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Abstract Memory helps guide behavior, but which experiences from the past are prioritized?
Classic models of learning posit that events associated with unpredictable outcomes as well as,
paradoxically, predictable outcomes, deploy more attention and learning for those events. Here,
we test reinforcement learning and subsequent memory for those events, and treat signed and
unsigned reward prediction errors (RPEs), experienced at the reward-predictive cue or reward
outcome, as drivers of these two seemingly contradictory signals. By fitting reinforcement learning
models to behavior, we find that both RPEs contribute to learning by modulating a dynamically
changing learning rate. We further characterize the effects of these RPE signals on memory and
show that both signed and unsigned RPEs enhance memory, in line with midbrain dopamine and
locus-coeruleus modulation of hippocampal plasticity, thereby reconciling separate findings in the
literature.

Introduction

The reward prediction error (RPE) is a canonical learning signal in reinforcement learning, updating
stored information about the values of different experiences. This signal modulates dopaminergic fir-
ing from the midbrain, increasing dopamine release when rewards are better than expected, and
decreasing its release when rewards are worse than expected ('signed RPE’; Barto, 1995;
Montague et al., 1996). Over the course of learning, this dopaminergic RPE transfers from unpre-
dictable reward outcome to the cue predicting the reward (Schultz et al., 1997). The resulting
signed RPE at cue putatively supports an associative model ('"Mackintosh model’; Mackintosh, 1975)
where attention increases for cues that reliably predict reward. This signed RPE could also give rise
to stronger memory traces, given that neural plasticity in the hippocampus - the key structure for
episodic memory — is modulated by dopamine (Lisman and Grace, 2005; Shohamy and Adcock,
2010).

An alternative possibility is that RPE magnitude, regardless of its sign (‘'unsigned RPE'), enhances
learning and memory for surprisingly good or bad outcomes. In fact, the Pearce-Hall model of learn-
ing (Pearce and Hall, 1980), which contradicts the Mackintosh model, posits that attention is
enhanced for cues that are accompanied by surprise, that is, those that co-occur with large unsigned
RPEs. The effects of unsigned RPEs are thought to be mediated by the locus coeruleus-norepineph-
rine system, which responds to unexpected changes in stimulus-reinforcement contingencies,
regardless of the sign of the outcome (for a review, see Sara, 2009). Moreover, recent evidence
points to the locus coeruleus (LC), which co-releases dopamine with norpeinephrine, as providing an
alternative source of dopamine to the hippocampus, giving rise to hippocampal memories
(Kempadoo et al., 2016; Takeuchi et al., 2016; Wagatsuma et al., 2018).
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Albeit paradoxical, it is theoretically possible that both surprise (Pearce-Hall model) and predict-
ability (Mackintosh model) modulate memory throughout learning (Le Pelley, 2004; Beesley et al.,
2015), but in different ways, and through distinct neural mechanisms. Previously, we found that
unsigned, but not signed, RPEs experienced at reward outcome boost learning and memory
(Rouhani et al., 2018), consistent with work showing better memory for surprising events
(Greve et al., 2017, Antony et al., 2021). There is also recent support for signed RPEs experienced
at reward-predictive cue to enhance memory (Jang et al., 2019), reminiscent of work showing mem-
ory benefits during periods of high-reward anticipation (Adcock et al., 2006; Murty and Adcock,
2014, Stanek et al., 2019; Wittmann et al., 2005).

Accordingly, we hypothesized a signed-RPE effect on memory during the reward-predicting cue
once participants had learned cue values, as well as an unsigned-RPE effect on memory during
reward outcome throughout learning. We included two trial-unique images on every learning trial,
one at cue and one at outcome, to dissociate the effects of the two RPEs on memory (Figure 1).

We characterized these effects in two experiments that each prioritized the influence of one of
these RPE signals. In Experiment 1, participants experienced large unsigned RPEs brought on by
periods of high outcome variance (‘high’ versus ‘low variance’ contexts) and reward-value change
points (changes to the mean of the underlying reward distribution). We expected these large
unsigned RPEs, experienced at reward outcome, to modulate learning rate and boost memory for
events throughout learning (Figure 1A-C). In Experiment 2, in contrast, participants learned the val-
ues of two categories of cues, eliciting RPEs at cue as well as outcome (Figure 1D-F). Here, the
underlying reward distribution associated with each category did not change, allowing for RPEs at
cue (i.e. a relative value signal) to increase in magnitude with more experience with each category.
We expected both signed RPEs at cue and unsigned RPEs at outcome to influence learning rate and
memory for those events.

To assess differential effects of RPEs on instructed versus incidental memory, we ran two versions
of Experiment 2. In the instructed version (and in Experiment 1), participants were explicitly
prompted to memorize as they were told they would later choose between the items presented dur-
ing learning and win their associated reward values again. We thus incentivized participants to asso-
ciate the trial-unique items with their reward values during learning. In the incidental version, we
removed this instruction, making memory for the trial-unique items completely unintentional.

We analyzed learning, memory, and choice data using complementary approaches. To under-
stand the learning process, we compared computational models of learning that formalized different
putative effects of signed cue RPEs and unsigned outcome RPEs on subjects’ predictions of trial-by-
trial cue values. To test the effects of signed and unsigned cue and outcome RPEs on memory per-
formance, we used mixed-effects modeling (also used to analyze learning and later choice) and
Bayesian hierarchical modeling.

Results

Learning results
Unsigned reward prediction errors at outcome and signed reward

prediction errors at cue influenced learning rate
We first tested whether RPEs experienced during reward learning predicted empirical, trial-by-trial,
learning rates. Learning rates were measured by comparing consecutive predictions for the same
cue category, and dividing the difference in predictions by the empirical outcome prediction error
experienced on the earlier of the two trials (see Equation (1) in ‘Materials and methods’). We
treated the unsigned RPE at reward outcome (Figure 1B, in blue) as a ‘Pearce-Hall’ signal, as it
reflects how unpredictable the reward was. We found the unsigned RPE at reward outcome boosted
learning rate in both experiments, thereby providing direct behavioral evidence for this ‘Pearce-Hall’
component on learning rate (mixed-effects linear regression, Experiment 1: g = 0.10, t = 6.39,
p<0.001; Experiment 2: 8 = 0.07 t=8.79, p<0.001; see Figure 2—figure supplement 1 for empirical
learning rates).

We treated the learned value difference between two reward-predictive cues in Experiment 2 as
a 'Mackintosh’ signal, as higher learned values for one cue versus the other implied better reward
predictiveness. We refer to this value signal as a signed cue RPE (Figure 1E, red), as when there are

Rouhani and Niv. eLife 2021;10:e61077. DOI: https://doi.org/10.7554/eLife.61077 20of 28


https://doi.org/10.7554/eLife.61077

e Llfe Research article

Neuroscience

Experiment 1 Experiment 2

WS Fiase ssimate e vaiws o i ps o scend. _ 30¢
3 (indoor or outdoor) from 0 to 100 cents

J max 5s

3s

cue outcome outcome
event event event
B [
time time
t-1 °, . /signed outcome RPE
t-2

signed ‘outcome RPFE’ unsigned ‘outcome RPE’ unsigned ‘outcome RPE’
40¢ 80¢ 40¢ 80¢ 30¢ 50¢

-------------- o PRl

Figure 1. Reward prediction error (RPE) signals in a learning trial in Experiments 1 and 2. (A,D) Each trial was
initiated by a reward-predicting cue represented by a trial-unique image. Participants were then asked to indicate
how much that reward category was worth ‘on average.’ They then saw the reward outcome (a proportion of which
they received) along with a second trial-unique image. In Experiment 1 (A), all images were of objects (single
reward category), whereas in Experiment 2 (D), each trial included either two indoor or two outdoor scenes (two
cue categories). (B-F) Theoretical RPE signals (B,E) and their calculation (C,F). Unsigned RPEs at outcome (in blue)
were calculated by taking the absolute difference between the participant’s value for that reward cue and the
subsequent outcome. We expected this (putatively noradrenergic) unsigned signal to enhance memory for more
surprising outcomes, which we tested in both Experiments 1 and 2. Signed RPEs at cue (E, in red) were calculated
by taking the difference between the participant’s predicted value for the current reward category (here, outdoor
scenes) and their most recently predicted value of the other category (indoor scenes). We expected this (putatively
dopaminergic) signed signal to boost memory for more valued events, that is, better memory the more positive
the RPE. Prediction errors at outcome gradually transfer to cue through the learning process (E, dotted lines
represent signed RPE in previous two trials, darker red indicates more recent trial).

several possible cues, the onset of a cue resolves the prediction for the current trial, and is accompa-
nied by an RPE that reflects the signed difference between the current predicted reward and the
average reward predicted before cue onset (Niv and Schoenbaum, 2008). We found that a signed
cue RPE was anti-correlated with learning rate, potentially demonstrating stronger associative links
and more stable values for more valuable cues (8 = —0.02 t = —2.31, p=0.02). Critically, we found
this effect even when controlling for any effect of the unsigned cue RPE on learning rate (which was
not itself significant, 8 = —0.01 t = —1.35, p=0.18). This suggests that the cue RPE modulation of
learning rate was not merely due to the greater learned separation between the two cue values, but
specific to more stable updating for the high-valued cues.

