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Abstract Organ function depends on tissues adopting the correct architecture. However,

insights into organ architecture are currently hampered by an absence of standardized quantitative

3D analysis. We aimed to develop a robust technology to visualize, digitalize, and segment the

architecture of two tubular systems in 3D: double resin casting micro computed tomography

(DUCT). As proof of principle, we applied DUCT to a mouse model for Alagille syndrome (Jag1Ndr/

Ndr mice), characterized by intrahepatic bile duct paucity, that can spontaneously generate a biliary

system in adulthood. DUCT identified increased central biliary branching and peripheral bile duct

tortuosity as two compensatory processes occurring in distinct regions of Jag1Ndr/Ndr liver, leading

to full reconstitution of wild-type biliary volume and phenotypic recovery. DUCT is thus a powerful

new technology for 3D analysis, which can reveal novel phenotypes and provide a standardized

method of defining liver architecture in mouse models.

Introduction
The correct three-dimensional (3D) architecture of lumenized structures in our bodies is essential for

function and health. The cardiovascular system, lungs, kidneys, liver, and other organs depend on

precisely patterned tubular networks. Several diseases are caused by, or result in, alterations in the

3D architecture of lumenized structures. Vascular architecture defects contribute to Alzheimer’s dis-

ease (Klohs et al., 2014), opportunistic infections cause narrowing of bile ducts in liver (De Angelis

et al., 2009), and branching morphogenesis defects in the renal urinary system cause hypertension

(Short and Smyth, 2016). In some pathologies, several lumenized structures are affected at once.

Visualizing multiple tubular systems in tandem in 3D, in animal disease models, is necessary to allow

investigation of how these systems interact in vivo in development, homeostasis, and disease.
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2D histological sections remain the standard practice for all types of tissues. Recent advances in

tissue clearing (Chung et al., 2013; Susaki et al., 2014; Renier et al., 2016) carbon ink injections

(Kaneko et al., 2015) and high-end microscopy begin to address the need for, and benefits of,

whole organ analysis. Importantly, organ systems often interact with one another and almost always

are connected to blood supply. In order to study tissue spatial organization in development, disease,

and regeneration, a 3D analysis of multiple networks is indispensable. A lack of markers, suitable

antibodies, tissue autofluorescence and/or organ size often preclude the possibility for whole organ

analysis. Radiopaque resin casting is an alternative approach that enables micro computed tomogra-

phy (mCT) scanning, digitalization with full rotation and the possibility for both qualitative and quanti-

tative analyses compatible with multiple imaging softwares.

In this study, we focused on establishing a simple, robust, antibody-free and inexpensive method

for whole organ visualization of lumenized structures. We built on previous work to image a single

network using resin (Masyuk et al., 2003; Kline et al., 2011; Walter et al., 2012) and imaging with

mCT. First, in order to visualize multiple structures, we tested different radiopaque substances to

enhance the resin contrast, resulting in mixing of two MICROFIL resins with distinctive radiopacity.

As proof of principle, we focused on studying the hepatic vascular and biliary systems of wild type

and Jagged1 Nodder (Jag1Ndr/Ndr) (Andersson et al., 2018) mice, which are challenging to image

by other methods due to liver size and autofluorescence (Renier et al., 2016). We devised double

resin-casting micro computed tomography (DUCT) to inject, image and digitalize two systems in tan-

dem in 3D to gain a deeper insight into the organ recovery process. The subsequent analysis is per-

formed using a custom-written MATLAB pipeline (available and deposited in https://github.com/

JakubSalplachta/DUCT; Hankeova, 2021 copy archived at swh:1:rev:6b0b0eb88bbaf9bfc4f8ee42ca-

fa4c122866fbba) as well as with ImageJ.

eLife digest Many essential parts of the body contain tubes: the liver for example, contains bile

ducts and blood vessels. These tubes develop right next to each other, like entwined trees. To do

their jobs, these ducts must communicate and collaborate, but they do not always grow properly.

For example, babies with Alagille syndrome are born with few or no bile ducts, resulting in serious

liver disease. Understanding the architecture of the tubes in their livers could explain why some

children with this syndrome improve with time, but many others need a liver transplant.

Visualising biological tubes in three dimensions is challenging. One major roadblock is the

difficulty in seeing several tubular structures at once. Traditional microscopic imaging of anatomy is

in two dimensions, using slices of tissue. This approach shows the cross-sections of tubes, but not

how the ducts connect and interact. An alternative is to use micro computed tomography scans,

which use X-rays to examine structures in three dimensions. The challenge with this approach is that

soft tissues, which tubes in the body are made of, do not show up well on X-ray. One way to solve

this is to fill the ducts with X-ray absorbing resins, making a cast of the entire tree structure. The

question is, can two closely connected tree structures be distinguished if they are cast at the same

time?

To address this question, Hankeova, Salplachta et al. developed a technique called double resin

casting micro computed tomography, or DUCT for short. The approach involved making casts of

tube systems using two types of resin that show up differently under X-rays. The new technique was

tested on a mouse model of Alagille syndrome. One resin was injected into the bile ducts, and

another into the blood vessels. This allowed Hankeova, Salplachta et al. to reconstruction both trees

digitally, revealing their length, volume, branching, and interactions. In healthy mice, the bile ducts

were straight with uniform branches, but in mice with Alagille syndrome ducts were wiggly, and had

extra branches in the centre of the liver.

This new imaging technique could improve the understanding of tube systems in animal models

of diseases, both in the liver and in other organs with tubes, such as the lungs or the kidneys.

Hankeova, Salplachta et al. also lay a foundation for a deeper understanding of bile duct recovery in

Alagille syndrome. In the future, DUCT could help researchers to see how mouse bile ducts change

in response to experimental therapies.
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Alagille syndrome (ALGS) is a congenital disorder affecting multiple organs, including the hepatic

and cardiovascular systems (Spinner et al., 1993; Mašek and Andersson, 2017). The disease is usu-

ally caused by mutations in the Notch ligand JAGGED1 (JAG1, OMIM: ALGS1 [Oda et al., 1997;

Li et al., 1997; Gilbert et al., 2019]) or, less frequently, in the receptor NOTCH2 (OMIM: ALGS2

[Spinner et al., 1993; McDaniell et al., 2006]), and is chiefly characterized by intrahepatic peripheral

bile duct paucity (Alagille et al., 1975; Riely et al., 1979). Importantly, bile duct development is

regulated by portal vein mesenchyme (Hofmann et al., 2010), implying that the architectural rela-

tionship between liver cells and the vasculature affects opportunities for signaling cross-talk between

these systems in liver. Some patients with ALGS spontaneously recover a biliary system (Riely et al.,

1979; Fujisawa et al., 1994). Ductular reaction, aberrant biliary growth and/or trans-differentiation

from hepatocytes can contribute to biliary recovery in ALGS and other cholestatic disorders

(Schaub et al., 2018; Fabris et al., 2007). Furthermore, it has been reported that liver vascular archi-

tecture is affected in ALGS (previously also known as arteriohepatic dysplasia or syndromic paucity

of bile ducts [Hadchouel et al., 1978]). It is thus clear that understanding and defining both biliary

and vascular intrahepatic defects is essential for ALGS.

DUCT is a versatile, reliable tool allowing standardized architecture analysis and definition of mul-

tiple lumenized trees on a whole organ level, facilitating systems insights. We demonstrated the

applicability of DUCT by revealing the distinct morphological features that allow the de novo gener-

ated Jag1Ndr/Ndr adult biliary system to achieve wild-type biliary volume: (1) an increase in the num-

ber of central low generation branches and (2) profound tortuosity in the liver periphery. We

confirmed these 3D findings in 2D sections from Jag1Ndr/Ndr mice and patients with ALGS, demon-

strating that the new phenotypes identified with DUCT in the mouse model are representative of

patient pathology. Using DUCT we also discovered novel phenotypes such as bile duct bridging

between two portal veins, which would be misinterpreted as bile duct proliferation in 2D histological

sections. Hence, 2D histological sections are not sufficient to understand the structural abnormalities

of tubular networks.

Results

DUCT revealed that Jag1Ndr/Ndr adult mice generate a full-volume
biliary system
In order to define and quantify the adaptive process resulting in a de novo generated biliary system

in adult Jag1Ndr/Ndr mice, we investigated the spatial relationship of portal venous and biliary sys-

tems in normal and diseased liver in 3D. First, we compared double carbon ink injection

(Kaneko et al., 2015) and whole mount immunofluorescence staining combined with tissue clearing

using iDISCO+ (Renier et al., 2016) to assess the 3D architecture of the liver (Figure 1—figure sup-

plement 1A and B). Neither carbon ink injection nor iDISCO+ (due to poor labeling of vascular net-

work) were suitable for dual 3D analysis of vascular and biliary networks. We therefore developed an

alternative approach for 3D analysis: DUCT (Figure 1A, Figure 1—figure supplement 1C) followed

by semi-automated segmentation generating 3D binary masks of these two systems. The binary

masks were used directly for DUCT data volume analysis. For further quantification of the architec-

tural parameters the binary masks were skeletonized and analyzed (Figure 1B) using a custom-writ-

ten MATLAB pipeline, ImageJ, or qualitative visual assessment.

DUCT outperformed ink injection and immunofluorescence in most aspects (Figure 1—figure

supplement 1D), from 3D analysis (not possible with ink) to analysis of lumenization (not possible

with immunofluorescence). One limitation, however, is that DUCT cannot visualize lumens smaller

than 5 mm. Finally, to test whether DUCT can be applied to other organ systems, we visualized lung

architecture by injecting the airways (via the trachea) and the vasculature (via the pulmonary artery)

and 3D reconstructed the respiratory and vascular systems (Figure 1—figure supplement 1E). In

lungs, as in liver, the two lumenized systems can be clearly distinguished using DUCT. In all the

DUCT liver experiments in this manuscript, we applied DUCT to the right medial lobe, and used the

other lobes for sample-matched quality control (Figure 1—figure supplement 2).

