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Abstract When choosing between options, such as food items presented in plain view, people

tend to choose the option they spend longer looking at. The prevailing interpretation is that visual

attention increases value. However, in previous studies, ‘value’ was coupled to a behavioural goal,

since subjects had to choose the item they preferred. This makes it impossible to discern if visual

attention has an effect on value, or, instead, if attention modulates the information most relevant

for the goal of the decision-maker. Here, we present the results of two independent studies—a

perceptual and a value-based task—that allow us to decouple value from goal-relevant information

using specific task-framing. Combining psychophysics with computational modelling, we show that,

contrary to the current interpretation, attention does not boost value, but instead it modulates

goal-relevant information. This work provides a novel and more general mechanism by which

attention interacts with choice.

Introduction
How is value constructed and what is the role played by visual attention in choice? Despite their cen-

trality to the understanding of human decision-making, these remain unanswered questions. Atten-

tion is thought to play a central role, prioritising and enhancing which information is accessed during

the decision-making process. How attention interacts with value-based choice has been investigated

in psychology and neuroscience (Krajbich et al., 2010; Krajbich and Rangel, 2011;

Cavanagh et al., 2014; Polanı́a et al., 2014; Gluth et al., 2015; Gluth et al., 2020; Folke et al.,

2017; Tavares et al., 2017; Glickman et al., 2018; Gluth et al., 2018; Thomas et al., 2019) and

this question is at the core of the theory of rational inattention in economics (Sims, 2003;

Sims, 2010; Caplin and Dean, 2015; Hébert and Woodford, 2017).

In this context, robust empirical evidence has shown that people tend to look for longer at the

options with higher values (Anderson et al., 2011; Gluth et al., 2018; Gluth et al., 2020) and that

they tend to choose the option they pay more visual attention to (Krajbich et al., 2010;

Krajbich and Rangel, 2011; Folke et al., 2017; Cavanagh et al., 2014; Thomas et al., 2019). The

most common interpretation is that attention is allocated to items based on their value and that

looking or attending to an option boosts its value, either by amplifying it (Krajbich et al., 2010;

Krajbich and Rangel, 2011; Smith and Krajbich, 2019) or by shifting it upwards by a constant

amount (Cavanagh et al., 2014). This intuition has been elegantly formalised using models of

sequential sampling, in particular the attentional drift diffusion model (aDDM), which considers that

visual attention boosts the drift rate of the stochastic accumulation processes (Krajbich et al., 2010).
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More recently, this same model has been also used to study the role of attention in the accumulation

of perceptual information (Tavares et al., 2017). These lines of investigation have been extremely

fruitful, as they have provided an elegant algorithmic description of the interplay between attention

and choice.

As consequence of this development, the predominant assumption in the field of neuroeconom-

ics has become that attention operates over the value of the alternatives (Smith and Krajbich,

2019). However, this view overlooks the fact that in the majority of these studies, value is coupled to

the agents’ behavioural goal, that is, participants had to choose the item they found more reward-

ing. However, some recent studies have called into question this assumption and have hinted

towards a flexible role of attention on sampling goal-relevant options (Kovach et al., 2014;

Glickman et al., 2018). Even further, recent developments have shown that the ‘value networks’ in

the brain could be tracking not purely reward value, but actually goal-congruent information

(Frömer et al., 2019; Suri et al., 2020). Considering all this, our study aims to understand in more

detail the role of goals on visual attention during both value-based and perceptual decisions: we aim

to test the hypothesis that attention acts in a flexible way upon the accumulation of goal-relevant

information and to examine the effects on the mechanism of preference formation and confidence.

Our experimental design decouples reward value from choice by means of a simple task-framing

manipulation. In the main eye-tracking part of our value-based experiment, participants were asked

to choose between different pairs of snacks. We used two frame manipulations: like and dislike. In

the like frame, they had to indicate which snack they would like to consume at the end of the experi-

ment; this is consistent with the standard tasks used in value-based decision studies. But in the dis-

like frame, subjects had to indicate the snack that they would prefer not to eat, equivalent to

choosing the other option. Crucially, in the latter frame value is distinct from the behavioural goal of

which item to select. In fact, in the dislike frame participants need to consider the ‘anti-value’ of the

item to choose the one to reject.

To anticipate our results, in the like frame condition we replicated the typical gaze-boosting

effect: participants looked for longer at the item they were about to choose – the item they deemed

most valuable. In the dislike frame, however, participants looked for longer at the item that they

then chose to eliminate, that is, the least valuable item. This means that agents paid more attention

to the option they selected in the task, not to the option to which they deemed more valuable or

wanted to consume. This suggests that attention does not boost value but rather is used to gather

task-relevant information.

In order to understand the mechanism via which attention interacts with value in both framings,

we use a dynamic accumulation model, which allows us to account for the preference formation pro-

cess and its dependency on task variables (values of the options). We also show how goal-relevance

shapes confidence and how confidence interacts with attention.

To test the generality of our findings, we also conducted a new perceptual decision-making

experiment and tested a new set of participants. In this perceptual task, participants were asked to

choose between two circles filled with dots. In some blocks, they had to indicate the circle with

more dots – most frame; in others, the circle with fewer dots – fewest frame. In this second study,

we replicated all the effects of the first, value-based one, corroborating the hypothesis of a domain-

general role for attention in modulating goal-relevant information that drives choice.

This work questions the dominant view in neuroeconomics about the relationship between atten-

tion and value, showing that attention does not boost value per se but instead modulates goal-rele-

vant information. We conclude our work by presenting an economic model of optimal evidence

accumulation. Using this model, we suggest that the behavioural strategy we observe in our experi-

ment may be the result of deploying, in the context of binary choice, a behavioural strategy that is

optimal when agents face more natural larger sets of options.

Results
In our first experiment, hungry participants (n = 31) made binary choices between snacks in one of

two task-frames, like and dislike. In the like frame, participants had to report the item they would

prefer to eat; in the dislike frame, they chose the item they wanted to avoid eating (Figure 1A).

After each choice, participants reported their confidence in having made a good choice

(De Martino et al., 2013; Folke et al., 2017). At the beginning of the experiment, participants
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reported the subjective value of individual items using a standard incentive-compatible Becker-DeG-

root-Marschak mechanism (BDM; see Materials and methods).

Our second experiment was done to test whether the results observed in value-based decisions

could be generalised to perceptual decisions. A different group of participants (n = 32) made binary

choices between two circles containing a variable number of dots (Figure 1D). In the most frame,

participants reported the circle containing the higher number of dots; in the fewest frame, the one

with the lower. As in the Value Experiment, at the end of each trial participants reported their confi-

dence in their choice.

The effect of attention on choice
Value experiment
Our results confirmed that participants understood the task and chose higher value items in the like

frame and lower value items in the dislike frame (Figure 1B,C). This effect was modulated by

confidence (Figure 1B) similarly to previous studies (De Martino et al., 2013; Folke et al., 2017;

Figure 1. Task and behavioural results. Value-based decision task (A). Participants choose between two food items presented in an eye-contingent way.

Before the choice stage, participants reported the amount of money they were willing to bid to eat that snack. In the like frame (top) participants select

the item they want to consume at the end of the experiment. In the dislike frame (bottom) participants choose the opposite, the item they would prefer

to avoid. After each choice participants reported their level of confidence. (B) After a median split for choice confidence, a logistic regression was

calculated for the probability of choosing the right-hand item depending on the difference in value (ValueRight– ValueLeft) for like (top) and dislike

(bottom) framing conditions. The logistic curve calculated from the high confidence trials is steeper, indicating an increase in accuracy. (C) Slope of

logistic regressions predicting choice for each participant, depending on the frame. The shift in sign of the slope indicates that participants are

correctly modifying their choices depending on the frame. Perceptual decision task (D) Participants have to choose between two circles containing

dots, also presented eye-contingently. In the most frame (top), participants select the circle with more white dots. In the fewest frame (bottom), they

choose the circle with the lower number of white dots. Distractor dots (orange) are included in both frames to increase the difficulty of the task.

Confidence is reported at the end of each choice. We obtained a similar pattern of results to the one observed in the Value Experiments in terms of

probability of choice (E) and the flip in the slope of the choice logistic model between most and fewest frames (F).
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Boldt et al., 2019). For a direct comparison of the differences between the goal manipulations in

the two tasks (Value and Perceptual) see Appendix 1 (Appendix 1—figure 1).

We then tested how attention interacts with choice by examining the eye-tracking variables. Our

frame manipulation, which orthogonalised choice and valuation, allowed us to distinguish between

two competing hypotheses. The first hypothesis, currently dominant in the field, is that visual atten-

tion is always attracted to high values items and that it facilitates their choice. The alternative

hypothesis is that the attention is attracted to items whose value matches the goal of the task. These

two hypotheses make starkly different experimental predictions in our task. According to the first,

gaze will mostly be allocated to the more valuable item independently of the frame. The second

hypothesis instead predicts that in the like frame participants will look more at the more valuable

item, while this pattern would reverse in the dislike frame, with attention mostly allocated to the

least valuable item. In other words, according to this second hypothesis, visual attention should pre-

dict choice (and the match between value and goal) and not value, independently of the frame

manipulation.

Our data strongly supported the second hypothesis because we found participants preferentially

gaze (Figure 2A) the higher value option during like (t(30) = 7.56, p<0.001) and the lower value

option during dislike frame (t(30) = -4.99, p<0.001). From a hierarchical logistic regression analysis

predicting choice (Figure 2B), the difference between the time participants spent observing the

right over left item (DDT) was a positive predictor of choice both in like (z = 6.448, p<0.001) and dis-

like (z = 6.750, p<0.001) frames. This means that participants looked for longer at the item that bet-

ter fits the frame and not at the item with the highest value. Notably, the magnitude of this effect

was slightly lower in the dislike case (t(30) = 2.31, p<0.05). In Figure 2B are also plotted the predic-

tors of the other variables on choice from the best fitting model.

Perceptual experiment
We then analysed the effect of attention on choice in the perceptual case to test the generality of

our findings. As in the Value Experiment, our data confirmed that participants did not have issues in

choosing the circle with more dots in the most frame and the one with least amount dots in the few-

est frame (Figure 1D,F). Furthermore, as in the Value Experiment and many other previous findings

(De Martino et al., 2013; Folke et al., 2017), confidence modulated the accuracy of their decisions

(Figure 1E). Critically for our main hypothesis, we found that participants’ gaze was preferentially

allocated to the relevant option in each frame (Figure 2C): they spent more time observing the circle

with more dots during most frame (t(31)=13.85, p<0.001) and the one with less dots during fewest

frame (t(31)=-10.88, p<0.001). DDT was a positive predictor of choice (Figure 2D) in most

(z = 10.249, p<0.001), and fewest (z = 10.449, p<0.001) frames. Contrary to the results in the Value

Experiment in which the effect of DDT on choice was slightly more marked in the like condition

(Figure 2B), in the Perceptual Study the effect of DDT was the opposite: DDT had a higher effect in

the fewest frame (DDTMost-Few: t(31)=-2.17, p<0.05)(Figure 2D). However, and most importantly, in

both studies DDT was a robust positive predictor of choice in both frame manipulations. To summa-

rise, these results show that in the context of a simple perceptual task, visual attention also has a

specific effect in modulating information processing in a goal-directed manner: subjects spend more

time fixating the option they will select, not necessarily the option with the highest number of dots.

In both Value and Perceptual Experiments, the most parsimonious models were reported in the

manuscript and in Figure 2B and D. For a full model comparison see Appendix 2—figure 1 and

Appendix 2—table 1. More details on the choice models are reported in the Appendix 2.

Fixations effects in choice
An important prediction of attentional accumulation models is that the chosen item is generally fix-

ated last (unless that item is much worse than the other alternative), with the magnitude of this effect

related to the difference in value between the alternatives. This feature of the decision has been con-

sistently replicated in various previous studies (Krajbich et al., 2010; Krajbich and Rangel, 2011;

Krajbich et al., 2012). We therefore tested how the last fixation was modulated by the frame

manipulation.
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Value experiment
In the Value Experiment in both frames, we replicated the last fixation effect and its modulation by

value difference between the last fixated option and the other one (Figure 3A). In the like frame,

the probability of choosing the last item fixated upon increases when the value of the last item is

higher, as is shown by the positive sign of the slope of the logistic curve (mean bLike = 0.922). Cru-

cially, during the dislike frame the opposite effect was found: the probability of choosing the last

seen option increases when the value of the non-chosen item is higher, seen from the negative slope

of the curve (mean bDislike = �0.951; DbLike-Dislike: t(30)=7.963, p<0.001).

Perceptual experiment
We observed the same pattern of results that in the Value Experiment (Figure 3B). In the most

frame, it was more probable that the last fixation was on the chosen item when the fixated circle

had a higher number of dots (mean bMost = 1.581). In the fewest frame, the effect flipped: it was

Figure 2. Attention and choice in Value and Perceptual Experiments. (A) Gaze allocation time depends on the frame: while visual fixations in the like

frame go preferentially to the item with higher value (top), during the dislike frame participants look for longer at the item with lower value (bottom).

Dots in the bar plot indicate participants’ average gaze time across trials for high and low value items. Time is expressed as the percentage of trial time

spent looking at the item. Similar results were found for gaze distribution in the Perceptual Experiment (C) participants gaze the circle with higher

number of dots in most frame and the circle with lower number of dots in fewest frame. Hierarchical logistic modelling of choice (probability of

choosing right item) in Value (B) and Perceptual (D) Experiments, shows that participants looked for longer (DDT) at the item they chose in both frames.

All predictors are z-scored at the participant level. In both regression plots, bars depict the fixed-effects and dots the mixed-effects of the regression.

Error bars show the 95% confidence interval for the fixed effect. In Value Experiment: DValue: difference in value between the two items (ValueRight–

ValueLeft); RT: reaction time; SValue: summed value of both items; DDT: difference in dwell time (DTRight– DTLeft); Conf: confidence. In Perceptual

Experiment: DDots: difference in dots between the two circles (DotsRight– DotsLeft); SDots: summed number of dots between both circles. ***p<0.001,

**p<0.01, *p<0.05.
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more likely that the last circle seen was chosen when it had fewer dots (mean bFew = �0.944; DbMost-

Few: t(31)=3.727, p<0.001).

The previous set of analysis shows that the last fixation is modulated by the difference in evidence

according to the goal that the participant is set to achieve. However, since the last fixation is in gen-

eral followed by the participant response, one could suspect that the goal-dependent modulation of

attention (i.e. DDT) we identified in our choice regression analysis (Figure 2) is entirely driven by the

final fixation. This would be problematic since one would have similar results to the one presented in

Figure 2 even if participants’ pattern of attention is not modulated by the goal (i.e. attention is

Figure 3. Fixation effects on the chosen item. Last fixation effects: (A) in the Value Experiment, a logistic regression was calculated for the probability

the last fixation is on the chosen items (P(LastFix = Chosen)) depending on the difference in value of the item last fixated upon and the alternative item.