Learning behavior in the experimental conditions of Experiment 2
Experiment 2 involved four conditions in a between-participants 2 x 2 design. First, two learning
conditions varied in difficulty due to different degrees of overlap between the reward distributions
of the two categories. In the 40¢—60¢ condition, the means of the two reward categories were 40¢
and 60¢, with considerable overlap in the two reward distributions. In the 20¢—80¢ condition, on the
other hand, the two means were 20¢ and 80¢, and there was no overlap between the two reward
distributions. As expected, participants separated the values of two scene categories more in the
20¢—80¢ condition than in the 40¢—60¢ condition (Figure 2B), both in general and as a function of
trial number during learning (mixed-effects linear regression, value separation as a function of learn-
ing condition: B = 18.62, t = 25.87, p<0.001; interaction between learning condition and trial num-
ber: B = 5.40, t = 13.64, p<0.001).

We also manipulated whether participants were intentionally or incidentally encoding the trial-
unique scenes. We either instructed them to attend to the scenes in order to choose between them
and win their associated reward later in the task (‘instructed memory’), or we did not provide any
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Figure 2. Learning behavior and modeling results. (A) Experiment 1 average participant value estimates as a
function of trial number (blue and red lines represent two different outcome-variance contexts: blue = low
variance’ learning context, red = ‘high variance’ learning context; shading indicates 95% confidence intervals), and
average predictions of the RW-PH-D model with SEM bars in black. Actual reward outcomes on each trial are
indicated by x's, stars indicate a change-point trial. (B-C) Experiment 2 average participant value estimates for the
two scene categories (green and yellow) as a function of trial number in the 40¢—60¢ condition (B; means of the
two scene categories 40¢ and 60¢) and the 20¢—80¢ condition (C; average means 20¢ and 80¢), and average
predictions of the RW-PH-M-D model in black. Actual rewards varied across subjects. Although each subject saw
only 15 trials of each scene type (one of two scene-value categories on each trial), we pseudo-randomized the
sequence of scene-value categories so that across participants, we had data for both categories on each trial. (D-
E) Total negative log-likelihood scores across subjects for each of the models tested. Lower scores indicate better
fit between model predictions and empirical data; bars on the winning model indicate the minimum difference
needed for a significant difference between models in the likelihood-ratio test, given the number of extra
parameters in the more complex model; ‘RW': Rescorla-Wagner, 'PH": Pearce-Hall, ‘'M": Mackintosh, ‘D": Decay. In
Experiment 1 (D), the RW-PH-D model, which included a Pearce-Hall and a decay component, was the winning
model. In Experiment 2 (E), the RW-PH-M-D, which additionally included a Mackintosh component, outperformed
the other models.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Empirical learning rates in Experiments 1 and 2.
Figure supplement 2. Model validation simulations from Experiment 2.
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instruction motivating remembering of the scenes (‘incidental memory’). Although the instructions
regarding value learning and prediction were identical for all participants, we did find overall differ-
ences in learning across the two memory-instruction conditions. Participants learned better and
were more accurate in the instructed memory version: their estimates were closer to the actual
underlying means of the scene categories and those estimates became more accurate over time
(learning accuracy as a function of instructed-incidental memory: 8 = 4.35, t = 8.16, p<0.001; interac-
tion between instructed-incidental memory and trial number: 8 = 0.48, t = 2.08, p=0.04).

Although we did not expect this difference in learning, it is possible that motivating the remem-
bering of more valuable scenes led participants to attend more to learning those values as well.
Additionally, we note that the instructed and incidental memory versions of the task were tested
during different social climates, with the data for the incidental memory version collected during
2020's global pandemic, potentially accounting for the difference in learning performance. Interest-
ingly, participants’ estimates, and thus expectations for reward, were, on average, lower during the
pandemic than before, demonstrating more pessimistic expectations overall (8 = —1.17, t = —2.65,
p=0.008).

Reinforcement-learning models

To further determine how unsigned RPEs at reward outcome (‘outcome RPEs’) and signed RPEs at
reward-predicting cue (‘cue RPEs’) influence learning, we modeled participants’ trial-by-trial value
estimates testing a series of reinforcement-learning models. We modeled Experiments 1 and 2 sepa-
rately due to their different learning structures, and modeled all learning and memory conditions of
Experiment 2 together since the learning instructions and structure were the same across all variants.
We also performed and confirmed model recovery on simulated data to verify that our data can arbi-
trate between these models (see ‘Model fitting and comparison’ in ‘Materials and methods’).

Experiment 1

We fit learning behavior in Experiment 1 using four models: a Rescorla-Wagner model with a fixed
learning rate ('/RW’), an RW-model with a Pearce-Hall (Pearce and Hall, 1980) component modulat-
ing learning rate ('RW-PH’), an RW-model with a decaying learning rate (‘RW-D’), and a full model
with both Pearce-Hall modulation and decay (‘/RW-PH-D’); see ‘Materials and methods’. Note, we
did not test models that included cue RPEs since there was a single reward category in this experi-
ment. We found that the full model that included a Pearce-Hall component, which modulated learn-
ing rate by the unsigned outcome RPE, along with a decay, fit better than models without those
components (likelihood-ratio tests, RW-PH-D vs. RW: x? (243) = 568.45, p<0.001; RW-PH-D vs. RW-
PH: x? (162) = 212.87, p=0.005; RW-PH-D vs. RW-D: x? (81) = 255.71, p<0.001; Figure 2A,D,
Table 1).

Experiment 2

Here, participants experienced RPEs at both cue and outcome, allowing us to test the models
above, as well as four models that included a Mackintosh-type component (denoted by ‘M’: 'RW-M’,
'RW-PH-M’, 'RW-M-D’, 'RW-PH-M-D’; see 'Materials and methods’). The model that included all
three tested modulators of learning rate—an unsigned RPE at outcome (Pearce-Hall component), a
signed RPE at cue (Mackintosh component), and an exponential decay—predicted participant value
estimates best (Figure 2B,C,E, Table 1). This model had a significantly better (i.e. lower) likelihood
compared to every other model as assessed by the likelihood-ratio test (RW-PH-M-D vs. RW: x?
(2740)=6358.34, p<0.001; RW-PH-M-D vs. RW-M: x? (2055)=5017.65, p<0.001; RW-PH-M-D vs. RW-
PH: x? (2055)=4803.86, p<0.001; RW-PH-M-D vs. RW-PH-M: 2 (1370)=3130.53, p<0.001; RW-PH-
M-D vs. RW-D: x2 (1370)=2989.18, p<0.001; RW-PH-M-D vs. RW-M-D: x? (685)=1203.79, p<0.001;
RW-PH-M-D vs. RW-PH-D: x? (685)=1603.55, p<0.001).

Memory results by learning condition

To understand how cue and outcome RPEs affected memory for the trial-unique images, we ana-
lyzed memory results separately for Experiment 1 and the four conditions of Experiment 2
(instructed or incidental memory x learning difficulty). For each participant and each item tested, we
calculated a memory score that combines memory accuracy (hit or miss) with confidence (from 1 =
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Table 1. Model parameters and fit results.

‘RW': Rescorla-Wagner, ‘PH": Pearce-Hall, ‘M": Mackintosh, ‘D": Decay. Negative log-likelihood across
participants for Experiment 1 (first row within each model) and Experiment 2 (second row within each
model); 'd’ refers to the difference in score between the tested model and the baseline fixed learning
rate model ((RW’). Lower scores indicate better fit. In Experiments 1 and 2, models that included all
tested components of learning rate performed best according to the likelihood-ratio test (which
penalizes nested models for added parameters).

Model Parameters -LL
RW o 20911.33
82049.33
RW-PH n x 20733.54 (d = -177.79)
81272.09 (d = -777.24)
RW-M n vy 81378.98 (d = -670.35)
RW-D n N, A 20754.96 (d = -156.37)
80364.74 (d = -1684.58)
RW-PH-M n Ky 80435.42 (d = -1613.90)
RW-PH-D n & N, A 20627.11 (d = -284.22)
79671.93 (d = -2377.39)
RW-M-D ny N, A 79472.05 (d = -2577.28)
RW-PH-M-D n K v N A 78870.16 (d = -3179.17)

‘guessing’ to 4 = ‘completely certain’), ranging from a ‘completely certain’ miss (1) to a ‘completely
certain’ hit (8).

