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Abstract Memory helps guide behavior, but which experiences from the past are prioritized?

Classic models of learning posit that events associated with unpredictable outcomes as well as,

paradoxically, predictable outcomes, deploy more attention and learning for those events. Here,

we test reinforcement learning and subsequent memory for those events, and treat signed and

unsigned reward prediction errors (RPEs), experienced at the reward-predictive cue or reward

outcome, as drivers of these two seemingly contradictory signals. By fitting reinforcement learning

models to behavior, we find that both RPEs contribute to learning by modulating a dynamically

changing learning rate. We further characterize the effects of these RPE signals on memory and

show that both signed and unsigned RPEs enhance memory, in line with midbrain dopamine and

locus-coeruleus modulation of hippocampal plasticity, thereby reconciling separate findings in the

literature.

Introduction
The reward prediction error (RPE) is a canonical learning signal in reinforcement learning, updating

stored information about the values of different experiences. This signal modulates dopaminergic fir-

ing from the midbrain, increasing dopamine release when rewards are better than expected, and

decreasing its release when rewards are worse than expected (‘signed RPE’; Barto, 1995;

Montague et al., 1996). Over the course of learning, this dopaminergic RPE transfers from unpre-

dictable reward outcome to the cue predicting the reward (Schultz et al., 1997). The resulting

signed RPE at cue putatively supports an associative model (‘Mackintosh model’; Mackintosh, 1975)

where attention increases for cues that reliably predict reward. This signed RPE could also give rise

to stronger memory traces, given that neural plasticity in the hippocampus – the key structure for

episodic memory – is modulated by dopamine (Lisman and Grace, 2005; Shohamy and Adcock,

2010).

An alternative possibility is that RPE magnitude, regardless of its sign (‘unsigned RPE’), enhances

learning and memory for surprisingly good or bad outcomes. In fact, the Pearce-Hall model of learn-

ing (Pearce and Hall, 1980), which contradicts the Mackintosh model, posits that attention is

enhanced for cues that are accompanied by surprise, that is, those that co-occur with large unsigned

RPEs. The effects of unsigned RPEs are thought to be mediated by the locus coeruleus-norepineph-

rine system, which responds to unexpected changes in stimulus-reinforcement contingencies,

regardless of the sign of the outcome (for a review, see Sara, 2009). Moreover, recent evidence

points to the locus coeruleus (LC), which co-releases dopamine with norpeinephrine, as providing an

alternative source of dopamine to the hippocampus, giving rise to hippocampal memories

(Kempadoo et al., 2016; Takeuchi et al., 2016; Wagatsuma et al., 2018).
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Albeit paradoxical, it is theoretically possible that both surprise (Pearce-Hall model) and predict-

ability (Mackintosh model) modulate memory throughout learning (Le Pelley, 2004; Beesley et al.,

2015), but in different ways, and through distinct neural mechanisms. Previously, we found that

unsigned, but not signed, RPEs experienced at reward outcome boost learning and memory

(Rouhani et al., 2018), consistent with work showing better memory for surprising events

(Greve et al., 2017; Antony et al., 2021). There is also recent support for signed RPEs experienced

at reward-predictive cue to enhance memory (Jang et al., 2019), reminiscent of work showing mem-

ory benefits during periods of high-reward anticipation (Adcock et al., 2006; Murty and Adcock,

2014; Stanek et al., 2019; Wittmann et al., 2005).

Accordingly, we hypothesized a signed-RPE effect on memory during the reward-predicting cue

once participants had learned cue values, as well as an unsigned-RPE effect on memory during

reward outcome throughout learning. We included two trial-unique images on every learning trial,

one at cue and one at outcome, to dissociate the effects of the two RPEs on memory (Figure 1).

We characterized these effects in two experiments that each prioritized the influence of one of

these RPE signals. In Experiment 1, participants experienced large unsigned RPEs brought on by

periods of high outcome variance (‘high’ versus ‘low variance’ contexts) and reward-value change

points (changes to the mean of the underlying reward distribution). We expected these large

unsigned RPEs, experienced at reward outcome, to modulate learning rate and boost memory for

events throughout learning (Figure 1A–C). In Experiment 2, in contrast, participants learned the val-

ues of two categories of cues, eliciting RPEs at cue as well as outcome (Figure 1D–F). Here, the

underlying reward distribution associated with each category did not change, allowing for RPEs at

cue (i.e. a relative value signal) to increase in magnitude with more experience with each category.

We expected both signed RPEs at cue and unsigned RPEs at outcome to influence learning rate and

memory for those events.

To assess differential effects of RPEs on instructed versus incidental memory, we ran two versions

of Experiment 2. In the instructed version (and in Experiment 1), participants were explicitly

prompted to memorize as they were told they would later choose between the items presented dur-

ing learning and win their associated reward values again. We thus incentivized participants to asso-

ciate the trial-unique items with their reward values during learning. In the incidental version, we

removed this instruction, making memory for the trial-unique items completely unintentional.

We analyzed learning, memory, and choice data using complementary approaches. To under-

stand the learning process, we compared computational models of learning that formalized different

putative effects of signed cue RPEs and unsigned outcome RPEs on subjects’ predictions of trial-by-

trial cue values. To test the effects of signed and unsigned cue and outcome RPEs on memory per-

formance, we used mixed-effects modeling (also used to analyze learning and later choice) and

Bayesian hierarchical modeling.

Results

Learning results
Unsigned reward prediction errors at outcome and signed reward
prediction errors at cue influenced learning rate
We first tested whether RPEs experienced during reward learning predicted empirical, trial-by-trial,

learning rates. Learning rates were measured by comparing consecutive predictions for the same

cue category, and dividing the difference in predictions by the empirical outcome prediction error

experienced on the earlier of the two trials (see Equation (1) in ‘Materials and methods’). We

treated the unsigned RPE at reward outcome (Figure 1B, in blue) as a ‘Pearce-Hall’ signal, as it

reflects how unpredictable the reward was. We found the unsigned RPE at reward outcome boosted

learning rate in both experiments, thereby providing direct behavioral evidence for this ‘Pearce-Hall’

component on learning rate (mixed-effects linear regression, Experiment 1: b = 0.10, t = 6.39,

p<0.001; Experiment 2: b = 0.07 t=8.79, p<0.001; see Figure 2—figure supplement 1 for empirical

learning rates).

We treated the learned value difference between two reward-predictive cues in Experiment 2 as

a ‘Mackintosh’ signal, as higher learned values for one cue versus the other implied better reward

predictiveness. We refer to this value signal as a signed cue RPE (Figure 1E, red), as when there are
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several possible cues, the onset of a cue resolves the prediction for the current trial, and is accompa-

nied by an RPE that reflects the signed difference between the current predicted reward and the

average reward predicted before cue onset (Niv and Schoenbaum, 2008). We found that a signed

cue RPE was anti-correlated with learning rate, potentially demonstrating stronger associative links

and more stable values for more valuable cues (b = �0.02 t = �2.31, p=0.02). Critically, we found

this effect even when controlling for any effect of the unsigned cue RPE on learning rate (which was

not itself significant, b = �0.01 t = �1.35, p=0.18). This suggests that the cue RPE modulation of

learning rate was not merely due to the greater learned separation between the two cue values, but

specific to more stable updating for the high-valued cues.

Learning behavior in the experimental conditions of Experiment 2
Experiment 2 involved four conditions in a between-participants 2 � 2 design. First, two learning

conditions varied in difficulty due to different degrees of overlap between the reward distributions

of the two categories. In the 40¢�60¢ condition, the means of the two reward categories were 40¢

and 60¢, with considerable overlap in the two reward distributions. In the 20¢�80¢ condition, on the

other hand, the two means were 20¢ and 80¢, and there was no overlap between the two reward

distributions. As expected, participants separated the values of two scene categories more in the

20¢�80¢ condition than in the 40¢�60¢ condition (Figure 2B), both in general and as a function of

trial number during learning (mixed-effects linear regression, value separation as a function of learn-

ing condition: b = 18.62, t = 25.87, p<0.001; interaction between learning condition and trial num-

ber: b = 5.40, t = 13.64, p<0.001).