As reported in previous studies, in like frame, we find it is more probable that the item last fixated upon will be chosen when the value of that item is

relatively higher. In line with the hypothesis that goal-relevant evidence, and not value, is being integrated to make the decision, during the dislike

frame the effect shows the opposite pattern: P(LastFix = Chosen) is higher when the value of the item last fixated on is lower, that is, the item fixated on

is more relevant given the frame. (B) A similar analysis in the Perceptual Experiment mirrors the results in the Value Experiment with a flip in the effect

between most and fewest frames. Lines represent the model predictions and dots are the data binned across all participants. DValue and DDots

measures are z-scored at the participant level. Gaze preference in time: (C) Pearson correlation between gaze position and difference in value (DValue)

was calculated for each time point during the first 2 s of the trials. In the Value Experiment, after an initial phase of random exploration, fixations are

positively correlated with the high value item in like frame, while this effect is the opposite for dislike frame, that is, fixations are directed to the low

value item. (D) In the Perceptual Experiment, a similar pattern of goal-relevant fixations emerges. Lines in both figures correspond to the time point

correlation considering all trials and participants. Shaded area corresponds to the standard error. Black line indicates time points with statistically

significant difference between frames, resulting from a permutation test (p-value<0.01 for at least 6 time bins, 60 ms). Correction for multiple

comparison was performed using FDR, a � 0.01.
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directed in both frames to the most valuable item) or even if the pattern of fixation, before the last

fixation, is random. To control for this possibility, we performed a series of further analyses:

First of all, we repeated the analysis presented in the previous section (hierarchical choice regres-

sion – Figure 2), removing the last two fixations when calculating the DDT. Note that we removed

the last two fixations and not just the last one to avoid statistical artefacts (i.e. since the final fixation

is mostly directed towards the chosen item there would be an increased probability that second to

last fixation is on the unchosen item). In Appendix 2—figure 3, we show that once removed the last

two fixations the pattern of results is unchanged.

Second, we specifically investigated the middle fixations. Previous studies (Krajbich et al., 2010;

Krajbich and Rangel, 2011; Tavares et al., 2017) have reported that middle fixations duration

increases when the difference in value ratings (or perceptual evidence) of the fixated minus unfixated

item increases. We replicated this result for our like and most frames but critically the effect was

reversed in dislike and fewest frames (i.e. middle fixations durations decreased when the relative

value of the fixated item was higher). The results suggesting that the goal-relevant modulation of

attention affects also the middle fixations are presented in the Appendix 3—figure 4.

Finally, we investigated in more detail how the relation between attentional allocation and differ-

ence in value or perceptual evidence changed over time in the context of the goal manipulation. We

calculated the Pearson correlation between fixation position (0: left, 1:right) and the difference in

evidence (i.e. DValue or DDots, in both cases right – left item) at different time points (Figure 3C).

We observed that after an initial phase in which there was no clear gaze preference for any of the

items (note that given the gaze-contingent design participants must explore both alternatives), fixa-

tions were correlated with the frame-relevant item: during like frame, fixations positions were posi-

tively correlated with DValue, that is the fixations were directed towards the item with higher value;

during dislike frame the behaviour was the opposite: fixations were negatively correlated with

DValue, indicating a preference for the option with lower value. Note that these results are in line

with the ones reported by Kovach et al., 2014. We see a very similar pattern of results in the Per-

ceptual Experiment too (Figure 3D).

Which factors determine confidence?
Value experiment
To explore the effect that behavioural factors had over confidence, we fitted a hierarchical linear

model (Figure 4A). As it was the case for the results presented above for the choice regression, the

results for the confidence regression in the like frame replicated all the effects reported in a previous

study from our lab (Folke et al., 2017). Again, we presented here the most parsimonious model

(Appendix 4—figure 1 and Appendix 4—table 1 for model comparison). We found that the magni-

tude of DValue (|DValue|) had a positive influence on confidence in like (z = 5.465, p<0.001) and dis-

like (z = 6.300, p<0.001) frames, indicating that participants reported higher confidence when the

items have a larger difference in value; this effect was larger in the dislike frame (t(30) = -4.72,

p<0.01). Reaction time (RT) had a negative effect on confidence in like (z = �6.373, p<0.001) and

dislike (z = �7.739, p<0.001) frames, that is, confidence was lower when the RTs were longer. Addi-

tionally, we found that, in both conditions, higher number of gaze switches (i.e. gaze shift frequency,

GSF) predicted lower values of confidence in like (z = �2.365, p<0.05) and dislike (z = �2.589,

p<0.05) frames, as reported in Folke et al., 2017.

We then looked at the effect of the summed value of both options, SValue, on confidence. As in

Folke et al., 2017, we found a positive effect of SValue on confidence in the like frame (z = 3.206,

p<0.01); that is, participants reported a higher confidence level when both options were high in

value. Interestingly, this effect was inverted in the dislike frame (z = �4.492, p<0.001), with a signifi-

cant difference between the two frames (t(30)=9.91, p<0.001) This means that, contrary to what hap-

pened in the like frame in which confidence was boosted when both items had high value, in the

dislike frame confidence increased when both items had low value. This novel finding reveals that

the change in context also generates a reassessment of the evidence used to generate the confi-

dence reports; that is, confidence also tracks goal-relevant information.
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Figure 4. Hierarchical linear regression model to predict confidence. (A) In Value Experiment, a flip in the effect of SValue over confidence in the dislike

frame was found. (B) In Perceptual Experiment, a similar pattern was found in the effect of SDots over confidence in the fewest frame. The effect of the

other predictors on confidence in both experiments and frames coincides with previous reports (Folke et al., 2017). All predictors are z-scored at the

participant level. In both regression plots, bars depict the fixed-effects and dots the mixed-effects of the regression. Error bars show the 95%

confidence interval for the fixed effect. In Value Experiment: DValue: difference in value between the two items (Valueright– Valueleft); RT: reaction time;

SValue: summed value of both items; DDT: difference in dwell time (DTright– DTleft); GSF: gaze shift frequency; DDT: difference in dwell time. In

Figure 4 continued on next page
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Perceptual experiment
We repeated the same regression analysis in the perceptual decision experiment, replacing value

evidence input with perceptual evidence (i.e. absolute difference in the number of dots, |DDots|). We

directly replicated all the results of the Value Experiment, generalising the effects we isolated to the

perceptual realm (Figure 4B). Specifically, we found that |DDots| had a positive influence on confi-

dence in most (z = 3.546, p<0.001) and fewest frames (z = 7.571, p<0.001), indicating that partici-

pants reported higher confidence when the evidence was stronger. The effect of absolute evidence

|DDots| on confidence was bigger in the fewest frame (t(31)=-4.716, p<0.001). RT had a negative

effect over confidence in most (z = �7.599, p<0.001) and fewest frames (z = �5.51, p<0.001),

that is, faster trials were associated with higher confidence. We also found that GSF predicted lower

values of confidence in most (z = �4.354, p<0.001) and fewest (z = �5.204, p<0.001) frames. Criti-

cally (like in the Value Experiment), the effect of the sum of evidence (SDots) on confidence also

changes sign depending on the frame. While SDots had a positive effect over confidence in the

most frame (z = 2.061, p<0.05), this effect is the opposite in the fewest frame (z = �7.135, p<0.001),

with a significant difference between the parameters in both frames (t(31)=14.621, p<0.001). The

magnitude of SDots effect was stronger in the fewest frame (t(31)=-10.438, p<0.001). For further

details on the confidence models see the Appendix 4 (Appendix 4—table 2 and Appendix 4 —table

3).

Attentional model: GLAM
To gain further insights into the dynamic of the information accumulation process, we modelled the

data from both experiments adapting a Gaze-weighted Linear Accumulator Model (GLAM) recently

developed by Thomas et al., 2019. The GLAM belongs to the family of race models and approxi-

mates the aDDM model (Krajbich et al., 2010; Krajbich and Rangel, 2011) in which the dynamic

aspect is discarded, favouring a more efficient estimation of the parameters. This model was chosen

since, unlike the aDDM, it allowed us to test the prediction of the confidence measures as balance

of evidence (Vickers, 1979; Kepecs et al., 2008; De Martino et al., 2013). Crucially, in both experi-

ments, we used goal-relevant evidence (not the value or the number of dots) to fit the models in the

dislike and fewest frames (for further details see the Materials and methods Attentional Model:

Glam section).

Parameter fit and simulation
Value experiment
The simulations estimated with the parameters fitted for like and dislike frames data (even-trials)

reproduced the behaviour observed in the data not used to fit the model (odd-trials). In both like

and dislike frames, the model replicated the observed decrease of RT when |DValue| is high, that is,

the increase in speed of response in easier trials (bigger value difference). The RT simulated by the

models significantly correlated with the RT values observed in participants odd-numbered trials

(Like: r(29)=0.90, p<0.001; Dislike: r(29)=0.89, p<0.001) (Figure 5A). In the like frame, the model

also correctly predicted a higher probability of choosing the right item when DValue is higher. In the

dislike frame, the model captured the change in the task goal and predicted that the selection of

the right item will occur when -DValue is higher, that is when the value of the left item is higher.

Overall, in both frames the observed and predicted probabilities of choosing the most valuable item

were significantly correlated (Like: r(29)=0.80, p<0.001; Dislike: r(29)=0.79, p<0.001) (Figure 5B).

See Appendix 5—figure 4A and Appendix 5—figure 5A for further details.

In both frames, the models also predicted choice depending on the difference in gaze

(DGaze = gright – gleft), that is, that the probability of choosing the right item increases when the

time spent observing that item is higher. However, in this case, we cannot say if gaze allocation itself

is predicting choice if we do not account for the effect of |DValue|. To account for the relationship

between choice and gaze, we used a measure devised by Thomas et al., 2019, ‘gaze influence’.

Figure 4 continued

Perceptual Experiment: DDots: difference in dots between the two circles (Dotsright– Dotsleft); SDots: summed number of dots between both circles.

***p<0.001, **p<0.01, *p<0.05.
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Gaze influence is calculated taking the actual choice (1 or 0 for right or left choice, respectively) and

subtracting the probability of choosing the right item given by a logistic regression for DValue calcu-

lated from actual behaviour. The averaged ‘residual’ choice probability indicates the existence of a

positive or negative gaze advantage. Then, we compared the gaze influence predicted by GLAM

with the empirical one observed for each participant. As in Thomas et al., 2019, most of the partici-

pants had a positive gaze influence and it was properly predicted by the model in both frames (Like:

r(29)=0.68, p<0.001; Dislike: r(29)=0.63, p<0.001) (Figure 5C).

Perceptual experiment
As in the Value Experiment, we fitted the GLAM to the data and we conducted model simulations.

Again, these simulations showed that we could recover most of the behavioural patterns observed in

participants. We replicated the relationship between RT and |DDots| (Most: r(26)=0.97, p<0.001;

Fewest: r(26)=0.98, p<0.001) (Figure 5D). As in the value-based experiment, the model also pre-

dicted a higher probability of choosing the right-hand item when DDots is higher in the most frame

and when -DDots is higher in the fewest frame. However, in the Perceptual Experiment, the simu-

lated choices only in the fewest frame were significantly correlated with the observed data, although

Figure 5. Individual out-of-sample GLAM predictions for behavioural measures in Value (A-C) and Perceptual Experiments (D–F). In value-based

decision, (A) the model predicts individuals mean RT; (B) the probability of choosing the item with higher value in like frame, and the item with lower

value in dislike frame; and (C) the influence of gaze in choice probability. In the Perceptual Experiment, (D) the model also predicts RT and (F) gaze

influence. (E) The model significantly predicts the probability of choosing the best alternative in the fewest frame only (in the most frame a trend was

found). The results corresponding to the models fitted with like/most frame data are presented in blue, and with dislike/fewest frame data in red. Dots

depict the average of observed and predicted measures for each participant. Lines depict the slope of the correlation between observations and the

predictions. Mean 95% confidence intervals are represented by the shadowed region in blue or red, with full colour representing Value Experiment and

striped colour Perceptual Experiment. All model predictions are simulated using parameters estimated from individual fits for even-numbered trials.
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we observed a non-significant trend in the most frame (Most: r(26)=0.69, p<0.001; Fewest: r(26)

=0.37, p=0.051) (Figure 5E). In both frames, we observed that the model predicted that choice was

linked to DGaze and, as in the Value Experiment, we show that the gaze influence predicted by the

model is indeed observed in the data (Most: r(26)=0.65, p<0.001; Fewest: r(26)=0.47, p<0.05)

(Figure 5F). See Appendix 5—figure 4B and Appendix 5—figure 5B for further details.

Results of the models fitted without accounting for the change in goal-relevant evidence provided

a poor fit of the data, these results are presented in Appendix 5—figures 1–3 and 6. For a direct

comparison of the different GLAM parameters see Appendix 6. Additionally, we were able to mirror

the results obtained with GLAM using aDDM (Krajbich et al., 2010; Tavares et al., 2017). For dis-

like and fewest frames, the best model was the one fitted using goal-relevant evidence (see Appen-

dix 7 for details).

Balance of evidence and confidence
The GLAM belongs to the family of race models in which evidence is independently accumulated for

each option. Therefore, using the GLAM we were able to adapt the model to estimate a measure of

confidence in the decision that is defined by the balance of evidence (Vickers, 1979; Vickers, 1970;

Kepecs et al., 2008; De Martino et al., 2013) allowing us to characterise the pattern of the

Figure 6. Balance of evidence (De) simulated with GLAM reproduces SValue and SDots effects over confidence. (A) GLAM is a linear stochastic race

model in which two alternatives accumulate evidence until a threshold is reached by one of them. De has been proposed as a proxy for confidence and

it captures the difference in evidence available in both accumulators once the choice for that trial has been made. (B) Using De simulations, we

captured the flip of the effect of SValue over confidence between like and dislike frames. De simulations were calculated using the model with

parameters fitted for each individual participant. A pooled linear regression model was estimated to predict De. The effects of SValue predicting De are

presented labelled as ’Model Sim’. A second set of simulations was generated using a model in which no asymmetries in gaze allocation were

considered (i.e. no attentional biases). This second model was not capable of recovering SValue effect on De and is labelled as ’Model Sim No Bias’.

SValue coefficients for a similar model using participants’ data predicting confidence are also presented labelled as ‘Human’ for comparison. (C) A

similar pattern of results is found in the Perceptual Experiment, with the model including gaze bias being capable of recovering SDots effect on De.

This novel effect may suggests that goal-relevant information is also influencing the generation of second-order processes, as confidence. This effect

may be originated by the attentional modulation of the accumulation dynamics. Coloured bars show the parameter values for SValue and SDots and

the error bars depict the standard error. Solid colour indicates the Value Experiment and striped colours indicate the Perceptual Experiment. All

predictors are z-scored at participants level.
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confidence measures. Balance of evidence is defined as the absolute difference between the accu-

mulators for each option at the moment of choice, which is when one of them reaches the decision

threshold (i.e., De = |Eright(tfinal) - Eleft(tfinal)|) (Figure 6A). To estimate De, we performed a large num-

ber of computer simulations using the fitted parameters for each participant in both experiments.