High reward variance boosted memory for outcome events

Experiment 1 allowed us to test how reward variance modulates memory for cue and outcome
events. In line with our previous work (Rouhani et al., 2018), we expected that the larger unsigned
RPEs in a high-variance context would improve memory for related events, and therefore memory
for high-variance items would be better overall. We found an interaction of cue versus outcome
memory by variance condition, such that in the high-variance condition, there was a lower average
memory score for cue events, and a higher average memory score for outcome events, compared to
the low-variance condition (1 high-variance cue memory = 6.44, u low-variance cue memory = 6.57,
1 high-variance outcome memory = 5.79, 1 low-variance outcome memory = 5.54; mixed-effects lin-
ear regression: B8 = —0.37, t = —2.78, p=0.005). Within the interaction, there was a significant differ-
ence in memory for outcome events (8 = —0.25, t = —2.09, p=0.04) but not for cue events (8 = 0.12,
t = 1.41, p=0.16). This suggests a role for the high-variance context, characterized by larger
unsigned RPEs, in boosting memory for outcome events.

Memory for cue events increased with reward learning

We tested the effects of cue RPEs on memory by first comparing differences in cue memory in
Experiment 1 and the instructed memory version of Experiment 2. In both experiments, participants
were told they would have a chance to select among previously-seen items in a later phase, which
encouraged explicit encoding of the items. Experiment 1 involved a single reward category and
therefore did not elicit RPEs at cue. Frequent change points in the underlying reward distribution
encouraged ongoing new learning. In Experiment 2, on the other hand, participants learned about
two reward categories, evoking RPEs at cue, and the underlying reward distributions did not change,
encouraging convergence of learning. We therefore predicted memory for cue items to be modu-
lated by learning in Experiment 2 but not in Experiment 1. Since the additional monetary outcome
accompanying the outcome image may, in general, interfere with encoding of the image, we also
expected overall better memory for cue as compared to outcome images. We controlled for this nui-
sance effect in all our analyses.
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In line with our predictions, in Experiment 1, we did not find cue memory to change relative to
outcome memory throughout learning (mixed-effects linear regression, memory as a function of the
interaction between event type (cue or outcome) and learning trial, 8 = 0.009, t = 0.13, p=0.90;
Figure 3A), whereas in Experiment 2, memory for cue events improved throughout the experiment,
relative to memory for outcome events, in both difficulty conditions (interaction between event type
and learning trial, 40¢—60¢ condition: B = —0.24, t = —3.76, p<0.001; 20¢—80¢ condition: B =
—0.20, t = —3.29, p<0.001; Figure 3B-C).

We next compared memory results between the instructed and incidental memory versions of
Experiment 2. We did not find the increase in cue memory as a function of learning in the 40¢—60¢
learning condition (interaction between event type and learning trial: 8 = 0.07, t = 1.11, p=0.27;
three-way interaction between event type, instructed-incidental memory and learning trial 8 = 0.31,
t = 3.39, p<0.001; Figure 3D). However, we did replicate the increase in cue memory in the 20¢—
80¢ condition (interaction between event type and learning trial: 8 = —0.17, t = —2.79, p=0.005;
three-way interaction between event type, instructed-incidental memory and learning trial: 8 = 0.04,
t = 0.41, p=0.68; Figure 3E).

To explain the difference in cue memory between the instructed and incidental memory versions
of the 40¢—60¢ condition, we first note that learning to predict the outcome value was in general
worse in the incidental memory version (see ‘Learning behavior in the experimental conditions of
Experiment 2', above). As the 40¢—60¢ condition was the more difficult learning environment, it is
possible that worse learning prevented an average increase in cue memory as a function of learning.
To test this hypothesis, we investigated whether individual differences in outcome-value learning
predict differences in cue memory over learning. We computed learning performance for each par-
ticipant by averaging the estimates of the last five trials of each scene category, and subtracting the
average estimate of the low-value scene category from that of the high-value scene category. A
larger, positive difference between the two scene categories indicates greater learned separation of
the values of the two scene categories, whereas a smaller or negative difference indicates worse
learning. To measure the individual increase in memory for events as a function of learning, we ran
two mixed-effects models predicting memory as a function of trial number for (1) cue events and (2)
outcome events, and extracted participant slopes from each model. We then tested whether individ-
ual learning performance predicted this change in cue or outcome memory over learning.

Overall, better individual learning predicted a greater increase in memory for cue events (linear
regression: B8 = 0.02, t = 3.07, p=0.002), but not for outcome events (8 = 0.001, t = 0.24, p=0.81;
interaction between event type and learning performance: 8 = —0.01, t = —2.29, p=0.02). This rela-
tionship was stronger in the incidental memory task (8 = 0.02, t = 3.61, p<0.001; see Figure 3—fig-
ure supplement 1B) than in the instructed one (8 = —0.004, t = —0.61, p=0.55, Figure 3—figure
supplement 1A, interaction between instructed-incidental memory and learning performance: 8 =
0.03, t = 2.61, p=0.009), and in the 40¢—60¢ condition, the more difficult learning task, relative to
the 20¢—80¢ condition (40¢—60¢ condition: B = 0.03, t = 4.57, p<0.001; 20¢—80¢ condition: B =
0.01, t = 1.50, p=0.13; interaction between condition and learning performance: B8 = —0.04, t =
—3.17, p=0.002). These results confirm that more learning led to a greater increase in memory for
cue events. Furthermore, it suggests that the difference in results between the instructed and inci-
dental memory versions of the 40¢—60¢ condition could be accounted for by worse learning perfor-
mance. In this condition, there is a strong relationship between learning performance and learning-
modulated cue memory: here, only a minority of participants who had learned to separate the values
of the scene categories showed an increase in cue memory over learning, leading to an overall lack
of effect at the group level.

Memory results by reward prediction error

We investigated the effects of trial-by-trial reward prediction errors at cue and outcome in two ways,
and modeled Experiment 1 and the instructed and incidental memory versions of Experiment 2 sep-
arately (see ‘Materials and methods’ for details). First, we used mixed-effects linear regression
modeling to test the overall effects of RPEs on memory, including interactions between cue and out-
come events, and then examined the effects of RPEs on cue and outcome memory separately. This
resulted in three mixed-effects regression models for each experiment. We report model estimates
and significance testing for these tests. Second, we ran three Bayesian hierarchical models (again,
one model per experiment) including all RPEs as regressors and using a confound regressor to
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Figure 3. Memory accuracy across learning. (A) Experiment 1 memory score as a function of trial number; starred
points indicate change-point events. Background shading indicates condition (low- or high-reward variance). Cue
memory (in orange) was in general better than outcome memory (in purple; this effect was controlled for in all of
our analyses). Cue memory did not change relative to outcome memory throughout learning. Reward change-
points (starred) increased memory for the outcome event. (B-E) Experiment 2 memory scores in the 40¢—60¢
condition (B,D) and the 20¢—80¢ condition (C,E), as a function of ‘learning phase’ (first, second, and third bins of
learning trials). In the instructed memory version of Experiment 2 (B,C), learning enhanced cue memory in both
conditions, whereas in the incidental memory version, this enhancement only occurred in the 20¢—80¢ condition,
the easier learning condition (E). Differences between the instructed and incidental memory versions of the 40¢—
60¢ condition were related to differences in learning performance (see main text).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Individual differences in memory for cue and outcome events as a function of learning
performance in the instructed (A) and incidental (B) memory versions of Experiment 2.

control for the, on average, better memory for cue events. We report the median (measure of cen-
trality, ‘M’) and the high-density interval (measure of uncertainty, ‘HDI’) from the posterior parameter
distributions generated by the Bayesian hierarchical model.

Unsigned but not signed reward prediction errors at outcome enhanced

memory
In all experiments, we found that unsigned outcome RPEs enhanced memory for outcome images
(outcome memory as a function of |outcome RPE|, Experiment 1: M = 0.14, HDI [0.06, 0.23], B =
0.19, t = 3.51, p<0.001, Figure 4A; Experiment 2 - instructed memory: M = 0.14, HDI [0.05, 0.23], B
= 0.09, t = 2.59, p=0.009, Figure 4D; Experiment 2 - incidental memory: M = 0.13, HDI [0.06, 0.19],
B =0.11, t = 3.01, p=0.003, Figure 4D).
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Unsigned outcome RPEs in Experiment 1 resulted from either reward variance or changes to the
underlying distribution of the mean. We found separate effects of RPEs due only to reward variance
and those due to change points on increasing memory for outcome images (outcome memory as a
function of variance RPEs: B = 0.14, t = 2.38, p=0.02; outcome memory as a function of change-
point RPEs: B = 0.24, t = 2.08, p=0.04).

In Experiment 1, we also found unsigned outcome RPEs to boost memory for cue images from
that same trial, but with a median parameter estimate half the size of that for outcome images (cue
memory as a function of |outcome RPE|: M = 0.08, HDI [-0.01, 0.16], B8 = 0.10, t = 2.29, p=0.02,
Figure 4A). We did not find this effect in any of the conditions of Experiment 2, where unsigned out-
come RPE enhanced memory only for outcome images (Experiment 2 - instructed memory, cue
memory as a function of |outcome RPE: M = —0.02, HDI [-0.11, 0.06], B = —0.01, t = —0.46,
p=0.64, interaction between event type (cue or outcome event) and |outcome RPE|: B = 0.09, t =
2.06, p=0.04; Experiment 2 - incidental memory, cue memory as a function of joutcome RPE[: M =
—0.004, HDI [-0.07, 0.07], B = 0.006, t = 0.20, p=0.84, interaction between event type and |out-
come RPE|: B = 0.09, t = 1.98, p=0.05, Figure 4D).