We also manipulated whether participants were intentionally or incidentally encoding the trial-

unique scenes. We either instructed them to attend to the scenes in order to choose between them

and win their associated reward later in the task (‘instructed memory’), or we did not provide any
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Figure 1. Reward prediction error (RPE) signals in a learning trial in Experiments 1 and 2. (A,D) Each trial was

initiated by a reward-predicting cue represented by a trial-unique image. Participants were then asked to indicate

how much that reward category was worth ‘on average.’ They then saw the reward outcome (a proportion of which

they received) along with a second trial-unique image. In Experiment 1 (A), all images were of objects (single

reward category), whereas in Experiment 2 (D), each trial included either two indoor or two outdoor scenes (two

cue categories). (B-F) Theoretical RPE signals (B,E) and their calculation (C,F). Unsigned RPEs at outcome (in blue)

were calculated by taking the absolute difference between the participant’s value for that reward cue and the

subsequent outcome. We expected this (putatively noradrenergic) unsigned signal to enhance memory for more

surprising outcomes, which we tested in both Experiments 1 and 2. Signed RPEs at cue (E, in red) were calculated

by taking the difference between the participant’s predicted value for the current reward category (here, outdoor

scenes) and their most recently predicted value of the other category (indoor scenes). We expected this (putatively

dopaminergic) signed signal to boost memory for more valued events, that is, better memory the more positive

the RPE. Prediction errors at outcome gradually transfer to cue through the learning process (E, dotted lines

represent signed RPE in previous two trials, darker red indicates more recent trial).
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Figure 2. Learning behavior and modeling results. (A) Experiment 1 average participant value estimates as a

function of trial number (blue and red lines represent two different outcome-variance contexts: blue = ‘low

variance’ learning context, red = ‘high variance’ learning context; shading indicates 95% confidence intervals), and

average predictions of the RW-PH-D model with SEM bars in black. Actual reward outcomes on each trial are

indicated by x’s, stars indicate a change-point trial. (B-C) Experiment 2 average participant value estimates for the

two scene categories (green and yellow) as a function of trial number in the 40¢�60¢ condition (B; means of the

two scene categories 40¢ and 60¢) and the 20¢�80¢ condition (C; average means 20¢ and 80¢), and average

predictions of the RW-PH-M-D model in black. Actual rewards varied across subjects. Although each subject saw

only 15 trials of each scene type (one of two scene-value categories on each trial), we pseudo-randomized the

sequence of scene-value categories so that across participants, we had data for both categories on each trial. (D-

E) Total negative log-likelihood scores across subjects for each of the models tested. Lower scores indicate better

fit between model predictions and empirical data; bars on the winning model indicate the minimum difference

needed for a significant difference between models in the likelihood-ratio test, given the number of extra

parameters in the more complex model; ‘RW’: Rescorla-Wagner, ‘PH’: Pearce-Hall, ‘M’: Mackintosh, ‘D’: Decay. In

Experiment 1 (D), the RW-PH-D model, which included a Pearce-Hall and a decay component, was the winning

model. In Experiment 2 (E), the RW-PH-M-D, which additionally included a Mackintosh component, outperformed

the other models.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Empirical learning rates in Experiments 1 and 2.

Figure supplement 2. Model validation simulations from Experiment 2.
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instruction motivating remembering of the scenes (‘incidental memory’). Although the instructions

regarding value learning and prediction were identical for all participants, we did find overall differ-

ences in learning across the two memory-instruction conditions. Participants learned better and

were more accurate in the instructed memory version: their estimates were closer to the actual

underlying means of the scene categories and those estimates became more accurate over time

(learning accuracy as a function of instructed-incidental memory: b = 4.35, t = 8.16, p<0.001; interac-

tion between instructed-incidental memory and trial number: b = 0.48, t = 2.08, p=0.04).

Although we did not expect this difference in learning, it is possible that motivating the remem-

bering of more valuable scenes led participants to attend more to learning those values as well.

Additionally, we note that the instructed and incidental memory versions of the task were tested

during different social climates, with the data for the incidental memory version collected during

2020’s global pandemic, potentially accounting for the difference in learning performance. Interest-

ingly, participants’ estimates, and thus expectations for reward, were, on average, lower during the

pandemic than before, demonstrating more pessimistic expectations overall (b = �1.17, t = �2.65,

p=0.008).

Reinforcement-learning models
To further determine how unsigned RPEs at reward outcome (‘outcome RPEs’) and signed RPEs at

reward-predicting cue (‘cue RPEs’) influence learning, we modeled participants’ trial-by-trial value

estimates testing a series of reinforcement-learning models. We modeled Experiments 1 and 2 sepa-

rately due to their different learning structures, and modeled all learning and memory conditions of

Experiment 2 together since the learning instructions and structure were the same across all variants.

We also performed and confirmed model recovery on simulated data to verify that our data can arbi-

trate between these models (see ‘Model fitting and comparison’ in ‘Materials and methods’).

Experiment 1
We fit learning behavior in Experiment 1 using four models: a Rescorla-Wagner model with a fixed

learning rate (‘RW’), an RW-model with a Pearce-Hall (Pearce and Hall, 1980) component modulat-

ing learning rate (‘RW-PH’), an RW-model with a decaying learning rate (‘RW-D’), and a full model

with both Pearce-Hall modulation and decay (‘RW-PH-D’); see ‘Materials and methods’. Note, we

did not test models that included cue RPEs since there was a single reward category in this experi-

ment. We found that the full model that included a Pearce-Hall component, which modulated learn-

ing rate by the unsigned outcome RPE, along with a decay, fit better than models without those

components (likelihood-ratio tests, RW-PH-D vs. RW: �2 (243) = 568.45, p<0.001; RW-PH-D vs. RW-

PH: �
2 (162) = 212.87, p=0.005; RW-PH-D vs. RW-D: �

2 (81) = 255.71, p<0.001; Figure 2A,D,

Table 1).

Experiment 2
Here, participants experienced RPEs at both cue and outcome, allowing us to test the models

above, as well as four models that included a Mackintosh-type component (denoted by ‘M’: ‘RW-M’,

‘RW-PH-M’, ‘RW-M-D’, ‘RW-PH-M-D’; see ‘Materials and methods’). The model that included all

three tested modulators of learning rate—an unsigned RPE at outcome (Pearce-Hall component), a

signed RPE at cue (Mackintosh component), and an exponential decay—predicted participant value

estimates best (Figure 2B,C,E, Table 1). This model had a significantly better (i.e. lower) likelihood

compared to every other model as assessed by the likelihood-ratio test (RW-PH-M-D vs. RW: �2

(2740)=6358.34, p<0.001; RW-PH-M-D vs. RW-M: �2 (2055)=5017.65, p<0.001; RW-PH-M-D vs. RW-

PH: �2 (2055)=4803.86, p<0.001; RW-PH-M-D vs. RW-PH-M: �2 (1370)=3130.53, p<0.001; RW-PH-

M-D vs. RW-D: �2 (1370)=2989.18, p<0.001; RW-PH-M-D vs. RW-M-D: �2 (685)=1203.79, p<0.001;

RW-PH-M-D vs. RW-PH-D: �2 (685)=1603.55, p<0.001).

Memory results by learning condition
To understand how cue and outcome RPEs affected memory for the trial-unique images, we ana-

lyzed memory results separately for Experiment 1 and the four conditions of Experiment 2

(instructed or incidental memory x learning difficulty). For each participant and each item tested, we

calculated a memory score that combines memory accuracy (hit or miss) with confidence (from 1 =
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‘guessing’ to 4 = ‘completely certain’), ranging from a ‘completely certain’ miss (1) to a ‘completely

certain’ hit (8).

High reward variance boosted memory for outcome events
Experiment 1 allowed us to test how reward variance modulates memory for cue and outcome

events. In line with our previous work (Rouhani et al., 2018), we expected that the larger unsigned

RPEs in a high-variance context would improve memory for related events, and therefore memory

for high-variance items would be better overall. We found an interaction of cue versus outcome

memory by variance condition, such that in the high-variance condition, there was a lower average

memory score for cue events, and a higher average memory score for outcome events, compared to

the low-variance condition (m high-variance cue memory = 6.44, m low-variance cue memory = 6.57,

m high-variance outcome memory = 5.79, m low-variance outcome memory = 5.54; mixed-effects lin-

ear regression: b = �0.37, t = �2.78, p=0.005). Within the interaction, there was a significant differ-

ence in memory for outcome events (b = �0.25, t = �2.09, p=0.04) but not for cue events (b = 0.12,

t = 1.41, p=0.16). This suggests a role for the high-variance context, characterized by larger

unsigned RPEs, in boosting memory for outcome events.

Memory for cue events increased with reward learning
We tested the effects of cue RPEs on memory by first comparing differences in cue memory in

Experiment 1 and the instructed memory version of Experiment 2. In both experiments, participants

were told they would have a chance to select among previously-seen items in a later phase, which

encouraged explicit encoding of the items. Experiment 1 involved a single reward category and

therefore did not elicit RPEs at cue. Frequent change points in the underlying reward distribution

encouraged ongoing new learning. In Experiment 2, on the other hand, participants learned about

two reward categories, evoking RPEs at cue, and the underlying reward distributions did not change,

encouraging convergence of learning. We therefore predicted memory for cue items to be modu-

lated by learning in Experiment 2 but not in Experiment 1. Since the additional monetary outcome

accompanying the outcome image may, in general, interfere with encoding of the image, we also

expected overall better memory for cue as compared to outcome images. We controlled for this nui-

sance effect in all our analyses.

Table 1. Model parameters and fit results.

‘RW’: Rescorla-Wagner, ‘PH’: Pearce-Hall, ‘M’: Mackintosh, ‘D’: Decay. Negative log-likelihood across

participants for Experiment 1 (first row within each model) and Experiment 2 (second row within each

model); ‘d’ refers to the difference in score between the tested model and the baseline fixed learning

rate model (‘RW’). Lower scores indicate better fit. In Experiments 1 and 2, models that included all

tested components of learning rate performed best according to the likelihood-ratio test (which

penalizes nested models for added parameters).