Value experiment
To confirm that the relationship between confidence and other experimental variables was captured

by the balance of evidence simulations, we constructed a linear regression model predicting De as

function of the values and the RTs obtained in the simulations (De ~ |DValue| + simulated RT +

SValue). We found that this model replicated the pattern of results we obtained experimentally (Fig-

ure 4). We then explored whether the model was able to recover the effect of SValue on confidence

(Figure 6B). As we have shown when analysing confidence, SValue boosted De in the like frame

(bSValue = 0.071, t(37196) = 14.21, p<0.001) and reduced De in the dislike frame (bSValue = �0.061, t

(37196) = �12.07, p<0.001). The effect of SValue over confidence was replicated in the simulations

with an increase of De when high value options are available to choose (Appendix 8—figure 1 and

Appendix 8—figure 3A,D for more details). In the dislike frame, the fitted model also replicated

this pattern of behaviour, including the adaptation to context which predicts higher De when both

alternatives have low value. Interestingly, the replication of the effect for SValue over De with GLAM

did not hold when the gaze bias was taken out of the model in like (bSValue = �0.007, t

(37196) = �1.495, p=0.13, ns) and dislike (bSValue = �0.002, t(37196) = �0.413, p=0.679, ns) frames

(Figure 6B). We also found that the effect of |DValue| on confidence was replicated by the simulated

balance of evidence, increasing De when the difference between item values is higher (i.e. partici-

pants and the model simulations are more ‘confident’ when |DValue| is higher) (Appendix 8—figure

1).

Perceptual experiment
We conducted a set of similar analyses and model simulations in the Value Experiment (Figure 6C).

We found that SDots boosted De in the most frame (Most : bSDots = 0.029, t(33596) = 4.71,

p<0.001) and reduced De in the fewest frame (Fewest : bSDots = �0.088, t(33596) = �14.41,

p<0.001) . As in the Value Experiment, this effect disappeared when the gaze bias was taken out of

the model (Most: bSDots = �0.0002, t(33596) = �0.04, p=0.96, ns; Fewest: bSDots = �0.006, t

(33596) = �1.03, p=0.29, ns) (see Appendix 8—figure 2 and Appendix 8—figure 3B,E for more

details).

Overall, these results show how the model is capable of capturing the novel empirical effect on

confidence we identified experimentally, giving computational support to the hypothesis that goal-

relevant evidence is fed to second order processes like confidence. It also hints at a potential origin

to the effects of the sum of evidence (i.e. SValue, SDots) on confidence: asymmetries in the accumu-

lation process, in particular the multiplicative effect of attention over accumulation of evidence, may

enhance the differences between items that are more relevant for the frame. This consequentially

boosts the level of confidence that participants have in their decisions.

A model of optimal information acquisition
We then sought to understand why participants systematically accumulated evidence depending on

the task at hand, instead of first integrating evidence using a task-independent strategy and then

emitting a response appropriate with the task. We reasoned that this may reflect a response in line

with models of rational information acquisition popular in economics. These include models of so-

called rational inattention, according to which agents are rationally choosing which information to

acquire considering the task, the incentives, and the cost of acquiring and processing information

(Sims, 2003; Sims, 2010; Caplin and Dean, 2015; Hébert and Woodford, 2017). As opposed to

DDM or GLAM, these models attempt to investigate not only what the consequences of information

acquisition are, but also which information is acquired.

In this model, we consider an agent facing n available options. Each item i has value vi to the

agent, which is unknown, and agents have a prior such that values follow an independent, identical

distribution; for simplicity, we assume it to be a Normal vi ~Nð�;s
2

�Þ. Agents can acquire information

in the form of signals xi ¼ vi þ �i, with �i independently and identically distributed with �i ~Nð0; s2

� Þ.
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They follow Bayes’ rule in updating their beliefs after information. Once they finish acquiring infor-

mation, they then choose the item with the highest expected value.

Consider first the case in which an agent needs to pick the best item out of n possible ones. Sup-

pose that she already received one signal for each item. Denote i1 the item for which the agent

received the highest signal, which is also the item with the highest expected value; i2 the second

highest, etc. (Because each of these is almost surely unique, let us for simplicity assume they are

indeed unique). The agent can acquire one additional signal about any of the available items or

select any probability distribution over signals. The following proposition shows that it is (weakly)

optimal for the agent to acquire a second signal about the item that is currently best, that is, i1.

Denote D the set of all probability distributions over signals and V ið Þ the utility after acquiring a

new signal xi;2 about item i, that is,

VðiÞ :¼ max
j21;...;n

E½vjjx1; :::;xN ;xi; 2� (1)

Proposition 1. The optimal strategy when choosing the best option is to acquire one more signal

about item i1 or i2, that is, either the item with the currently highest expected value or the one with

second highest value. That is:

E½Vði1Þ� ¼E½Vði2Þ� �max
p2D

Xn

i¼1

pðiÞVðiÞ

and E½Vði1Þ�>E½VðijÞ� 8j 6¼ 1;2

(2)

This proposition shows that agents have asymmetric optimal sampling strategies: they are not

indifferent between which item to sample, but rather want to acquire extra signals about items that

current look best or second-best. (They are indifferent between the latter two). When n>2; these

strategies are strictly better than acquiring signals about any other item.

How would this change if agents need instead to pick which item to eliminate, assuming that she

gets the average utility of the items she keeps? In this case, the expected utility after acquiring a

new signal xi;2 about item i is:

bVðiÞ :¼ max
j21;...;n

E

P
i 6¼j vj

n� 1
jx1; :::;xN ;xi;2

� �
: (3)

Then, it is optimal to receive an additional signal about the least valuable item in or the next one,

in�1:

Proposition 2. The optimal strategy when choosing which item to discard is to acquire one more

signal about item in or in�1, that is, either the one with the lowest or the one with the second lowest

value. That is:

E bVðinÞ
h i

¼E bVðin�1Þ
h i

�max
p2D

Xn

i¼1

pðiÞbVðiÞ

and E bVðinÞ
h i

>E bVðijÞ
h i

8j 6¼ n;n� 1

(4)

For a proof of both propositions, see Appendix 9.

Again, agents have asymmetric optimal sampling strategies: but now, they want to sample the

items that currently look worse again. The intuition behind both results is that when one has to

choose the best item, it is more useful to acquire information that is likely to change the ranking at

the top (i.e. between best or second best item) than information that changes the ranking at the bot-

tom, since these items won’t be selected (e.g. 4th and 5th item). Crucially, the reverse is true when

one is tasked to select which item to eliminate.

This shows how in these simple tasks it is strictly more advantageous to acquire information in

line with the current goal rather than adopting a goal-independent information-acquisition strategy.

Our model suggests that in many ecological settings, in which there are more than two options,

the optimal strategy involves acquiring asymmetric information depending on the goal. It is only

when there are only two options that individuals are indifferent about which information to acquire.

We propose that the asymmetric strategies we observe even in this latter case might be a conse-

quence of the fact that individuals have developed a strategy that is optimal for the more frequent,
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real-life cases in which n>2; and continue to implement this same asymmetric strategy to binary

choices, where it remains optimal.

Discussion
In this study, we investigated how framing affects the way in which information is acquired and inte-

grated during value-based and perceptual choices. Here, using psychophysics together with compu-

tational and economic models we have been able to adjudicate between two contrasting

hypotheses. The first one, currently the dominant one in the field of neuroeconomics, proposes that

attention modulates (either by biasing or boosting) a value integration that starts at the beginning of

the deliberation process. Subsequently, at the time of the decision, the participant would give the

appropriate response (in our task accepting the option with the highest value or rejecting the one

with lowest one) using the value estimate constructed during this deliberation phase. The second

hypothesis suggests that, from the very start of the deliberation process, the task-frame (goal) influ-

ences the type of information that is integrated. In this second scenario, attention is not automati-

cally attracted to high value items to facilitate their accumulation but has a more general role in

prioritising the type of information that is useful for achieving the current behavioural goal. Impor-

tantly, these two hypotheses make very distinct predictions about the pattern of attention and sug-

gest very different cognitive architecture underpinning the decision process.

Our results favour the second hypothesis: specifically, we show that, in both perceptual and

value-based tasks, attention is allocated depending on the behavioural goal of the task. Although

our study does not directly contradict previous findings (Krajbich et al., 2010; Krajbich and Rangel,

2011; Cavanagh et al., 2014; Smith and Krajbich, 2019), it adds nuance to the view that this is a

process specifically tied to value integration (defined as a hedonic or reward attribute). Our findings

speak in favour of a more general role played by attention in prioritising the information needed to

fulfil a behavioural goal in both value and perceptual choices (Gottlieb, 2012; Kovach et al., 2014;

Glickman et al., 2018). Importantly, the seeking of goal-relevant information is observed along the

trial, opposing the assumption that attentional sampling is random except for the last fixation

(Krajbich et al., 2010; Krajbich and Rangel, 2011; see Gluth et al., 2018; Gluth et al., 2020 for

additional support for this idea). Pavlovian influences have been proposed to play a key role in the

context of accept/reject framing manipulation (De Martino et al., 2006; Guitart-Masip et al., 2012;

Guitart-Masip et al., 2014; Dayan, 2012). However, the fact that we found almost identical results

in a follow-up perceptual study in which the choice was not framed in terms of ‘accept’ or ‘reject’

but using a different kind of instruction (i.e. ‘choose the option with fewer or more dots’) suggests

that attention acts on a more fundamental mechanism of information processing that goes beyond

simple Pavlovian influences.

We also measured the trial-by-trial fluctuations in confidence to gain a deeper insight in the

dynamics of this process. We found that the role of confidence goes beyond that of simply tracking

the probability of an action being correct, as proposed in standard signal detection theory. Instead,

it is also influenced by the perceived sense of uncertainty in the evaluation process (Navajas et al.,

2017; Vaghi et al., 2017), and contextual cues (Lebreton et al., 2019). In turn, confidence influen-

ces future responses and information seeking (Folke et al., 2017; Guggenmos et al., 2016;

Fleming et al., 2018; Rollwage et al., 2018). In previous work (Folke et al., 2017), we reported

how, in value-based choice, confidence was related not only to the difference in value between the

two items, but also to the summed value (DValue and SValue using the current notation), and we

found that confidence was higher if both items have a high value (Folke et al., 2017). Here, we repli-

cate this effect in both experiments in the like and most conditions. However, this effect flips in the

dislike or fewest frame: in these cases, confidence increases when the summed value or number of

dots is smaller. This result is particularly striking since the frame manipulation should be irrelevant

for the purpose of the decision and has little effect on the objective performance. This suggests that

similarly to attention, the sense of confidence is also shaped by the behavioural goal that partici-

pants are set to achieve.

In both experiments, the incorporation of goal-relevant evidence to fit the GLAM resulted in a

better model fit compared with the model in which the value or perceptual evidence was integrated

independently of the frame. We then modified the GLAM to include a measure of confidence

defined as balance of evidence (De) (Vickers, 1979; Kepecs et al., 2008; De Martino et al., 2013).
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In doing so we confirm that our model can replicate all the main relations between confidence,

choice and RT. We then tested if the model simulation was also recovering the flip in the relationship

between confidence and summed evidence (SValue or SDots) triggered by the frame manipulation.

We found the model captures this effect only if the attentional bias is included in the simulations.

The boost in De when goal-relevant evidence in both alternatives is high can attributed to the archi-

tecture of the model: gaze has a multiplicative effect over evidence accumulation. For example, con-

sider a case with two items of value A1 = 2 and A2 = 1, and a discount factor for the unattended

item u = 0.3. Assuming the item with higher value is gazed more we could express, in a very simpli-

fied way, the De for this choice as DeA = A1-A2*u = 2–1*0.3 = 1.7. Consider now two new items with

identical DValue but higher magnitude of the SValue, B1 = 10 and B2 = 9. Notice that since DValue is

the same, this choice in absence of attentional effect should be considered of identical difficulty than

in case A (A1-A2 = B1-B2 = 1), and therefore the agent should be neither more, nor less confident.

But, keeping the same attentional factors than for the first set, we have that the De between the

items increases, DeB = B1-B2*u = 10–9*0.3 = 7.3 (DeA<DeB). This effect would not be observed if

attention affected evidence accumulation in an additive way (A1-(A2-u) = B1-(B2-u)). Our empirical

confidence data therefore provide further support to a multiplicative (Smith and Krajbich, 2019)

instead of additive effect of attention into goal-relevant information. Overall, these data speak in

favour of a coding scheme in which the goal sets, from the beginning of the task, the allocation of

attention and, by doing so, influences first-order processes such as choice, but also second order

process such as confidence. Further empirical data will be required to test this idea more stringently.

The idea that the goal of the task plays a central role in shaping value-based decisions should not

be surprising. Indeed, value-based decision is often called goal-directed choice. Nevertheless, there

has been a surprisingly little amount of experimental work in which the behavioural goal has been

directly manipulated as the key experimental variable for studying the relation between attention

and value. Notable exceptions are two recent studies from Frömer et al., 2019 and Kovach et al.,

2014. In the first study (Frömer et al., 2019), participants were shown a set of four items and asked,

in half of the trials, to determine the best item and, in the second half, the worst item. In line with

our findings, they found that behaviour and neural activity in the ‘value network’, including vmPFC

and striatum, was determined by goal-congruency and did not simply reflected the expected

reward. In the second study, Kovach et al., 2014 implemented a design similar to our value-based

experiment in which participants were required to indicate the item to keep and the one to discard.

They found, similarly to our findings in the value-based experiment, that the overall pattern of atten-

tion was mostly allocated according to the task goal. However, in the first few hundred milliseconds,

these authors found that attention was directed more prominently to the most valuable item in both

conditions. We did not replicate this last finding in our experiment (see Figure 3C and D and

Appendix 2—figure 2, showing that fixations were randomly allocated during the early moments of

the trial). One possible reason for this discrepancy is that the experiment by Kovach and colleagues

presented both items on the screen at the beginning of the task – unlike in our task, in which the

item was presented in a gaze-contingent way (to avoid processing in the visual periphery). This set-

ting might have triggered an initial and transitory bottom-up attention grab from the most valuable

(and often most salient) item before the accumulation process started.

To gain a deeper insight into our findings, we developed a normative model of optimal informa-

tion acquisition rooted in economic decision theory. Our model shows that in many real-life scenarios

in which the decision set is larger than two, the optimal strategy to gather and integrate information

depends on the behavioural goal. Intuitively, this happens because new information is all the more

useful the more likely it is to change the behavioural output, that is, the choice. When the agent

needs to select the best item in a set, it is best to search for evidence that it is more likely to affect

the top of the ranking (e.g. is the best item still the best one?); information that changes the middle

or the bottom of the ranking is instead less valuable (e.g. is the item ranked as seven is now ranked

as six?) because it would not affect the behavioural output. When choosing which item to discard,

instead, the optimal strategy involves acquiring information most informative of the bottom of the

ranking and not the top. We propose that even in the context of binary choice studied here, humans

might still deploy this normative strategy (for multi-alternative choice), and that while it does not

provide a normative advantage, it is not suboptimal. Further work in which the size of the set is

increased would be required to test this idea more stringently. Notably, two recent pre-prints have

also introduced models to explain how the attentional patterns in choice are generated assuming
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optimal information sampling (Jang et al., 2020; Callaway et al., 2020). Both models are based on

Bayesian updates of value beliefs, with visual attention playing a role in selecting the information to

sample. However, both studies were developed considering only a standard appetitive like frame

(Krajbich et al., 2010 study was used as benchmark in both cases).