Our previous work revealed that Jag1Ndr/Ndr bi-potential hepatoblasts did not differentiate into

cholangiocytes during embryonic development. Newborn Jag1Ndr/Ndr mice were jaundiced and dis-

played intrahepatic bile duct paucity. However, by adulthood Jag1Ndr/Ndr livers exhibited mature
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Figure 1. DUCT revealed that Jag1Ndr/Ndr bile ducts recover a full-volume biliary system. (A) The DUCT pipeline encompasses resin injection into two

systems (portal venous and biliary), micro computed tomography (mCT) scanning of the organ, or individual lobes, and segmentation of mCT data

(tomographs) into 3D binary masks. (B) The image analysis pipeline creates 3D skeletons from the binary masks, to quantify architectural parameters in

individual or combined systems. (C) 3D rendering of BD and PV structures using DUCT in postnatal day 15 (P15) Jag1+/+ (top panel) and Jag1Ndr/Ndr

Figure 1 continued on next page
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bile ducts, but with abnormal apical polarity (Andersson et al., 2018). Using DUCT, we first investi-

gated to what degree Jag1Ndr/Ndr mice can grow a biliary tree by postnatal day 15 (P15). We exam-

ined the biliary system in 7 Jag1Ndr/Ndr P15 pups and discovered a rudimentary or absent biliary tree

in Jag1Ndr/Ndr pups, while there was a fully developed biliary tree in Jag1+/+ mice (Figure 1C). The

3D reconstruction of both systems can be explored in separate channels or in tandem with rotation

(interactive PDFs, Figure 1—figure supplements 3 and 4). We noted high variability in biliary out-

growth between the right medial lobe (RML) and the left lateral lobe (LLL) in Jag1Ndr/Ndr livers (illus-

tration of liver lobes Figure 1—figure supplement 5A). In the RML of five Jag1Ndr/Ndr pups, the

biliary tree covered >5% of liver area, whereas in LLL only 1 Jag1Ndr/Ndr pup displayed >5% biliary

tree coverage, while four Jag1Ndr/Ndr pups had no lumenized bile ducts. In Jag1+/+ pups the biliary

network covered on average 75% of the liver area in both RML and LLL (Figure 1—figure supple-

ment 5B and C). The P15 Jag1Ndr/Ndr pups were cholestatic, and manifested increased levels of alka-

line phosphatase (ALP) (Figure 1D), aspartate aminotransferase (AST), alanine aminotransferase

(ALT) and decreased levels of albumin (Figure 1—figure supplement 5D). Interestingly, two differ-

ent groups were noted in Jag1Ndr/Ndr pups with regard to the total bilirubin levels, that is, 50% of

the animals had highly increased and 50% had mildly increased total bilirubin (p=0.0079), while all

Jag1+/+ mice displayed bilirubin levels below detection limits (Figure 1—figure supplement

5D). We correlated the total bilirubin amount with the liver area covered by lumenized bile ducts

and detected a strong negative correlation between these two factors (Figure 1E, r = �0.8214). We

further sectioned the resin injected P15 liver and stained for the early biliary marker SOX9 (SRY-Box

Figure 1 continued

livers (bottom panel). Scale bar = 1 mm. (D) Alkaline phosphatase (ALP) serum levels at P15. Each dot represents one animal; lines show mean value ±

standard deviation. Statistical test – unpaired t-test, p=0.0008. (E) Correlation analysis between total bilirubin levels and liver area with resin-injected

BD. Each dot represents one animal; lines show mean value ± standard deviation (measured in right medial and left lateral lobe). Statistical test – non-

parametric Spearman correlation, p=0.0341, r = �0.8214. (F) 3D rendering of BD and PV structures using DUCT in adult (4.5–6.5 months old) Jag1+/+

(top panel) and adult de novo generated Jag1Ndr/Ndr livers (bottom panel). Boxed regions highlight 2D sections of hilar, intermediate and peripheral

regions identified with dotted lines in matched colors. Scale bar = 4 mm. (G) BD system volume is similar in adult Jag1+/+ and Jag1Ndr/Ndr mice. Each

dot represents one animal; lines show mean value ± standard deviation, unpaired t-test, p=0.3730 (H) BD/PV diameter ratio in Jag1+/+ and Jag1Ndr/Ndr

mice in hilar, intermediate and peripheral regions. Each dot represents one animal; lines show mean value ± standard deviation. Two-way ANOVA,

p=0.2496. 3D, three dimensional; ALP, alkaline phosphatase; BD, bile duct; DUCT, double resin casting micro computed tomography; H, hilar; P,

peripheral. PV, portal vein.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Figure supplement 1. DUCT outperforms other state of the art techniques to visualize mouse liver in 3D.

Figure supplement 2. Resin injection quality control of the left lateral lobe.

Figure supplement 3. Liver cast of P15 Jag1+/+ showing bile duct (green) and portal vein (white) together (top panel) or separately (bottom panels).

Figure supplement 3—source data 1. 3D interactive liver cast shown in Figure 1—figure supplement 3.

Figure supplement 4. Liver cast of P15 Jag1Ndr/Ndr showing bile duct (green) and portal vein (white) together (top panel) or separately (bottom panels).

Figure supplement 4—source data 1. 3D interactive liver cast shown in Figure 1—figure supplement 4 .

Figure supplement 5. Jag1Ndr/Ndr bile ducts displayed heterogeneous de novo growth.

Figure supplement 6. Liver cast of adult Jag1+/+ showing bile duct (green) and portal vein (white) together (top panel) or separately (bottom panels).

Figure supplement 6—source data 1. 3D interactive liver cast shown in Figure 1—figure supplement 6.

Figure supplement 7. Liver cast of adult Jag1+/+ showing bile duct (green) and portal vein (white) together (top panel) or separately (bottom panels).

Figure supplement 7—source data 1. 3D interactive liver cast shown in Figure 1—figure supplement 7.

Figure supplement 8. Liver cast of adult Jag1+/+ showing bile duct (green) and portal vein (white) together (top panel) or separately (bottom panels).

Figure supplement 8—source data 1. 3D interactive liver cast shown in Figure 1—figure supplement 8.

Figure supplement 9. Liver cast of adult Jag1Ndr/Ndr showing bile duct (green) and portal vein (white) together (top panel) or separately (bottom

panels).

Figure supplement 9—source data 1. 3D interactive liver cast shown in Figure 1—figure supplement 9.

Figure supplement 10. Liver cast of adult Jag1Ndr/Ndr showing bile duct (green) and portal vein (white) together (top panel) or separately (bottom

panels).

Figure supplement 10—source data 1. 3D interactive liver cast shown in Figure 1—figure supplement 10.

Figure supplement 11. Liver cast of adult Jag1Ndr/Ndr showing bile duct (green) and portal vein (white) together (top panel) or separately (bottom

panels).

Figure supplement 11—source data 1. 3D interactive liver cast shown in Figure 1—figure supplement 11.

Figure supplement 12. Overview of 3D reconstructed bile duct and portal vein systems, their branching skeletons and volume.
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transcription factor 9) (note remaining resin in some portal veins). In Jag1+/+ central liver, lumenized

bile ducts were clearly detected, whereas in all four Jag1Ndr/Ndr central livers no lumenized bile ducts

were visible and the number of SOX9 positive cells varied between animals, poorly reflecting the

total bilirubin levels (Figure 1—figure supplement 5E).

Next, we aimed to characterize and quantify the biliary architecture of the Jag1Ndr/Ndr de novo

generated biliary system in adult mice (Figure 1F). The 3D reconstruction of both systems can be

explored in separate channels or in tandem (interactive PDFs, Figure 1—figure supplement 6–

11). While Jag1+/+ mice demonstrated a stereotyped vascular and biliary architecture (Figure 1—fig-

ure supplement 12A, B and C), Jag1Ndr/Ndr livers exhibited greater architectural variability (Fig-

ure 1—figure supplement 12D, E and F). To quantify the degree of de novo biliary formation, we

extracted the volume (using the binary masks) and diameters of the portal venous and biliary sys-

tems (using the binary masks and skeletons). The total volume of the vascular and biliary trees was

similar in Jag1Ndr/Ndr and Jag1+/+ mice (Figure 1G, Figure 1—figure supplement 12H). There was

a tendency toward a larger portal venous volume and smaller biliary volume in Jag1Ndr/Ndr mice,

resulting in a trend toward a reduced BD:PV (bile duct, portal vein) volume ratio in Jag1Ndr/Ndr mice

(Figure 1—figure supplement 12H, p=0.0594). Next, we investigated portal vein and bile duct

diameters along the main branch. There was a tendency to an increase in the Jag1Ndr/Ndr portal vein

diameter and a decrease in biliary diameter as a function of distance compared with Jag1+/+ mice

(Figure 1—figure supplement 12I). However, there was high variability in venous and bile duct

diameter in the Jag1Ndr/Ndr hilar region. In Jag1+/+ liver, the BD:PV diameter ratio was consistently

1:3 in hilar and intermediate regions (Figure 1H). This BD:PV diameter ratio was not preserved in

the Jag1Ndr/Ndr livers (Figure 1H).

DUCT enabled 3D visualization of postnatal and adult biliary and vascular trees. The biliary net-

work in Jag1Ndr/Ndr mice appeared postnatally, but with high heterogeneity between liver lobes and

animals. Moreover, the liver area with lumenized bile ducts correlated with total bilirubin levels and

disease severity at P15. The adult segmented mCT data were analyzed for volume and inner diame-

ter of two injected systems. Comparisons of the portal vein and bile duct diameters demonstrated a

conserved portal vein – bile duct architectural relationship with a stereotype BD:PV 1:3 diameter

ratio in Jag1+/+ liver. The adult Jag1Ndr/Ndr mice displayed a heterogeneous phenotype that never-

theless resulted in full restoration of biliary function (Andersson et al., 2018) via recovery of a wild-

type biliary volume.

Alagille syndrome human and murine bile ducts end abruptly
The intrahepatic biliary tree forms by a tubulogenic process in which a heterogeneous, hierarchical

fine mesh of connected cholangiocytes is refined to single larger conduits of bile ducts, resembling

a branching tree (Ober and Lemaigre, 2018; Tanimizu et al., 2016). In Jag1+/+ liver, the qualitative

analysis of network connectivity revealed that the biliary system formed a continuous tree, branching

outwards toward the periphery as expected (Figures 1C, F and 2A left panel). In contrast, the

Jag1Ndr/Ndr biliary system displayed some branches oriented from peripheral to hilar, with abrupt

endings (Figure 2A right panels, blue arrowheads, on average one abruptly ending BD per lobe).

We confirmed the abruptly ending bile ducts in Jag1Ndr/Ndr livers in serial liver sections (Figure 2B,

bottom panels). The black arrowhead labels a well-formed bile duct, that ended bluntly in the follow-

ing section (+5 mm, blue arrowhead), and disappeared completely in the next section (+10 mm).