Model Parameters -LL

RW a 20911.33

82049.33

RW-PH h, k 20733.54 (d = -177.79)

81272.09 (d = -777.24)

RW-M h, g 81378.98 (d = -670.35)

RW-D h, N, l 20754.96 (d = -156.37)

80364.74 (d = -1684.58)

RW-PH-M h, k, g 80435.42 (d = -1613.90)

RW-PH-D h, k, N, l 20627.11 (d = -284.22)

79671.93 (d = -2377.39)

RW-M-D h, g , N, l 79472.05 (d = -2577.28)

RW-PH-M-D h, k, g, N, l 78870.16 (d = -3179.17)
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In line with our predictions, in Experiment 1, we did not find cue memory to change relative to

outcome memory throughout learning (mixed-effects linear regression, memory as a function of the

interaction between event type (cue or outcome) and learning trial, b = 0.009, t = 0.13, p=0.90;

Figure 3A), whereas in Experiment 2, memory for cue events improved throughout the experiment,

relative to memory for outcome events, in both difficulty conditions (interaction between event type

and learning trial, 40¢�60¢ condition: b = �0.24, t = �3.76, p<0.001; 20¢�80¢ condition: b =

�0.20, t = �3.29, p<0.001; Figure 3B–C).

We next compared memory results between the instructed and incidental memory versions of

Experiment 2. We did not find the increase in cue memory as a function of learning in the 40¢�60¢

learning condition (interaction between event type and learning trial: b = 0.07, t = 1.11, p=0.27;

three-way interaction between event type, instructed-incidental memory and learning trial b = 0.31,

t = 3.39, p<0.001; Figure 3D). However, we did replicate the increase in cue memory in the 20¢�
80¢ condition (interaction between event type and learning trial: b = �0.17, t = �2.79, p=0.005;

three-way interaction between event type, instructed-incidental memory and learning trial: b = 0.04,

t = 0.41, p=0.68; Figure 3E).

To explain the difference in cue memory between the instructed and incidental memory versions

of the 40¢�60¢ condition, we first note that learning to predict the outcome value was in general

worse in the incidental memory version (see ‘Learning behavior in the experimental conditions of

Experiment 2’, above). As the 40¢�60¢ condition was the more difficult learning environment, it is

possible that worse learning prevented an average increase in cue memory as a function of learning.

To test this hypothesis, we investigated whether individual differences in outcome-value learning

predict differences in cue memory over learning. We computed learning performance for each par-

ticipant by averaging the estimates of the last five trials of each scene category, and subtracting the

average estimate of the low-value scene category from that of the high-value scene category. A

larger, positive difference between the two scene categories indicates greater learned separation of

the values of the two scene categories, whereas a smaller or negative difference indicates worse

learning. To measure the individual increase in memory for events as a function of learning, we ran

two mixed-effects models predicting memory as a function of trial number for (1) cue events and (2)

outcome events, and extracted participant slopes from each model. We then tested whether individ-

ual learning performance predicted this change in cue or outcome memory over learning.

Overall, better individual learning predicted a greater increase in memory for cue events (linear

regression: b = 0.02, t = 3.07, p=0.002), but not for outcome events (b = 0.001, t = 0.24, p=0.81;

interaction between event type and learning performance: b = �0.01, t = �2.29, p=0.02). This rela-

tionship was stronger in the incidental memory task (b = 0.02, t = 3.61, p<0.001; see Figure 3—fig-

ure supplement 1B) than in the instructed one (b = �0.004, t = �0.61, p=0.55, Figure 3—figure

supplement 1A; interaction between instructed-incidental memory and learning performance: b =

0.03, t = 2.61, p=0.009), and in the 40¢�60¢ condition, the more difficult learning task, relative to

the 20¢�80¢ condition (40¢�60¢ condition: b = 0.03, t = 4.57, p<0.001; 20¢�80¢ condition: b =

0.01, t = 1.50, p=0.13; interaction between condition and learning performance: b = �0.04, t =

�3.17, p=0.002). These results confirm that more learning led to a greater increase in memory for

cue events. Furthermore, it suggests that the difference in results between the instructed and inci-

dental memory versions of the 40¢�60¢ condition could be accounted for by worse learning perfor-

mance. In this condition, there is a strong relationship between learning performance and learning-

modulated cue memory: here, only a minority of participants who had learned to separate the values

of the scene categories showed an increase in cue memory over learning, leading to an overall lack

of effect at the group level.

Memory results by reward prediction error
We investigated the effects of trial-by-trial reward prediction errors at cue and outcome in two ways,

and modeled Experiment 1 and the instructed and incidental memory versions of Experiment 2 sep-

arately (see ‘Materials and methods’ for details). First, we used mixed-effects linear regression

modeling to test the overall effects of RPEs on memory, including interactions between cue and out-

come events, and then examined the effects of RPEs on cue and outcome memory separately. This

resulted in three mixed-effects regression models for each experiment. We report model estimates

and significance testing for these tests. Second, we ran three Bayesian hierarchical models (again,

one model per experiment) including all RPEs as regressors and using a confound regressor to
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control for the, on average, better memory for cue events. We report the median (measure of cen-

trality, ‘M’) and the high-density interval (measure of uncertainty, ‘HDI’) from the posterior parameter

distributions generated by the Bayesian hierarchical model.

Unsigned but not signed reward prediction errors at outcome enhanced
memory
In all experiments, we found that unsigned outcome RPEs enhanced memory for outcome images

(outcome memory as a function of |outcome RPE|, Experiment 1: M = 0.14, HDI [0.06, 0.23], b =

0.19, t = 3.51, p<0.001, Figure 4A; Experiment 2 - instructed memory: M = 0.14, HDI [0.05, 0.23], b

= 0.09, t = 2.59, p=0.009, Figure 4D; Experiment 2 - incidental memory: M = 0.13, HDI [0.06, 0.19],

b = 0.11, t = 3.01, p=0.003, Figure 4D).
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Figure 3. Memory accuracy across learning. (A) Experiment 1 memory score as a function of trial number; starred

points indicate change-point events. Background shading indicates condition (low- or high-reward variance). Cue

memory (in orange) was in general better than outcome memory (in purple; this effect was controlled for in all of

our analyses). Cue memory did not change relative to outcome memory throughout learning. Reward change-

points (starred) increased memory for the outcome event. (B-E) Experiment 2 memory scores in the 40¢�60¢

condition (B,D) and the 20¢�80¢ condition (C,E), as a function of ‘learning phase’ (first, second, and third bins of

learning trials). In the instructed memory version of Experiment 2 (B,C), learning enhanced cue memory in both

conditions, whereas in the incidental memory version, this enhancement only occurred in the 20¢�80¢ condition,

the easier learning condition (E). Differences between the instructed and incidental memory versions of the 40¢�
60¢ condition were related to differences in learning performance (see main text).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Individual differences in memory for cue and outcome events as a function of learning
performance in the instructed (A) and incidental (B) memory versions of Experiment 2.
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Unsigned outcome RPEs in Experiment 1 resulted from either reward variance or changes to the

underlying distribution of the mean. We found separate effects of RPEs due only to reward variance

and those due to change points on increasing memory for outcome images (outcome memory as a

function of variance RPEs: b = 0.14, t = 2.38, p=0.02; outcome memory as a function of change-

point RPEs: b = 0.24, t = 2.08, p=0.04).

In Experiment 1, we also found unsigned outcome RPEs to boost memory for cue images from

that same trial, but with a median parameter estimate half the size of that for outcome images (cue

memory as a function of |outcome RPE|: M = 0.08, HDI [�0.01, 0.16], b = 0.10, t = 2.29, p=0.02,

Figure 4A). We did not find this effect in any of the conditions of Experiment 2, where unsigned out-

come RPE enhanced memory only for outcome images (Experiment 2 - instructed memory, cue

memory as a function of |outcome RPE|: M = �0.02, HDI [�0.11, 0.06], b = �0.01, t = �0.46,

p=0.64, interaction between event type (cue or outcome event) and |outcome RPE|: b = 0.09, t =

2.06, p=0.04; Experiment 2 - incidental memory, cue memory as a function of |outcome RPE|: M =

�0.004, HDI [�0.07, 0.07], b = 0.006, t = 0.20, p=0.84, interaction between event type and |out-

come RPE|: b = 0.09, t = 1.98, p=0.05, Figure 4D).

As expected based on previous work (Rouhani et al., 2018), we did not find any influence of

signed outcome RPEs on memory for cue or outcome images in either experiment (Figure 4B,F; cue

memory as a function of signed outcome RPE, Experiment 1: M = �0.02, HDI [�0.11, 0.06], b =

�0.05, t = �1.04, p=0.30; Experiment 2 - instructed memory, M = 0.002, HDI [�0.07, 0.07], b =

�0.02, t = �0.66, p=0.51; Experiment 2 - incidental memory, M = �0.01, HDI [�0.08, 0.05], b =

�0.003, t = �0.08, p=0.93; outcome memory as a function of signed outcome RPE, Experiment 1: M

= �0.0007, HDI [�0.09, 0.08], b = �0.004, t = �0.07, p=0.95; Experiment 2 - instructed memory, M

= �0.03, HDI [�0.10, 0.03], b = �0.05, t = �1.46, p=0.15; Experiment 2 - incidental memory, M =

�0.05, HDI [�0.11, 0.02], b = �0.06, t = �1.61, p=0.11).