The most far reaching conclusion of our work is that context and behavioural demand have a

powerful effect on how information is accumulated and processed. Notably, our data show that this

is a general effect that spans both more complex value-based choice and simpler perceptual choice.

Our conclusion is that, given the limited computational resources of the brain, humans have devel-

oped a mechanism that prioritises the processing or recollection of the information that is most rele-

vant for the behavioural response that is required. This has profound implications when we think

about the widespread effect of contextual information on decision making that has been at the core

of the research in psychology, behavioural economics and more recently neuroeconomics

(Kahneman and Tversky, 1984; Kahneman and Tversky, 2000; Camerer et al., 2004; De Martino

et al., 2006; Glimcher and Fehr, 2014). Most of these contextual or framing effects have been

labelled as ‘biases’ because, once one strips away the context, the actual available options should

remain identical. However, this perspective may not be putting enough emphasis on the fact that

the decision maker has to construct low dimensional (and therefore imperfect) representations of

the decision problem. As we have shown here, from the very beginning of the deliberation process,

the context — even when it is simple (like/dislike, most/fewest) or irrelevant from the experimenter

perspective — affects which information is processed, recalled, or attended to, with effects that

spread into post-decision processing such as confidence estimation. This, as a consequence, will pro-

duce profoundly dissimilar representations according to the behavioural goal set by the context.

With this shift of perspective, it may well be the case that many of the so-called ‘biases’ will be

shown in a new light, given that participants are dealing with very different choices once the behav-

ioural goal changes. This viewpoint might provide a more encouraging picture of the human mind,

by suggesting that evolution has equipped us well to deal with ever-changing environments in the

face of limited computational resources.

Materials and methods

Procedure
Value experiment
At the beginning of this experiment, participants were asked to report on a scale from £0 to £3 the

maximum they would be willing to pay for each of 60 snack food items. They were informed that this

bid will give them the opportunity to purchase a snack at the end of the experiment, using the BDM

(Becker et al., 1964), which gives them incentives to report their true valuation. Participants were

asked to fast for 4 hr previous to the experiment, expecting they would be hungry and willing to

spend money to buy a snack.

After the bid process, participants completed the choice task: in each trial, they were asked to

choose between two snack items, displayed on-screen in equidistant boxes to the left and right of

the centre of the screen (Figure 1A). After each binary choice, participants also rated their subjective

level of confidence in their choice. Pairs were selected using the value ratings given in the bidding

task: using a median split, each item was categorised as high- or low-value for the agent; these were

then combined to produce 15 high-value, 15 low-value, and 30 mixed pairs, for a total of 60 pairs

tailored to the participant’s preferences. Each pair was presented twice, inverting the position to

have a counterbalanced item presentation.

The key aspect of our experimental setting is that all participants executed the choice process

under two framing conditions: (1) a like frame, in which participants were asked to select the item

that they liked the most, that is, the snack that they would prefer to eat at the end of the experiment

and (2) a dislike frame in which participants were asked to select the item that they liked the least,

knowing that this is tantamount to choosing the other item for consumption at the end of the experi-

ment. See Figure 1A for a diagram of the task.

After four practice trials, participants performed a total of 6 blocks of 40 trials (240 trials in total).

Like and dislike frames were presented in alternate blocks and the order was counterbalanced across

participants (120 trials per frame). An icon in the top-left corner of the screen (‘thumbs up’ for like
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and ‘stop sign’ for dislike) reminded participants of the choice they were required to make; this was

also announced by the investigator at the beginning of every block. The last pair in a block would

not be first in the subsequent block.

Participants’ eye movements were recorded throughout the choice task and the presentation of

food items was gaze-contingent: participants could only see one item at a time depending on which

box they looked at; following Folke et al., 2017, this was done to reduce the risk that participant,

while gazing one item, would still look at the other item in their visual periphery.

Once all tasks were completed, one trial was randomly selected from the choice task. The BDM

bid value of the preferred item (the chosen one in the like frame and the unchosen one in the dislike

frame) was compared with a randomly generated number between £0 and £3. If the bid was higher

than the BDM generated value, an amount equivalent to the BDM value was subtracted from their

£20 payment and the participant received the food item. If the bid was lower than the generated

value, participants were paid £20 for their time and did not receive any snack. In either case, partici-

pants were required to stay in the testing room for an extra hour and were unable to eat any food

during this time other than food bought in the auction. Participants were made aware of the whole

procedure before the experiment began.

Perceptual experiment
Perceptual Experiment had a design similar to the one implemented in Value Experiment, except

that alternatives were visual stimuli instead of food items. In this task, participants had to choose

between two circles filled with dots (for a schematic diagram see Figure 1), again in two frames. In

the most frame, they had to pick the one with more dots; and the one with fewer dots in the fewest

frame. The total number of dots presented in the circles could have three numerosity levels (=50, 80

and 110 dots). For each pair in those three levels, the dot difference between the circles varied in 10

percentage levels (ranging from 2% to 20% with 2% steps). To increase the difficulty of the task, in

addition to the target dots (blue-green coloured), distractor dots (orange coloured) were also

shown. The number of distractor dots was 80% of that of target dots (40, 64, 88 for the three numer-

osity levels, respectively). Pairs were presented twice and counterbalanced for item presentation.

After 40 practice trials (20 initial trials with feedback, last 20 without), participants completed 3

blocks of 40 trials in the most frame and the same number in the fewest frame; they faced blocks

with alternating frames, with a presentation order counterbalanced across participants. On the top

left side of the screen a message indicating Most or Fewest reminded participants of the current

frame. Participants reported their confidence level in making the correct choice at the end of each

trial. As in the previous experiment, the presentation of each circle was gaze contingent. Eye track-

ing information was recorded for each trial. Participants received £7.5 for 1 hr in this study.

Both tasks were programmed using Experiment Builder version 2.1.140 (SR Research).

Exclusion criteria
Value experiment
We excluded individuals that met any of the following criteria:

1. Participants used less than 25% of the BDM value scale.
2. Participants gave exactly the same BDM value for more than 50% of the items.
3. Participants used less than 25% of the choice confidence scales.
4. Participants gave exactly the same confidence rating for more than 50% of their choices.
5. Participants did not comply with the requirements of the experiment (i.e., participants that

consistently choose the preferred item in dislike frame or their average blink time is over 15%
of the duration of the trials).

Perceptual experiment
Since for Perceptual Experiment the assessment of the value scale is irrelevant, we excluded partici-

pants according to criteria 3, 4, and 5.
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Participants
Value experiment
Forty volunteers gave their informed consent to take part in this research. Of these, 31 passed the

exclusion criteria and were included in the analysis (16 females, 17 males, aged 20–54, mean age of

28.8). One participant was excluded for using less than 25% of the bidding scale (criteria 1). A sec-

ond participant was excluded according to criteria 2 as they frequently gave the same bid value. A

further four participants were excluded under criteria 4. Three participants were excluded due to cri-

teria 5. In the latter case, one participant’s eye-tracking data showed the highest number of blink

events and made choices without fixating any of the items; the other two did not comply with the

frame manipulation. To ensure familiarity with the snack items, all the participants in the study had

lived in the UK for 1 year or more (average 17 years).

Perceptual experiment
Forty volunteers were recruited for the second experiment. Thirty-two participants (22 females, 10

males, aged 19–50, mean age of 26.03) were included in the behavioural and regression analyses.

Three participants were excluded for repetition of the confidence rating (criteria 4). Five participants

were removed for criteria 5: four of them had performance close to chance level or did not followed

the frame modification, and one participant presented difficulties for eye-tracking. Due to instability

in parameter estimation (problem of MCMC convergence), four additional participants were

removed from the GLAM modelling analysis.

All participants signed a consent form, and both studies were done following the approval given

by the University College London, Division of Psychology and Language Sciences ethics committee.

Eye-tracking
Value and perceptual experiments
An Eyelink 1000 eye-tracker (SR Research) was used to collect the visual data. Left eye movements

were sampled at 500 Hz. Participants rested their heads over a head support in front of the screen.

Display resolution was of 1024 � 768 pixels. To standardise the environmental setting and the level

of detectability, the lighting was monitored in the room using a dimmer lamp and light intensity was

maintained at 4 ± 0.5 lx at the position of the head-mount when the screen was black.

Eye-tracking data were analysed initially using Data Viewer (SR Research), from which reports

were extracted containing details of eye movements. We defined two interest-areas (IA) for left and

right alternatives: two squares of 350 � 350 pixels in Value Experiment and two circles of 170 pixels

of radius for Perceptual Experiment. The data extracted from the eye-tracker were taken between

the appearance of the elements on the screen (snack items or circle with dots in experiments 1 and

2, respectively) and the choice button press (confidence report period was not considered for eye

data analysis).

The time participants spent fixating on each IA was defined the dwelling time (DT). From it, we

derived a difference in dwelling time (DDT) for each trial by subtracting DT of the right IA minus the

DT of the left IA. Starting and ending IA of each saccade were recorded. This information was used

to determine the number of times participants alternated their gaze between IAs, that is, ‘gaze

shifts’. The total number of gaze shifts between IAs was extracted for each trial, producing the gaze

shift frequency (GSF) variable.

Data analysis: behavioural data
Behavioural measures during like/dislike and most/fewest frames were compared using statistical

tests available in SciPy. Sklern toolbox in Python was used to perform logistic regressions on choice

data. Fixation time series analysis was performed following Kovach et al., 2014 methodology. We

segmented the time series of all the trials in samples of 10 ms. We fixed all the trials time series to

the beginning of the trial, when participant could start exploring the gaze-contingent alternatives.

We considered an analysis window of 2000 ms after the presentation of stimuli for all the trials.

Please notice that not all the trials have the same duration and no temporal normalisation was per-

formed in this analysis. For each time sample, we obtained the gaze position and the difference in

evidence (i.e. DValue or DDots) for all trials across participants and then Pearson correlation was cal-

culated. Permutations testing was used to assess the difference between the time series in like/
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dislike and most/fewest frames. Instantaneous fixations (across trials and frames) were shuffled 200

times to create a null distribution of the difference of correlation coefficients between frames. False

discovery rate (FDR) was used to correct for multiple tests the p-values obtained from the permuta-

tion test (a � 0.01). All the hierarchical analyses were performed using lme4 package (Bates et al.,

2015) for R integrated in a Jupyter notebook using the rpy2 package (https://rpy2.readthedocs.io/

en/latest/). For choice models, we predicted the log odds ratio of selecting the item appearing at

the right. Fixed-effects confidence interval were calculated by multiplying standard errors by 1.96.

Additionally, we predicted confidence using a linear mixed-effects model. Predictors were all

z-scored at participant level. Matplotlib/Seaborn packages were used for visualisation.

Data analysis: attentional model - GLAM
To get further insight on potential variations in the evidence accumulation process due to the

change in frames we used the Gaze-weighted Linear Accumulator Model (GLAM) developed by

Thomas et al., 2019. GLAM is part of the family of linear stochastic race models in which different

alternatives (i, i.e. left or right) accumulate evidence (Ei) until a decision threshold is reached by one

of them, determining the chosen alternative. The accumulator for an individual option is described

by the following expression:

EiðtÞ ¼ Eiðt� 1Þþ nRiþ �t

with �t ~Nð0;sÞ and Eiðt¼ 0Þ ¼ 0
(5)

With a drift term (n) controlling the speed of relative evidence (Ri) integration and i.i.d. noise

terms with normal distribution (zero-centered and standard deviation s). Ri is a term that expresses

the amount of evidence that is accumulated for item i at each time point t. This is calculated as fol-

lows. We denote by gi, the relative gaze term, calculated as the proportion of time that participants

observed item i:

gi ¼
DTi

DT1 þDT2
(6)

with DT as the dwelling time for item i during an individual trial. Let ri denote the value for item i

reported during the initial stage of the experiment. We can then define the average absolute evi-

dence for each item (Ai) during a trial:

Ai ¼ giriþð1� giÞgri (7)

This formulation considers a multiplicative effect of the attentional component over the item

value, capturing different rates of integration when the participant is observing item i or not (unbi-

ased and biased states, respectively). The parameter g is the gaze bias parameter: it controls the

weight that the attentional component has in determining absolute evidence. Thomas et al., 2019

interpret g as follows: when g = 1, bias and unbiased states have no difference (i.e. the same r is

added to the average absolute evidence regardless the item is attended or not); when g <1, the

absolute evidence is discounted for the biased condition; when g <0, there is a leak of evidence

when the item is not fixated. Following Thomas et al., 2019, in our analysis, we allowed g to take

negative values, but our results do not change if g is restricted to [0, 1] (Appendix 6—figure 2).

Finally, the relative evidence of item i, Ri
*, is given by:

R�
i ¼ Ai�maxjðAjÞ ¼ Ai �Aj ! R�

right ¼�R�
left (8)

Since our experiment considers a binary choice the original formulation of the model

(Thomas et al., 2019), proposed for more than two alternatives, Ri
* is reduced to subtract the aver-

age absolute evidence of the other item. Therefore, for the binary case, the Ri
* for one item will be

additive inverse of the other, for example if the left item has the lower value, we would have Rleft
* <0

and Rright
* >0. Additionally, in their proposal for GLAM, Thomas et al., 2019 noted that Ri

* range will

depend on the values that the participant reported, for example evidence accumulation may appear

smaller if participant valued all the items similarly, since Ri
* may be lower in magnitude. This may not

represent the actual evidence accumulation process since participants may be sensitive to marginal
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differences in relative evidence. To account for both of these issues, a logistic transformation is

applied over Ri
* using a scaling parameter t:

Ri ¼
1

1þ e�t R�
i

(9)

In this case, Ri will be always positive and the magnitude of the difference between Rleft and Rright

will be controlled by t, for example higher t will imply a bigger difference in relative evidence (and

hence accumulation rate) between left and right item. In the case that t = 0 the participant will not

present any sensitivity to differences in relative evidence.

Given that Ri represents an average of the relative evidence across the entire trial, the drift rate in

Ei can be assumed to be constant, which enables the use of an analytical solution for the passage of

time density. Unlike aDDM (Krajbich et al., 2010), GLAM does not deal with the dynamics of atten-

tional allocation process in choice. Details of these expressions are available at Thomas et al., 2019.

In summary, we have four free parameters in the GLAM: n (drift term), g (gaze bias), t (evidence scal-

ing), and s (normally distributed noise standard deviation).

