, Sore throat, Hemoptysis, Myalgia

Pre-existing
medications

Steroids, ACEIs, ARBs, NSAIDs, Anti-depressants, CCBs, Diuretics, Digoxin, Statins, Beta-
Blockers, Acetaminophen Tylenol, Immunosuppressants, Anticoagulants, Aspirin related,
Coumadin warfarin, Amiodarone, Insulin related, Metformin related, PPIs

Comorbidities Hypertension, COPD, Diabetes, CKD, CAD, MI, Asthma, Osteoarthritis arthritis, SLE, HLD,
Arrhythmia, Thyroid disease, Stroke, Migraine, Epilepsy, Alzheimer, Parkinson, Nephrolithiasis,
Cushing, Adrenal Insufficiency, Diverticulosis, GERD, IBS, IBD, Cholelithiasis, Inguinal hernia,
Hepatitis, Cirrhosis, Valvular disease, CHF, PAD, Osteoporosis, Cancer, TB, Cardiomyopathy,
AAA, DVT, vWD, Anemia, Transplantation, HIV, Depression, Anxiety

Radiology Opacity, Atelectasis, Consolidation, Pleural Effusion, Pneumothorax, Nodule

Continued on next page
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Appendix 1—table 3 continued

Category Features

Labs RDW, PLT, MCH, HGB, MCHC, HCT, MCV, RBC, WBC, MPV, NRBC (%), GFR (estimated),
Creatinine, Potassium, Chloride, Sodium, Anion Gap, BUN, Glucose, Calcium, Carbon
Dioxide, Absolute Neutrophil count, Absolute Lymphocyte count, Absolute Monocyte count,
Absolute Eosinophil count, Absolute Basophil count, Immature Granulocytes, ALT, Total
Protein, Albumin, Globulin, AST, Bilirubin (Total), Alkaline phosphatase, NRBC Auto (#), LDH,
Ferritin, CK, Magnesium, CRP, PT, D-Dimer, Lactic acid, Phosphorus, PTT, PCO2 (Venous), pH
(Venous), Fibrinogen, Lipase, Bands (manual), PO2 (Venous), Base Deficit (Venous), Iron,
Bilirubin (Direct), Myelocytes, HCO3 (unspecified), TIBC, Base Deficit (Arterial), PCO2 (Arterial),
Metamyelocytes, Plasma cells (%), PO2 (Arterial), Ionized Calcium, pH (Arterial), Osmolality

To evaluate the accuracy of the NLP models on our data, we randomly selected 35 hr and P notes

and manually checked the model, evaluating the precision, recall, and F1-score for the extracted

terms. For the NER+NLI deep learning model, we compared all the symptoms extracted by the

models against the manually extracted ground truth. For the general regular expression matching

models, we checked the extraction of vitals as a representative task, particularly since vitals have the

most complicated format in the original notes. Appendix 1—table 4 provides the results of this

manual evaluation.

Appendix 1—table 4. Performance of the NLP models.

Precision (%) Recall (%) F1-score (%)

NER+NLI model 93.60 87.97 90.70

Regular expression matching 99.01 96.15 97.56

Appendix 1—table 5. Abnormal ranges for laboratory tests and vitals.

Variable Abnormal range

Albumin <3.3

Chloride <95

Lactic acid �2

LDH �250

CRP (mg/L) �10

Calcium �8.5

Anion gap �12

Glucose �110

Total protein �6.5 or �8.3

D-Dimer (ng/mL) �500

GFR �60

Sodium <135

Globulin �2 or �4

SpO2 �94

Systolic blood pressure �100

Pulse �100

Respiratory rate �20

Age �65

Diastolic blood pressure �60

BMI �30

Temperature �37.5 ˚C or �98.7 ˚F
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For both types of models, the F1-score exceeds 90%. Most of the symptoms missing are due to

non-obvious abbreviations. Regular expression matching has better performance since potential

errors may only come from very rare formats we did not consider.

3. Classification methods
A random forest (RF) (Breiman, 2001) is an ensemble algorithm that achieves high accuracy and

generalization performance by combining multiple weak decision tree classifiers. For training, RF

uses bootstrap aggregating (bagging) technique to randomly select a training sample set for each

decision tree classifier. It trains multiple decision trees in parallel during the training phase, where

each tree is trained using a random sample set from the original training set. In the test phase, RF

uses the trained decision tree classifiers to classify a test sample, and then combines all the classifiers

by majority voting.

XGBoost (Chen and Guestrin, 2016) generates a series of decision trees in sequential order;

each decision tree is fitted to the residual between the prediction of the previous decision tree and

the target value, and this is repeated until a predetermined number of trees or a convergence crite-

rion is reached. All decision trees computed are combined with proper weights to produce a final

decision. XGBoost uses shrinkage and column subsampling to prevent overfitting and achieves fast

training using a number or parallelization approaches.