As expected based on previous work (Rouhani et al., 2018), we did not find any influence of
signed outcome RPEs on memory for cue or outcome images in either experiment (Figure 4B,F; cue
memory as a function of signed outcome RPE, Experiment 1: M = —0.02, HDI [-0.11, 0.06], 8 =
—0.05, t = —1.04, p=0.30; Experiment 2 - instructed memory, M = 0.002, HDI [-0.07, 0.07], B =
—0.02, t = —0.66, p=0.51; Experiment 2 - incidental memory, M = —0.01, HDI [-0.08, 0.05], B =
—0.003, t = —0.08, p=0.93; outcome memory as a function of signed outcome RPE, Experiment 1: M
—0.0007, HDI [-0.09, 0.08], B = —0.004, t = —0.07, p=0.95; Experiment 2 - instructed memory, M
—0.03, HDI [-0.10, 0.03], B = —0.05, t = —1.46, p=0.15; Experiment 2 - incidental memory, M =
—0.05, HDI [-0.11, 0.02], B = —0.06, t = —1.61, p=0.11).

Reward prediction errors at cue enhanced memory

Prediction errors at cue were elicited only in Experiment 2. In the instructed memory version of
Experiment 2, we found that signed cue RPEs (i.e. the signed difference between the participant-
reported value of the current cue and the most-recently reported value of the alternative cue)
boosted memory for both cue and outcome events, such that memory of higher (relative) value
scenes was better than that for lower (relative) value scenes (cue memory as a function of signed cue
RPE: M = 0.08, HDI [0.01, 0.15], B = 0.08, t = 2.64, p=0.008; outcome memory as a function of
signed cue RPE: M = 0.06, HDI [-0.01, 0.12], B = 0.07, t = 2.23, p=0.03; Figure 4E). In the incidental
version, we replicated the effect of cue RPE on memory for cue images, but not on memory for out-
come images (cue memory as a function of signed cue RPE: M = 0.10, HDI [0.04, 0.17], 8 = 0.09, t =
3.04, p=0.002; outcome memory as a function of signed cue RPE: M = 0.03, HDI [-0.04, 0.09], 8 =
0.03, t = 0.80, p=0.42; Figure 4E).

We found a separate effect of unsigned cue RPE on memory, such that the more participants had
separated the values of the two scene categories (i.e. the more they had learned), the better their
memory for scene images. This effect was evident in overall memory in the instructed memory ver-
sion of Experiment 2 (memory as a function of |cue RPE|: B = 0.07, t = 2.49, p=0.01), however, when
quantifying the effect for cue and outcome memory separately, each of them was only trending to
significance (cue memory as a function of |cue RPE|: M = 0.09, HDI [0.01, 0.16], B = 0.07, t = 1.88,
p=0.06; outcome memory as a function of |cue RPE|: M = 0.06, HDI [-0.01, 0.13], 8 = 0.08, t = 1.82,
p=0.07; Figure 4C). In the incidental version of Experiment 2, unsigned cue RPEs significantly
increased memory for cue images (cue memory as a function of |cue RPE|: M = 0.12, HDI [0.05,
0.18], B = 0.10, t = 2.93, p=0.003), but not outcome images (outcome memory as a function of |cue
RPE|: M = 0.02, HDI [-0.05, 0.08], B8 = 0.01, t = 0.30, p=0.76; interaction between event type and |
cue RPE|: B = —0.10, t = —2.22, p=0.03; Figure 4C). The unsigned cue RPE’s increase of, in particu-
lar, memory for cue images suggests an additional mechanism for the learning effects described
above.
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Figure 4. Parameter distributions from hierarchical Bayesian models of memory in Experiment 1 (A-B) and
Experiment 2 (C-F, yellow background indicates incidental memory version). Distributions significantly above or
below zero indicate an effect, black stars indicate significance: p<0.1~, p<0.05*, p<0.01**. Unsigned outcome
RPEs (A,D) increased memory for outcome events, whereas signed outcome RPEs (B,F) did not. Signed cue RPEs
(E) boosted memory for the cue item, and also enhanced memory for the outcome item in the instructed memory
version. Unsigned cue RPEs (C) additionally, and separately, enhanced memory for cue events in the incidental
memory version of the task; this effect was trending in increasing cue and outcome events in the instructed
memory task.
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Outcomes and values did not predict memory without reward prediction
error

To rule out alternative modulators of memory, we also tested the effect of the trial-by-trial reward
outcomes and value estimates. We did not find reward outcome, in of itself or in an interaction with
cue or outcome event, to predict memory in any of the experiments (memory as a function of reward
outcome, Experiment 1: B = —0.03, t = —0.68, p=0.50, interaction between event type and reward
outcome: B = 0.07, t = 1.07, p=0.29; Experiment 2 - instructed memory: 8 = 0.03, t = 0.91, p=0.36,
interaction between event type and reward outcome: 8 = 0.02, t = 0.55, p=0.58; Experiment 2 - inci-
dental memory: B8 = 0.05, t = 1.51, p=0.13, interaction between event type and reward outcome: 8
= —0.04, t = —0.98, p=0.33).

When testing the effect of participant value estimates on memory, we similarly did not find partic-
ipant value estimates, in of themselves or in an interaction with cue or outcome event, to predict
memory in Experiment 1 (memory as a function of value estimate, 8 = —0.007, t = —0.15, p=0.88,
interaction between event type and value estimate: B = —0.004, t = —0.06, p=0.95). In Experiment
2, the value estimates were strongly correlated with the signed RPE at cue (r > 0.80), therefore we
could not enter them into a single model. When tested alone, value estimates were trending in
enhancing memory in the instructed memory version of Experiment 2 (memory as a function of value
estimate, B = 0.06, t = 1.89, p=0.06, interaction between event type and value estimate: 8 = 0.05, t
= 1.19, p=0.24), and enhanced memory in the incidental memory version (memory as a function of
value estimate, B = 0.08, t = 2.58, p=0.01, interaction between event type and value estimate: 8 =
—0.03, t = —0.62, p=0.53). However, given that value estimates did not influence memory when
there was no prediction error at cue (Experiment 1), we believe the parsimonious interpretation is
that this mnemonic modulation is attributable to prediction errors rather than value estimates alone.
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Figure 5. Choice probability as a function of rewards and values in Experiment 2. (A,C) Choice probability as a
function of the difference in reward outcomes between two cue or two outcome items in Experiment 2.
Participants were more likely to choose cue and outcome items that had been associated with higher reward
outcomes in both the instructed (A) and incidental memory (C) versions of the task. (B,D) Choice probability as a
function of the difference in value between two cue or two outcome items. Participants were more likely to choose
cue and outcome items that they had associated with a more valuable scene category (relative to the other scene
category) at the time of encoding in both the instructed (B) and incidental memory (D) versions of the task. Size of

circles reflects the size of that sample. Choice was fit using a logistic function, and shaded regions reflect 95%
confidence intervals.
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Choice results
At the end of both experiments, we asked participants to make choices between previously seen
items. Choices were between items that were either (1) two cue or two outcome items from different
trials (Experiment 2 only), or (2) a cue and an outcome item from a single trial, associated with a sin-
gle value estimate and reward outcome (both experiments). No outcomes were presented after
choices were made.

Recall that in Experiment 1 and the instructed memory version of Experiment 2, participants were
told in advance to pay attention to the images and their outcomes as they would later have a chance
to make choices between them and win their associated reward again. These instructions encour-
aged participants to encode the images along with their reward value. In the incidental version of
Experiment 2, however, no such preview was provided, and participants were not given any incen-
tive to encode the images nor their associated values or rewards.

Outcomes and values increased choice

Choices between pairs of images associated with different reward outcomes and values were tested
in Experiment 2. As expected, in the instructed memory version, participants preferred both cues
and outcomes associated with higher rewards (mixed-effects logistic regression, choice as a function
of reward difference: 8 = 1.59, z = 20.13, p<0.001; Figure 5A), and preferred images for which they
had reported higher subjective value when controlling for the effect of reward outcome on choice
(choice as a function of value difference: 8 = 0.92, z = 7.58, p<0.001; Figure 5B). Interestingly, both
effects were replicated in the incidental memory version of the task, despite not motivating partici-
pants to encode nor associate images with their values and reward outcomes (choice as a function
of reward difference: B8 = 1.21, z = 12.28, p<0.001; Figure 5C; choice as a function of value differ-
ence, controlling for reward difference: g = 1.03, z = 7.84, p<0.001; Figure 5D).