Reward prediction errors at cue enhanced memory
Prediction errors at cue were elicited only in Experiment 2. In the instructed memory version of

Experiment 2, we found that signed cue RPEs (i.e. the signed difference between the participant-

reported value of the current cue and the most-recently reported value of the alternative cue)

boosted memory for both cue and outcome events, such that memory of higher (relative) value

scenes was better than that for lower (relative) value scenes (cue memory as a function of signed cue

RPE: M = 0.08, HDI [0.01, 0.15], b = 0.08, t = 2.64, p=0.008; outcome memory as a function of

signed cue RPE: M = 0.06, HDI [�0.01, 0.12], b = 0.07, t = 2.23, p=0.03; Figure 4E). In the incidental

version, we replicated the effect of cue RPE on memory for cue images, but not on memory for out-

come images (cue memory as a function of signed cue RPE: M = 0.10, HDI [0.04, 0.17], b = 0.09, t =

3.04, p=0.002; outcome memory as a function of signed cue RPE: M = 0.03, HDI [�0.04, 0.09], b =

0.03, t = 0.80, p=0.42; Figure 4E).

We found a separate effect of unsigned cue RPE on memory, such that the more participants had

separated the values of the two scene categories (i.e. the more they had learned), the better their

memory for scene images. This effect was evident in overall memory in the instructed memory ver-

sion of Experiment 2 (memory as a function of |cue RPE|: b = 0.07, t = 2.49, p=0.01), however, when

quantifying the effect for cue and outcome memory separately, each of them was only trending to

significance (cue memory as a function of |cue RPE|: M = 0.09, HDI [0.01, 0.16], b = 0.07, t = 1.88,

p=0.06; outcome memory as a function of |cue RPE|: M = 0.06, HDI [�0.01, 0.13], b = 0.08, t = 1.82,

p=0.07; Figure 4C). In the incidental version of Experiment 2, unsigned cue RPEs significantly

increased memory for cue images (cue memory as a function of |cue RPE|: M = 0.12, HDI [0.05,

0.18], b = 0.10, t = 2.93, p=0.003), but not outcome images (outcome memory as a function of |cue

RPE|: M = 0.02, HDI [�0.05, 0.08], b = 0.01, t = 0.30, p=0.76; interaction between event type and |

cue RPE|: b = �0.10, t = �2.22, p=0.03; Figure 4C). The unsigned cue RPE’s increase of, in particu-

lar, memory for cue images suggests an additional mechanism for the learning effects described

above.
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Figure 4. Parameter distributions from hierarchical Bayesian models of memory in Experiment 1 (A–B) and

Experiment 2 (C-F, yellow background indicates incidental memory version). Distributions significantly above or

below zero indicate an effect, black stars indicate significance: p<0.1~, p<0.05*, p<0.01**. Unsigned outcome

RPEs (A,D) increased memory for outcome events, whereas signed outcome RPEs (B,F) did not. Signed cue RPEs

(E) boosted memory for the cue item, and also enhanced memory for the outcome item in the instructed memory

version. Unsigned cue RPEs (C) additionally, and separately, enhanced memory for cue events in the incidental

memory version of the task; this effect was trending in increasing cue and outcome events in the instructed

memory task.
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Outcomes and values did not predict memory without reward prediction
error
To rule out alternative modulators of memory, we also tested the effect of the trial-by-trial reward

outcomes and value estimates. We did not find reward outcome, in of itself or in an interaction with

cue or outcome event, to predict memory in any of the experiments (memory as a function of reward

outcome, Experiment 1: b = �0.03, t = �0.68, p=0.50, interaction between event type and reward

outcome: b = 0.07, t = 1.07, p=0.29; Experiment 2 - instructed memory: b = 0.03, t = 0.91, p=0.36,

interaction between event type and reward outcome: b = 0.02, t = 0.55, p=0.58; Experiment 2 - inci-

dental memory: b = 0.05, t = 1.51, p=0.13, interaction between event type and reward outcome: b

= �0.04, t = �0.98, p=0.33).

When testing the effect of participant value estimates on memory, we similarly did not find partic-

ipant value estimates, in of themselves or in an interaction with cue or outcome event, to predict

memory in Experiment 1 (memory as a function of value estimate, b = �0.007, t = �0.15, p=0.88,

interaction between event type and value estimate: b = �0.004, t = �0.06, p=0.95). In Experiment

2, the value estimates were strongly correlated with the signed RPE at cue (r > 0.80), therefore we

could not enter them into a single model. When tested alone, value estimates were trending in

enhancing memory in the instructed memory version of Experiment 2 (memory as a function of value

estimate, b = 0.06, t = 1.89, p=0.06, interaction between event type and value estimate: b = 0.05, t

= 1.19, p=0.24), and enhanced memory in the incidental memory version (memory as a function of

value estimate, b = 0.08, t = 2.58, p=0.01, interaction between event type and value estimate: b =

�0.03, t = �0.62, p=0.53). However, given that value estimates did not influence memory when

there was no prediction error at cue (Experiment 1), we believe the parsimonious interpretation is

that this mnemonic modulation is attributable to prediction errors rather than value estimates alone.
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Figure 5. Choice probability as a function of rewards and values in Experiment 2. (A,C) Choice probability as a

function of the difference in reward outcomes between two cue or two outcome items in Experiment 2.

Participants were more likely to choose cue and outcome items that had been associated with higher reward

outcomes in both the instructed (A) and incidental memory (C) versions of the task. (B,D) Choice probability as a

function of the difference in value between two cue or two outcome items. Participants were more likely to choose

cue and outcome items that they had associated with a more valuable scene category (relative to the other scene

category) at the time of encoding in both the instructed (B) and incidental memory (D) versions of the task. Size of

circles reflects the size of that sample. Choice was fit using a logistic function, and shaded regions reflect 95%

confidence intervals.
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Choice results
At the end of both experiments, we asked participants to make choices between previously seen

items. Choices were between items that were either (1) two cue or two outcome items from different

trials (Experiment 2 only), or (2) a cue and an outcome item from a single trial, associated with a sin-

gle value estimate and reward outcome (both experiments). No outcomes were presented after

choices were made.

Recall that in Experiment 1 and the instructed memory version of Experiment 2, participants were

told in advance to pay attention to the images and their outcomes as they would later have a chance

to make choices between them and win their associated reward again. These instructions encour-

aged participants to encode the images along with their reward value. In the incidental version of

Experiment 2, however, no such preview was provided, and participants were not given any incen-

tive to encode the images nor their associated values or rewards.

Outcomes and values increased choice
Choices between pairs of images associated with different reward outcomes and values were tested

in Experiment 2. As expected, in the instructed memory version, participants preferred both cues

and outcomes associated with higher rewards (mixed-effects logistic regression, choice as a function

of reward difference: b = 1.59, z = 20.13, p<0.001; Figure 5A), and preferred images for which they

had reported higher subjective value when controlling for the effect of reward outcome on choice

(choice as a function of value difference: b = 0.92, z = 7.58, p<0.001; Figure 5B). Interestingly, both

effects were replicated in the incidental memory version of the task, despite not motivating partici-

pants to encode nor associate images with their values and reward outcomes (choice as a function

of reward difference: b = 1.21, z = 12.28, p<0.001; Figure 5C; choice as a function of value differ-

ence, controlling for reward difference: b = 1.03, z = 7.84, p<0.001; Figure 5D).

Signed RPEs at outcome biased choice
The above results confirmed that participants associated both the cue and outcome event with their

value of that category, as well as with the specific reward outcome on that trial, even when they

were not instructed to do so. We also asked participants to choose between cue and outcome items

from the same trial – two items that had the same associated value and reward outcome. In all

experiments, we found that participants were more likely to prefer the outcome event the more pos-

itive the outcome RPE, and to prefer the cue event the more negative the outcome RPE (mixed-

effects logistic regression, choice for outcome event as a function of signed outcome RPE,
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Figure 6. Choice between cue and outcome items from a single trial in Experiment 1 (A), the instructed memory

version of Experiment 2 (B), and the incidental memory version of Experiment 2 (C). As these items were

associated with the same reward outcome and value, we would not expect preference for either item. In all cases,

participants preferred the outcome item on trials with a more positive outcome RPE and the cue item on trials

with a more negative outcome RPE. Size of circles reflects the size of that sample. Choice was fit using a logistic

function, and shaded regions reflect 95% confidence intervals.
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Experiment 1: b = 0.27, z = 3.27, p=0.001, Figure 6A; Experiment 2 - instructed memory: b = 0.23,

z = 5.70, p<0.001, Figure 6B; Experiment 2 - incidental memory: b = 0.16, z = 4.30, p<0.001,

Figure 6C). Moreover, each one of these effects held when controlling for the magnitude of the out-

come RPE, that is the unsigned outcome RPE (which boosted memory for outcome images, see

‘Unsigned but not signed reward prediction errors at outcome enhanced memory’, above), thus sug-

gesting this preference may not be driven by better memory for large RPE events. Therefore,

although signed outcome RPEs did not modulate memory, they did predict subsequent choice,

pointing to a hedonic component of the signed RPE in shaping preference.