Both of these nonlinear models are expensive to train compared to the linear models we discuss

next. Essentially, each one of them trains an ensemble of many decision trees (could be as many as

500 or more) and a decision is made by combining information from all of these trees.

Among the linear classifiers, we used the support vector machine (SVM) (Cortes and Vapnik,

1995), which computes an optimal hyperplane separating the two classes. To render the method

robust to noise and the presence of outliers (Chen and Paschalidis, 2018) we used (‘1- or ‘2-norm)

regularized versions of SVM.

We also used Logistic regression (LR) – a common classification method that uses a linear regres-

sion model to approximate the logarithmic odds (logit) of the true classification label. LR, in addition

to a prediction, also provides the likelihood of the predicted outcome, which can be used as a confi-

dence measure in decision making. Similar to SVM, we used (‘1- or ‘2-norm) regularized logistic

regression to find the optimal subset of features from the initial feature space. In particular, based

on the LR model, the predicted probability of the outcome, denoted by ŷ, is estimated by the

formula:

ŷ¼
1

1þ exp �b0 �
Pn

i¼1
bixi

� 	 ;

where exp �f g denotes the exponential function, b0 is the intercept, x1; . . . ;xnð Þ the variables used by

the model, and b1; . . . ;bnð Þ the corresponding coefficients. Using this formula and the LR coefficients

(and intercept) provided in Tables 1, 2, 3, 4, 5, one can obtain an easily computable value for the

predicted probability of the corresponding outcome. Comparing that value to a threshold (in the

interval [0,1]) yields a prediction. The threshold can be set depending on the desired trade-off

between sensitivity and specificity, which is typically specified by the user.

4. Pre-processing, statistical feature selection and recursive feature
elimination
We extracted patients’ laboratory test results at the date of hospital admission (reference date).

Since some lab tests may be received several hours after the reference time, we extracted the near-

est set of lab results to the reference time. Some tests have multiple Logical Observation Identifiers

Names and Codes (LOINC), referring to the same quantity, and were merged. White blood cells

(WBC) types (basophils, eosinophils, lymphocytes, monocytes, and neutrophils) were reported both

as an absolute count and percentage (of WBC). We eliminated the percentages and maintained the

absolute counts. We also removed all laboratory test results that did not contain enough information

for a significant percentage of the patients (less than 10%). This retained 65 laboratory variables.

Missing variables were imputed using the mode or, for some key lab variables, by regressing on

the non-missing variables of the patient. To mitigate the effect of outliers, each variable with values
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higher than the 99th percentile or lower than the 1st percentile, was replaced with the 99th or 1st

percentile, respectively. Finally, and to avoid collinearity, of the variables that were highly correlated

(absolute correlation coefficient higher than 0.8) we removed one among the two.

For each model, we used a variety of statistical feature selection approaches. Specifically, we first

calculated a p-value for each variable as described earlier and removed all variables with a p-value

exceeding 0.05. Further, we used (‘1-norm) regularized LR and performed recursive feature elimina-

tion as follows. We run LR and obtained the coefficients of the model. We then eliminated the vari-

able with the smallest absolute coefficient and re-run LR to obtain a new model. We kept iterating in

this fashion, to select a model that maximizes a metric equal to the mean AUC minus its standard

deviation in a validation dataset.

5. Thresholds for the binarized models
Thresholds used for generating binarized versions of our parsimonious models are reported in

Appendix 1—table 5. In these models, a variable is set to one if the corresponding continuous vari-

able is abnormal and 0 otherwise.

6. Standard pneumonia severity scores
For comparison purposes we implemented two commonly used pneumonia severity scores, CURB-

65 (Lim et al., 2003) and the Pneumonia Severity Index (PSI) (Fine et al., 1997). CURB-65 uses a

mental test assessment, Blood Urea Nitrogen (BUN), respiratory rate, blood pressure, and the indi-

cator of age being 65 or older. PSI uses similar information, a host of laboratory values, and comor-

bidities. From CURB-65 we did not score for mental status since we did not have such information.

From PSI, we did not use mental status and whether the patient was a nursing home resident. Given

that laboratory values are used, we computed these scores to predict ICU care and ventilator use. In

each case, we computed the corresponding score and then optimized a threshold using cross-valida-

tion over the training set in order to make the prediction. We used these thresholds and evaluated

performance of each scoring system in the test set.