To determine whether the Jag1Ndr/Ndr biliary abnormalities were representative of pathology in

patients with Alagille syndrome, we evaluated liver serial sections from whole liver explants (patients

with severe Alagille syndrome (S-ALGS) that underwent transplantation) and biopsies obtained for

clinical reasons in non-transplanted patients (patients with mild Alagille syndrome (M-ALGS)).The

liver function tests for individual patients are reported in Table 1 and representative liver sections

are presented in Figure 2—figure supplement 1. One patient (M_ALGS-5) had been biopsied at

multiple time points revealing paucity of bile duct at 2.5 months, a regenerating phase with hepato-

cytes expressing CK7 at 1.3 years and bile duct recovery at 4.7 years (Figure 2—figure supplement

1D).

We evaluated liver sections from patients with severe (top panel) and mild (bottom panel) Alagille

syndrome for the presence of abruptly terminating bile ducts. A black arrowhead labels a well-

formed bile duct that terminated in the subsequent section (+5 mm, blue arrowhead), (Figure 2C). In

conclusion, DUCT facilitated qualitative assessments of the tubular networks, including connectivity
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and perfusion. Both the Jag1Ndr/Ndr and Alagille syndrome biliary systems displayed abruptly ending

bile ducts, which may affect bile flow and shear stress.

Alagille syndrome human and murine de novo generated bile ducts are
further from portal veins
During embryonic development, cholangiocytes differentiate from hepatoblasts that are in contact

with portal vein mesenchyme expressing Jag1 (Ober and Lemaigre, 2018). Whether postnatally de

novo generated bile ducts arise adjacent to the portal vein, or whether they are less dependent on

portal vein proximity has not yet been explored. We therefore analyzed the distance between the

biliary and portal venous systems by calculating the surface distances using the MATLAB pipeline.

Figure 2. Alagille syndrome human and murine bile ducts end abruptly. (A) Jag1Ndr/Ndr BDs (right panel) terminated randomly and facing toward the

hilum (blue arrowheads). (B) 2D histological consecutive liver sections confirmed abruptly terminating BDs in Jag1Ndr/Ndr liver. Black arrowhead depicts

lumenized well-formed BD that ended in the following sections (blue arrowhead). (C) BDs in patients with severe ALGS (top panel) or mild ALGS

(bottom panel) terminate abruptly (blue arrowhead) in consecutive liver histological sections. Scale bars (A) 500 mm, (B left panels), (C) 50 mm, (B boxed

region) 20 mm. ALGS, Alagille syndrome; BD, bile duct; CK, cytokeratin; H, hilar; P, peripheral. PV, portal vein.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Overview of liver samples from patients with Alagille syndrome stained for CK7.
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Specifically, the surface distance was defined as the shortest length from biliary skeleton to the por-

tal venous skeleton, minus radiuses of these systems at the defined points (Figure 3A). Jag1+/+ bile

ducts maintained a uniform distance to adjacent portal veins throughout the liver (Figure 3B top

panel, asterisk, 3C, 3D 100% of BDs within 0.5 mm of a PV). In contrast, Jag1Ndr/Ndr bile ducts did

not maintain a uniform distance to the nearest portal vein (Figure 3B bottom panel, double arrow,

3C, 3D 1.5% of BD are placed 0.5–1.26 mm away from a PV) and sometimes traversed the paren-

chyma to join another portal vein branch (Figure 3B bottom right panel, Figure 1—figure supple-

ment 2 empty arrowheads). Both the increased BD-PV distance and parenchymal bile ducts were

validated in histological sections, in which Jag1+/+ bile ducts were in close proximity to, or embed-

ded in portal vein mesenchyme (Figure 3E left panel, asterisk). In contrast, Jag1Ndr/Ndr bile ducts

were confirmed to be present outside of the portal vein mesenchyme area (Figure 3E middle panel,

double arrow) or even in the liver parenchyma close to the edge of the liver (Figure 3E right panel).

This phenotype, visualized in 2D sections, could resemble biliary proliferation, or ductular reaction,

rather than a bridging structure, highlighting the importance of 3D imaging. Parenchymal bile ducts

were also detected in liver samples from patients with severe and mild Alagille syndrome

(Figure 3F) but not in control human liver. In sum, DUCT pipeline together with the MATLAB algo-

rithm, measured the gap between surfaces of two resin injected systems to address the spatial rela-

tionship between them. Our data showing biliary cells in the parenchyma and bile ducts far from

portal veins in Jag1Ndr/Ndr liver and liver from patients with Alagille syndrome thus suggest that

postnatal bile duct formation does not rely on close proximity to portal vein mesenchyme and may

occur independent of signals from portal vein mesenchyme.

Alagille syndrome human and murine de novo generated bile ducts
display branching independent of portal vein branching
Portal vascular and biliary systems are ductal tree-like structures with numerous branches, which

function to maximize the area of exchange between the tissue and its lumen. We evaluated portal

venous and biliary branching using the DUCT pipeline and the MATLAB script to quantify the total

number of vascular or biliary branch points. Branch points were identified using the 3D skeletons of

each system, and categorized based on the number of incoming/outgoing branches (classifying as

bifurcations, trifurcations, or nodes with more than three branches) (Figure 1—figure supplement

12D and G). We did not identify any differences in the absolute numbers of branch points in Jag1+/+

and Jag1Ndr/Ndr systems, again suggesting that de novo biliary growth generally reconstituted a full-

volume, well-branched biliary tree (Figure 4—figure supplement 1).

Table 1. Liver function test overview for patients with Alagille syndrome.

M-ALGS stands for patients with mild Alagille syndrome. S-ALGS stands for patients with severe Alagille syndrome.

ID
Age
(years)

ALT
(mkat/L)

AST
(mkat/L)

ALP
(mkat/L)

GT
(mkat/L)

Bil Tot
(mmol/L)

BilD
(mmol/L)

Bile acids
(mmol/L) Sample

Reference value <0.76 <1 <7.6 <0.76 <22 <4 <10

S-ALGS_1 1.2 3.29 2.87 23.4 21.8 308 272 665 Explant

S-ALGS_2 1.5 3.09 - 10.8 13.5 274 246 473 Explant

S-ALGS_3 4 4.41 - 9.9 7.5 238 215 246 Explant

S-ALGS_4 6 3.9 - 9.4 8.1 220 193 244 Explant

M-ALGS_1 0.6 1.09 - 4.6 1.2 7 2 - Biopsy

M-ALGS_2 1.4 0.78 0.96 6.6 1.2 3 <2 33 Biopsy

M-ALGS_3 2.5 1.46 1.44 13.6 7.4 10 6 106 Biopsy

M-ALGS_4 3.4 0.68 0.92 5.2 1.5 14 4 31 Biopsy

M-ALGS_5_1 0.2 1.44 1.77 - - 46 39 175 Biopsy

M-ALGS_5_2 1.2 1.59 1.8 - - 3 2 - Biopsy

M-ALGS_5_3 4.7 0.79 0.93 3.5 0.52 9 <2 2 Biopsy

M-ALGS_6 6.4 1.18 1.44 6.4 3 6 <2 1 Biopsy
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Figure 3. Alagille syndrome human and murine de novo generated bile ducts are further from portal veins. (A) Scheme of BD to PV surface distance

analysis. PVskelP = single point on PV skeleton, BDskelP = single point on BD skeleton, rPV = radius of PV at PVskelP (i.e. minimal distance from PVskelP to

PV surface), rBD = radius of BD at BDskelP (i.e. minimal distance from BDskelP to BD surface), dgap = gap distance, which is derived by subtracting the

radii from the skeleton to skeleton distance. (B) 3D rendering shows homogenous distance between a BD and PV in Jag1+/+ livers (asterisk), but a large

heterogeneous distance in Jag1Ndr/Ndr liver (double-headed arrow). Right panel shows a parenchymal bile duct traversing between two PVs at the

Jag1Ndr/Ndr liver edge. Scale bar 500 mm. (C) Cumulative sum of percentage of BDs at a given distance from the nearest PV. 3 Jag1+/+ and 3 Jag1Ndr/

Ndr mice were used. Bars represent mean ± standard deviation, Kolmogorov - Smirnov test (on raw data), p<0.0001, (****). For individual data points

see Figure 3—source data 1. (D) Maximum distance between BD and PV. Each dot represents one animal, bars are mean ± standard deviation,

unpaired t-test, p=0.1041, not significant. (E) BD – PV distances confirmed in 2D histological sections. Overview in top panel and magnification in

bottom panel. Jag1Ndr/Ndr PVs can be present in the parenchyma far from (middle panels), or independent of (right panels), the nearest PV. Scale bars

50 mm. (F) Healthy human liver with BD close to PV (top panel). Parenchymal CK7+ BDs in histological liver sections from a patient with severe ALGS

(middle panel) and distant BDs in a patient with mild ALGS (bottom panel). Magnification shows lumenization of BDs. Scale bar 50 mm. ALGS, Alagille

syndrome, BD, bile duct; CK, cytokeratin; H, hilar; HA, hepatic artery; P, peripheral; PV, portal vein.

The online version of this article includes the following source data for figure 3:

Source data 1. Raw data measuring the distance from the surface of bile duct to a portal vein surface.
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During embryonic development, the biliary system is established alongside the portal venous sys-

tem. This is reflected in the final architecture of the system, with bile ducts in close proximity to por-

tal veins (Figure 3). A prediction based on this embryonic process and BD/PV dependency is

therefore that bile ducts should invariably branch where portal veins branch. We extracted the coor-

dinates for branch points in the biliary and portal venous systems from the corresponding 3D skele-

tonized data and calculated 3D Euclidean distances between biliary branch points and their nearest

neighboring portal vein branch point (Figure 4A). Indeed, Jag1+/+ bile ducts (Figure 4B left panel,

blue arrowhead) branched adjacent to portal vein branch points (magenta arrowhead, defined as

within 0.5 mm). In contrast, Jag1Ndr/Ndr bile ducts (Figure 4B middle panel, blue arrowhead)

branched further from portal vein branch points (magenta arrowhead), or independent of portal vein

branch points (blue arrow in Figure 4B, and data in 4C; independence defined as distance >0.54

mm). On average, 1.3% of Jag1+/+ bile ducts branch points and 8.6% of Jag1Ndr/Ndr bile duct branch

points were further than 0.5 mm from the nearest portal vein branch point (Figure 4C). We analyzed

consecutive histological liver sections to confirm branching morphology defects discovered using

DUCT. Jag1+/+ bile ducts (Figure 4D top panel, blue arrowhead) indeed branched at the same point

as portal veins branch (magenta arrowhead). In contrast, in Jag1Ndr/Ndr liver bile ducts might bifur-

cate in the absence of portal vein branching (Figure 4D bottom panel, blue arrow).