The model fit with GLAM was implemented at a participant level in a Bayesian framework using

PyMC3 (Salvatier et al., 2016). Uniform priors were used for all the parameters:

v~Uniform 1
�10;0:01

� �

g~Uniform �1;1ð Þ

s~Uniform 1
�10;5

� �

t ~Uniform 0;5ð Þ

Value experiment
We fitted the model for each individual participant and for like and dislike frames, separately. To

model participant’s behaviour in the like frame, we used as input for GLAM the RTs and choices,

plus BDM bid values and relative gaze for left and right alternatives for each trial. The original GLAM

formulation (as presented above) assumes that evidence is accumulated in line with the preference

value of a particular item (i.e. ‘how much I like this item’). When information about visual attention is

included in the model, the multiplicative model in GLAM assumes that attention will boost the evi-

dence accumulation already defined by value. Our proposal is that evidence accumulation is a flexi-

ble process in which attention is attracted to items based on the match between their value and

task-goal (accept or reject) and not based on value alone, as most of the previous studies have

assumed. Since in the dislike frame the item with the lower value becomes relevant to fulfil the task,

we considered the opposite value of the items (ri,dislike = 3 - ri,like, e.g. item with value 3, the maxi-

mum value, becomes value 0) as an input for GLAM fit. For both conditions, model fit was per-

formed only on even-numbered trials using Markov-Chain-Monte-Carlo sampling, using

implementation for No-U-Turn-Sampler (NUTS), four chains were sampled, 1000 tuning samples

were used, 2000 posterior samples to estimate the model parameters. The convergence was diag-

nosed using the Gelman-Rubin statistic (|R̂ – 1|<0.05) and also corroborating that the effective sam-

ple size (ESS) was high (ESS >100) for the four parameters (n, g, s, and t). Considering all the

individual models, we found divergences in less than 3% of the estimated parameters. Model com-

parison was performed using Watanabe-Akaike Information Criterion (WAIC) scores available in

PyMC3, calculated for each individual participant fit.

Pointing to check if the model replicates the behavioural effects observed in the data

(Palminteri et al., 2017), simulations for choice and response time (RT) were performed using partic-

ipant’s odd trials, each one repeated 50 times. For each trial, value and relative gaze for left and

right items were used together with the individual estimated parameters. Random choice and RT

(within a range of the minimum and maximum RT observed for each particular participant) were set

for 5% of the simulations, replicating the contaminating process included in the model as described

by Thomas et al., 2019.
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Additionally, we simulated the accumulation process in each trial to obtain a measure of balance

of evidence (Vickers, 1970; Vickers, 1979) for each trial. The purpose of this analysis was to repli-

cate the effect of SValue over confidence (check Results for details) and check if it arises from the

accumulation process and its interaction with attention. Balance of evidence in accumulator models

has been used previously as an approximation to the generation of confidence in perceptual and

value-based decision experiments (Vickers, 1979; Smith and Vickers, 1988; De Martino et al.,

2013). Consequently, using the value of the items and gaze ratio from odd-numbered trials, we sim-

ulated two accumulators (Equation 5), one for each alternative. Our simulations used the GLAM

parameters obtained from participant’s fit. Once the boundary was reached by one of the stochastic

accumulators (fixed boundary = 1), we extracted the simulated RT and choice. The absolute differ-

ence between the accumulators when the boundary was reached (De = |Eright(tfinal) - Eleft(tfinal)|) deliv-

ered the balance of evidence for that trial. In total 37,200 trials were simulated (10 repetitions for

each one of the trials done by the participants). A linear regression model to predict simulated De

using |DValue|, simulated RT and SValue as predictors was calculated with the pooled participants’

data. This model was chosen since it was the most parsimonious model obtained to predict partici-

pant’s confidence in the Value Experiment (Appendix 4—figure 1). The best model includes GSF as

predictor in the regression, but since GLAM does not consider the gaze dynamics we removed it

from the model. De simulations using a GLAM without gaze influence (i.e. equal gaze time for each

alternative) were also generated, to check if gaze difference was required to reproduce SValue

effect over confidence. The parameters fitted for individual participants were also used in the no-

gaze difference simulation. The same linear regression model (De ~ |DValue| + simulated RT +

SValue) was used with the data simulated with no-gaze difference.

Perceptual experiment
In the Perceptual Experiment, we repeated the same GLAM analysis done in Value Experiment. Due

to instabilities in the parameters’ fit for some participants, we excluded four extra participants.

Twenty-eight participants were included in this analysis. Additionally, the GLAM fit in this case was

done removing outlier trials, that is, trials with RT higher than 3 standard deviations (within partici-

pant) or higher than 20 s. Overall less than 2% of the trials were removed. For most frame, relative

gaze and perceptual evidence (number of dots) for each alternative were used to fit choice and RT.

In a similar way to the consideration taken in the dislike case, we reassigned the perceptual evidence

in the fewest frame (ri,fewest = 133 - ri,most+ 40 , considering that 133 is the higher number of dots

presented and 40 dots the minimum) in a way that the options with higher perceptual evidence in

the most frame have the lower evidence in the fewest frame. The same MCMC parameters used to

fit the model for each participant in the Value Experiment were used in this case (again, only even-

numbered trials were used to fit the model). As in the Value Experiment, model convergence was

assessed using R̂ and ESS. Overall, we observed divergences in less than 2% of parameter estima-

tions across participants. Behavioural out-of-sample simulations (using the odd-numbered trials) and

balance of evidence simulations (33,600 trials simulated in the Perceptual Experiment) were consid-

ered in this analysis. We tested the effect of SDots over confidence with a similar linear regression

model than the one used in the Value Experiment. Pooled participants’ data for |DDots|, simulated

RT and SDots was used to predict De. De simulations using a GLAM without gaze asymmetry were

also calculated in this case. All the figures and analysis were done in Python using GLAM toolbox

and custom scripts.

Acknowledgements
This study was funded by a Sir Henry Dale Fellowship (102612/A/13/Z) awarded to Benedetto De

Martino by the Wellcome Trust. Pradyumna Sepulveda was funded by the Chilean National Agency

for Research and Development (ANID)/Scholarship Program/DOCTORADO BECAS CHILE/2017–

72180193. We thank Antonio Rangel for his valuable comments on an earlier version of the manu-

script and Mariana Zurita for the help in the proofreading of the manuscript.

Sepulveda et al. eLife 2020;9:e60705. DOI: https://doi.org/10.7554/eLife.60705 21 of 58

Research article Neuroscience

https://doi.org/10.7554/eLife.60705


Additional information

Funding

Funder Grant reference number Author

Chilean National Agency for
Research and Development

Graduate student
scholarship - DOCTORADO
BECAS CHILE/2017 -
72180193

Pradyumna Sepulveda

Wellcome Trust Sir Henry Dale Fellowship
(102612 /A/13/Z)

Benedetto De Martino

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Pradyumna Sepulveda, Conceptualization, Resources, Data curation, Software, Formal analysis,

Funding acquisition, Validation, Investigation, Visualization, Methodology, Writing - original draft,

Project administration, Writing - review and editing; Marius Usher, Supervision, Methodology, Writ-

ing - review and editing; Ned Davies, Amy A Benson, Data curation, Formal analysis, Investigation,

Writing - review and editing; Pietro Ortoleva, Conceptualization, Supervision, Methodology, Writing

- original draft, Writing - review and editing, Developed model for optimal information acquisition;

Benedetto De Martino, Conceptualization, Supervision, Funding acquisition, Methodology, Writing -

original draft, Project administration, Writing - review and editing

Author ORCIDs

Pradyumna Sepulveda https://orcid.org/0000-0003-0159-6777

Marius Usher http://orcid.org/0000-0001-8041-9060

Ned Davies https://orcid.org/0000-0002-3357-8576

Amy A Benson http://orcid.org/0000-0002-8239-5266

Pietro Ortoleva https://orcid.org/0000-0002-5943-6621

Benedetto De Martino https://orcid.org/0000-0002-3555-2732

Ethics

Human subjects: All participants signed a consent form and both studies were done following the

approval given by the University College London, Division of Psychology and Language Sciences

ethics committee (project ID number 1825/003).

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.60705.sa1

Author response https://doi.org/10.7554/eLife.60705.sa2

Additional files
Supplementary files
. Transparent reporting form

Data availability

Data and codes used in this study are available at the Brain Decision Modelling Lab GitHub https://

github.com/BDMLab/Sepulveda_et_al_2020 (copy archived at https://archive.softwareheritage.org/

swh:1:rev:a04585ff20b1389c713709b543a1af420bd300c1/).

The following dataset was generated:

Sepulveda et al. eLife 2020;9:e60705. DOI: https://doi.org/10.7554/eLife.60705 22 of 58

Research article Neuroscience

https://orcid.org/0000-0003-0159-6777
http://orcid.org/0000-0001-8041-9060
https://orcid.org/0000-0002-3357-8576
http://orcid.org/0000-0002-8239-5266
https://orcid.org/0000-0002-5943-6621
https://orcid.org/0000-0002-3555-2732
https://doi.org/10.7554/eLife.60705.sa1
https://doi.org/10.7554/eLife.60705.sa2
https://github.com/BDMLab/Sepulveda_et_al_2020
https://github.com/BDMLab/Sepulveda_et_al_2020
https://archive.softwareheritage.org/swh:1:rev:a04585ff20b1389c713709b543a1af420bd300c1/
https://archive.softwareheritage.org/swh:1:rev:a04585ff20b1389c713709b543a1af420bd300c1/
https://doi.org/10.7554/eLife.60705


Author(s) Year Dataset title Dataset URL
Database and
Identifier

Sepulveda P, Usher
M, Davies N, Ben-
son AA, Ortoleva P,
De Martino B

2020 Sepulveda_et_al_2020 https://github.com/
BDMLab/Sepulveda_et_
al_2020

GitHub repository,
Sepulveda et al 2020

References
Anderson BA, Laurent PA, Yantis S. 2011. Value-driven attentional capture. PNAS 108:10367–10371.
DOI: https://doi.org/10.1073/pnas.1104047108, PMID: 21646524
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Frömer R, Dean Wolf CK, Shenhav A. 2019. Goal congruency dominates reward value in accounting for
behavioral and neural correlates of value-based decision-making. Nature Communications 10:4926.
DOI: https://doi.org/10.1038/s41467-019-12931-x, PMID: 31664035

Glickman M, Tsetsos K, Usher M. 2018. Attentional selection mediates framing and Risk-Bias effects.
Psychological Science 29:2010–2019. DOI: https://doi.org/10.1177/0956797618803643, PMID: 30403368

Glimcher PW, Fehr E. 2014. Neuroeconomics: Decision Making and the Brain. Academic Press is an imprint of
Elsevier.
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Appendix 1

Task framing differences
Value experiment

We examined how the frame manipulation impacted overall performance (Appendix 1—figure 1A).

We defined ‘accuracy’ as the proportion of trials in which participant’s reported values (BDM bid)

correctly predicted their binary decision, that is, they select the item with highest value in the like

frame and the one with lowest value in the dislike frame. Overall accuracy was not significantly differ-

ent in both frames (MeanLike = 0.77; MeanDislike = 0.75, t(30) = 1.71; p=0.1). We also found that par-

ticipants had slightly slower reaction times (RTs) in the dislike frame (MeanLike = 2858.2 ms,

MeanDislike = 3152.7 ms; t(30) = �2.52; p<0.05). Participants reported lower confidence in the dislike

frame (Mean
DConfidence = 0.19; t(30) = 4.49; p<0.001) and shifted their gaze (gaze shift frequency,

GSF) between items more during dislike trials (Mean
D|GSF| = �0.110; t(30) = �2.99; p<0.01). These

results overall suggest that the subjects may have found the dislike condition slightly less intuitive.

Although this did not affect their performance, it slightly reduced their confidence and increased RT

and GSF.

As observed in previous studies (Folke et al., 2017; De Martino et al., 2013), we found that

choice accuracy was modulated by confidence: decisions in which participants reported high-confi-

dence were more accurately predicted by the value estimate collected before the experiment – the

slope of the logistic curve is steeper in the case of high confidence (Figure 1B, Results section). In

this study, this effect is replicated in both like (low confidence: b = 0.769; high confidence:

b = 1.633) and dislike (low confidence: b = �0.642; high confidence: b = �1.363) frames. Note that

the inversion of the sign of the slopes in like vs dislike frames indicate that participants were per-

forming the task correctly (DbLike-Dislike: t(30) = 8.14, p<0.001), selecting the item with lower value

during the dislike frame (Figure 1C, Results section). Choice accuracy (steepness of the slopes) was

not significantly different between like and dislike frames (D|bLike-Dislike|: t(30) = 1.58, p=0.124).

Perceptual experiment

We repeated the same analysis for the behavioural performance in most and fewest frames (Appen-

dix 1—figure 1B). In contrast to the Value Experiment, we observed a slight reduction in accuracy in

participant responses for the fewest frame (MeanMost = 0.77, MeanFew = 0.74, t(31) = 2.46; p<0.05);

unlike the Value Experiment, however, we did not find differences in RTs (MeanMost = 4029.57 ms,

MeanFew = 3975.59 ms; t(31) = 0.32; p=0.75). During the fewest frame participants reported lower

confidence (Mean
DConfidence=0.24; t(31) = 5.62; p<0.001) and shifted their gaze more between alter-

natives (Mean
D|GSF| = -0.17; t(31) = -4.15; p<0.001), as observed in the Value Experiment.

Participants also reported higher confidence in trials that better discriminated the number of dots

(Figure 1E, Results section). This effect was replicated in both most (low confidence: b = 1.142; high

confidence: b = 2.164) and fewest (low confidence: b = �1.118; high confidence: b = �2.010)

frames. The inversion of the sign of the slopes in most vs fewest frames also shows that participants

were performing correctly (DbMost-Few: t(31) = 22.22, p<0.001); the magnitude of the slopes was not

significantly different between the two frames (D|bMost-Few|: t(31) = 0.79, p=0.434; Figure 1F, Results

section). This pattern of results mirrors the pattern seen in the Value Experiment.
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Appendix 1—figure 1. Behavioural results for Value (A) and Perceptual (B) Experiments.

Confidence, DDT, and GSF values have been z-scored per participant. In the violin plot, red and

blue areas indicate the distribution of the parameters across participants. Black bars present the 25,

50, and 75 percentiles of the data. Solid colour indicates the Value Experiment and striped colours

indicate the Perceptual Experiment. RT: reaction time; DDT: Difference in Dwell Time; GSF: Gaze

Shift Frequency.
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Appendix 1—figure 2. Logistic regression predicting choice from the difference in value between

the two items (DValue). All participants in the Value Experiment, like frame, are presented. Light

blue lines depict the logistic fit calculated using only low confidence trials. Dark blue lines show the

logistic fit only for high confidence trials. Segmented black line considers the logistic regression

calculated using all the trials.
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Appendix 1—figure 3. Logistic regression predicting choice from the difference in value between

the two items (DValue). All participants in the Value Experiment, dislike frame, are presented. Light

red lines depict the logistic fit calculated using low confidence trials. Dark red lines show the logistic

fit using high confidence trials. Segmented black line considers the logistic regression calculated

with all the trials.
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Appendix 1—figure 4. Logistic regression predicting choice from the difference in number of dots

between the two circles (DDots). All participants in the Perceptual Experiment, most frame, are

presented. Light blue lines depict the logistic fit calculated using only low confidence trials. Dark

blue lines show the logistic fit only for high confidence trials. Segmented black line considers the

logistic regression calculated with all the trials.
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Appendix 1—figure 5. Logistic regression predicting choice from the difference in number of dots

between the two circles (DDots). All participants in the Perceptual Experiment, fewest frame, are

presented. Light red lines depict the logistic fit calculated using only low confidence trials. Dark red

lines show the logistic fit only for high confidence trials. Segmented black line considers the logistic

regression calculated with all the trials.