7. Training/Derivation Model Performance
Performance metrics for the various models on the training/derivation cohorts are reported in

Appendix 1—tables 6, 7, 8, 9, 10. These are computed for both the random splitting of the data

into training and testing sets (in this case, we provide the mean and standard deviation over the five

random splits), as well as for the training dataset formed from patients at MGH, FH, NWH, and NSM

(these results are under the column named BWH in Appendix 1—tables 6, 7, 8, 9, 10, simply to

match the terminology of Tables 1, 2, 3, 4, 5).

Appendix 1—table 6. Derivation cohort performance for the hospitalization prediction model.

Abbreviations and metrics reported are as in Table 1.

Algorithm

AUC F1-weighted

Random BWH Random BWH

Models using all 106 features

LR-L2 88.3% (0.4%) 88.3% 82.9% (0.5%) 82.3%

SVM-L1 88.2% (0.4%) 88.2% 82.8% (0.5%) 82.1%

XGBoost 91.5% (2.1%) 90.9% 85.7% (2.3%) 85.2%

RF 96.0% (0.7%) 95.3% 92.9% (1.2%) 90.8%

Models using 74 statistically selected features

LR-L2 87.8% (0.4%) 87.8% 82.4% (0.4%) 81.7%

SVM-L1 87.8% (0.4%) 87.7% 82.5% (0.7%) 81.7%

XGBoost 91.9% (1.8%) 91.9% 86.0% (1.8%) 86.2%

RF 94.9% (0.9%) 96.6% 91.3% (1.3%) 93.2%
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Appendix 1—table 6 continued

Algorithm

AUC F1-weighted

Random BWH Random BWH

Parsimonious Model using 11 features

LR-L2 82.6% (0.5%) 82.4% 77.6% (0.1%) 76.9%

SVM-L1 82.5% (0.5%) 82.3% 77.5% (0.3%) 76.9%

Appendix 1—table 7. Derivation cohort performance for the ICU prediction model.

Abbreviations and metrics reported are as in Table 1.

ICU prediction results (training performance) with 2513 patients

Algorithm

AUC F1-weighted

Random BWH Random BWH

Models using all 130 features

XGBoost 94.5% (3.6%) 96.1% 94.0% (1.7%) 94.1%

SVM-L1 89.7% (0.7%) 91.4% 91.5% (0.4%) 91.9%

LR-L1 91.3% (0.6%) 92.9% 91.5% (0.5%) 91.9%

RF 93.4% (3.2%) 97.0% 94.3% (1.6%) 95.4%

Models using 56 statistically selected features

XGBoost 94.1% (1.5%) 95.1% 93.6% (0.6%) 93.7%

SVM-L1 88.5% (0.7%) 89.7% 91.2% (0.4%) 91.4%

LR-L1 89.3% (0.7%) 90.4% 91.2% (0.2%) 91.4%

RF 91.0% (1.9%) 94.9% 93.0% (1.0%) 94.2%

Parsimonious Model using 10 features

LR-L1 86.2% (0.6%) 83.8% 90.4% (0.4%) 89.1%

LR-L1

(binarized

model)

84.0% (0.6%) 80.6% 89.4% (0.1%) 88.2%

Model using PSI or CURB-65 score

PSI score 74.3% (1.2%) 72.3% 87.5% (0.2%) 87.1%

CURB-65

score

67.9% (1.3%) 65.3% 87.3% (0.2%) 86.8%

Appendix 1—table 8. Derivation cohort performance for the restricted ICU prediction model.

Abbreviations and metrics reported are as in Table 1.

ICU prediction training performance with 628 patients

Algorithm

AUC F1-weighted

Random BWH Random BWH

Models using all 130 features

XGBoost 89.6% (4.8%) 92.5% 85.4% (5.8%) 87.6%

SVM-L1 80.1% (0.6%) 80.8% 79.4% (0.5%) 80.4%

LR-L1 87.1% (0.8%) 88.0% 83.5% (0.5%) 83.6%

RF 95.6% (2.9%) 95.7% 91.0% (3.3%) 90.2%

Models using 29 statistically selected features

XGBoost 86.3% (1.0%) 87.4% 81.9% (0.4%) 83.8%

SVM-L1 80.5% (0.9%) 80.4% 79.1% (0.5%) 80.4%
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LR-L1 80.9% (1.0%) 81.6% 79.0% (0.3%) 80.3%

RF 89.8% (2.6%) 92.8% 85.0% (1.9%) 88.2%

Parsimonious Model using 8 features

LR-L1 80.4% (0.9%) 81.4% 79.7% (0.5%) 80.0%

LR-L1
(binarized
model)

75.4% (1.1%) 77.2% 75.2% (0.7%) 77.5%

Model using PSI or CURB-65 score

PSI score 60.5% (1.7%) 59.0% 68.6% (0.5%) 68.7%

CURB-65
score

60.2% (1.2%) 57.2% 67.5% (0.4%) 67.3%

Appendix 1—table 9. Derivation cohort performance for the ventilation prediction model.