We next asked whether similar branching phenotypes were present in healthy human liver or in

patients with mild or severe Alagille syndrome. In normal human liver, biliary branching occurred

close to portal vein bifurcation (Figure 4E top panel, blue arrowheads, PV branching within 25 mm in

this example, branching not shown). In patients with severe Alagille syndrome, biliary branching

could be seen independent of portal vein branching (Figure 4E middle panel, blue arrows), the near-

est portal vein branch point for this bile duct was 13 sections hilar (circa 65 mm earlier). We also

detected independent bile duct branching in patients with mild Alagille syndrome (Figure 4E bot-

tom panel, blue arrows). In conclusion, DUCT revealed dual system 3D architectural phenotypes: (1)

similar numbers of branch points in Jag1+/+ and Jag1Ndr/Ndr livers but (2) a greater distance between

portal vein and bile duct branch points in Jag1Ndr/Ndr livers. Bile ducts in patients with Alagille syn-

drome displayed similar branching abnormalities, corroborating the architectural independence

from portal vein patterning.

Strahler analysis of resin casts reveal excess central branching in the
Jag1Ndr/Ndrde novo generated biliary system
Whether de novo bile duct formation occurs evenly throughout the liver or is more extensive in cer-

tain regions has not yet been quantitatively defined. One of the mechanisms by which the biliary sys-

tem can regenerate is via abundant branching of the network (Vartak et al., 2016; Masyuk et al.,

2001). We therefore employed the DUCT pipeline and ImageJ to perform a Strahler analysis (3D

branching analysis based on generation number from the origin, see Material and methods section

‘Branching analysis’ for details on generation number calculation) to address the branch length, num-

ber and distribution in specific liver areas. In order to define anatomy correctly for differently sized

livers, the liver lobe data were separated into three equivalent regions using portal vein branch gen-

eration number and lengths as a proxy for hilum/intermediate/periphery. These regions were

denoted region 1 (R1 enriched for hilar region), 2 (R2, intermediate), and 3 (R3, peripheral-enriched)

(Figure 5A). The average branch length of the portal vein was shorter in Jag1Ndr/Ndr livers, resulting

in significantly smaller portal vein region sizes (Figure 5B middle panel), reflecting the overall smaller

size of the mice and livers. Using the regions defined by the portal venous system, biliary region size

was similar in the 1 st and 2nd region of wild type and Jag1Ndr/Ndr mice, while region three was

smaller in both animal groups due to resin not penetrating ducts < 5 mm (Figure 5B right panel, Fig-

ure 5—figure supplement 1). Two out of three Jag1Ndr/Ndr mice had a marked reduction in biliary

region size in R3, while one had an increase, reflecting the somewhat variable phenotype manifested

by both the patients and the mouse model.

Branching trees in biological systems have a stereotype structure in which branch lengths shorten

with each branching generation from start (R1) to end (periphery, R3) (Masyuk et al., 2001;

Hannezo et al., 2017). We analyzed the portal vein and biliary branch lengths within each region

and found that portal vein segments shortened as expected with each generation in both Jag1+/+

and Jag1Ndr/Ndr livers (Figure 5C middle panel). Jag1+/+ bile ducts followed the same stereotype

branching principle, but Jag1Ndr/Ndr bile ducts branch lengths were significantly shorter in regions 1
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Figure 4. Alagille syndrome human and murine de novo generated bile ducts display branching independent of portal vein branching. (A) Scheme

representing BD to PV branch point analysis. PVBD = PV branch point, BDBD = BD branch point, dBP = Euclidean 3D distance between branch points.

(B) Branching pattern in Jag1+/+ (left panel) and Jag1Ndr/Ndr liver (middle and right panel). PV branch points (pink arrowheads) were near BD branch

points (blue arrowheads) in wild type mice, but further away in Jag1Ndr/Ndr mice. BD branch points in Jag1Ndr/Ndr mice also occurred in the absence of

Figure 4 continued on next page
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and 2, and uniform across the hierarchy of branches (Figure 5C right panel). We further analyzed the

distribution of number of branches in the three regions and discovered that, on average, 9% of

Jag1+/+ portal vein branches fell into R1, 66% into R2% and 25% into R3, with a similar distribution

in Jag1Ndr/Ndr livers (Figure 5D middle panel). Based on biological tree structure, we would expect

fewest biliary branches in R1, an intermediate number in R2, and most branches in R3. However,

resin penetration and lumen diameter precluded filling of all terminal portal vein branches in R3. Mir-

roring the wild type portal venous branch distribution, Jag1+/+ biliary branch distribution was, on

average, 16% in R1, 66% in R2% and 18% in R3. Jag1Ndr/Ndr biliary branch distribution was shifted,

with 44% in R1, 44% in R2% and 12% in R3 (Figure 5D right panel). The distribution of biliary

branches number was highly heterogeneous among the different Jag1Ndr/Ndr mice. DUCT pipeline is

compatible with multiple image analysis software programs. Here, we used ImageJ to address the

branching length over branching generations, and our data collectively indicated that low-genera-

tion number biliary segments were shorter and more numerous than expected, suggesting that

ectopic regenerative branching and/or incorporation of de novo generated biliary cells, occurs in

region 1. However, peripheral branching, which may be undetectable if biliary diameters are under 5

mm, cannot be excluded.

Alagille syndrome human and murine de novo generated bile ducts are
tortuous
The biliary system can adapt to excessive amounts of bile by increasing its diameter or length

(Vartak et al., 2016; Slott et al., 1990). One means of enlarging length is by duct convolution. We

therefore investigated the length and tortuosity of the biliary and portal vascular trees using the

DUCT pipeline in combination with the MATLAB algorithm (whole system and main branch quantifi-

cation) and ImageJ (R1, R2 and R3 analysis). 3D reconstruction of portal vein vasculature and the bili-

ary network revealed straight Jag1+/+ bile ducts (Figure 6A top panel), whereas Jag1Ndr/Ndr bile

ducts were tortuous (Figure 6A bottom panel), especially in the liver periphery. We confirmed in his-

tological liver sections that the Jag1Ndr/Ndr BDs were tortuous (Figure 6B). We further assessed bili-

ary tortuosity in patients with mild Alagille syndrome and found several tortuous bile ducts

(Figure 6C); however, we did not detect any tortuous bile ducts in patients with severe Alagille syn-

drome (data not shown). In order to quantify tortuosity, we calculated the actual (curved) length and

theoretical (chord) length (scheme Figure 6D). The curved and chord lengths of the entire system,

and the main branch alone did not differ for portal venous or biliary systems in Jag1+/+ and Jag1Ndr/

Ndr mice (Figure 6—figure supplement 1A–G). The BD:PV ratio was not significantly different for

curved (Figure 6—figure supplement 1H) or chord length (Figure 6—figure supplement 1I). How-

ever, there was a 6% increase in overall portal venous tortuosity in Jag1Ndr/Ndr mice when the entire

system was taken into account (Figure 6E) and biliary tortuosity was increased by 50%. Biliary tortu-

osity was greatest in the Jag1Ndr/Ndr liver periphery, with a 140% increase in R3 (Figure 6E). The tor-

tuosity of the main portal vein or main bile ducts branch analyzed alone was not significantly

different (Figure 6—figure supplement 1J and K), highlighting the importance of analyzing the

Figure 4 continued

PV branching (blue arrow). Scale bar 500 mm. (C) Cumulative sum of BD branching point percentage at a given distance to the nearest PV branching

point. 3 Jag1+/+ and 3 Jag1Ndr/Ndr mice were used. 100% of Jag1+/+ bile duct branchpoints were within 1 mm of a PV branchpoint, but only 95% of

Jag1Ndr/Ndr branchpoints were within 1 mm. Bars represent mean ± standard deviation, Kolmogorov-Smirnov test (on raw data, p=0.9985, not

significant). For individual data points see Figure 4—source data 1 (D) Branching analysis in 2D histological consecutive Jag1+/+ and Jag1Ndr/Ndr liver

sections. PV branching (pink arrowheads) was present near BD branching (blue arrowheads) in wild type mice (top panels). In Jag1Ndr/Ndr mice, BDs

branched ectopically in the absence of PV branching (bottom panel). Boxed regions magnified in panels at right. Scale bar 50 mm, boxed region 20 mm.

(E) Branching pattern in consecutive human liver histological sections shows BD branching in association with PV (pink arrowhead) branching in controls

(top panel), but BD branching in the absence of PV branching in patients with severe ALGS (middle panel) and patients with mild ALGS (bottom panel).

Scale bar 50 mm, boxed region 20 mm. ALGS, Alagille syndrome; BD, bile duct; CK, cytokeratin; HA, hepatic artery; H, hilar; P, peripheral; PV, portal

vein.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Raw data measuring the distance from the bile duct branching point to a portal vein branching point.

Figure supplement 1. De novo grown bile ducts did not show significant differences in the numbers of bifurcations, trifurcations or nodes > 3 branches

when normalized to system size.
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Figure 5. Strahler analysis of resin casts reveal excess central branching in the Jag1Ndr/Ndr de novo generated biliary system. (A) 3D branching analysis

based on Strahler number. The branching generations were divided into three equal regions: R1, R2 and R3 based on portal vein average branch

length and generation number. Formula: R = {R1, R2, R3}; n 2 [1, M] � N; T1, T2� n; R, region; G, branch generation; M, maximal branch generation

number; lGn, average branch length of nth generation; T1, T2, borders between regions (specific generation number). (B) Schematic representation of

region size calculation, deriving the sum of the average branch lengths within a given region (left). Liver region size for PV (middle panel) and BD (right

panel). (C) Schematic representation of average branch length calculation within a region (left panel). Average branch length analysis for PV (middle

panel) and BD (right panel) system. (D) Schematic representation of branch distribution, deriving the percentage of branches belonging to each region

(left panel). Percentage of branches in each liver region in PV (middle panel) and BD (right panel) systems. Each dot represents one animal, bars

represent mean ± standard deviation. Two-way ANOVA, (B) middle panel p = 0.0289, right panel p = 0.2029; (C) middle panel p = 0.1177, right panel p

= 0.0367; (D) middle panel p = 0.4226, right panel p = 0.8845; followed by Sidak’s multiple comparisons test, p < 0.05 (*), p < 0.01 (**), ns not

significant. au, arbitrary units; BD, bile duct; PV, portal vein.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Bile duct branch distribution per region.
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Figure 6. Alagille syndrome human and murine de novo generated bile ducts are tortuous. (A) DUCT 3D rendering of BD and PV structures in Jag1+/+