Discussion
We found that distinct reward prediction error (RPE) signals, one occurring at cue and one at out-

come, dynamically influenced learning and memory for those events. Drawing on classic associative

models of attention (Pearce and Mackintosh, 2010), we found that an unsigned RPE at reward out-

come modulated trial-specific learning rate, consistent with a Pearce-Hall model of learning that

assumes more attention – and therefore more learning – for cues associated with unpredictable out-

comes (Pearce and Hall, 1980). Similarly, a signed RPE at reward cue also modulated learning rate,

consistent with a Mackintosh, 1975 model of learning that assumes enhanced attention to reward-

predicting cues. Reinforcement learning models that included both modulatory components pre-

dicted behavior better than models without those attentional components.

RPE signals at cue and outcome also enhanced memory for associated events. In Experiment 1,

participants learned the value of a single reward category while experiencing large unsigned RPEs at

outcome due to high (versus low) levels of outcome variance and unexpected changes in the mean

of the underlying reward distribution (‘change points’). We found that unsigned RPEs at reward out-

come improved memory for trial-unique scenes accompanying both the cue and outcome, most

prominently the latter.

In Experiment 2, participants learned the value of two reward categories (designated by indoor

and outdoor trial-unique scenes), which meant that they experienced RPEs both at the time of the

cue (as they could not predict which category would be offered on any given trial) and at the time of

the reward outcome. Unlike Experiment 1, where memory for the cue event remained relatively sta-

ble throughout the task, in Experiment 2, memory for the cue event (but not for the outcome event)

increased with learning. This mnemonic increase for cue events was supported by the gradual

buildup of a signed RPE at cue, which enhanced memory for more valued reward cues, as well as an

unsigned RPE at cue that benefited memory the more participants had separated the values of the

two reward categories (i.e. the more they had learned). Furthermore, we found that individual learn-

ing performance predicted the increase in cue memory over learning, providing another link

between stronger reward expectations and enhanced memory for cue events.

Similarly to Experiment 1, we again found that unsigned RPEs at reward outcome boosted mem-

ory for outcome events in Experiment 2, although we did not find them to influence memory for cue

events. Importantly, our results were similar in both versions of Experiment 2, one that instructed

memory for the images and their values and one where memory was completely incidental, confirm-

ing that the mnemonic benefits of RPEs are not a result of strategic encoding. Thus, our findings can

be directly related to previous work characterizing implicit, incidental encoding during reward learn-

ing, as well as studies of animal conditioning in which encoding is not explicitly instructed

(Duszkiewicz et al., 2019).

Last, in a choice test administered at the end of the experiment, participants preferred both cue

and outcome scenes that had been associated with higher reward outcomes and more valued scene

categories. This result was obtained when participants had been explicitly instructed to associate the

events with their reward outcomes and values (instructed memory task) and when these associations

were not instructed (incidental memory task). Additionally, when choosing between the cue and out-

come scenes of a single trial (i.e. two scenes associated with the same reward and value), higher

signed RPEs at outcome, which we did not find to modulate memory, nevertheless led to ‘irrational’

preference for the outcome event.
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Reward prediction errors dynamically modulated learning rate
We compared different reinforcement-learning models that included the contribution of attentional

components in modulating learning rate on a trial-by-trial basis. We focused on attention’s effect in

enhancing overall learning rate, departing from classic paradigms that investigate the allocation of

attention (or learning resources) between competing stimuli presented simultaneously. That is, we

presented one stimulus at a time. Nevertheless, our experimental design allowed us to model and

test the amount of learning for each stimulus on each trial, and investigate its relationship to RPEs.

Empirically, we found that large unsigned RPEs boosted learning rate, in line with a Pearce-Hall

model of attention for learning (Pearce and Hall, 1980), and previous work (Rouhani et al., 2018;

Nassar et al., 2010). Model comparison suggested that modulating learning rate according to

unsigned outcome RPEs fit learning behavior better than models without this modulation.

We also tested the influence of a Mackintosh-like attention component, which contrary to the

Pearce-Hall model, predicts a change in attention for more valuable and predictive cues. We mod-

eled the Mackintosh signal as the (signed) difference in learned value between the reward-predicting

cues. We found that this signed cue RPE decreased empirical learning rates, meaning that values

estimated for higher valued cues were more stable in light of unpredicted outcomes than for lower

valued cues. This effect was not due to an overall decrease in learning rate after having learned the

values of the two categories, as we did not find a significant effect of unsigned cue RPE on learning

rate; instead, participants demonstrated more stable learning for higher-valued cues. A computa-

tional model that updated learning rate according to this signed RPE at cue, in addition to the

unsigned RPE at outcome, provided the best fit to behavior, of all the models we tested.

In order to observe the effects of a building-up of RPE at cue onset, Experiment 2, unlike Experi-

ment 1, did not include shifts in the underlying reward distribution of the categories. Future studies

could examine how this Mackintosh signal changes with shifting predictions, where a change in the

underlying mean of the rewards increases learning rate (Vaghi et al., 2017).

Reward prediction error at cue benefited memory for cue events
Experiment 2, which included RPEs at cue, allowed us to test whether a putative (signed) dopaminer-

gic RPE, which moves from reward outcome to the cue predicting reward over learning (Barto, 1995;

Montague et al., 1996; Schultz et al., 1997), enhances memory for cue events. As predicted, we

found an incremental increase in memory for cue events (and not outcome events) throughout learn-

ing. Moreover, we found this increase to be supported by a signed RPE at cue that boosted memory

for cue events. That is, as learning progressed, cues that were more valuable (and therefore elicited

a larger signed RPE at cue) were better remembered. This finding is consistent with previous work

showing better memory for cues associated with future higher rewards (Stanek et al., 2019;

Jang et al., 2019). As in our prior work (Rouhani et al., 2018), we did not find signed RPEs at

reward outcome to modulate memory for any event, but we note that such an effect has been dem-

onstrated in paradigms outside of reinforcement learning (Marvin and Shohamy, 2016; Ergo et al.,

2019; De Loof et al., 2018; Ergo et al., 2020) and for adolescents, but not adults, in reinforcement

learning (Davidow et al., 2016).

Along with the effect of signed cue RPE, the increase in cue memory over learning was addition-

ally and separately supported by an unsigned RPE at cue, which improved memory for both high-

value cues and low-value cues as participants learned to separate the values of the two reward cate-

gories. Although we consider the signed RPE at cue to reflect a Mackintosh-type attention signal

(Mackintosh, 1975), in our paradigm, larger unsigned RPEs at cue also demonstrated that greater

reward predictiveness strengthens encoding of those cue events.

Our findings further shed light on whether this mnemonic enhancement for cue events was due

to cue values or cue RPE. We could not distinguish the effects of participant value estimates versus

cue RPEs in Experiment 2, as the measures were highly correlated. However, in Experiment 1, where

there were no RPEs experienced at cue, we did not find value estimates to modulate memory. We

therefore experimentally dissociated the effects of cue values and RPEs on memory by showing that

an increase in cue memory over learning requires the build-up of an RPE signal, which in Experiment

2 was elicited by learning about more than one reward category.

We also investigated whether individual differences in learning performance were related to this

increase in cue memory over learning. More specifically, we tested whether value separation of the
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two reward categories at the end of learning predicted individual changes in cue memory as a func-

tion of trial number during learning (the estimated slope of the effect). We indeed found learning

performance to predict greater increases in cue memory, but not outcome memory, over learning.

This relationship was strongest in the experimental condition associated with the worst learning per-

formance (40¢�60¢, incidental memory condition). This was the only condition in which we did not

find an overall increase in cue memory throughout learning, suggesting that this null result may be in

part driven by worse learning in this condition, while better learners were still showing the effect.

This analysis complemented our within-subjects approach by providing a between-subjects link

between learning performance and increasing memory for cue events.

Unsigned reward prediction error at outcome boosted memory
throughout learning
We replicated previous results showing better memory for images associated with high unsigned

RPEs at reward outcome, due to either outcome variance (Rouhani et al., 2018) or reward change-

points (Rouhani et al., 2020). We found this mnemonic benefit of outcome RPEs to be particularly

strong for events experienced at the time of the (surprising) outcome. Although unsigned outcome

RPEs enhanced memory for cue events as well (see Experiment 1), this effect was weaker than that

for outcome events, and did not replicate in Experiment 2. Critically, unsigned outcome RPEs

benefited memory in both instructed and incidental memory conditions. We therefore hypothesize

that, regardless of any explicit encoding strategy, increased attention due to large unsigned RPEs

during reward outcome engages the locus coeruleus (LC), which co-releases norepinephrine and

dopamine to modulate hippocampal plasticity (Kempadoo et al., 2016; Takeuchi et al., 2016;

Wagatsuma et al., 2018). Although we only tested the effects of reward prediction errors, we spec-

ulate that any large prediction-error event would engage this putative neural mechanism to modu-

late memory, as supported by work showing mnemonic enhancement for large prediction-error

events during fear conditioning (Kalbe and Schwabe, 2019).