Sepulveda et al. eLife 2020;9:e60705. DOI: https://doi.org/10.7554/eLife.60705 30 of 58

Research article Neuroscience

https://doi.org/10.7554/eLife.60705


Appendix 2

Choice regression models

Appendix 2—table 1. Hierarchical logistic models for choice.

Models Formulas

Model
1

Choice ~ DValue

Model
2

Choice ~ DValue + Confidence

Model
3

Choice ~ DValue + Confidence + SValue

Model
4

Choice ~ DValue + Confidence + SValue + DDT

Model
5

Choice ~ DValue + Confidence + SValue + DDT + DValue * Confidence

Model
6

Choice ~ DValue + Confidence + SValue + DDT + DValue * Confidence + DValue * SValue

Model
7

Choice ~ DValue + Confidence + SValue + DDT + DValue * Confidence + DValue * SValue + Confidence *
DDT

Model
8

Choice ~ DValue + Confidence + SValue + DDT + GSF + DValue * Confidence + DValue * SValue +
Confidence * DDT + DValue * GSF

In Value Experiment: DValue: difference in value; SValue: summed value; DDT: difference in dwell

time; GSF: gaze shift frequency. In Perceptual Experiment similar models were compared but replac-

ing DValue for DDots and SValue for SDots.

Appendix 2—figure 1. Model comparison of hierarchical logistic regressions for choice. (A) Value

and (B) Perceptual Experiments. Solid colour indicates the Value Experiment and striped colours

indicate the Perceptual experiment.

Value experiment

Using a logistic hierarchical regression model, we investigated which factors modulated choice-pro-

portion, defined here as the probability of choosing the item on the right side of the screen. We

report here the results of the most parsimonious model (i.e. the model with a lowest BIC; Appen-

dix 2—figure 1) fitted to the like and dislike frames independently (Figure 2B, Results section). In

Appendix 2—table 1, we present the parameters for each factor included in the model. In the like

frame, the difference in the value of the right item minus left item (DValue) had a positive influence

on choice-proportion, that is, participants selected the items that had higher value. This is reversed

in the dislike frame: DValue is now a negative predictor of choice, that is, participants selected the

items that had lower value. In both conditions, confidence enhanced the effect of DValue, as shown
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by the interaction between DValue and confidence in the like and dislike frame. These results confirm

the findings presented in Figure 1B (Results section) while controlling for other relevant variables.

Unsurprisingly, confidence and summed value (SValue, the added value of both alternatives) were

found to show no main effect on the choice-proportion. As discussed in the Results section, gaze

allocation (difference in dwell time, DDT) is directed to the chosen item in both frames, that is, the

parameters are positive for DDT in like and dislike frame (Appendix 2—table 2).

Appendix 2—table 2. Statistical results for the hierarchical linear models for choice in Value

Experiment.

Z-values for the regression coefficients and their statistical significance are presented for both frames.

To check significant differences of the regression coefficients between like and dislike frames

repeated samples t-tests between the participants’ regression coefficients were calculated.

Choice value experiment (n = 31)

Like Dislike Like - Dislike

Z P Z P T P

DValue 7.917 <0.001 �8.652 <0.001 10.74 <0.001

DDT 6.448 <0.001 6.75 <0.001 2.31 <0.05

DValue
x Conf

5.446 <0.001 �4.681 <0.001 9.55 <0.001

*Confidence and SValue did not have a significant effect over choice in the regression.

Perceptual experiment

As in the Value Experiment, we used a logistic hierarchical regression to determine the relevant fac-

tors modulating perceptual choice (choosing the circle with dots on the right side of the screen)

(Figure 2D, Results section). We found that the most parsimonious model for choice was the same

used in the Value Experiment, where like and dislike were replaced by most and fewest frames

(Appendix 2—figure 1B). In the most frame, the difference in the number of dots of the right alter-

native minus the left one (DDots) had a positive influence over choice; that is, participants tended to

select the circle with more dots. As expected, this pattern was reversed in the fewest frame: DDots

was a negative predictor of choice. As in the Value Experiment, confidence modulated the effect of

DDots in most and fewest frames. The sum of dots presented in both circles during a trial (SDots)

was found not to have a significant effect on either frame, as expected. However, as discussed in the

Results section, confidence was found to be a negative predictor of choice in most and fewest

frames. This means participants had a bias to report higher confidence when they chose the left cir-

cle. In a similar way to the Value Experiment, participants spend more time fixating the chosen alter-

native in both frames, with DDT effect being positive in most and fewest frames (Appendix 2—table

3).

Appendix 2—table 3. Statistical results for the hierarchical logistic models for choice in Perceptual

Experiment.

Z-values for the regression coefficients and their statistical significance are presented for both frames.

Repeated samples t-tests between the participants’ regression coefficients in most and fewest frames

were calculated.

Choice perceptual experiment (n = 32)

Most Fewest Most - Fewest

Z P Z P T P

DDots 14.905 <0.001 �14.394 <0.001 30.32 <0.001

Confidence �2.823 <0.01 �6.705 <0.001 6.67 <0.001

DDT 10.249 <0.001 10.449 <0.001 �2.17 <0.05

DDots
x Conf

8.677 <0.001 �6.23 <0.001 23.69 <0.001
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*SDots did not have a significant effect over choice in the regression.

In a study by Kovach et al., 2014 a design similar to our value-based experiment was imple-

mented. Participants were required to indicate the item to keep and the one to discard. They found,

similarly to our findings in the Value Experiment, that the overall pattern of attention was mostly allo-

cated according the task goal. However, in the first few hundred milliseconds, these authors found

that attention was directed more prominently to the most valuable item in both conditions. We did

not replicate this last finding in our experiment, but one possible reason for this discrepancy is that

the experiment by Kovach and colleagues presented both items on the screen at the beginning of

the task – unlike in our task, in which the item was presented in a gaze-contingent way (to avoid

processing in the visual periphery). This setting might have triggered an initial and transitory bot-

tom-up attention grab from the most valuable (and often most salient) item before the accumulation

process started.

Appendix 2—figure 2. Kovach et al., 2014 conducted a study in which participants have to choose

food items in ‘keep’ and ‘discard’ frames, in a similar way to our Value Experiment. Gaze allocation

was found to gravitate towards the chosen item overall, although during the initial moments of the

trial ( » 500 ms), they reported that gaze was directed towards the preferred item. To check if this

effect appears in our Value Experiment we ran a regression model to predict choice (i.e. probability

of choosing the item presented on the right side of the screen). We restricted the time to estimate

DDT to the first 500 ms of the trial and used that variable as a predictor of choice in our model (A).

Appendix 2—figure 2 continued on next page
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Appendix 2—figure 2 continued

We did not find a significant effect of gaze over choice in that period. This difference may be caused

by the way the alternatives were presented during the decision time: while in Kovach et al., 2014

both alternatives were always displayed on screen during deliberation time, in our experiment the

presentation was gaze contingent (i.e. participants needed to explore both items at the beginning

of the trial to identify the available items). (B) We recalculated the model considering the initial 1000

ms of the trial and we observe how DDT starts to increase its effect over choice. The positive effect

of DDT over choice is only significant (z = 1.97, p<0.05) in the like frame; in dislike frame the small

effect is only a trend (z = 1.081, p=0.07). However, at 1000 ms DDT is already starting to be

allocated to the option coherent with the behavioural responses required by the frame, not to

preference.

Appendix 2—figure 3 continued on next page
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Appendix 2—figure 3 continued

Appendix 2—figure 3. Choice behaviour excluding last fixations. To assess the influence that last

fixations have on the goal-relevant gaze asymmetries we repeated the hierarchical logistic modelling

of choice (probability of choosing right item) in Value (B) and Perceptual (D) Experiments, excluding

the last two fixations from the analysis. Note the two last fixations rather than only the last fixation,

because this avoids statistical artifacts. All the results from the main analysis were confirmed:

participants preferentially gazed at the item they chose in both frames (positive DDT effect in both

experiments). All predictors were z-scored at the participant level. In both regression plots, bars

depict the fixed-effects and dots the mixed-effects of the regression. Error bars show the 95%

confidence interval for the fixed effect. In Value Experiment: DValue: difference in value between the

two items (Valueright– Valueleft); RT: reaction time; SValue: summed value of both items; DDT:

difference in dwell time (DTright– DTleft), excluding the last two fixations; Conf: confidence. In

Perceptual Experiment: DDots: difference in dots between the two circles (Dotsright– Dotsleft); SDots:

summed number of dots between both circles. ***p<0.001, **p<0.01, *p<0.05.
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Appendix 3

Fixation analysis
In the main text, we reported the analysis of last fixation and how its allocation to the (chosen) goal-

relevant alternative is modulated by value/number of dots. This result confirmed the findings in

Krajbich et al., 2010 and expanded them to dislike frame and the perceptual realm. To give a more

complete view of the fixations properties, we additionally performed a similar analysis to

Krajbich et al., 2010 for first and middle fixations.

It is important to notice that in our Value and Perceptual Experiments, at the beginning of each

trial participants do not visualise the options since the presentation is gaze contingent. Therefore, an

initial exploration is required to identify the alternatives involved in the decision. In Krajbich et al.,

2010 both options are visible from the beginning of the trial, however, participants’ initial fixation is

still randomly allocated.

For the analysis of middle fixations, if blank fixations were recorded between fixations to the

same item, then those fixations were assigned to that item (e.g. ‘Right’, ‘Blank’, ‘Right’ was consid-

ered as ‘Right’, ‘Right’, ‘Right’). Trials without middle fixations (i.e. only a first and a last fixation)

were removed from the analysis. Trials with no item fixations for more than 40 ms at the beginning

of the trial were also removed. In the following figures, results from Krajbich et al., 2010 are pre-

sented together with our findings, as a reference.

Appendix 3—figure 1. Fixation duration by type. Middle fixations indicate any fixations that were

not the first or last fixations of the trial. (A) In Krajbich et al., 2010 middle fixations were found to

be longer than first and last fixations on average. For our Value Experiment, in like (B) and dislike (C)

frames, and Perceptual Experiment, in most (D) and fewest (F) frames, the same pattern emerges

with middle usually longer that first and last fixations. Violin plots depict the distribution of

participant’s average fixation time. Panel A reproduced from Krajbich et al., 2010. ***p<0.001,

**p<0.01, *p<0.05.
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Appendix 3—figure 2. Fixation properties: probability that the first fixation is to the best item. (A)

Krajbich et al., 2010 reported that the probability is not significantly different from 50%, unaffected

by the difference in ratings or difficulty (in our experiments difficulty is equivalent to the absolute

difference item value, |DValue|, and absolute difference in number of dots, |DDots|). A similar pattern

emerges in our Value Experiment, for like (B) and dislike (C) frames, and Perceptual Experiment, for

most (D) and fewest (F) frames. Participant responses did not diverge from chance. Importantly,

while in Krajbich et al., 2010 participants can see both alternatives from the beginning of the trial,

our presentation was gaze contingent. Segmented blue line indicates chance level. Light grey dots

correspond to individual participants’ probability of first fixation to high value/number of dots

alternatives for each bin. Red or blue circles indicate the average for that bin considering all the

participants. Panel A reproduced from Krajbich et al., 2010.

Appendix 3—figure 3 continued on next page
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Appendix 3—figure 3 continued

Appendix 3—figure 3. Fixation properties: middle fixation duration as a function of the rating (value

or number of dots) of the fixated item. (A) Krajbich et al., 2010 reported that middle fixations

durations were independent of the value of the fixated items. In Value Experiment, we found that

middle fixation duration was independent of the value of the fixated item in like frame (B); however,

a slight yet significant effect in dislike (C) frame was found (hierarchical linear regression estimate:

bDislike = 0.025, t(27.35) = 3.441, p<0.001). In the Perceptual Experiment, for the most (D) frame we

found a significant effect of fixated value (bMost = 0.017, t(29.51) = 3.013, p<0.01), but not for

fewest (F) frame. Light grey dots correspond to individual participants’ middle fixation durations for

each bin. Red or blue circles indicate the average for that bin considering all the participants. For

the hierarchical linear regression, z-scored data at participant levels was used. Panel A reproduced

from Krajbich et al., 2010.

Appendix 3—figure 4. Fixation properties: middle fixation duration as a function of the difference

in ratings (value or number of dots) between the fixated and unfixated items. (A) Krajbich et al.,

2010 reported a slight but significant dependency of middle fixations durations on the difference in

value between items. In our Value Experiment, we found that in like (B) and dislike (C) this

relationship was significant (hierarchical linear regression estimate: bLike = 0.015, t(28.22) = 2.192,

p<0.05; bDislike = -0.027, t(28.22) = -4.415, p<0.001). Similarly, in the Perceptual Experiment, most

(D) and fewest (F) frames, the dependence was found also significant (bMost = 0.01, t(29.51) = 2.663,

p<0.01; bFew = -0.027, t(29.51) = -6.330, p<0.001). Interestingly, a positive sign of the effect in like

and most frames indicates that middle fixations tend to be longer for the option with the higher

value or number of dots. On the other hand, the negative sign of the effect indicates that middle

fixations would be longer for the option with lower value or number of dots in dislike and fewest

frames. Light grey dots correspond to individual participants’ middle fixation durations for each bin.

Full red or blue circles indicate participant’s average. Data are binned across participants for

visualisation. All the factors and the predicted variable in the hierchical regression were z-scored at

participant level. Panel A reproduced from Krajbich et al., 2010.

Sepulveda et al. eLife 2020;9:e60705. DOI: https://doi.org/10.7554/eLife.60705 38 of 58

Research article Neuroscience

https://doi.org/10.7554/eLife.60705


Appendix 3—figure 5. Fixation properties: middle fixation duration as a function of the difference

in ratings between the best- and worst-rated items (difficulty of the trial). In our experiments, |D

Value| and |DDots| represent the difficulty of the trials. (A) Krajbich et al., 2010 reported a

dependency of middle fixations durations on difficulty, with longer fixations in more difficult

decisions. In our Value Experiment, in like (B) and dislike (C) frames a similar pattern was found:

longer middle fixations for more difficult (lower |DValue|) trials (hierarchical linear regression

estimate: bLike = -0.029, t(28.22) = -2.262, p<0.05; bDislike = -0.047, t(28.22) = -4.415, p<0.001). The

same relationship was found only in the most frame (D) but no in the fewest frame (F) in the

Perceptual Experiment (bMost = -0.037, t(29.51) = -3.985, p<0.001; bFew = -0.024, t(29.51) = -1.623,

p=0.10). Light grey dots correspond to individual participants’ middle fixation durations for each

bin. Full red or blue circles indicate participant’s average. Data are binned across participants for

visualisation. All the factors and the predicted variable in the hierchical regression were z-scored at

participant level. Panel A reproduced from Krajbich et al., 2010. Tests presented here are based on

a paired two-sided t-test between the first and last bin.***p<0.001, **p<0.01, *p<0.05.
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Appendix 4

Confidence regression models

Appendix 4—table 1. Hierarchical linear models for confidence.