(top panels) and Jag1Ndr/Ndr liver (bottom panels). Boxed areas magnify the hilar (H), intermediate (I) and peripheral (P) regions. Scale bars left 4 mm,

boxed regions 250 mm. (B) 2D histological liver sections, show well-formed round CK19+ BDs in Jag1+/+ liver, but aberrantly formed BDs in Jag1Ndr/Ndr

liver. Scale bar 50 mm. (C) 2D liver section from patient with mild ALGS revealed tortuous misshaped BDs. Scale bar 50 mm, boxed region 20 mm. (D)

Schematic representing length measurements. Percentage tortuosity was calculated by dividing curved (actual) length by chord (theoretical) length, and

subtracting 100% (final value of 0% = not tortuous, perfectly straight). (E) The overall Jag1Ndr/Ndr PV (left graph) and BD (right graph) systems are more

tortuous than wild types, and the Jag1Ndr/Ndr BD system is particularly tortuous in Region 3 (periphery). Each dot represents one animal, lines show

mean value ± standard deviation. Statistical test: two-way ANOVA, left panel p=0.0141, right panel p=0.0251; followed by Sidak’s multiple comparisons

test; p<0.05 (*), p<0.01 (**). ALGS, Alagille syndrome; BD, bile duct; CK, cytokeratin; DUCT, double resin casting micro computed tomography, H, hilar;

HA, hepatic artery, I, intermediate P, peripheral; PV, portal vein.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. The adult de novo formed Jag1Ndr/Ndr and Jag1+/+ biliary systems are similar in length.
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entire tree to obtain comprehensive and accurate results. In summary, DUCT allowed analysis of

curved and chord length measurements for the entire or defined regions of the injected trees.

Jag1Ndr/Ndr bile ducts recovered wild-type lengths postnatally, with a pronounced increase in periph-

eral tortuosity.

Discussion
Precisely defining the three-dimensional (3D) architecture of healthy and diseased organs is a funda-

mental aspect of biology, and improved imaging methods would allow stricter characterization of

animal models for human diseases. Until now, 3D liver analysis has been restricted by a lack of ade-

quate tools and high auto-fluorescence of the tissue. Carbon ink injection is robust, but imaging is

2D, precluding 3D analysis of the architecture. In contrast, immunostaining and clearing allows 3D

analysis, but success is variable and highly dependent on tissue fixation, antibody quality, penetrance

and tissue autofluorescence. Here, we further advanced organ resin casting, which was previously

used to analyze one system at a time (Masyuk et al., 2003; Kline et al., 2011; Walter et al., 2012).

We developed a simple, robust and inexpensive method (DUCT) for simultaneous visualization and

digitalization of two lumenized systems in mouse to analyze organ architecture. DUCT is completely

independent of antibody staining, endogenous fluorescent proteins and is not sensitive to tissue fix-

ation. Unlike whole mount immunohistochemistry techniques, DUCT provides information about the

lumen, internal diameter, perfusion and connectivity of the injected tree. The most important limita-

tion of DUCT is that it cannot visualize structures with a diameter under 5 mm, due to resin viscosity.

We showed that resin casting, segmentation and 3D representation can be used as input for further

investigation by visual qualitative assessment, and for in depth analysis by imaging softwares such as

ImageJ or custom written MATLAB scripts. The pipeline for imaging and segmentation followed by

detailed customized quantification of cellular and architectural mechanisms of two tubular networks

could serve as a standard for whole organ analysis in animal models, and can be further adapted for

a specific applications.

DUCT is based on radiopaque resin injection into multiple lumenized systems. First, identifying

resins with sufficient contrast and low viscosity is crucial for scanning using computed tomography.

Combining multiple resins with distinct contrasts can upscale the analysis to several networks simul-

taneously. In our study, it was imperative to use two fresh MICROFIL resins to obtain sufficiently dis-

tinct contrast to separate the two injected systems. Prolonged storage (~>3 months) of the

MICROFIL resin leads to resin precipitation and a significant decrease in the resin radiopacity (for

details see materials and methods). Future efforts to identify or develop differentially radiopaque

substances would further accelerate the analysis pipeline. Second, in order to achieve a successful

injection, an appropriate resin injection site for each system must be identified, and a suitable

amount of pressure must be applied while avoiding bubble formation. Third, resin segmentation of

the scanned sample is straightforward in well-injected, well-contrasted samples, but in samples with

bubbles or poor contrast segmentation requires time-consuming manual correction and careful trac-

ing of the resin throughout the whole organ to ensure a coherent network. Minor resin leakage can

be digitally excluded during the image segmentation, but artefacts such as air bubbles in resin, non-

homogenous resin contrast (in our set up caused by mixing of blue and yellow MICROFIL) and resin

leakage due to lumen rupture (probably caused by high pressure during injection) slow down the

analyses substantially (Figure 7B). Thus, a well-chosen and well-injected resin are a prerequisite for

efficient downstream analyses.

Regarding instrumentation, the DUCT pipeline is not restricted to specific CT systems or acquisi-

tions parameters, therefore samples can be imaged on any CT device with sufficient spatial resolu-

tion to study selected samples and their morphology. For further qualitative and quantitative

analysis of the DUCT mCT data, robust computational power is necessary – and dedicated worksta-

tions with sufficient RAM memory (>64 MB RAM) are recommended, dependent on the volume of

acquired data.

Our study describes a complex spatial adaptation of the biliary tree to postnatal BD paucity in a

mouse model for Alagille syndrome (ALGS), with validation in samples from patients with ALGS.

Based on our data and reported case studies, we propose a model in which Jag1 mutant intrahe-

patic bile ducts (IHBDs) did not form during embryonic development (Andersson et al., 2018;

Alessandro et al., 2007) but in some animals (and some patients, Figure 2—figure supplement

Hankeova, Salplachta, Zikmund, et al. eLife 2021;10:e60916. DOI: https://doi.org/10.7554/eLife.60916 15 of 29

Research article Physics of Living Systems Stem Cells and Regenerative Medicine

https://doi.org/10.7554/eLife.60916


1D), bile ducts grew after birth (Dahms et al., 1982). The lumenized bile ducts formed from hilar to

peripheral regions with different timings in the different liver lobes and in individual animals. The

fully remodeled biliary system was tortuous, exhibited abrupt ends, and was hyper-branched in

region 1 (summarized in Figure 8).

Our findings in the mice, using DUCT, may help to explain the poor prognostic value of biopsies

in patients with ALGS. Our results suggest that the lack of predictive value between peripheral bile

duct paucity, observed in diagnostic biopsies, and phenotype severity in patients with ALGS

(Mouzaki et al., 2016) may reflect differences in bile duct growth and presence/absence in hilar ver-

sus peripheral regions (Figure 1C, Figure 1—figure supplement 5B,C,E). Mouzaki et al, showed

that bile duct density was not predictive of outcome, instead, bilirubin levels, fibrosis, and cholesta-

sis were correlated with disease presentation. In line with this, in the Jag1Ndr/Ndr pups the total biliru-

bin levels correlated well with 3D postnatal bile duct growth, which was apparent from 3D resin-

injected whole lobe analysis, but did not correlate with bile duct paucity in 2D sections of central

Allagille mouse model or patient samplesControl or healthy patient samples

Jag1+/+ Jag1Ndr/Ndr

R1

R2

R3

R1

R2

R3

1

3

4

5

2

6

4. Blunt end BD

1.Increased

R1 branching

2. Independent

BD branching

3. Distant BD

5. Tortuous BD
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Figure 7. Schematic of Jag1Ndr/Ndr biliary abnormalities in de novo generated bile ducts. Left panel depicts a simplified wild type or healthy human

spatial arrangement of portal veins and bile ducts in three liver regions (R1, R2 and R3). Right panel illustrates a simplified adult Jag1Ndr/Ndrregenerated

biliary system displaying morphological abnormalities including (1) increased branching in region 1, (2) branching independent of the portal vein, (3)

increased distance from portal vein, (4) abrupt/blunt endings facing the hilum, (5) peripheral tortuosity and (6) bridging between two portal veins.

Independently branching, abruptly ending, parenchymal and tortuous bile ducts were confirmed in liver from patients with Alagille syndrome.
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Figure 8. Micro computed tomography image processing. (A) mCT scan thresholding. Orange box in (A), magnified in (A’), shows MICROFIL intensity

levels. (B) Resin injection artefacts including inadequate mixing of MICROFIL resin (blue arrowheads), bubbles in the resin which require manual

correction (magenta arrowheads), and leakage due to excessive injection pressure or vessel/duct weakness (yellow arrowhead). Green arrowheads

represent side branches. (C) Global thresholding separates old MICROFIL injected ducts and vessels from background tissue. BD and PV are identified

Figure 8 continued on next page
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liver. A 40% regrowth of lumenized bile ducts in Jag1Ndr/Ndr pup was sufficient to reduce cholestatic

burden to almost wild type levels, while not leading to a normal density of bile ducts in the periphery

- emphasizing the importance of whole-liver architecture analyses.