Of note, we did not find effects of reward outcome on memory in any of our experiments,

showing that the reward outcome by itself did not lead to the strategic prioritization of more

rewarding events in the instructed memory version of our experiments, nor did it lead to the

incidental encoding of those events. These results are consistent with reported null effects of

reward outcome on immediate memory (Murty et al., 2016a). Indeed, reward effects on inci-

dental memory typically emerge when tested after consolidation, a process in which rewarding

events, and their associates, are prioritized in memory (Braun et al., 2018; Stanek et al., 2019;

Patil et al., 2017). In our paradigm, encoding and recognition memory were separated by only

a short delay, leaving open the possibility that reward effects on cue and outcome events would

emerge after consolidation.

Instructed versus incidental memory effects
In both Experiment 1 and the instructed memory version of Experiment 2, we incentivized partici-

pants to associate trial-unique images with their reward outcome: in the initial instructions, partici-

pants were told that they would later have an opportunity to choose between the images and win

their reward outcomes again. These instructions may have encouraged participants to strategically

encode the images, similar to work investigating explicit memory strategies for remembering

rewarding events (e.g. Hennessee et al., 2019). Such explicit strategies may use different neural

mechanisms than those motivating our questions, namely, the dopaminergic and noradrenergic

modulation of hippocampal memories characterized in animal conditioning paradigms.

We addressed this potentially critical difference by running a version of Experiment 2 where

memory for the images, as well as their association with the reward values and outcomes, were

completely incidental. Here, we replicated our main results: signed and unsigned RPEs at cue

enhanced memory for cue events, and unsigned RPEs at outcome enhanced memory for outcome

events. Unlike the instructed memory version of Experiment 2, we did not find the signed RPE at

cue to additionally increase memory for outcome events. This difference could potentially reflect a

more explicit encoding of the outcome event for the later choice task in the instructed memory ver-

sion, as participants were told that cue and outcome events from a single trial were associated with

the same value and outcome. However, it is worth noting that a good explicit strategy would have
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been to remember the most rewarding events, yet, reward outcome did not modulate memory in

any of our experiments. We therefore conclude that our RPE effects do not rely on explicit memory

strategies and are likely to be unintentional, connecting our findings to literature investigating inci-

dental memory during reward learning.

We also found that learning was, on average, worse in the incidental memory compared to the

instructed memory version of Experiment 2. We did not anticipate this difference since the only

instructions we changed were related to the final choice task. However, it is possible that motivating

participants to associate the images with their reward values and outcomes additionally encouraged

them to learn and better separate the average values of the two reward categories. Alternatively,

participant pool and motivation may be related to this difference, as we ran the incidental memory

task during 2020’s global pandemic. As a potential signature for decreased motivation in the 2020

participant pool, we found participants to provide lower value estimates, indicating greater pessi-

mism when anticipating rewards. Nevertheless, this greater variability in learning performance in the

incidental memory task did allow us to demonstrate that individual differences in learning predicted

the degree to which cue memory increased over learning (see ‘Reward prediction error at cue bene-

fits memory for cue events’, above).

Interactions between reinforcement learning and memory systems
Although we did not measure neural activity in this study, distinguishing the mnemonic effects of

signed and unsigned RPEs in the brain may be fruitful in characterizing two distinct memory mecha-

nisms. As mentioned, one dominant hypothesis is that dopaminergic midbrain signals convey signed

RPEs to target areas (Barto, 1995; Montague et al., 1996; Schultz et al., 1997). Less well

accepted, but also quite dominant is the idea that unsigned RPEs increase noradrenergic (as well as

dopaminergic) firing from the LC (Takeuchi et al., 2016; Kempadoo et al., 2016;

Wagatsuma et al., 2018). Recent work makes predictions about how these distinct mechanisms

may differentially influence memory (Hauser et al., 2019). Midbrain dopamine initiates ‘behavioral

activation’ (Clewett and Murty, 2019), such as increased vigor during periods of reward anticipation

(Niv et al., 2007), which is thought to promote the integration of higher-order representations, like

value formation, giving rise to semantic memories (Duszkiewicz et al., 2019). The LC-norepineph-

rine system, on the other hand, is thought to promote selectivity for salient events such as (positively

or negatively) surprising outcomes, giving rise to distinctive, episodic memories (Duszkiewicz et al.,

2019). Although our findings suggest that RPEs act on both episodic (high-confidence recognition)

and semantic (value formation) memory, distinguishing the effects these RPE signals may have on

other features of episodic and semantic memory is an important avenue for future research

(Greve et al., 2019).

In this paradigm, we did not dissociate the effects of cue RPE versus reward anticipation on mem-

ory (for an experiment that does this, see Stanek et al., 2019). However, based on our findings and

the above mapping to neural substrates, we predict that phasic signed RPEs at cue would initiate

and enhance a sustained (potentially ramping) period of reward anticipation, leading to memory

benefits for ensuing events, regardless of their exact timepoint. Iigaya and colleagues recently

offered such a computational model whereby RPEs amplify anticipatory value (i.e. the ‘pleasure of

savoring’; Iigaya et al., 2019). They further suggested a neural circuit whereby the hippocampus –

tracking unsigned RPEs at outcome – enhances the functional coupling between the dopaminergic

midbrain (encoding the signed RPE at outcome) and the ventromedial prefrontal cortex (encoding

anticipatory value) to boost reward anticipation. The authors speculate that the cognitive imagining

of future rewards may drive hippocampal orchestration of reward anticipation. It is, however, unclear

whether hippocampal activation here reflects greater engagement in retrieval processes (supporting

the mental simulation of future rewards) or encoding processes, consistent with previous work show-

ing better memory for events experienced during reward anticipation (Stanek et al., 2019;

Murty and Adcock, 2014; Wittmann et al., 2005). Future work should identify the dynamics of hip-

pocampal encoding and retrieval states (Hasselmo et al., 2002; Duncan et al., 2012; Bein et al.,

2020) over the period of reward anticipation.

In our experiments, we found a collaborative interaction between reinforcement learning and epi-

sodic memory systems: more rewarding cues and more surprising outcomes were prioritized in

memory, thereby promoting adaptive behavior. Nonetheless, in other paradigms, these two systems

have been shown to compete for processing resources: compromised feedback-based learning has
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been associated with enhanced episodic memory, both behaviorally and neurally (Foerde et al.,

2013; Wimmer et al., 2014). In fact, Wimmer et al., 2014 showed that better memory for reward-

predicting cues was associated with weaker striatal RPEs at reward outcome. In our experiments, we

did not find such effects of signed RPEs at reward outcome on memory. However, there are several

notable differences between our task and that of Wimmer and colleagues: we tested Pavlovian (pas-

sive) learning, not instrumental learning (choice); we presented one cue at a time, rather than two

competing cues on every trial; and we tested for memory immediately after learning, rather than 24

hr later (that is, our test did not reflect consolidation effects).

In our Pavlovian paradigm, participants’ actions (i.e. their estimates) were not rewarded, instead,

participants were told they would receive a portion of the reward outcome on every trial, regardless

of their estimate. This was done on purpose to prevent positive RPEs due to unexpected reward

when participants’ predictions were correct (in our task, correct prediction implies an RPE of zero).

Indeed, participants were asked to make predictions only to ensure they paid attention to outcomes

in this passive-viewing, online task. It would be interesting in future work to investigate which learn-

ing conditions (e.g. Pavlovian versus instrumental) engage more collaborative versus competitive

interactions between reinforcement learning and episodic memory systems.

Positive reward prediction errors biased preference
At the end of our experiments, we investigated how RPE signals influence subsequent choice. When

prompted to make choices between previously experienced scene images, participants chose both

cue and outcome events linked to a higher reward outcome as well as higher (relative) value of a

scene category, regardless of whether they were explicitly instructed to create these associations

prior to learning (instructed memory task) or not (incidental memory task). These findings replicate

previous work showing that people choose episodic events associated with higher rewards, both

when these associations are formed explicitly (Murty et al., 2016b; Gluth et al., 2015) and inciden-

tally (Wimmer and Büchel, 2016).