Models Formulas

Model 1 Confidence ~ |DValue|

Model 2 Confidence ~ |DValue| + RT

Model 3 Confidence ~ |DValue| + RT + GSF

Model 4 Confidence ~ |DValue| + RT + GSF + SValue

Model 5 Confidence ~ |DValue| + RT + GSF + SValue + DDT

In Value Experiment: |DValue|: absolute difference in value; RT: reaction time; SValue: summed

value; DDT: difference in dwell time; GSF: gaze shift frequency. In Perceptual Experiment similar

models were compared, but replacing DValue for DDots and SValue for SDots.

Appendix 4—figure 1. Model comparison of hierarchical linear regressions for confidence. (A) Value

and (B) Perceptual Experiments. Solid colour indicates the value-based experiment and striped

colours indicate the perceptual experiment.

Appendix 4—table 2. Statistical results for the hierarchical linear models for confidence in Value

Experiment.

Z-values for the regression coefficients and their statistical significance are presented for the two

frames. Repeated samples t-tests between the participants’ regression coefficients in like and dislike

frames were calculated.

Confidence value experiment

Like Dislike Like - Dislike

Z P Z P T P

|DValue| 5.465 <0.001 6.3 <0.001 �4.72 <0.01

RT �6.373 <0.001 �7.739 <0.001 ns

GSF �2.365 <0.05 �2.589 <0.05 ns

SValue 3.206 <0.001 �4.492 <0.001 9.91 <0.001
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Appendix 4—table 3. Statistical results for the hierarchical linear models for confidence in

Perceptual Experiment.

Z-values for the regression coefficients and their statistical significance are presented for the two

frames. Repeated samples t-tests between the participants’ regression coefficients in most and fewest

frames were calculated.

Confidence perceptual experiment

Most Fewest Most - Fewest

Z P Z P T P

|DValue| 3.546 <0.001 7.571 <0.001 �4.554 <0.001

RT �7.599 <0.001 �5.51 <0.001 ns

GSF �4.354 <0.001 �5.204 <0.001 ns

SDots 2.061 <0.05 �7.135 <0.001 14.621 <0.001
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Appendix 5

GLAM – model comparison and out-of-sample simulations

Appendix 5—figure 1. GLAM model comparison. (A) Average WAIC scores for like and dislike

GLAM models fitted at individual level. In the dislike frame, two possible models are compared:

preference-value, value reported in the BDM bid was used directly to fit the data; and frame-value,

value was adjusted to comply with the frame modification (see Methods for more details). The

model accounting for goal-relevant evidence in the dislike frame had a better fit. (B) Individual WAIC

differences between dislike models fitted with frame-value and preference-value. Negative

differences indicate best fits for the frame-value in all the participants. (C) Average WAIC scores for

most and fewest GLAM models fitted at individual level. In the fewest frame, two possible models

are compared: default-evidence, the number of dots was used directly to fit the data, and frame-

evidence, evidence was adjusted to comply with the frame modification (i.e. the opposite of the

number of dots was used as evidence). (D) Individual WAIC differences between fewest models

fitted with frame-evidence and default-evidence. Negative differences indicate best fits for the

frame-evidence in all the participants. Solid colour indicates the value-based experiment and striped

colours indicate the perceptual experiment.
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Appendix 5—figure 2. Hierarchical GLAM model comparison. (A) Value Experiment. WAIC scores

for like and dislike GLAM models fitted hierarchically. In the dislike frame, two possible models are

compared: preference-value, input values corresponding to the preferences reported at the

beginning of the experiment (BDM bid); and frame-value, in which value was adjusted to comply

with the frame modification (see Methods for more details). In dislike frame, the model accounting

for goal-relevant resulted the most parsimonious of the two. (B) Perceptual Experiment. WAIC

scores for most and fewest GLAM models fitted hierarchically. In the fewest frame, two possible

models are compared: default-evidence, the number of dots was used directly to fit the data, and

frame-evidence, evidence was adjusted to comply with the frame modification (i.e. the opposite of

the number of dots was used as evidence).
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Appendix 5—figure 3. Individual out-of-sample prediction from the GLAM model for behavioural

measures in Value (dislike) (A–C) and Perceptual (fewest) Experiments (D–F). In the dislike frame,

two models are used to generate simulations: preference-value, value reported in the BDM bid was

used directly to fit GLAM model; and frame-value, the values were adjusted to comply with the

frame modification. The model predicts participants mean reaction time (RT) (A), probability of

choosing the best item (i.e. item with lower value) (B) and the influence of gaze in choice probability

(C, check Results section for more details on gaze influence measure). The frame-value model

correlates better with the observed data. In the Perceptual Experiment, fewest frame, also two

possible models are used to generate simulations: default-evidence, the number of dots was used

directly to fit the data, and frame-evidence, the evidence was adjusted to comply with the context

modification (i.e. opposite of the number of dots). We show the correlation between the data and

simulations for RT (D), the probability of choosing the best alternative (i.e. alternative with fewer

dots) (E) and gaze influence (F). In this case, frame-evidence model also predicts the behaviour in

the fewest frame better. The results corresponding to the models using frame-evidence are

presented in red and the models using default-evidence in pink. Dots depict the average of

predicted and observed measures for each participant. Lines depict the slope of the correlation

between observations and the predictions. The shadowed region presents the 95% confidence

intervals, with full colour representing Value Experiment and striped colour the Perceptual

Experiment. Model predictions are simulated using parameters estimated from individual fits for

even-numbered trials.
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Appendix 5—figure 4. Replication of behavioural effect of interest by simulations using the GLAM

fitted for like (A) and most frames (B). The four panels present four relevant behavioural

relationships found in the data: (top left) faster responses (shorter RT) when the choice is easier (i.e.

easier choices are found with higher |DValue| in value-based and higher |DDots| in perceptual); (top

right) probability of choosing the right alternative increases when the difference in evidence (value

or number of dots) is higher in the alternative at the right side of the screen (DValue and DDots are

calculated considering right minus left options); (bottom left) the probability of choosing an

alternative depends on the gaze difference; and (bottom right) the gaze influence on choice

depending on the difference in gaze time between both alternatives. Solid blue dots depict the

mean of the data across participants in like and most frames. Light blue dots present the mean value

for each participant. In the Value Experiment, the solid grey lines show the average for model

simulations. In the Perceptual Experiment, segmented grey lines show the model simulations. Data

are binned for visualisation.

Appendix 5—figure 5. Replication of behavioural effect of interest by simulations using the GLAM

fitted for dislike (A) and fewest frames (B). Frame-relevant evidence was used to fit the model. The

four panels present four relevant behavioural relationships found in the data. Top left: faster

responses (shorter RT) when the choice is easier (i.e. easier choices are found with higher |DValue| in

value-based and higher |DDots| in perceptual). Top right: probability of choosing the right

alternative increases when the difference in evidence (value or number of dots) is lower in the

alternative at the right side of the screen (notice that -DValue and -DDots are calculated considering

Appendix 5—figure 5 continued on next page
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Appendix 5—figure 5 continued

left minus right options). Bottom left: the probability of choosing the right alternative depends on

the gaze difference favouring the right option. Bottom right: the gaze influence on choice

depending on the difference in gaze time between both alternatives. Solid red dots depict the mean

of the data across participants in dislike and fewest frames. Light red dots present the mean value

for each participant. In the Value Experiment, the solid grey lines show the average for model

simulations. In the Perceptual Experiment, segmented grey lines show the model simulations. Data

are binned for visualisation.

Appendix 5—figure 6. Replication of behavioural effect of interest by simulations using the GLAM

fitted for dislike (A) and fewest frames (B). In this case, the models were fitted without adapting the

values and dot numbers to the evidence that was relevant for the particular frame, that is the

preference value and the default number of dots were used to fit the model in the dislike and fewest

frame, respectively. The four panels present four relevant behavioural relationships found in the

data. Top left: faster responses (shorter RT) when the choice is easier (i.e. easier choices are found

with higher |DValue| in value-based and higher |DDots| in perceptual). Top right: probability of

choosing the right alternative increases when the difference in evidence (value or number of dots) is

lower in the alternative at the right side of the screen (DValue and DDots are calculated consider

right minus left options). Bottom left: the probability of choosing the right alternative depends on

the gaze difference favouring the right option. Bottom right: the gaze influence on choice

depending on the difference in gaze time between both alternatives. No replication of the

behavioural effect was found in this case for the relationship between RT -|DValue| and RT -|DDots| in

dislike and fewest frames, respectively. Also P(right item)-DValue and P(right item)-DDots

relationship was not replicated in dislike and fewest frames, respectively. Gaze effect seem to still

keep its relationship, since gaze allocation time was not modified to account for the frame shift.

Solid red dots depict the mean of the data across participants in dislike and fewest frames. Light red

dots present the mean value for each participant. In the Value Experiment, the solid grey lines show

the average for model simulations. In the Perceptual Experiment, segmented grey lines show the

model simulations. Data are binned for visualisation.
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Appendix 6

GLAM – parameter comparison
The results from the regression models presented in the Results section show that the nature of evi-

dence integrated during the accumulation process depends on the frame in which participants make

their choices. The Gaze-weighted Linear Accumulator Model (GLAM) predicts well participants’

behaviour once frame-relevant evidence is employed to fit the model. Here we show the parameters

obtained from this process. Four free parameters are fitted in GLAM: n (drift term), g (gaze bias), t

(evidence scaling), and s (normally distributed noise standard deviation) (Thomas et al., 2019). For

Value and Perceptual Experiments, we fitted the model in both frames and in each participant sepa-

rately. The parameters were fitted using the even-numbered trials and in both studies the model fit

was estimated using the WAIC score (used with Bayesian Models) (Appendix 5—figure 1).

Value experiment

To explore variations in the process of accumulation of evidence characterised by GLAM, we com-

pared the parameters obtained from the individual fit in like and dislike frames (Appendix 6—figure

1A). No significant variation between frames was found for the gaze bias (Mean g Like = -0.14, Mean

g Dislike = 0.03, Dg Like-Dislike = -0.17, t(30) = -1.66; p=0.11, ns), the scaling parameter (t Like = 2.81,

tDislike = 2.69, DtLike-Dislike = 0.115, t(30) = 0.313; p=0.75, ns), and the noise term (Mean sLike =

0.0075, Mean s Dislike = 0.0074, DsLike-Dislike = 0.00012, t(30) = 0.342; p=0.734, ns). We observed a

significantly higher value of the drift term, n, during the like frame (nLike = 5.60x10�5, nDislike =

4.53x10�5, DnLike-Dislike = 1.06 x 10�5, t(30) = 3.44; p<0.01). This means that evidence is accumulated

faster during the like frame, which gives us an insight into the differences in the evidence accumula-

tion product of the change frame modification.

Perceptual experiment

We also compared the parameters obtained from GLAM individual fit in the perceptual experiment

(Appendix 6—figure 1B). No significant variation between frames was found for the scaling parame-

ter (tMost = 0.34, tFew = 0.13, Dt Most-Few = 0.212, t(27) = 1.43; p=0.16, ns) or the drift term (Mean

nMost = 3.8x10�5, Mean n Few = 3.99x10�5, DnMost-Few = -1.92x10�6, t(27) = -0.465; p=0.645, ns). The

gaze bias is larger during the fewest frame (gMost = 0.48, gFew = 0.26, DgMost-Few = 0.22, t(27) = 2.61;

p<0.05). The s parameter is also significantly different depending on the frame, with higher noise in

the most frame (sMost = 0.0073, sFew = 0.0066, Ds Most-Few = 0.0007, t(27) = 2.26; p<0.05). In sum-

mary, the accumulation process seems to be noisier and less affected by visual attention in the most

frame. In both frames, the finding that g < 1 indicates that gaze modulates the accumulation of

evidence.
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Appendix 6—figure 1. Parameters fitted at subject level using GLAM in Value (A) and Perceptual

(B) Experiments. The free parameters are g (gaze bias), t (evidence scaling), n (drift term), and s

(standard deviation of the normally distributed noise). In the Value Experiment, we found a

significant decrease in the drift term during the dislike frame, maybe indicating a more uncertain

decision process. The parameters in Perceptual Experiment were significantly different for gaze bias

and noise term, with higher g and s values in the most frame. This may indicate a reduced effect of

gaze on choice during the most frame and slightly less noisier accumulation process in the fewest

frame. In each experiment, the GLAM parameters were fitted independently for each frame. In the

violin plot, red and blue areas indicate the distribution of the parameters across participants. Black

bars present the 25, 50, and 75 percentiles of the data. Solid colour indicates the Value Experiment

and striped colours indicate the Perceptual Experiment.
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Appendix 6—figure 2. GLAM model parameters when the model fit is performed constraining g to

[0,1] range. Thomas et al., 2019 describes a ‘leakage’ of evidence when g < 0, which can be a

conflicting assumption in this type of models. We corroborated that the differences between the

parameters in like/dislike and most/fewest remain the same in comparison to the fit reported

constraining g to [�1,1].
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Appendix 7

Attentional drift diffusion model
The attentional Drift Diffusion Model (aDDM) has been extensively used in literature to characterise

the effect of attention over choice (Krajbich et al., 2010). Unlike GLAM, aDDM considers the

dynamics of fixations during trials to fit the model. To further support our idea that goal-relevant evi-

dence is accumulated, we fitted both Value and Perceptual datasets with the aDDM model, as

implemented by Tavares et al., 2017 (aDDM toolbox, https://github.com/goptavares/aDDM-

Toolbox).

The aDDM model assumes that evidence is accumulated dynamically in a variable called the rela-

tive decision value (RDV) signal. RDV starts at 0 and it evolves over time, accumulating evidence until

a barrier is reached (+1 or �1) which will define the alternative to be selected (right or left). Every

time step, RDV changes according to mDt + et, with m the deterministic change (slope term) and e

the Gaussian noise term. The fixation to the two alternatives will define the value of m: when the left

option is fixated m = d(rleft � �rright) and m = d(rright � �rleft) for the right option. Therefore, the

aDDM model considers three free parameters: d, s, and �. The parameter d is a positive constant

characterising the speed of integration; s is the standard deviation for a zero-mean Gaussian distri-

bution for noise, and q is the attentional parameter that controls the size of the attentional bias

(range between 0 and 1). If q = 1, the model is reduced to a standard drift-diffusion model (DDM)

without attentional bias.