Identifying and quantifying architectural defects such as branch length differences, stochastic

branching, tortuosity, differences in portal-biliary distance and blunt end bile ducts is very challeng-

ing in sections (compare histology and 3D imaging in Figures 2–6). We demonstrated here that

DUCT is a powerful method for visualization and semi-automated quantitative analysis of two lume-

nized biological systems in vivo. DUCT could be applied to other tubular networks including blood

vessels and bronchi in lung (Figure 1—figure supplement 1E) or blood vessels and urinary ducts in

kidney (Wagner et al., 2011; Wei et al., 2006). DUCT has multiple advantages over ink injections

and iDISCO+, as 3D imaging with mCT avoids the drawbacks of tissue autofluorescence or poor anti-

body penetration. By injecting two resins into a single animal, it is possible to study the relation

between these biological systems, which has not been previously reported. While experts in the field

are careful to discriminate hilar and peripheral regions of the liver, carefully tracing organ structures

for hundreds of micrometers in tissue sections is not standard practice and is a demanding

endeavor. DUCT would be a suitable readout for testing drug compounds in mouse models for liver

cholestatic diseases. With DUCT, it is now possible to map and quantify architecture of two networks

in mouse models, setting the stage for an in depth understanding of how systems interact in health,

disease, and regenerative processes.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Antibody Anti-Cytokeratin 7
(rabbit monoclonal)

Abcam Cat # ab181598
RRID:AB_2783822

iDISCO+ (1:1000)

Antibody Anti-Cytokeratin 7
(mouse monoclonal)

Invitrogen/ThermoFisher
Scientific

Cat # MA5-11986,
clone: OV-TL 12/30
RRID:AB_10989596

IHC (1:200)

Antibody Anti-Cytokeratin 7
(mouse monoclonal)

Sigma - Aldrich Cat # C6198
RRID:AB_476856

iDISCO+ (1:2000)

Antibody Anti-Cytokeratin 19
(rat monoclonal)

DSHB Cat # TROMA-III
RRID:AB_2133570

IHC (1:50)

Antibody Anti-human SOX9
(goat polyclonal)

RnD Systems Cat # AF3075
RRID:AB_2194160

IHC (1:100)

Commercial assay or kit MICROFIL Flow Tech Inc Cat # MV120, MV-122 DUCT

Software, algorithm MATLAB Mathworks RRID:SCR_001622 codes available:
https://github.com/JakubSalplachta/DUCT

Experimental mice
All animal experiments were performed in accordance with Stockholm’s Norra Djurförsöksetiska

nämnd (Stockholm animal research ethics board, ethics approval numbers: N150/14, N61/16,

N5253/19, N2987/20) regulations. Animals were maintained with standard day/night cycles, pro-

vided with food and water ad libitum, and were housed in cages with enrichment. For postnatal day

15 (P15) experiments, 10 wild type (Jag1+/+) (eight males and two females) and 10 Jagged1 Nodder

(Jag1Ndr/Ndr) littermate pups (five males and five females) were used for serum analysis. Within this

group, nine Jag1+/+ and seven Jag1Ndr/Ndr mice were injected with resin. All 16 animals were ana-

lyzed in 3D, revealing extensive heterogeneity that would necessitate performing DUCT on a large

Figure 8 continued

manually. (D) 3D visualization of BD and PV after first segmentation (left panel) and after the systems separation. (E) Global thresholding separates fresh

MICROFIL injected airways and vessels from each other and the background tissue. (F) Quantification pipeline schematic for the whole lobe (G) or only

the main branch analysis.
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number of animals to obtain significant quantitative data, while the bile duct paucity was obvious. 1

Jag1+/+ and 1 Jag1Ndr/Ndr pair was therefore scanned and rendered in 3D. From this group, four

Jag1+/+ and four Jag1Ndr/Ndr left medial lobes were used for 2D liver sections and staining.

Adult animals were between 4.5 and 6.5 months old. In total, 18 Jag1+/+ and 6 Jag1Ndr/Ndr ani-

mals were injected with resin for mCT. Quality control of injections (Figure 1—figure supplement 2)

was performed on all livers during method development until surgery and injection technique

resulted in well-injected livers. Three Jag1+/+ and three Jag1Ndr/Ndr animals were used for the DUCT

quantifications in adulthood. For liver histology, two Jag1+/+ and three Jag1Ndr/Ndr mice were used.

For ink injections, nine Jag1+/+ mice were used (four males and five females) and for iDISCO+ four

Jag1+/+ and four Jag1Ndr/Ndr mice were used (six males and two females). For lung 3D resin casting

five Jag1+/+ mice were used (two males and three females). Samples were not blinded for investiga-

tion since the phenotype is overt and the genotype is therefore obvious to the experimenter. The

animals were maintained on a mixed C57bl6J/C3HeN background. Jag1Ndr/+ (Nodder) mice were

bred and genotyped as previously described (Andersson et al., 2018).

Patient samples
Collection of liver samples and clinical data from patients or donors was approved by the Swedish

Ethical Review Authority (2017/269-31, 2017/1394–31). Samples from patients with severe Alagille

syndrome (four) were obtained at time of liver transplant from extirpated liver. Samples were

obtained with a consent to be used for research according to ethical permit 2017/269–31. Samples

were dissociated for primary cell culture e.g. organoids (data not shown), and a matching sample

was formalin fixed or fresh-frozen for comparative analyses. Liver tissue samples from patients with

mild Alagille syndrome (six) were obtained for clinical follow-up purposes and were retrospectively

analyzed. The liver material was obtained within the framework of clinical patient care can be ana-

lyzed retrospectively without the need for consent according to ethical permit 2017/1394–31.

Healthy controls (two) were left-over donor material, or from organ donation post-mortem. The liver

function tests were obtained during routine biochemical analyses.

MICROFIL injections
MICROFIL (Flow Tech Inc) was prepared as follows. Yellow MICROFIL (Y) cat. #MV-122 was diluted

with clear MICROFIL (C) cat. # MV-Diluent in 3:1 (Y:C). Blue MICROFIL (B) cat. #MV-120 was diluted

1:1 (B:C) with clear MICROFIL. Diluted yellow MICROFIL was mixed with diluted blue MICROFIL 1:1

creating a green MICROFIL. Yellow MICROFIL was injected into common bile duct (CBD) or pulmo-

nary artery (PA). Green MICROFIL was injected into portal vein (PV) or trachea (TA). 1 ml of diluted

MICROFIL is mixed with 50 ml of hardener (supplied by Flow Tech Inc) prior injection.

Postnatal day 15 (P15) mice were sacrificed by decapitation and perfused through the heart with

3 ml of Hanks’ Balanced Salt solution (HBSS) (Life Technologies cat. # 14025092). Adult mice were

sacrificed by CO2 inhalation and perfused through the heart with HBSS for 3 min (perfusion rate 5 ml

/ 1 min). For liver resin injections, the mice were perfused trough the left ventricle, for lung resin

injections the mice were perfused though the right ventricle.

Injection into CBD
A small transversal incision was made in inferior vena cava with spring scissor to release the liver vas-

cular pressure. CBD was exposed by moving aside the liver and intestine and cleaned from surround-

ing tissue in area about 5 mm long. Silk suture (Agnthos AB cat. #14757) was loosely wrapped

around the cleaned CBD. A longitudinal CBD incision was made at the spot where CBD enters the

pancreas next to sphincter of Oddi by spring scissor. The tubing (PE10, BD Biosciences cat. #

427401) ~15 cm long was prepared by stretching one side of the tube until the diameter becomes

thin enough to fit into CBD. Diagonal cut is made at the tip of the tubing while the other side con-

tains needle (27G) connected to the syringe filled with MICROFIL. The tubing connected to a syringe

and filled with a yellow MICROFIL was inserted into the CBD, the suture around the CBD can be

tighten to secure the tubing in place. Yellow MICROFIL was injected into the CBD until resistance

was met or MICROFIL spots were visible on the liver surface. Massaging the liver with cotton swab

while injecting helped to disperse the MICROFIL. The tubing was removed and silk suture was tight-

ened around the CBD to prevent leakage.
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Injection into PV
PV was cleaned from surrounded tissue. A small incision was made in PV using spring scissor. Silk

suture was loosely wrapped around the cleaned PV above the incision. Tubing (PE10) ~15 cm long

connected to (27G) needle was inserted into the PV incision and secured with silk suture. Green

MICROFIL was injected into the PV until blood vessels on the surface were filled or resistance was

met. Massaging the liver with a cotton swab while injecting helped to introduce the MICROFIL. The

tubing was removed and silk suture was tightened around the PV to prevent leakage.

Liver was dissected out and placed at 4˚C overnight (ON) for MICROFIL to solidify. The next day

the liver was fixed with 3.7% formaldehyde solution (FA) (Sigma-Aldrich cat. #F1635) diluted in Dul-

becco’s phosphate-buffered saline (DPBS) (Life Technologies cat. # 14190144). After 24 hr, liver was

washed and kept in DPBS. Liver was separated into lobes. The left lateral lobe was placed in 50%

methanol (Sigma-Aldrich, cat. # 322415) for 4 hr and into 100% methanol ON. Further, the lobe was

placed in benzyl alcohol (Sigma-Aldrich, cat. #402834) and benzyl benzoate (Sigma-Aldrich, cat.

#B6630) (BA:BB 1:2) solution until transparent. The right medial lobe (only FA fixed) was used for

mCT scanning. Liver lobe images of right medial lobe (P15) and left lateral lobe (P15 and adult) were

taken using a stereomicroscope Stemi 305 (Carl Zeiss Microscopy) with a PowerShot S3 IS camera

(Canon) or iPhone6 connected to a LabCam adapter.

Injection into lung
The mouse heart was pulled toward the liver to expose the pulmonary artery (PA) and pinned down

through the heart apex with a 1 ml empty syringe connected with a needle. A silk suture was

wrapped loosely around the PA as close to the heart as possible. A small incision was made in the

right ventricle with spring scissors. Tubing (PE50, BD bioscience, cat #427411) ~15 cm long

(stretched at the tip) connected to (23G) needle was inserted into the PA through the incision in the

right ventricle and tightened with the suture. A total of 1 ml of DPBS was injected into the lung via

PA to remove all the remaining blood. Afterwards, to expand the collapsed lung, the trachea was

exposed and cleaned from surrounding tissue. A silk suture was loosely wrapped around the trachea

and a small incision was made into the trachea with spring scissors. Tubing (PE50) ~15 cm long con-

nected to (23G) needle was inserted into the trachea and tightened with the suture. One ml of DPBS

was injected into the lungs via trachea – this inflates the collapsed lungs. A 1 ml syringe filled with

yellow MICROFIL was connected to the tubing inserted into the PA, and MICROFIL was injected

into the PA vasculature until all the blood vessels were filled. Massaging the lung with a cotton swab

while injecting helped to disperse the MICROFIL. After the vasculature was completely filled, the

tubing was removed and the suture around the PA tightened to prevent MICROFIL leakage. For air-

ways injection, a 1 ml syringe filled with green MICROFIL was connected to the tubing inserted into

the trachea, and MICROFIL was injected into the trachea until the lung was entirely filled with

MICROFIL. Massaging the lung with cotton swab while injecting again helped to disperse the

MICROFIL. After the lung was completely filled, the tubing was removed and the suture around the

trachea tightened to prevent MICROFIL leakage.

Lungs were dissected out and placed at 4˚C ON to allow the MICROFIL to solidify. The next day

the lung was fixed with 3.7% FA diluted in DPBS. After 24 hr, lungs were washed and kept in DPBS.

Lungs were separated into lobes and the right superior lobe was used for mCT scanning.

Ink injections
Mice were sacrificed by CO2 inhalation and transcardially perfused with HBSS for 3 min (perfusion

rate 5 ml/1 min).