Abbreviations and metrics reported are as in Table 1.

Ventilation prediction training performance with 2525 patients

Algorithm

AUC F1-weighted

Random BWH Random BWH

Models using all 130 features

XGBoost 97.2% (1.5%) 95.2% 95.8% (1.0%) 94.5%

SVM-L1 92.3% (0.7%) 92.8% 93.1% (0.1%) 93.4%

LR-L1 93.8% (0.6%) 94.3% 93.3% (0.2%) 93.2%

RF 95.1% (0.8%) 94.7% 95.4% (0.5%) 94.3%

Models using 55 statistically selected features

XGBoost 96.9% (1.4%) 98.3% 95.6% (0.9%) 96.6%

SVM-L1 90.8% (0.7%) 91.3% 92.7% (0.2%) 93.0%

LR-L1 91.4% (0.7%) 92.0% 92.6% (0.3%) 92.8%

RF 94.8% (0.7%) 94.1% 95.5% (0.3%) 94.8%

Parsimonious Model using 8 features

LR-L1 86.9% (0.5%) 88.1% 91.6% (0.2%) 91.9%

LR-L1

(binarized

model)

84.4% (0.7%) 86.7% 91.1% (0.2%) 91.2%

Model using PSI or CURB-65 score

PSI score 74.0% (1.0%) 71.4% 89.9% (0.1%) 89.6%

CURB-65

score

67.6% (0.8%) 64.7% 89.7% (0.0%) 89.6%

Appendix 1—table 10. Derivation cohort performance for the restricted ventilation prediction

model. Abbreviations and metrics reported are as in Table 1.

Ventilation prediction training performance with 635 patients

Algorithm

AUC F1-weighted

Random BWH Random BWH

Models using all 130 features

XGBoost 91.8% (2.2%) 98.6% 87.4% (2.0%) 95.3%

SVM-L1 81.2% (0.7%) 83.2% 82.4% (1.1%) 83.9%

LR-L1 89.7% (0.6%) 89.6% 86.9% (1.0%) 85.8%

RF 93.5% (4.2%) 93.7% 89.5% (3.8%) 89.7%
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Models using 29 statistically selected features

XGBoost 89.9% (2.3%) 89.9% 86.1% (1.6%) 86.0%

SVM-L1 81.5% (1.6%) 84.4% 82.2% (1.2%) 83.7%

LR-L1 82.6% (0.7%) 84.0% 83.0% (0.9%) 83.6%

RF 92.3% (4.8%) 94.3% 88.8% (3.7%) 89.3%

Parsimonious Model using 5 features

LR-L1 80.3% (1.0%) 79.0% 82.1% (0.7%) 81.7%

LR-L1

(binarized

model)

73.1% (1.4%) 66.5% 78.3% (0.9%) 73.5%

Model using PSI or CURB-65 score

PSI score 58.8% (1.0%) 57.2% 73.9% (0.3%) 74.2%

CURB-65

score

58.5% (1.7%) 55.8% 73.2% (0.1%) 73.7%

8. Performance of the restricted ICU and ventilation models with
sufficient distance to the event
Appendix 1—table 11 lists the performance of the restricted ICU and mechanical ventilation parsi-

monious LR-L1 models provided in Tables 3 and 5 when applied to a test set consisting of the BWH

patients and 11 additional patients whose data were collected right after the original dataset was

compiled. In these results, we excluded patients whose predicted outcome (ICU or intubation)

occurs less than x hours from the time the admission lab results were made available, where x takes

values in the set {6 hr, 12 hr, 18 hr, 24 hr, 48 hr}. Thus, the corresponding test set includes only

patients with sufficient time difference from the data used to make the prediction, assessing how far

into the future the predictive model could reach. We added the additional 11 patients to make sure

we have a sufficient number of test patients to perform this study. As the results suggest, ICU admis-

sion estimation is fairly accurate and robust, whereas intubation prediction had moderate predictive

power.

Appendix 1—table 11. AUC and weighted F1-score on an extended BWH test set, where patients

with lab-to outcome time smaller than or equal to certain gaps are excluded.

Time gap 6hr 12 hr 18 hr 24 hr 48 hr

Restricted ICU model - AUC 86.05% 84.73% 86.85% 86.14% 84.62%

Restricted ICU model - weighted-F1 83.10% 82.17% 86.47% 86.09% 86.28%

Restricted intubation model - AUC 68.00% 64.44% 63.85% 63.85% 64.34%

Restricted intubation model - weighted-F1 65.75% 66.59% 69.81% 69.81% 72.33%
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