Group model fitting

The models were fitted to choice and RT data independently for like and dislike frames in our Value

Experiment and for most and fewest frames in the Perceptual Experiment. The odd trials of the

pooled data from 31 participants in value-based data and 32 participants for perceptual case was

used to fit the models. The model considers the available evidence (item value and number of dots)

and the sequence of fixations for each trial. As in GLAM, we fitted the parameters in dislike and few-

est frames considering a version of the input values/evidence that accounted for the change in the

objective of the task (i.e. reporting item not preferred or the alternatives with fewer dots, respec-

tively). To compare, we also fitted another model using the evidence ‘by default’ (i.e. BDM bid val-

ues or number of dots in the circles). To account for the different ranges of item valuation used by

the participants we normalised the value reports by binning at a participant level. In the Value Exper-

iment, the data were separated in six bins using quantiles-based discretisation. In the Perceptual

Experiment, given the distribution of the evidence (i.e three numerosity levels and smaller dots dif-

ferences between two alternatives), we separated the dots data in eight bins. The maximum likeli-

hood estimation (MLE) procedure was carried in iterative steps searching over a grid with the three

model parameters. Initial grid was set to [0.001, 0.005, 0.01] for d, [0.01, 0.05, 0.1] for s and [0.01,

0.5, 1] for q. The likelihood for choice and RT in odd-trials, conditional to the pattern of fixations,

was calculated for each combination of parameters in the grid (check Tavares et al., 2017 for the

details of the algorithm to simulate aDDM trials). The time step used for the estimation of aDDM

was 10 ms. The set of parameters with lower negative log-likelihood (NLL) was used as centre of the

grid for the next iteration. Therefore, the grid to search in the next iteration (t+1) was defined as

[dt � Ddt/2, dt, dt + Ddt/2], [qt � Dqt/2, qt, qt + Dqt/2], and [st � Dst/2, st, st+Dst/2], considering the

respective constrains of each parameter value. The iterative process finished once the improvement

in the MLE of the proposed parameter solution was smaller than 0.05% (|minNNLt+1 –

minNNLt| < 0.0005*minNNLt). The convergence was reached after two iterations in our models. In

our results Appendix 7—table 1), we found that for both, dislike and fewest conditions, the model

fitted using goal-relevant evidence had better performance than the model using default value or

number of dots, as indicated by a lower NLL value.

Appendix 7—table 1. aDDM model parameters.

Estimated parameters for Value and Perceptual Experiments. Parameter description - d: speed of

integration; s: standard deviation for the noise distribution, q: attentional bias. NNL: negative log-

likelihood of the models indicating goodness-of-fit.
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Value-based Perceptual

Like
Dislike Preference-
values

Dislike Frame-
values Most

Fewest
Default-
evidence

Fewest Frame-
evidence

d 0.001 0 0.001 0.001 0.001 0.001

s 0.05 0.05 0.05 0.05 0.05 0.05

� 0 0 0 0.255 0 0.01

NLL 12441.012* 13342.297 12640.837* 13948.411* 14169.154 13826.983*

*Indicates the model with lower NLL for that frame

Out-of-sample group simulations

To test the capacity of the model to predict out-of- sample, the aDDM with the best fitted parame-

ters using odd-numbered trials was used to predict the behaviour observed on the even-numbered

trials. We generated 40,000 simulations for the Value Experiment and 48,000 trials for the Perceptual

Experiment. Fixations, latencies and inter-fixations transitions were sampled from empirical distribu-

tions, obtained from the pooled even-numbered trials across participants following the procedure

used by Tavares et al., 2017.

Appendix 7—figure 1. Replication of behavioural effects by aDDM simulations for like (A) and most

frames (B). The four panels present four relevant behavioural relationships found in the data. Top

left: faster responses (shorter reaction time, RT) when the choice is easier (i.e. easier choices are

found with higher |DValue| and |DDots| in Value an Perceptual Experiments, respectively). Top right:

probability of choosing the right alternative increases when the evidence towards the right item is

higher (DValue and DDots are calculated considering right minus left options). Bottom left: the

probability of choosing the item on the right side of the screen depends on the gaze time difference

(DGaze, calculated as the time observing the right minus the left item). Bottom right: gaze influence

on choice depending on the difference in DGaze (check Results section for more details on gaze

influence). Solid blue dots depict the mean of the data across participants in like and most frames.

Light blue dots show the mean value for each participant. In Value Experiment, the solid grey lines

show the average for model simulations. In the Perceptual Experiment, segmented grey lines show

the average for model simulations. Data and simulations were binned for visualisation.
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Appendix 7—figure 2. Replication of behavioural effects by aDDM simulations for dislike (A) and

fewest (B) frames. Importantly, these models were fitted using goal-relevant evidence. The four

panels present four relevant behavioural relationships found in the data. Top left: faster responses

(shorter reaction time, RT) when the choice is easier (i.e. easier choices are found with higher |D

Value| and |DDots| in Value and Perceptual Experiments, respectively). Top right: probability of

choosing the right alternative increases when the evidence towards the left item is higher (-DValue

and –DDots, that is, increment when left item is more valuable or has more dots than the right item).

Bottom left: the probability of choosing the item on the right side of the screen depends on the

gaze time difference (DGaze, calculated as the time observing the right minus the left item). Bottom

right: gaze influence on choice depending on the difference in DGaze (check Results section for

more details on gaze influence). Solid red dots depict the mean of the data across participants in

dislike and fewest frames. Light red dots show the mean value for each participant. In Value

Experiment, the solid grey lines show the average for model simulations. In the Perceptual

Experiment, segmented grey lines show the average for model simulations. Data and simulations

were binned for visualisation.

Appendix 7—figure 3. Replication of behavioural effects by aDDM simulations for dislike (A) and

fewest frames (B). Importantly, these models were fitted using the default evidence in Value and

Perceptual Experiments, that is, preference value and number of dots, respectively. Unlike the

models fitted with goal-relevant evidence, these models do not capture reaction time (RT) and

choice behaviour in dislike and fewest frames. The four panels present four relevant behavioural

Appendix 7—figure 3 continued on next page
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Appendix 7—figure 3 continued

relationships found in the data. Top left: faster responses (shorter RT) when the choice is easier (i.e.

easier choices are found with higher |DValue| and |DDots| in Value an Perceptual Experiments,

respectively). Top right: probability of choosing the right alternative increases when the evidence

towards the left item is higher (DValue and DDots are calculated considering right minus left

options). Bottom left: the probability of choosing the item on the right side of the screen depends

on the gaze time difference (DGaze, calculated as the time observing the right minus the left item).

Bottom right: gaze influence on choice depending on the difference in DGaze (check Results section

for more details on gaze influence). Solid red dots depict the mean of the data across participants in

dislike and fewest frames. Light blue dots show the mean value for each participant. In Value

Experiment, the solid grey lines show the average for model simulations. In the Perceptual

Experiment, segmented grey lines show the average for model simulations. Data and simulations

were binned for visualisation.
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Appendix 8

GLAM – balance of evidence simulations

Appendix 8—figure 1. Balance of evidence simulations in the Value Experiment. The difference

between accumulators (De) obtained from GLAM simulations matches participants’ confidence. Top

left: a higher value difference between the two items (|DValue|) increases confidence and simulated

De. Top right: in the like frame, an increase in the summed value of the two alternatives (|SValue|)

boosts confidence and simulated De. Bottom left: as in like frame, |DValue| boosted confidence and

De in dislike frame. Bottom right: in the dislike frame, the effect of |SValue| over confidence flips:

confidence and De decrease with higher values of the alternatives, accounting for the change in

goal. Blue and red dots depict the (z-scored) confidence taken from participants in like and dislike

frames (respectively). Grey line presents the model simulations for both separate frames. Data were

segmented in 11 bins for DValue or SValue.
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Appendix 8—figure 2. Balance of evidence simulations in the Perceptual Experiment. As in Value

Experiment, the difference between accumulators (De) obtained from GLAM simulations matches

participants’ confidence. Top left: a higher difference in number of dots between the two circles (|D

Dots|) increases confidence and simulated De. Top right: in the most frame, an increase in the

summed number of dots (|SDots|) boosts confidence and simulated De. Bottom left: as in most

frame, |DDots| boosted confidence and De in fewest frame. Bottom right: in the fewest frame, the

effect of |SDots| over confidence flips: confidence and De decrease with higher number of dots in

both circles, accounting for the change in goal. Blue and red dots depict the (z-scored) confidence

taken from participants in most and fewest frames (respectively). Grey line presents the model

simulations for both separate frames. Data were segmented in 11 bins for DDots or SDots.
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Appendix 8—figure 3. Pooled linear regressions to predict balance of evidence (De) simulations.

Here the full model results for Figure 6 (see Results section) are displayed. In Value Experiment, the

full simulations of De replicated the pattern of results obtained in human data (confidence results),

that is there is a flip in the sign of SValue effect over confidence between like (A) and dislike (D)

frames. However, if the gaze asymmetry is removed, we found the effect of SValue over De

disappears. The results in Perceptual Experiment, most (B) and fewest (E) frames, mirror the findings

in the Value Experiment.
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Appendix 9

Normative model – proof of propositions 1 and 2
All the uses of m in this proof: �i is the mean of the belief on the value of item i after the agent has

acquired one signal about item i; �0
i is the mean of the belief on the value of item i after the agent

has acquired two signals about item i.

We begin by proving Proposition 1. Recall that qualities vi are distributed independently accord-

ing to a Normal distribution and that the agent knows it, thus holds a correct prior belief. Recall also

that the agent has taken a sample, xi ¼ vi þ �i, with �i independently and identically distributed with

�i ~N 0;s2

�

� �
. Because the prior belief is Normal, and because also the signal xi is Normally distributed

around the true value, standard arguments give us that the posterior belief about vi is also Normal.

Denote by �i and s2

v the mean and the variance, respectively, of this posterior belief about vi, for

each i. Note that s2

v is the same for all i (since, with Normal distributions, the variance of the poste-

rior only depends on the variance of the prior and of the signal).

The agent can now acquire a second signal about only one of the items and needs to decide

which item. Note that, after a second signal about item i is acquired, this will further change the

belief about vi. Denote by �0
i the mean of this belief: that is, �0

i is the mean of the belief about vi after

the agent has acquired two signals about it.

Recall that V ið Þ indicates the utility that the agent expects to have after acquiring the second sig-

nal about item i. Recall also that we denote by i1 the item for which the agent has received the high-

est first signal, i2 the second-highest, etc. Suppose first that the second signal acquired is not about

the best item. Then, there are two possibilities. First, we may have that �i1>�
0
i, that is, after the sec-

ond signal, the posterior mean about the quality of i; �0
i, is below that of i1; �i1 . In that case the agent

will choose i1, and receive an expected quality of �i1 . If instead �i1<�
0
i, then the agent chooses i and

has an expected quality �0
i. It follows that, for i 6¼ i1, we have

V ið Þ ¼max �i1 ;�
0
i

� 	
:

For similar reasons, V i1ð Þ ¼max �i2 ;�
0
i1

n o
:

When the agent needs to decide which item to acquire a second signal about, however, the sec-

ond signal has not been observed yet: we thus need to compute the expectation of V ið Þ. In order to

compute this, the agent needs to form a belief about what will be the value of �0
i before acquiring

the second signal about vi (but after acquiring the first signal). Such belief must again be normally

distributed, and have mean �i. (This is because, of course, the expectation that the agent holds

about the posterior mean before receiving the signal must be centered at the prior mean, which in

this case is �i.) Denote by � the variance of this belief; again, this is the same for all is. Thus,

�0
i ~N �i; �ð Þ:

We are now ready to prove the following claims.

Claim 1. E V i1ð Þ½ � ¼ E V i2ð Þ½ �:

Proof. Recall that, for i 6¼ i1; we have V ið Þ ¼ max �i1 ; �
0
i

� 	
and �0

i ~N �i; �ð Þ. This means that the belief

about V ið Þ, for i 6¼ i1, coincides with N �i; �ð Þ for values above �i1 , but has a mass point at �i1 equal to

the probability that N �i; �ð Þ is below �i1 . If we denote by f� the Probability Density Function of

N �; �ð Þ, it follows that we have

E V i2ð Þ½ � ¼ �i1

Z �i1

�¥

f�i2
xð Þdxþ

Z þ¥

�i1

xf�i2
xð Þdx:

Recall also that V i1ð Þ ¼max �i2 ;�
0
i1

n o
. The belief about V i1ð Þ coincides with N �i1 ; �ð Þ above �i2 , but

has a mass point at �i2 equal to the probability that N �i; �ð Þ is below �i2 : Then,

E V i1ð Þ½ � ¼

Z �i2

�¥

�i2 f�i1
xð Þdxþ

Z þ¥

�i2

xf�i1
xð Þdx:

Note that, by construction, we have
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�i1 ¼

Z �i2

�¥

xf�i1
xð Þdxþ

Z þ¥

�i2

xf�i1
xð Þdx:

It follows that

E V i1ð Þ½ ���i1 ¼

Z �i2

�¥

�i2 � xð Þf�i1
ðxÞdx (A1)

and

E V i2ð Þ½ ���i1 ¼

Z þ¥

�i1

x��i1ð Þf�i2
ðxÞdx: (A2)

But we also know that

Z �i2

�¥

�i2 � xð Þf�i1
xð Þdx¼

Z þ¥

2�i1
��i2

x� 2�i1 þ�i2ð Þf�i1
xð Þdx¼

Z þ¥

�i1

x��i1ð Þf�i2
xð Þdx:

Together with Equation A1 and A2, this proves the claim.&

Claim 2. If N>2, E V i2ð Þ½ �>E V ij
� �� �

for all j>2.

Proof. Recall that, for i 6¼ i1, we have V ið Þ ¼ max �i1 ; �
0
i

� 	
, where �

0

i ~N �i; �ð Þ. It follows that the beliefs

about both V i2ð Þ and V ij
� �

(held before the second signal is acquired) has support �i1 ; ¥½ Þ. Denote

by Fi the Cumulative Density Function (CDF) of this belief. To prove the claim, we show that Fi2 First

Order Stochastically Dominates Fij for all j>2, while the converse is not true: that is, we aim to show

that for all x in the support, Fi2 xð Þ � Fij xð Þ, strictly for some x. (Recall that a distribution F first order

stochastically dominates another distribution G if for all x, the probability that F returns at least x is

not below the probability that G returns x or more.) This implies E V i2ð Þ½ �>E V ij
� �� �

:

Let d: ¼ �i2 � �ij and note that we have d>0 and that N �i2 ; �ð Þ xþ dð Þ ¼ N �ij ; �
� �

xð Þ for all x 2 R.

Since V ið Þ coincides with �0
i whenever that lies above �i1 and since �0

i ~N �i; �ð Þ, it follows that, for all

x>�i1 , we have 1� Fij xð Þ
� �

¼ 1� Fi2 xþ dð Þð Þ: the probability that Fij assigns to V ij
� �

being x or higher

is the same that Fi2 assigns to V i2ð Þ being xþ d or higher. Then, Fij xð Þ ¼ Fi2 xþ dð Þ: Because CDFs are

increasing and d>0, then Fi2 xð Þ � Fi2 xþ dð Þ, thus Fi2 xð Þ � Fij xð Þ for all x>�i1 . Moreover, notice that we

must have

Fi2 �i1ð Þ ¼N �i2 ; �ð Þ �¥;�i1½ �ð Þ<N �ij ; �
� �

�¥;�i1½ �ð Þ ¼ Fij �i1ð Þ:

That is, Fi2 assigns to values below �i1 a lower probability than Fij does. It follows that for all x in

the support �i1 ; ¥½ Þ,we have Fi2 xð Þ � Fij xð Þ, strictly for some. Thus, Fi2 First Order Stochastically Dom-

inates Fij for all j>2, while the converse is not true. The claim follows.

The two claims together prove Proposition 1.

Proposition 2

The proof of Proposition 2 is identical once we replace ij by iNþ1�j for j ¼ 1; . . . ;N. Intuitively, the

problem of maximising the expected utility of the remaining items is strategically equivalent to the

problem of choosing the lowest item, which, in turn, is symmetric to the problem of choosing the

best item. QED:
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