Injection into CBD and PV. CBD and PV were accessed in the same way as described for MICRO-

FIL injections. When injecting with ink, there is no need to tighten the CBD with silk suture as the ink

is not leaking out. Black ink (Higgins cat. #44032) was injected into the CBD until BDs on the surface

were filled or resistance was met. White ink (Higgins cat. #44032) was injected using PE50 tubing

into the PV until blood vessels on the surface were filled or resistance was met. Liver was dissected

out and separated into lobes. All lobes were cleared in BABB as described above. Liver ink images

of right medial lobe were taken under stereomicroscope Stemi 305 (Carl Zeiss Microscopy) using

PowerShot S3 IS camera (Canon).
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Whole mount immunohistochemistry
Mice were anesthetized by isoflurane inhalation (~2%) and transcardially perfused with HBSS for 3

min (perfusion rate 5 ml/1 min) and 10% neutral buffered formalin (NBF) for 5 min. Liver was dis-

sected out and further immersion fixed with 10% NBF ON at 4˚C. The next day liver was washed and

kept in DPBS and separated into lobes. Right medial lobe was stained and cleared following the

iDISCO+ protocol and imaged by light sheet microscope by Gubra (Denmark).

Fixed and washed samples were dehydrated in methanol/H2O gradient: 20%, 40%, 60%, 80%

and 2 � 100% methanol, each step 1 hr at room temperature (RT). The samples were bleached in

cooled fresh 5% H2O2 in methanol ON at 4˚C. The samples were subsequently rehydrated in metha-

nol/PBS series: 80%, 60%, 40%, 20%, with 0.2% Triton X-100, 1 hr each at RT. They were washed in

PBS with 0.2% Triton X-100 (PTx.2) for 2 � 1 hr at RT.

Whole organ immunolabeling (iDISCO+)
Samples were incubated in permeabilization solution at 37˚C for 3 days. Blocking is carried out in

blocking solution at 37˚C for 2 days. The samples were incubated with primary antibody in PTwH/5%

DMSO/3% donkey serum at 37˚C for 7 days. They were washed in PTwH for 1 � 10 min, 1 � 20 min,

1 � 30 min, 1 � 1 hr, 1 � 2 hr and 1 � 2 days. Samples were incubated with secondary antibody in

PTwH/3% donkey serum at 37˚C for 7 days, followed by washes in PTwH: 1 � 10 min, 1 � 20 min,

1 � 30 min, 1 � 1 hr, 1 � 2 hr and 1 � 3 days. All steps were performed in tightly closed tubes to

minimize evaporation and oxidation.

Solutions for iDISCO

PTx.2 (1L): 100 ml PBS 10x, 2 ml TritonX-100
PTwH (1L): 100 PBS 10x, 2 ml Tween-20, 1 ml of 10 mg/ml heparin stock solution
Permeabilization solution (500 ml): 400 ml PTx.2, 11.5 g glycine, 100 ml DMSO
Blocking solution (50 ml): 42 ml PTx.2, 3 ml donkey serum, 5 ml DMSO
Secondary antibody: Alexa Fluor 488 (dilution 1:1000, Life technologies)

Tissue clearing
Tissue was cleared in methanol/H2O series: 20%, 40%, 60%, 80%, and 100% for 1 hr each at RT.

Samples were incubated for 3 hr (with shaking) in 66%DCM (Dichloromethane)/33% methanol at RT

and in 100% DCM 15 min 2x (with shaking) to remove traces of methanol. They were incubated in

DiBenzyl Ether (DBE) (without shaking).

Light sheet microscopy
Tissue samples were imaged using a light sheet microscope (UltramicroscopeII, Miltenyi). DBE was

used as clearing agent during data acquisition. Data was collected at room temperature using Lavi-

sion ultramicroscope system and MV PLAPO 2X C/0.5 objective with dry lens, RI correction collar

using Andor Zyla 4.2 Plus sCMOS camera. CK7 staining was detected with AF790 (Alexa Fluor, Life

Technologies). The acquisition software used was ImSpector (LaVision biotech).

Liver immunohistochemistry
5 mm FFPE-liver (mouse and human) sections were deparafinized and rehydrated through consecu-

tive baths of xylene (cat. #28975.325, VWR) and isopropanol (cat. #K50655934838, Merck). Endoge-

nous peroxidase was blocked by immersion of the slides in methanol (cat. #322415, Sigma-Aldrich)

containing 0,3% H2O2 (cat. #H1009, Sigma-Aldrich) for 15 min and rehydration was finalized by rins-

ing the slides in tap water. Heat-induced epitope retrieval was done using citrate buffer (PH 6.0) for

20 min in a pressure cooker. After blocking of the sections with 2% BSA (cat. #A7906, Sigma-Aldrich)

for 20 min, slides were incubated for 1 hr at 37˚C with primary antibody (antibodies used are listed

in Key resources table). Anti-mouse (cat. #G21040, dilution: 1/1000, Invitrogen) or anti-goat

(Impress, cat. #MP7405, Vector), respectively, HRP-coupled secondary antibody was applied for 30

min at 37˚C and revealed with DAB for 30 s (cat. #K3468, Dako). After counterstaining with hematox-

ylin (cat. #HX86014349, diluted 1/5, Merck), the sections were dehydrated in consecutive baths of

ethanol (cat. #20821.310, VWR), isopropanol (cat. #K50655934838, Merck), and xylene

Hankeova, Salplachta, Zikmund, et al. eLife 2021;10:e60916. DOI: https://doi.org/10.7554/eLife.60916 21 of 29

Research article Physics of Living Systems Stem Cells and Regenerative Medicine

https://doi.org/10.7554/eLife.60916


(cat. #28975.325, VWR) to finally be mounted with hardening medium (Eukitt, cat. #03989, Sigma-

Aldrich).

Liver section image acquisition
Chromogenic stained images were taken with AxioImager (Carl Zeiss) microscope, Axiocam 503

color camera using Plan-Apochromat 5x/0.16, Plan-Apochromat 10x/0.45 M27, Plan-Apochromat

20x/0.8 M27 and Plan-Apochromat 40x/1.4 Oil DIC (UV) VIS-IR M27 objectives at room temperature.

The acquisition software used was Zen Blue (Carl Zeiss).

Image processing
Whole mount liver images cleared with iDISCO+ were initially processed in ImageJ for maximum

z-projection and segmentation. The images were filtered using the unsharp mask and integral image

filter function. Images were next processed in Amira. In Amira images were filtered using the Gauss-

ian filter and background detection correlation. Images were manually segmented. The manual seg-

mentation was further traced using the autoskeleton function. The skeletons were further analyzed in

Amira for length, volume and branching.

Images of ink injected liver were proceeds for filament tracing. Bile duct and portal vein filament

tracing was performed using Amira. The images were filtered using the unsharp mask and mean fil-

ter. The signal was manually segmented to remove artificial signal. The manual segmentation was

further traced using the autoskeleton function. The skeletons were analyzed in Amira for length, vol-

ume and branching. For double ink injection (Figure 1—figure supplement 1A) the background

was changed for esthetic purposes using the lasso tool in Adobe Photoshop.

DUCT 2D slices were exported from MyVGL (Volumegraphics) and processed in ImageJ for maxi-

mum contrast and brightness.

Liver sections IHC were processed in ImageJ for contrast and
brightness
P15 MICROFIL injected and BABB-cleared left lateral and right medial lobe were analyzed in ImageJ.

The total liver area was measured followed by the measurement of the liver area covered by MICRO-

FIL injected bile ducts. The percentage of liver containing bile ducts was calculated.

Blood serum collection and analysis
Blood from P15 pups was collected from the trunk after decapitation into 1.5 ml tubes. The serum

was allowed to clot at room temperature. The blood was centrifuged for 15 min at 17,000 g at room

temperature. The serum was stored at �80˚C until analyzed. Serum was sent to the Swedish Univer-

sity of Agricultural Sciences for analysis of alanine aminotransferase (ALT), alkaline phosphatase

(ALP), aspartate aminotransferase (AST), albumin (Alb), and total bilirubin.

MicroCT measurement
The system GE Phoenix v|tome|x L 240 (GE Sensing and Inspection Technologies GmbH, Germany)

equipped with nanofocus X-ray tube (180 kV/15 W) was used for the tomographic measurements

that were carried out in the air-conditioned cabinet (fixed temperature 21˚C). The samples were

adapted for this temperature before the measurement to prevent any thermal expansion effect. To

prevent any sample motion during the scanning, the samples were placed in 15 ml Falcon tube, filled

with 1% agarose gel. The tomographic reconstruction of acquired data was performed using GE

phoenix datos|x 2.0 software. The voxel resolution was fixed for all the adult liver samples at 12 mm,

except one (sample #2401, 8 mm). For all the P15 liver samples the voxel resolution was fixed at 6.5

mm and for the lung lobe sample at 8 mm. Detailed overview of used acquisition parameters is stated

in Table 2.

MicroCT data segmentation
The identification and segmentation of both tubular systems (e.g. bile duct (BD) and portal vein (PV)

for liver samples and pulmonary artery and airways for lung samples) in each CT cross-section was

necessary for further analysis of each system. The segmentation was based on differential contrast

between the resin and the soft tissue. Two different resins were used to identify the individual
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tubular systems. The differential contrast for system identification was highly dependent on the

freshness of the MICROFIL.

The resin segmentation was performed by global thresholding in VG Studio MAX 3.3 (Volume

Graphics GmbH, Germany) software together with manual corrections where necessary. The thresh-

old value was determined based on the histogram shape and visual evaluation of a selected cross-

section (Figure 8A,A’). The resin cast, especially when using an old MICROFIL, could contain arte-

facts caused by poor contrast, insufficient filling or high injection pressure. These artefacts include

air bubbles in resin, non-homogenous resin contrast (caused by mixing of blue and yellow MICRO-

FIL) and resin leakage due to lumen rupture (probably caused by high pressure during injection),

(Figure 8B). Therefore, the thresholding step was supplemented with manual corrections to create

smooth, continuous and solid canal masks. Furthermore, the cut-off for the smallest distal canal

included in the mask is considered an area of at least four voxels.

Next, the individual tubular systems were identified in the segmented resin mask (Figure 1—fig-

ure supplement 12D and G). When fresh MICROFIL was used, it was possible to identify each sys-

tem by global thresholding with threshold value determined based on histogram shape and visual

evaluation of CT data. However, in case of the old MICROFIL (used for adult liver samples) the resin

absorption properties were not distinguishable in CT data. In most regions, both tubular systems

blended with each other in one continuous region (Figure 8C, D left panel). Manual segmentation

was therefore necessary to ensure the correct identification of both systems (Figure 8C, D right

panel). The manual segmentation was performed by outlining the BD regions in every slice of the CT

data. VG Studio automatically creates 3D render based on the regions outlined in CT sections.