Signed RPEs at outcome biased choice

The above results confirmed that participants associated both the cue and outcome event with their
value of that category, as well as with the specific reward outcome on that trial, even when they
were not instructed to do so. We also asked participants to choose between cue and outcome items
from the same trial — two items that had the same associated value and reward outcome. In all
experiments, we found that participants were more likely to prefer the outcome event the more pos-
itive the outcome RPE, and to prefer the cue event the more negative the outcome RPE (mixed-
effects logistic regression, choice for outcome event as a function of signed outcome RPE,

A exp1 B exp 2:instructed memory  C exp 2: incidental memory
1.00 . ®-e - 1.00 L b 1.00 sh2 seis mmiie e s e
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Figure 6. Choice between cue and outcome items from a single trial in Experiment 1 (A), the instructed memory
version of Experiment 2 (B), and the incidental memory version of Experiment 2 (C). As these items were
associated with the same reward outcome and value, we would not expect preference for either item. In all cases,
participants preferred the outcome item on trials with a more positive outcome RPE and the cue item on trials
with a more negative outcome RPE. Size of circles reflects the size of that sample. Choice was fit using a logistic
function, and shaded regions reflect 95% confidence intervals.
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Experiment 1: B = 0.27, z = 3.27, p=0.001, Figure 6A; Experiment 2 - instructed memory: 8 = 0.23,
z = 5.70, p<0.001, Figure 6B; Experiment 2 - incidental memory: 8 = 0.16, z = 4.30, p<0.001,
Figure 6C). Moreover, each one of these effects held when controlling for the magnitude of the out-
come RPE, that is the unsigned outcome RPE (which boosted memory for outcome images, see
‘Unsigned but not signed reward prediction errors at outcome enhanced memory’, above), thus sug-
gesting this preference may not be driven by better memory for large RPE events. Therefore,
although signed outcome RPEs did not modulate memory, they did predict subsequent choice,
pointing to a hedonic component of the signed RPE in shaping preference.

Discussion

We found that distinct reward prediction error (RPE) signals, one occurring at cue and one at out-
come, dynamically influenced learning and memory for those events. Drawing on classic associative
models of attention (Pearce and Mackintosh, 2010), we found that an unsigned RPE at reward out-
come modulated trial-specific learning rate, consistent with a Pearce-Hall model of learning that
assumes more attention — and therefore more learning — for cues associated with unpredictable out-
comes (Pearce and Hall, 1980). Similarly, a signed RPE at reward cue also modulated learning rate,
consistent with a Mackintosh, 1975 model of learning that assumes enhanced attention to reward-
predicting cues. Reinforcement learning models that included both modulatory components pre-
dicted behavior better than models without those attentional components.

RPE signals at cue and outcome also enhanced memory for associated events. In Experiment 1,
participants learned the value of a single reward category while experiencing large unsigned RPEs at
outcome due to high (versus low) levels of outcome variance and unexpected changes in the mean
of the underlying reward distribution (‘change points’). We found that unsigned RPEs at reward out-
come improved memory for trial-unique scenes accompanying both the cue and outcome, most
prominently the latter.

In Experiment 2, participants learned the value of two reward categories (designated by indoor
and outdoor trial-unique scenes), which meant that they experienced RPEs both at the time of the
cue (as they could not predict which category would be offered on any given trial) and at the time of
the reward outcome. Unlike Experiment 1, where memory for the cue event remained relatively sta-
ble throughout the task, in Experiment 2, memory for the cue event (but not for the outcome event)
increased with learning. This mnemonic increase for cue events was supported by the gradual
buildup of a signed RPE at cue, which enhanced memory for more valued reward cues, as well as an
unsigned RPE at cue that benefited memory the more participants had separated the values of the
two reward categories (i.e. the more they had learned). Furthermore, we found that individual learn-
ing performance predicted the increase in cue memory over learning, providing another link
between stronger reward expectations and enhanced memory for cue events.

Similarly to Experiment 1, we again found that unsigned RPEs at reward outcome boosted mem-
ory for outcome events in Experiment 2, although we did not find them to influence memory for cue
events. Importantly, our results were similar in both versions of Experiment 2, one that instructed
memory for the images and their values and one where memory was completely incidental, confirm-
ing that the mnemonic benefits of RPEs are not a result of strategic encoding. Thus, our findings can
be directly related to previous work characterizing implicit, incidental encoding during reward learn-
ing, as well as studies of animal conditioning in which encoding is not explicitly instructed
(Duszkiewicz et al., 2019).

Last, in a choice test administered at the end of the experiment, participants preferred both cue
and outcome scenes that had been associated with higher reward outcomes and more valued scene
categories. This result was obtained when participants had been explicitly instructed to associate the
events with their reward outcomes and values (instructed memory task) and when these associations
were not instructed (incidental memory task). Additionally, when choosing between the cue and out-
come scenes of a single trial (i.e. two scenes associated with the same reward and value), higher
signed RPEs at outcome, which we did not find to modulate memory, nevertheless led to ‘irrational’
preference for the outcome event.
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Reward prediction errors dynamically modulated learning rate

We compared different reinforcement-learning models that included the contribution of attentional
components in modulating learning rate on a trial-by-trial basis. We focused on attention’s effect in
enhancing overall learning rate, departing from classic paradigms that investigate the allocation of
attention (or learning resources) between competing stimuli presented simultaneously. That is, we
presented one stimulus at a time. Nevertheless, our experimental design allowed us to model and
test the amount of learning for each stimulus on each trial, and investigate its relationship to RPEs.
Empirically, we found that large unsigned RPEs boosted learning rate, in line with a Pearce-Hall
model of attention for learning (Pearce and Hall, 1980), and previous work (Rouhani et al., 2018;
Nassar et al., 2010). Model comparison suggested that modulating learning rate according to
unsigned outcome RPEs fit learning behavior better than models without this modulation.

We also tested the influence of a Mackintosh-like attention component, which contrary to the
Pearce-Hall model, predicts a change in attention for more valuable and predictive cues. We mod-
eled the Mackintosh signal as the (signed) difference in learned value between the reward-predicting
cues. We found that this signed cue RPE decreased empirical learning rates, meaning that values
estimated for higher valued cues were more stable in light of unpredicted outcomes than for lower
valued cues. This effect was not due to an overall decrease in learning rate after having learned the
values of the two categories, as we did not find a significant effect of unsigned cue RPE on learning
rate; instead, participants demonstrated more stable learning for higher-valued cues. A computa-
tional model that updated learning rate according to this signed RPE at cue, in addition to the
unsigned RPE at outcome, provided the best fit to behavior, of all the models we tested.

In order to observe the effects of a building-up of RPE at cue onset, Experiment 2, unlike Experi-
ment 1, did not include shifts in the underlying reward distribution of the categories. Future studies
could examine how this Mackintosh signal changes with shifting predictions, where a change in the
underlying mean of the rewards increases learning rate (Vaghi et al., 2017).

Reward prediction error at cue benefited memory for cue events
Experiment 2, which included RPEs at cue, allowed us to test whether a putative (signed) dopaminer-
gic RPE, which moves from reward outcome to the cue predicting reward over learning (Barto, 1995;
Montague et al., 1996; Schultz et al., 1997), enhances memory for cue events. As predicted, we
found an incremental increase in memory for cue events (and not outcome events) throughout learn-
ing. Moreover, we found this increase to be supported by a signed RPE at cue that boosted memory
for cue events. That is, as learning progressed, cues that were more valuable (and therefore elicited
a larger signed RPE at cue) were better remembered. This finding is consistent with previous work
showing better memory for cues associated with future higher rewards (Stanek et al., 2019,
Jang et al., 2019). As in our prior work (Rouhani et al., 2018), we did not find signed RPEs at
reward outcome to modulate memory for any event, but we note that such an effect has been dem-
onstrated in paradigms outside of reinforcement learning (Marvin and Shohamy, 2016; Ergo et al.,
2019, De Loof et al., 2018; Ergo et al., 2020) and for adolescents, but not adults, in reinforcement
learning (Davidow et al., 2016).

Along with the effect of signed cue RPE, the increase in cue memory over learning was addition-
ally and separately supported by an unsigned RPE at cue, which improved memory for both high-
value cues and low-value cues as participants learned to separate the values of the two reward cate-
gories. Although we consider the signed RPE at cue to reflect a Mackintosh-type attention signal
(Mackintosh, 1975), in our paradigm, larger unsigned RPEs at cue also demonstrated that greater
reward predictiveness strengthens encoding of those cue events.

Our findings further shed light on whether this mnemonic enhancement for cue events was due
to cue values or cue RPE. We could not distinguish the effects of participant value estimates versus
cue RPEs in Experiment 2, as the measures were highly correlated. However, in Experiment 1, where
there were no RPEs experienced at cue, we did not find value estimates to modulate memory. We
therefore experimentally dissociated the effects of cue values and RPEs on memory by showing that
an increase in cue memory over learning requires the build-up of an RPE signal, which in Experiment
2 was elicited by learning about more than one reward category.

We also investigated whether individual differences in learning performance were related to this
increase in cue memory over learning. More specifically, we tested whether value separation of the
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two reward categories at the end of learning predicted individual changes in cue memory as a func-
tion of trial number during learning (the estimated slope of the effect). We indeed found learning
performance to predict greater increases in cue memory, but not outcome memory, over learning.
This relationship was strongest in the experimental condition associated with the worst learning per-
formance (40¢—60¢, incidental memory condition). This was the only condition in which we did not
find an overall increase in cue memory throughout learning, suggesting that this null result may be in
part driven by worse learning in this condition, while better learners were still showing the effect.
This analysis complemented our within-subjects approach by providing a between-subjects link
between learning performance and increasing memory for cue events.