Participants thus associated both the cue and outcome scenes with the value of that scene cate-

gory as well as with the specific reward outcome on that trial. Interestingly, when asked to choose

between cue and outcome scenes from the same trial (where there should be no preference for

either item), we found and replicated an effect (in both Experiments 1 and 2) whereby the higher the

signed RPE at outcome, the more participants preferred the outcome event. This result further held

when controlling for the magnitude of the outcome RPE (i.e. the unsigned outcome RPE that

increased memory for outcome images), suggesting this preference was not driven by memory for

large RPE events. Therefore, although signed RPEs at outcome did not modulate memory, they did

predict subsequent choice, pointing to a hedonic component of the signed RPE in shaping preferen-

ces. This finding is consistent with work maintaining that RPEs drive changes in emotional or affec-

tive states (Villano et al., 2020; Eldar and Niv, 2015; Eldar et al., 2016; Rutledge et al., 2014),

and we propose that this putative change in affect biased preference for the associated outcome

event.

Conclusion
Taken together, our results suggest that reward prediction errors generated both by reward-predict-

ing cues and by reward outcomes modulate learning rate during reinforcement learning, in line with

classic attentional models of learning. These signals further enhanced memory for events associated

with larger unsigned prediction errors experienced at outcome (corresponding to general surprise),

and larger signed prediction errors experienced at cue (corresponding to higher expected value).

These findings highlight the interaction of prediction errors, potentially signaled by midbrain dopa-

mine and locus-coeruleus norepinephrine, with mnemonic processes.

Materials and methods

Experimental conditions
Participants
We recruited participants from Amazon Mechanical Turk (MTurk): Experiment 1: 100 participants;

Experiment 2, instructed memory task: 400 participants (200 for each condition); Experiment 2,
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incidental memory task: 500 participants (250 for each condition). The sample size was chosen (1)

based on a simulation-based power analysis revealing that at least 55 participants would give suffi-

cient power (80% probability) to detect the effect of unsigned RPEs on memory (Rouhani et al.,

2018), and (2) taking into account that 20% of participants typically meet one of the following exclu-

sion criteria. Participants were excluded if they (1) had a memory score of less than 0.5 (A’: Sensitiv-

ity index in signal detection; Pollack and Norman, 1964), or (2) missed more than three trials. More

participants were recruited in Experiment 2 to test the additional effect of cue RPEs on memory. Fur-

thermore, in the incidental version of Experiment 2, where there was no instruction to motivate

remembering of the scenes, memory was worse (as could be expected), and we recruited more par-

ticipants (50 per condition) to obtain similar power between the instructed and incidental memory

versions of the task.

This led to a final sample of 81 participants in Experiment 1, 331 participants in Experiment 2,

instructed memory task (40¢�60¢ condition: 163, 20¢�80¢ condition: 168), and 354 participants in

Experiment 2, incidental memory task (40¢�60¢ condition: 168, 20¢�80¢ condition: 186). We

obtained informed consent online, and participants had to correctly answer questions checking for

their understanding of the instructions before proceeding; procedures were approved by Princeton

University’s Institutional Review Board.

Task design
Participants each completed (1) a reward-learning task, (2) a recognition-memory task, and (3) a

choice task. Before reward learning, participants completed a practice task (12 trials) to ensure they

had learned the structure of the reward-learning task using different reward contingencies than what

would be learned in the experimental task. In the practice trials of Experiment 1, participants experi-

enced one reward change-point, from a mean of 30¢ to 50¢. In the practice trials of Experiment 2, in

all conditions, the low-value scene category was worth 30¢ and the high-value scene category was

worth 70¢, on average. Participants were additionally asked to complete a risk questionnaire (DOS-

PERT; Weber et al., 2002) between reward learning and memory to create a 5–10 min delay

between item encoding and recognition.

Memory instructions
In the initial instructions for both Experiment 1 and the instructed memory version of Experiment 2,

participants were told they would be choosing between the trial-unique images later in the experi-

ment for a chance to win the reward associated with those events again. The aim of this choice

phase was to assess learning, and informing participants about future choices was aimed at increas-

ing attention of online participants. This instruction explicitly incentivized participants to associate

images with their reward outcomes.

In the incidental memory version of Experiment 2, we tested whether our results would replicate

without any incentive to remember the items. Accordingly, no instructions were given to motivate

the encoding of the trial-unique images nor their association with the reward outcome on that trial.

Therefore, all memory and choice results from this experiment reflect incidental encoding (see

Appendix 1 for Experiment 2 instructions).

Experiment 1 learning task
Participants learned the average value of objects in two different reward contexts, defined by back-

ground images of different cities (‘Paris’ and ‘London’). They experienced each reward context in

interleaved blocks (8 blocks total). Each block was comprised of 6 or 9 trials (60 trials total), each trial

involved two trial-unique objects (120 objects in total) that were randomly assigned to each trial. On

each trial, participants were first shown an object (‘reward cue’: 3 s), and then had up to 5 s to esti-

mate the ‘resale value of objects in that city at that time’, that is, the average value of objects in that

context. After submitting their answer, they saw a different trial-unique object (‘reward outcome’: 3

s) along with the monetary outcome associated with both objects on that trial. Participants were

paid 10% of the rewards they received on every trial regardless of their estimates, in line with a Pav-

lovian conditioning environment.

The individual rewards associated with the object pairs fluctuated around a fixed mean (the

means ranged from 10¢ to 90¢). Once or twice within each reward block, the underlying mean
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changed, generating large RPEs. These ‘change points’ occurred once in the six-trial blocks, twice in

the nine-trial blocks, and were at least three trials apart. The reward variance associated with each

context provided a second source of RPEs. The variance in the high-variance context (s-high-vari-

ance = 7¢) was twice that of the low-variance context (s-low-variance = 3.5¢), leading participants to

experience larger RPEs within the high-variance context. Participants were told that the average

resale value of the ‘found’ objects could change within each city, but that the inherent variability in

reward outcome associated with each city remained constant. Participants were encouraged to

remember the rewards associated with the objects, as they were told they would be choosing

between objects, and re-earning their associated rewards, later in the task.

Experiment 2 learning task
Instead of learning the value of a single category (objects) within two reward contexts (as in Experi-

ment 1), participants learned the value of two categories (indoor and outdoor scenes) within one

reward context, thereby eliciting RPEs at cue as well as at outcome. They were told that indoor and

outdoor scenes were each associated with an average value that does not change during learning,

and were asked to estimate the average value of the scene category presented on every trial. As

before, participants saw two different trial-unique images at reward cue and outcome, here the cue

and the outcome scenes belonged to the same scene category, and images were randomly selected

from each scene category.

The average value of one of the scene categories was higher than the other, and average values,

as well as their variance (same for both scene categories; s = 15.81), remained constant throughout

the experiment. In order to test a range of RPEs experienced at cue, participants learned in a reward

environment where either (1) the average means of the two scene categories were close to each

other (‘40¢�60¢ condition’: m-low-reward=40¢, m-high-reward=60¢), or (2) further apart (‘20¢�80¢

condition’: m-low-reward=20¢, m-high-reward=80¢). The outcomes were drawn from a predefined

range centered at the above means, with the same variance between conditions (‘40¢�60¢ condi-

tion’: high-value scene category = 40¢�80¢, low-value scene category = 20¢�60¢; ‘20¢�80¢ condi-

tion’: high-value scene category = 60¢�100¢, low-value scene category = 0¢�40¢), and spanned

that range uniformly.

Participants completed 30 trials during learning (15 trials for each scene category; 60 trial-unique

scenes). The sequence of scene-value categories (high or low scene-value categories) shown to the

participant was pseudo-randomized: participants were assigned to one of eight possible sequences

ensuring that no scene category was repeated consecutively more than twice, and controlling (across

participants) for the number of high- and low-value scene category trials assigned to each trial num-

ber. In other words, across participants, there was a similar amount of data for both value categories

on each trial.

Learning measures
We calculated an empirical trial-by-trial outcome RPE by subtracting participants’ value estimates

from the reward outcome on that trial. In Experiment 2, we further calculated a cue RPE by subtract-

ing participant’s value estimates of the present reward category from the other reward category.

The ‘unsigned’ outcome and cue RPEs were the absolute values of these measures.

We also calculated an empirical trial-by-trial learning rate directly from the Rescorla-Wagner

update equation (Rescorla and Wagner, 1972):

at ¼
Vtþ1 �Vt

Rt �Vt

: (1)

We tested whether signed cue and unsigned outcome RPEs modulated this empirical learning

rate.

Recognition memory
After completing the risk questionnaire, participants were tested for their memory of the trial-

unique images. They were presented with these images and asked to indicate whether they

were ‘old’ (previously seen during learning) or ‘new’ (not seen during learning) as well as their

confidence level for each memory judgment (from 1 ‘guessing’ to 4 ‘completely certain’). In

Experiment 1, the test included 72 trials: 48 old (24 from each context) and 24 new images. In
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Experiment 2, the memory test included 64 trials (32 old and 32 new images). We did not test

memory for every image seen during learning in order to limit fatigue and dwindling attention

in online participants. However, across participants, we tested memory for the events of every

learning trial by pseudo-randomizing which learning trials were probed during memory. Each

participant was randomly assigned to one of four possible lists specifying which learning trials

would be selected for memory testing. This ensured that events from each learning trial were

probed a similar number of times in the memory test, across participants. Trial-by-trial memory

scores were calculated by combining memory performance (hit versus miss) with confidence rat-

ing (from 1 = ‘guessing’ to 4 = ‘completely certain’) on old items; the score thus ranged from a

‘completely certain’ miss (1) to a ‘completely certain’ hit (8).