MicroCT data analysis
The adult liver was analyzed using a custom-written algorithm and freely available Matlab codes

(Version R2017a, The MathWorks Inc, Natick, MA). The algorithm was designed to analyze morpho-

logical parameters of the BD and PV systems, and is compatible with the 3D binary masks. Two sep-

arate masks of BD and PV system were generated and the analysis was divided in two independent

parts. First, the analysis of the entire portal vein and biliary system and second, analysis of the corre-

sponding main branch (=the longest branch) of each system (Figure 6—figure supplement 1A). For

detailed analysis and comparison of the whole system versus only the main branch, two algorithms,

described by the diagrams in Figure 8F, G, were developed. They differ in the input data and the

evaluated parameters. For both algorithms, the first step is to create a 3D skeleton of the input

binary mask.

Skeletonization of binary masks
The 3D skeleton was derived using the homotopic thinning algorithm described in Lee et al., 1994

specifically optimized for Matlab implementation by Kollmannsberger (Kerschnitzki et al., 2013),

(online source: https://www.mathworks.com/matlabcentral/fileexchange/43400-skeleton3d).

Table 2. Settings parameters of the GE Phoenix v|tome|x L 240 system.

Sample Voxel size Acceleration voltage X-ray tube current Exposition time Number of projections

2401 8 mm 80 kV 160 mA 600 ms* 2500*

2404 12 mm 80 kV 160 mA 600 ms* 2500*

2405 12 mm 80 kV 160 mA 600 ms* 2500*

2431 12 mm 80 kV 160 mA 600 ms* 2500*

2713 12 mm 80 kV 160 mA 334 ms† 1900†

2714 12 mm 80 kV 160 mA 334 ms† 1900†

N864 6.5 mm 80 kV 160 mA 400 ms† 1800†

N865 6.5 mm 80 kV 160 mA 400 ms† 1800†

Jag1+/+ lung 8 mm 80 kV 160 mA 400 ms† 2000†

*Flat panel DXR250 (2048 px �2048 px, pixel size 200 mm).
†Flat panel dynamic 41|100 (4048 px �4048 px, pixel size 100 mm with binning 2).
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Calculated 3D medial axis skeleton was subsequently converted to a network graph, using algorithm

described in Kerschnitzki et al., 2013 (online source: https://www.mathworks.com/matlabcentral/fil-

eexchange/43527-skel2graph-3d). Resulting network graph is formed by nodes and links between

them (Figure 1—figure supplement 12D and G).

Liver region subdivision
Liver was separated into three regions: R1 (approximately hilum), R2 (approx. intermediate) and R3

(approx. periphery). The optimal region size was calculated as a summary of average PV branch

lengths per generation and divided by three (detailed branching generation subdivision Table 3 for

PV and Table 4 for BD). Subsequently the branching generations were assigned to a region by

matching the summary of branch length per generation to optimal region size. The same region was

applied for both PV and BD analysis with the exception of one Jag1Ndr/Ndr sample (#1 or 2714)

where the bile duct optimal region size was greater than portal vein.

Regions were assigned in order that total average lengths of each generation within each region

yielded an equal size of R1, R2, and R3. Each sub-column represents one animal.

The distribution of BD branches within each region were quantified based on regions defined by

the PV system (Table 4). Each sub-column represents one animal.

Branching analysis
Branching points analysis was programmed in Matlab to analyze the distance between BD and PV

branching point. This parameter was calculated using 3D Euclidean distances between the BD

branching points and the nearest branching point from PV system. The data is represented as cumu-

lative sum of percentage of BD branching point at a given distances between BD and PV branching

points (from 0.015 mm to 3 mm).

For branch length analysis the structure of BD and PV trees were first reconstructed in 3D, using

the Analyze Skeleton toolbox in ImageJ, which provided the three-dimensional coordinates of all

branch points for both BD and PV, as well as the connectivity of the graph. Next, we computed for

each branch the length along its path to the Euclidean distance between its extremities (branch

points). To calculate the generation number of branches (both for the PV and BD structures), we

manually defined the origin of the ducts and vessels as generation 1, and computed generation

number as the number of generation branches separating a given branch from the origin. To distin-

guish side branching events, we calculated the angle between a branch and its ‘parent’ by comput-

ing the dot product p of both their unit vectors. A branch with p>0.95 with its parent branch was

considered to belong to the same generation. We then computed distributions of length for the BD

and PV structures as a function of generation number. Each generation was assigned to a region R1,

R2, or R3.

The branch distribution in each region was calculated as a summary of number of branches per

generation in a given region. The sum of branch numbers of each region is displayed as a proportion

of the total number of branches per sample.

The number of bi-furcations (i.e. one input and two outputs), tri-furcations (i.e. one input and

three outputs) and quadri- and more-furcations (one input and more than three outputs), were

assessed in Matlab based on binary mask skeleton nodes that were divided into endpoints and

branching points. Branching points closer than 0.2 mm (this threshold value was derived based on

visual assessment and knowledge of the system) were merged together and further represented by

one node.

Table 3. PV branching generation distribution into liver regions.

PV generation # Jag1+/+ (3 animals) Jag1Ndr/Ndr (3 animals)

R1 1–4 1–3 1–4 1–4 1–3 1–3

R2 5–10 4–9 5–10 5–8 4–7 4–7

R3 11–18 10–14 11–17 9–15 8–12 8–11
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Gap analysis between bile duct and portal vein
To evaluate the gap between BD and PV the surface distances were calculated in Matlab for each

BD skeleton point by detecting the nearest PV skeleton point and connecting the two points with a

line and measuring the non-resin area on this line (zero area in the input binary masks). Surface dis-

tance was then calculated using 3D Euclidean distance between the detected non-resin voxel coordi-

nates. The data is represented as cumulative sum of percentage of BD at a given distance from PV

(from 0.015 mm to 1.5 mm). The maximum distance between BD and PV for each liver sample was

depicted in a separate graph.

Tortuosity measurements
To quantify length and tortuosity, total (curved) and theoretical (chord) lengths were measured in

Matlab for the whole system length and for the corresponding main branch. The curved length was

defined as a cumulative sum of 3D Euclidean distances between neighboring graph points (i.e. links

forming points) multiplied by voxel size. The chord length was defined as cumulative sum of 3D

Euclidean distances between neighboring nodes multiplied by voxel size. The chord length therefore

reflects system length where any nodes are connected by links with the shortest possible length. To

analyze the relationship between BD and PV a length of the BD was divided by a PV length (curved

or chord). Tortuosity was calculated as curved length divided by chord length of the same system

and distributed into regions based on the generation number as previously described. Tortuosity

was assessed in %, as BD and PV are not straight lines the actual tortuosity measurements were sub-

tracted by 100% (perfectly straight line).

Volume analysis
Total system volume was calculated in Matlab by multiplying a number of voxels representing PV or

BD by volume of one voxel. The relationship between BD and PV volumes was addressed by dividing

the BD volume by PV volume.

Diameter measurements
The main branch diameter was calculated in Matlab every 1.5 mm along the total length of the main

branch. The radius was defined as the minimal distance from the skeleton to the segmented area

boundary in the input binary mask (i.e. border between background and area of interest). This

boundary was calculated using a two-step procedure. In the first step, the input map was eroded

using a 3D spherical shaped structural element with one pixel radius. Subsequently, the eroded area

was subtracted from the original binary mask. This resulted in a binary mask representing the bound-

ary between the background and the area of interest. One radius value at a given skeleton point

was then expressed as the minimum distance from that point to the mask boundary. This was calcu-

lated, using the minimal value search in the intersection of the boundary mask and the distance map

from that point. The distance map from a given skeleton point was calculated as 3D Euclidean dis-

tance of the spatial coordinates. Subsequently the diameter value was calculated as the minimum

distance to the boundary area multiplied by 2. To avoid any misrepresentation, the one final diame-

ter value at a given point (every 1.5 mm of branch length) was calculated as a mean value of a diam-

eter at that point and diameters at four neighboring points (two on each side). PV and BD diameters

were divided into three areas: hilum, intermediate and periphery. Hilar region represents distance

from 0 to 1.5 (sample #2401) or 0–3 mm (other samples), Intermediate region is from 3 to 6 mm

(sample #2401) or 4.5 mm – 9 mm (other samples), Periphery is from 7.5 mm – 9 mm (sample #2401)

or 10.5–13.5 mm (other samples). BD to PV diameter ratio was calculated by dividing BD diameter

at a given region by PV dimeter of the same region.

Table 4. BD branching generation distribution into liver regions.

BD generation # Jag1+/+(3 animals) Jag1Ndr/Ndr (3 animals)

R1 1–4 1–4 1–2 1–4 1–6 1–6

R2 5–7 5–7 3–5 5–9 7–10 7–10

R3 8–12 8–11 6–7 10–16 11 11–12
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Statistical analysis
Jag1+/+ and Jag1Ndr/Ndr data were tested for significant differences using multiple tests based on

the type of experiment and data distribution. Student´s t-test (Figures 1D, G and 3D, Figure 1—fig-

ure supplement 12H, Figure 6—figure supplement 1B–E, H–K). Kolmogorov-Smirnov test (on raw

data, graph depicts cumulative sum) (Figures 3C and 4C). Mann-Whitney test (Figure 4—figure sup-

plement 1). Wilcoxon test (Figure 1—figure supplement 5D). Two-way ANOVA (Figures 1H and

5B–D, 6E, Figure 1—figure supplements 5C and 12I, Figure 6—figure supplement 1F and G) fol-

lowed by Sidak’s multiple comparisons test. Spearman correlation (Figure 1E). A p value below 0.05

was considered statistically significant. The statistical analysis was done in Prism 9 (GraphPad).
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Vı́tězslav Bryja http://orcid.org/0000-0002-9136-5085

Ewa Ellis http://orcid.org/0000-0002-3057-5337

Edouard Hannezo http://orcid.org/0000-0001-6005-1561

Emma Rachel Andersson https://orcid.org/0000-0002-8608-625X

Ethics

Human subjects: Collection of liver samples from patients or donors was approved by the Swedish

Ethical Review Authority (2017/269-31, 2017/1394-31). Samples were obtained with a consent to be

used for research according to ethical permit 2017/269-31.

Animal experimentation: All animal experiments were performed in accordance with Stockholm’s
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