Unsigned reward prediction error at outcome boosted memory
throughout learning

We replicated previous results showing better memory for images associated with high unsigned
RPEs at reward outcome, due to either outcome variance (Rouhani et al., 2018) or reward change-
points (Rouhani et al., 2020). We found this mnemonic benefit of outcome RPEs to be particularly
strong for events experienced at the time of the (surprising) outcome. Although unsigned outcome
RPEs enhanced memory for cue events as well (see Experiment 1), this effect was weaker than that
for outcome events, and did not replicate in Experiment 2. Critically, unsigned outcome RPEs
benefited memory in both instructed and incidental memory conditions. We therefore hypothesize
that, regardless of any explicit encoding strategy, increased attention due to large unsigned RPEs
during reward outcome engages the locus coeruleus (LC), which co-releases norepinephrine and
dopamine to modulate hippocampal plasticity (Kempadoo et al., 2016; Takeuchi et al., 2016;
Wagatsuma et al., 2018). Although we only tested the effects of reward prediction errors, we spec-
ulate that any large prediction-error event would engage this putative neural mechanism to modu-
late memory, as supported by work showing mnemonic enhancement for large prediction-error
events during fear conditioning (Kalbe and Schwabe, 2019).

Of note, we did not find effects of reward outcome on memory in any of our experiments,
showing that the reward outcome by itself did not lead to the strategic prioritization of more
rewarding events in the instructed memory version of our experiments, nor did it lead to the
incidental encoding of those events. These results are consistent with reported null effects of
reward outcome on immediate memory (Murty et al., 2016a). Indeed, reward effects on inci-
dental memory typically emerge when tested after consolidation, a process in which rewarding
events, and their associates, are prioritized in memory (Braun et al., 2018; Stanek et al., 2019,
Patil et al., 2017). In our paradigm, encoding and recognition memory were separated by only
a short delay, leaving open the possibility that reward effects on cue and outcome events would
emerge after consolidation.

Instructed versus incidental memory effects

In both Experiment 1 and the instructed memory version of Experiment 2, we incentivized partici-
pants to associate trial-unique images with their reward outcome: in the initial instructions, partici-
pants were told that they would later have an opportunity to choose between the images and win
their reward outcomes again. These instructions may have encouraged participants to strategically
encode the images, similar to work investigating explicit memory strategies for remembering
rewarding events (e.g. Hennessee et al., 2019). Such explicit strategies may use different neural
mechanisms than those motivating our questions, namely, the dopaminergic and noradrenergic
modulation of hippocampal memories characterized in animal conditioning paradigms.

We addressed this potentially critical difference by running a version of Experiment 2 where
memory for the images, as well as their association with the reward values and outcomes, were
completely incidental. Here, we replicated our main results: signed and unsigned RPEs at cue
enhanced memory for cue events, and unsigned RPEs at outcome enhanced memory for outcome
events. Unlike the instructed memory version of Experiment 2, we did not find the signed RPE at
cue to additionally increase memory for outcome events. This difference could potentially reflect a
more explicit encoding of the outcome event for the later choice task in the instructed memory ver-
sion, as participants were told that cue and outcome events from a single trial were associated with
the same value and outcome. However, it is worth noting that a good explicit strategy would have
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been to remember the most rewarding events, yet, reward outcome did not modulate memory in
any of our experiments. We therefore conclude that our RPE effects do not rely on explicit memory
strategies and are likely to be unintentional, connecting our findings to literature investigating inci-
dental memory during reward learning.

We also found that learning was, on average, worse in the incidental memory compared to the
instructed memory version of Experiment 2. We did not anticipate this difference since the only
instructions we changed were related to the final choice task. However, it is possible that motivating
participants to associate the images with their reward values and outcomes additionally encouraged
them to learn and better separate the average values of the two reward categories. Alternatively,
participant pool and motivation may be related to this difference, as we ran the incidental memory
task during 2020’s global pandemic. As a potential signature for decreased motivation in the 2020
participant pool, we found participants to provide lower value estimates, indicating greater pessi-
mism when anticipating rewards. Nevertheless, this greater variability in learning performance in the
incidental memory task did allow us to demonstrate that individual differences in learning predicted
the degree to which cue memory increased over learning (see ‘Reward prediction error at cue bene-
fits memory for cue events’, above).

Interactions between reinforcement learning and memory systems
Although we did not measure neural activity in this study, distinguishing the mnemonic effects of
signed and unsigned RPEs in the brain may be fruitful in characterizing two distinct memory mecha-
nisms. As mentioned, one dominant hypothesis is that dopaminergic midbrain signals convey signed
RPEs to target areas (Barto, 1995, Montague et al., 1996; Schultz et al., 1997). Less well
accepted, but also quite dominant is the idea that unsigned RPEs increase noradrenergic (as well as
dopaminergic) firing from the LC (Takeuchi et al., 2016, Kempadoo et al., 2016;
Wagatsuma et al., 2018). Recent work makes predictions about how these distinct mechanisms
may differentially influence memory (Hauser et al., 2019). Midbrain dopamine initiates ‘behavioral
activation’ (Clewett and Murty, 2019), such as increased vigor during periods of reward anticipation
(Niv et al., 2007), which is thought to promote the integration of higher-order representations, like
value formation, giving rise to semantic memories (Duszkiewicz et al., 2019). The LC-norepineph-
rine system, on the other hand, is thought to promote selectivity for salient events such as (positively
or negatively) surprising outcomes, giving rise to distinctive, episodic memories (Duszkiewicz et al.,
2019). Although our findings suggest that RPEs act on both episodic (high-confidence recognition)
and semantic (value formation) memory, distinguishing the effects these RPE signals may have on
other features of episodic and semantic memory is an important avenue for future research
(Greve et al., 2019).

In this paradigm, we did not dissociate the effects of cue RPE versus reward anticipation on mem-
ory (for an experiment that does this, see Stanek et al., 2019). However, based on our findings and
the above mapping to neural substrates, we predict that phasic signed RPEs at cue would initiate
and enhance a sustained (potentially ramping) period of reward anticipation, leading to memory
benefits for ensuing events, regardless of their exact timepoint. ligaya and colleagues recently
offered such a computational model whereby RPEs amplify anticipatory value (i.e. the ‘pleasure of
savoring’; ligaya et al., 2019). They further suggested a neural circuit whereby the hippocampus —
tracking unsigned RPEs at outcome — enhances the functional coupling between the dopaminergic
midbrain (encoding the signed RPE at outcome) and the ventromedial prefrontal cortex (encoding
anticipatory value) to boost reward anticipation. The authors speculate that the cognitive imagining
of future rewards may drive hippocampal orchestration of reward anticipation. It is, however, unclear
whether hippocampal activation here reflects greater engagement in retrieval processes (supporting
the mental simulation of future rewards) or encoding processes, consistent with previous work show-
ing better memory for events experienced during reward anticipation (Stanek et al., 2019;
Murty and Adcock, 2014; Wittmann et al., 2005). Future work should identify the dynamics of hip-
pocampal encoding and retrieval states (Hasselmo et al., 2002, Duncan et al., 2012; Bein et al.,
2020) over the period of reward anticipation.

In our experiments, we found a collaborative interaction between reinforcement learning and epi-
sodic memory systems: more rewarding cues and more surprising outcomes were prioritized in
memory, thereby promoting adaptive behavior. Nonetheless, in other paradigms, these two systems
have been shown to compete for processing resources: compromised feedback-based learning has
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been associated with enhanced episodic memory, both behaviorally and neurally (Foerde et al.,
2013; Wimmer et al., 2014). In fact, Wimmer et al., 2014 showed that better memory for reward-
predicting cues was associated with weaker striatal RPEs at reward outcome. In our experiments, we
did not find such effects of signed RPEs at reward outcome on memory. However, there are several
notable differences between our task and that of Wimmer and colleagues: we tested Pavlovian (pas-
sive) learning, not instrumental learning (choice); we presented one cue at a time, rather than two
competing cues on every trial; and we tested for memory immediately after learning, rather than 24
hr later (that is, our test did not reflect consolidation effects).

In our Pavlovian paradigm, participants’ actions (i.e. their estimates) were not rewarded, instead,
participants were told they would receive a portion of the reward outcome on every trial, regardless
of their estimate. This was done on purpose to prevent positive RPEs due to unexpected reward
when participants’ predictions were correct (in our task, correct prediction implies an RPE of zero).
Indeed, participants were asked to make predictions only to ensure they paid attention to outcomes
in this passive-viewing, online task. It would be interesting in future work to investigate which learn-
ing conditions (e.g. Pavlovian versus instrumental) engage more collaborative versus competitive
interactions between reinforcement learning and episodic memory systems.

Positive reward prediction errors biased preference

At the end of our experiments, we investigated how RPE signals influence subsequent choice. When
prompted to make choices between previously experienced scene images, participants chose both
cue and outcome events linked to a higher reward outcome as well as higher (relative) value of a
scene category, regardless of whether they were explicitly instructed to create these associations
prior to learning (instructed memory task) or not (incidental memory task). These findings replicate
previous work showing that people choose episodic events associated with higher rewards, both
when these associations are formed explicitly (Murty et al., 2016b; Gluth et al., 2015) and inciden-
tally (Wimmer and Biichel, 2016).

Participants thus associated both the cue and outcome scenes with the value of that scene cate-
gory as well as with the specific reward outcome on that trial. Interestingly, when asked to choose
between cue and outcome scenes from the same trial (where there should be no preference for
either item), we found and replicated an effect (in both Experiments 1 and 2) whereby the higher the
signed RPE at outcome, the more participants preferred the outcome event. This result further held
when controlling for the magnitude of the outcome RPE (i.e. the unsigned outcome RPE that
increased memory for outcome images), suggesting this preference was not driven by memory for
large RPE events. Therefore, although signed RPEs at outcome did not modulate memory, they did
predict subsequent choice, pointing to a hedonic component of the signed RPE in shaping preferen-
ces. This finding is consistent with work maintaining that RPEs drive changes in emotional or affec-
tive states (Villano et al., 2020; Eldar and Niv, 2015; Eldar et al., 2016; Rutledge et al., 2014),
and we propose that this putative change in affect biased preference for the associated outcome
event.

Conclusion

Taken together, our results suggest that reward prediction errors generated both by reward-predict-
ing cues and by reward outcomes modulate learning rate during reinforcement learning, in line with
classic attentional models of learning. These signals further enhanced memory for events associated
with larger unsigned prediction errors experienced at outcome (corresponding to general surprise),
and larger signed prediction errors experienced at cue (corresponding to higher expected value).
These findings highlight the interaction of prediction errors, potentially signaled by midbrain dopa-
mine and locus-coeruleus norepinephrine, with mnemonic processes.

Materials and methods

Experimental conditions

Participants
We recruited participants from Amazon Mechanical Turk (MTurk): Experiment 1: 100 participants;
Experiment 2, instructed memory task: 400 participants (200 for each condition); Experiment 2,
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incidental memory task: 500 participants (250 for each condition). The sample size was chosen (1)
based on a simulation-based power analysis revealing that at least 55 participants would give suffi-
cient power (80% probability) to detect the effect of unsigned RPEs on memory (Rouhani et al.,
2018), and (2) taking into account that 20% of participants typically meet one of the following exclu-
sion criteria. Participants were excluded if they (1) had a memory score of less than 0.5 (A": Sensitiv-
ity index in signal detection; Pollack and Norman, 1964), or (2) missed more than three trials. More
participants were recruited in Experiment 2 to test the additional effect of cue RPEs on memory. Fur-
thermore, in the incidental version of Experiment 2, where there was no instruction to motivate
remembering of the scenes, memory was worse (as could be expected), and we recruited more par-
ticipants (50 per condition) to obtain similar power between the instructed and incidental memory
versions of the task.

This led to a final sample of 81 participants in Experiment 1, 331 participants in Experiment 2,
instructed memory task (40¢—60¢ condition: 163, 20¢—80¢ condition: 168), and 354 participants in
Experiment 2, incidental memory task (40¢—60¢ condition: 168, 20¢—80¢ condition: 186). We
obtained informed consent online, and participants had to correctly answer questions checking for
their understanding of the instructions before proceeding; procedures were approved by Princeton
University’s Institutional Review Board.

Task design

Participants each completed (1) a reward-learning task, (2) a recognition-memory task, and (3) a
choice task. Before reward learning, participants completed a practice task (12 trials) to ensure they
had learned the structure of the reward-learning task using different reward contingencies than what
would be learned in the experimental task. In the practice trials of Experiment 1, participants experi-
enced one reward change-point, from a mean of 30¢ to 50¢. In the practice trials of Experiment 2, in
all conditions, the low-value scene category was worth 30¢ and the high-value scene category was
worth 70¢, on average. Participants were additionally asked to complete a risk questionnaire (DOS-
PERT; Weber et al., 2002) between reward learning and memory to create a 5-10 min delay
between item encoding and recognition.

Memory instructions

In the initial instructions for both Experiment 1 and the instructed memory version of Experiment 2,
participants were told they would be choosing between the trial-unique images later in the experi-
ment for a chance to win the reward associated with those events again. The aim of this choice
phase was to assess learning, and informing participants about future choices was aimed at increas-
ing attention of online participants. This instruction explicitly incentivized participants to associate
images with their reward outcomes.

In the incidental memory version of Experiment 2, we tested whether our results would replicate
without any incentive to remember the items. Accordingly, no instructions were given to motivate
the encoding of the trial-unique images nor their association with the reward outcome on that trial.
Therefore, all memory and choice results from this experiment reflect incidental encoding (see
Appendix 1 for Experiment 2 instructions).

Experiment 1 learning task
Participants learned the average value of objects in two different reward contexts, defined by back-
ground images of different cities (‘Paris’ and ‘London’). They experienced each reward context in
interleaved blocks (8 blocks total). Each block was comprised of 6 or 9 trials (60 trials total), each trial
involved two trial-unique objects (120 objects in total) that were randomly assigned to each trial. On
each trial, participants were first shown an object (‘reward cue’: 3 s), and then had up to 5 s to esti-
mate the ‘resale value of objects in that city at that time’, that is, the average value of objects in that
context. After submitting their answer, they saw a different trial-unique object (‘reward outcome’: 3
s) along with the monetary outcome associated with both objects on that trial. Participants were
paid 10% of the rewards they received on every trial regardless of their estimates, in line with a Pav-
lovian conditioning environment.

The individual rewards associated with the object pairs fluctuated around a fixed mean (the
means ranged from 10¢ to 90¢). Once or twice within each reward block, the underlying mean

Rouhani and Niv. eLife 2021;10:e61077. DOI: https://doi.org/10.7554/eLife.61077 18 of 28


https://doi.org/10.7554/eLife.61077

eLife

Neuroscience

changed, generating large RPEs. These ‘change points’ occurred once in the six-trial blocks, twice in
the nine-trial blocks, and were at least three trials apart. The reward variance associated with each
context provided a second source of RPEs. The variance in the high-variance context (c-high-vari-
ance = 7¢) was twice that of the low-variance context (c-low-variance = 3.5¢), leading participants to
experience larger RPEs within the high-variance context. Participants were told that the average
resale value of the 'found’ objects could change within each city, but that the inherent variability in
reward outcome associated with each city remained constant. Participants were encouraged to
remember the rewards associated with the objects, as they were told they would be choosing
between objects, and re-earning their associated rewards, later in the task.

Experiment 2 learning task

Instead of learning the value of a single category (objects) within two reward contexts (as in Experi-
ment 1), participants learned the value of two categories (indoor and outdoor scenes) within one
reward context, thereby eliciting RPEs at cue as well as at outcome. They were told that indoor and
outdoor scenes were each associated with an average value that does not change during learning,
and were asked to estimate the average value of the scene category presented on every trial. As
before, participants saw two different trial-unique images at reward cue and outcome, here the cue
and the outcome scenes belonged to the same scene category, and images were randomly selected
from each scene category.

The average value of one of the scene categories was higher than the other, and average values,
as well as their variance (same for both scene categories; 6 = 15.81), remained constant throughout
the experiment. In order to test a range of RPEs experienced at cue, participants learned in a reward
environment where either (1) the average means of the two scene categories were close to each
other ('40¢—60¢ condition’: p-low-reward=40¢, u-high-reward=60¢), or (2) further apart ('20¢—80¢
condition”: p-low-reward=20¢, u-high-reward=80¢). The outcomes were drawn from a predefined
range centered at the above means, with the same variance between conditions ('40¢—60¢ condi-
tion": high-value scene category = 40¢—80¢, low-value scene category = 20¢—60¢; ‘20¢—80¢ condi-
tion": high-value scene category = 60¢—100¢, low-value scene category = 0¢—40¢), and spanned
that range uniformly.

Participants completed 30 trials during learning (15 trials for each scene category; 60 trial-unique
scenes). The sequence of scene-value categories (high or low scene-value categories) shown to the
participant was pseudo-randomized: participants were assigned to one of eight possible sequences
ensuring that no scene category was repeated consecutively more than twice, and controlling (across
participants) for the number of high- and low-value scene category trials assigned to each trial num-
ber. In other words, across participants, there was a similar amount of data for both value categories
on each trial.

Learning measures
We calculated an empirical trial-by-trial outcome RPE by subtracting participants’ value estimates
from the reward outcome on that trial. In Experiment 2, we further calculated a cue RPE by subtract-
ing participant’s value estimates of the present reward category from the other reward category.
The ‘unsigned’ outcome and cue RPEs were the absolute values of these measures.

We also calculated an empirical trial-by-trial learning rate directly from the Rescorla-Wagner
update equation (Rescorla and Wagner, 1972):

_ Vt+1 — V[

RV, (1

a;
We tested whether signed cue and unsigned outcome RPEs modulated this empirical learning
rate.

Recognition memory

After completing the risk questionnaire, participants were tested for their memory of the trial-
unique images. They were presented with these images and asked to indicate whether they
were ‘old’ (previously seen during learning) or ‘new’ (not seen during learning) as well as their
confidence level for each memory judgment (from 1 ‘guessing’ to 4 ‘completely certain’). In
Experiment 1, the test included 72 trials: 48 old (24 from each context) and 24 new images. In
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Experiment 2, the memory test included 64 trials (32 old and 32 new images). We did not test
memory for every image seen during learning in order to limit fatigue and dwindling attention
in online participants. However, across participants, we tested memory for the events of every
learning trial by pseudo-randomizing which learning trials were probed during memory. Each
participant was randomly assigned to one of four possible lists specifying which learning trials
would be selected for memory testing. This ensured that events from each learning trial were
probed a similar number of times in the memory test, across participants. Trial-by-trial memory
scores were calculated by combining memory performance (hit versus miss) with confidence rat-
ing (from 1 = ‘guessing’ to 4 = ‘completely certain’) on old items; the score thus ranged from a
‘completely certain’ miss (1) to a ‘completely certain’ hit (8).

Choice task

In the final phase, participants were asked to choose the more valuable image between two
previously seen images (14 trials). Unbeknownst to the participants, images within each pair
were either (1) both cue or outcome events from different reward pairs (in Experiment 1, these
events were close in their associated reward but belonged to different variance contexts, and in
Experiment 2, the events were associated with different reward outcomes; six trials), or (2)
belonged to the same pair and were therefore associated with the exact same value estimate
and reward (eight trials; any consistent biases in preference could not be attributable to explicit
reward differences in the task).

Reinforcement learning models
We used a simple Rescorla-Wagner model (Rescorla and Wagner, 1972) as our baseline model
(model: 'RW'):

Vin=V, +01(R, - V,), (2

where a static learning rate (o) governs the extent to which the signed RPE at outcome (computed
by subtracting the current model value, V;, from the reward received on that trial, R;) updates the
value of the next trial (V,1).

Following attentional models of learning (Pearce and Mackintosh, 2010), we investigated
whether a dynamic trial-specific learning rate («,) would better fit learning. We tested three distinct
modulators of a trial-by-trial learning rate, separately and in combination with each other. To con-
strain @, to be in the range of [0-1], for each model, we passed the learning rate through a sigmoid
function before updating value (Equation 2).

First, in line with Pearce and Hall, 1980, we used the unsigned (absolute) outcome RPE to modu-
late learning rate (model: 'RW-PH’):

o=+ k(R — V). 3

Here, the unsigned outcome RPE is calculated as the difference between the reward received
and the model value estimate (V,). The learning rate is set as a baseline learning rate, n, plus the
unsigned RPE scaled by x. For positive values of k, more surprising outcomes therefore lead to
higher learning rates, as per the Pearce-Hall model.

Second, following Mackintosh, 1975, we modeled the effect of a cue RPE on learning rate
(model: ‘'RW-M’). Note that we could only test this effect in Experiment 2 since cue RPEs exist only
when there is more than one reward category. The cue RPE is the value of the present reward cate-
gory (e.g. an indoor scene; V,) relative to the updated value of the alternative reward category (e.g.
an outdoor scene; V,). The learning rate in this model is then the scaled cue RPE plus a baseline
learning rate m:

az:’fH-V(Vc—Vn), (4)

Therefore, for positive v, the more one scene category is valued over the other, the higher «, for
trials with the more valued scene category and the lower «; for trials with the less valued scene cate-
gory. Since each scene category was sampled an equal number of times (without any runs exceeding
two trials), we did not scale the cue RPE by the probability of either scene category occurring.
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Third, given that participants should update their values less (i.e. lower their «;) once they've
learned the average values of the reward categories, we tested a model with exponential decay of
the learning rate over time (Sutton and Barto, 1998; model: 'RW-D’):

a=n +Ne e, (5)

where N is the initial value, A is the decay constant, and t. is the trial number for that reward cate-
gory (i.e. in Experiment 2 where there were two scene categories, trial number was counted sepa-
rately for each scene category).

We further tested models that included each combination of the above three learning-rate modu-
lators. Here, we used a single baseline () and added each effect in the learning rate for all of the fol-
lowing models: A model that combines the unsigned outcome RPE and signed cue RPE effects on
learning rate (model: '/RW-PH-M’):

a; =N+ k(R = Ve|) +y(Ve = Vi), (6)

A model that combines the unsigned outcome RPE and decay effects on learning rate (model:
‘RW-PH-D’):

a;=n+k(|R —V|) +Ne™e, (7)

A model that combines the signed cue RPE and decay effects on learning rate (model: ‘'RW-M-
D"):

ar=n+ V(VC - Vn) +N€_)\[", (8)

And finally, a model that combines all three effects (model: ‘RW-PH-M-D’):

a;=n+k(|R = V) +y(V, = V,) +Ne . %)

Model fitting and comparison

All models were fit to each participant’s value estimates by finding parameters that maximize the
log likelihood of the participant value estimates. The likelihood was calculated assuming a Gaussian
distribution around the model value, with variance equal to the average empirical difference
between model values and participant estimates (). This is equivalent to linear regression of the
value estimates on the model values, giving a log likelihood:

LL = — Ny {m(@) n 0.5] , (10)

where n is the number of trials fit. To maximize log likelihood we used MATLAB’s fmincon function.
We constrained parameter values within the following ranges: « € [0,1], n € [-10,10], k € [-20,20],
v € [-20,20], N € [-15,15], A € [0,10]. Note, however, that the trial-by-trial learning rate was always
passed through a sigmoid function (x; = input), and was therefore between 0 and 1:

1
e’

a; (11

Values were initialized to 50¢, and in Experiment 1, were re-initialized at the beginning of each
reward context. Each fit was run 30 times with different random initial parameter values.

Since all our models were nested (with additional parameters further modulating the RW-learning
rate), we compared models using the likelihood-ratio test, across subjects (Pickles, 1985). To verify that
our data can arbitrate between these models, we performed model recovery on simulated data gener-
ated by randomly sampling 100 parameter settings from Experiment 2 (including sampling the Gaussian
noise translating model value to predicted value). From these simulated data we calculated empirical
trial-by-trial learning rates (as in Equation 1). We then tested whether the model generating said learning
rates was the best fit for them, by fitting all models to each dataset. We concentrated specifically on
modeling learning rates, since the only differences between the models were in how they determined
trial-by-trial learning rates. We then compared model recovery using the conservative Bayesian informa-
tion criterion (BIC; Schwarz, 1978), to calculate a confusion matrix demonstrating the proportion of
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simulations fit best by the true model (Wilson and Collins, 2019). The models were sufficiently recovered,
validating model comparison (Figure 2—figure supplement 2B). Code for model fitting and recovery in
‘models_RL_matlabCode’ at https://github.com/ninarouhani/2021_RouhaniNiv (Rouhani, 2021; copy
archived at swh:1:rev:fa15d035dc4033ebad03f48dbd5c75b0c4d76c40).

Mixed-effects modeling

We used mixed-effects modeling to test hypotheses throughout the paper (Ime4 package in R;
Bates et al., 2015). We treated participant as a random effect for both the slope and the intercept
of each fixed effect; however, if the model did not converge, we incrementally simplified the random
effect structure (i.e. by taking out interactions, then the slope of each effect), until convergence was
achieved (the simplest structure only modeled participant intercept as a random effect; for model
specifications, see ‘analysis&figures.ipynb’ at https://github.com/ninarouhani/2021_RouhaniNiv/).

Hierarchical model of memory

We ran a hierarchical regression model to better characterize the effects of unsigned and signed
RPES, as well as their relative influence, on memory for cue and outcome events. This model per-
formed full Bayesian inference over the effects of interest with Hamiltonian Monte Carlo sampling,
simultaneously estimating subject and group-level posterior distributions (Stan; Carpenter et al.,
2017). We included all putative RPE signals of interest in predicting memory score: signed RPE sig-
nal at outcome, unsigned RPE signal at outcome, as well as an intercept and a nuisance variable that
captured overall differences in memory for cue versus outcome events. We also included signed and
unsigned RPE signals at cue for Experiment 2. Subject-level parameter distributions were drawn
from group-level, standard normal distributions, and scaled by a gamma distribution (1,0.5). The
response variable (memory score) was modeled with a normal distribution and fit with a single
Gaussian noise parameter across all participants. All RPE regressors were centered and standard-
ized. We report the median (M) of the posterior parameter distributions as a measure of centrality,
and the highest density interval (HDI) as a measure of uncertainty around the parameter estimate; by
default, HDI returns the 89% credible interval (which is recommended as a more stable interval for
sample sizes less than 10,000; Kruschke, 