Choice task
In the final phase, participants were asked to choose the more valuable image between two

previously seen images (14 trials). Unbeknownst to the participants, images within each pair

were either (1) both cue or outcome events from different reward pairs (in Experiment 1, these

events were close in their associated reward but belonged to different variance contexts, and in

Experiment 2, the events were associated with different reward outcomes; six trials), or (2)

belonged to the same pair and were therefore associated with the exact same value estimate

and reward (eight trials; any consistent biases in preference could not be attributable to explicit

reward differences in the task).

Reinforcement learning models
We used a simple Rescorla-Wagner model (Rescorla and Wagner, 1972) as our baseline model

(model: ‘RW’):

Vtþ1 ¼ Vt þaðRt �VtÞ; (2)

where a static learning rate (a) governs the extent to which the signed RPE at outcome (computed

by subtracting the current model value, Vt, from the reward received on that trial, Rt) updates the

value of the next trial (Vtþ1).

Following attentional models of learning (Pearce and Mackintosh, 2010), we investigated

whether a dynamic trial-specific learning rate (at) would better fit learning. We tested three distinct

modulators of a trial-by-trial learning rate, separately and in combination with each other. To con-

strain at to be in the range of [0–1], for each model, we passed the learning rate through a sigmoid

function before updating value (Equation 2).

First, in line with Pearce and Hall, 1980, we used the unsigned (absolute) outcome RPE to modu-

late learning rate (model: ‘RW-PH’):

at ¼ hþkðjRt �VcjÞ: (3)

Here, the unsigned outcome RPE is calculated as the difference between the reward received

and the model value estimate (Vc). The learning rate is set as a baseline learning rate, h, plus the

unsigned RPE scaled by k. For positive values of k, more surprising outcomes therefore lead to

higher learning rates, as per the Pearce-Hall model.

Second, following Mackintosh, 1975, we modeled the effect of a cue RPE on learning rate

(model: ‘RW-M’). Note that we could only test this effect in Experiment 2 since cue RPEs exist only

when there is more than one reward category. The cue RPE is the value of the present reward cate-

gory (e.g. an indoor scene; Vc) relative to the updated value of the alternative reward category (e.g.

an outdoor scene; Vn). The learning rate in this model is then the scaled cue RPE plus a baseline

learning rate h:

at ¼ hþgðVc �VnÞ; (4)

Therefore, for positive g, the more one scene category is valued over the other, the higher at for

trials with the more valued scene category and the lower at for trials with the less valued scene cate-

gory. Since each scene category was sampled an equal number of times (without any runs exceeding

two trials), we did not scale the cue RPE by the probability of either scene category occurring.
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Third, given that participants should update their values less (i.e. lower their at) once they’ve

learned the average values of the reward categories, we tested a model with exponential decay of

the learning rate over time (Sutton and Barto, 1998; model: ‘RW-D’):

at ¼ hþN e
�ltc ; (5)

where N is the initial value, l is the decay constant, and tc is the trial number for that reward cate-

gory (i.e. in Experiment 2 where there were two scene categories, trial number was counted sepa-

rately for each scene category).

We further tested models that included each combination of the above three learning-rate modu-

lators. Here, we used a single baseline (h) and added each effect in the learning rate for all of the fol-

lowing models: A model that combines the unsigned outcome RPE and signed cue RPE effects on

learning rate (model: ‘RW-PH-M’):

at ¼ hþkðjRt �VcjÞþgðVc �VnÞ; (6)

A model that combines the unsigned outcome RPE and decay effects on learning rate (model:

‘RW-PH-D’):

at ¼ hþkðjRt �VcjÞþN e
�ltc ; (7)

A model that combines the signed cue RPE and decay effects on learning rate (model: ‘RW-M-

D’):

at ¼ hþgðVc �VnÞþN e
�ltc ; (8)

And finally, a model that combines all three effects (model: ‘RW-PH-M-D’):

at ¼ hþkðjRt �VcjÞþgðVc �VnÞþN e
�ltc : (9)

Model fitting and comparison
All models were fit to each participant’s value estimates by finding parameters that maximize the

log likelihood of the participant value estimates. The likelihood was calculated assuming a Gaussian

distribution around the model value, with variance equal to the average empirical difference

between model values and participant estimates (s2). This is equivalent to linear regression of the

value estimates on the model values, giving a log likelihood:

LL¼�ndata ln

ffiffiffiffiffiffiffiffiffiffiffi

2ps2

p� �

þ 0:5

h i

; (10)

where n is the number of trials fit. To maximize log likelihood we used MATLAB’s fmincon function.

We constrained parameter values within the following ranges: a2 [0,1], h2 [�10,10], k2 [�20,20],

g 2 [�20,20], N 2 [�15,15], l2 [0,10]. Note, however, that the trial-by-trial learning rate was always

passed through a sigmoid function (xt = input), and was therefore between 0 and 1:

at ¼
1

1þ e�xt
: (11)

Values were initialized to 50¢, and in Experiment 1, were re-initialized at the beginning of each

reward context. Each fit was run 30 times with different random initial parameter values.

Since all our models were nested (with additional parameters further modulating the RW-learning

rate), we compared models using the likelihood-ratio test, across subjects (Pickles, 1985). To verify that

our data can arbitrate between these models, we performed model recovery on simulated data gener-

ated by randomly sampling 100 parameter settings from Experiment 2 (including sampling the Gaussian

noise translating model value to predicted value). From these simulated data we calculated empirical

trial-by-trial learning rates (as in Equation 1). We then tested whether the model generating said learning

rates was the best fit for them, by fitting all models to each dataset. We concentrated specifically on

modeling learning rates, since the only differences between the models were in how they determined

trial-by-trial learning rates. We then compared model recovery using the conservative Bayesian informa-

tion criterion (BIC; Schwarz, 1978), to calculate a confusion matrix demonstrating the proportion of
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simulations fit best by the true model (Wilson and Collins, 2019). The models were sufficiently recovered,

validating model comparison (Figure 2—figure supplement 2B). Code for model fitting and recovery in

‘models_RL_matlabCode’ at https://github.com/ninarouhani/2021_RouhaniNiv (Rouhani, 2021; copy

archived at swh:1:rev:fa15d035dc4033ebad03f48dbd5c75b0c4d76c40).

Mixed-effects modeling
We used mixed-effects modeling to test hypotheses throughout the paper (lme4 package in R;

Bates et al., 2015). We treated participant as a random effect for both the slope and the intercept

of each fixed effect; however, if the model did not converge, we incrementally simplified the random

effect structure (i.e. by taking out interactions, then the slope of each effect), until convergence was

achieved (the simplest structure only modeled participant intercept as a random effect; for model

specifications, see ‘analysis&figures.ipynb’ at https://github.com/ninarouhani/2021_RouhaniNiv/).

Hierarchical model of memory
We ran a hierarchical regression model to better characterize the effects of unsigned and signed

RPES, as well as their relative influence, on memory for cue and outcome events. This model per-

formed full Bayesian inference over the effects of interest with Hamiltonian Monte Carlo sampling,

simultaneously estimating subject and group-level posterior distributions (Stan; Carpenter et al.,

2017). We included all putative RPE signals of interest in predicting memory score: signed RPE sig-

nal at outcome, unsigned RPE signal at outcome, as well as an intercept and a nuisance variable that

captured overall differences in memory for cue versus outcome events. We also included signed and

unsigned RPE signals at cue for Experiment 2. Subject-level parameter distributions were drawn

from group-level, standard normal distributions, and scaled by a gamma distribution (1,0.5). The

response variable (memory score) was modeled with a normal distribution and fit with a single

Gaussian noise parameter across all participants. All RPE regressors were centered and standard-

ized. We report the median (M) of the posterior parameter distributions as a measure of centrality,

and the highest density interval (HDI) as a measure of uncertainty around the parameter estimate; by

default, HDI returns the 89% credible interval (which is recommended as a more stable interval for

sample sizes less than 10,000; Kruschke, 2014; Makowski et al., 2019). Code for Stan models in

‘models_memory_stanCode’ at https://github.com/ninarouhani/2021_RouhaniNiv/.
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Appendix 1

Experiment 2 instructions (initial instructions prior to reward learning/
encoding)
Differences between instructions for the instructed and incidental memory
versions of the task noted below

Welcome!

In this experiment, you will be viewing a bunch of photographs (organized in pairs of photos),

some of outdoor scenes and some of indoor scenes.

Each pair of photos has a value between 0 and 1 dollar – you will be presented with the photos,

and see (and win) the money value of each.

One type of photograph - either photos of indoor scenes or photos of outdoor scenes - is worth

more money overall making it the winner.

To learn about the values of indoor and outdoor images, you will get a chance to watch the com-

puter choose pairs of indoor or outdoor photographs.

For each pair that the computer chooses, you will see one of the photos, and be asked to esti-

mate from 0 to 100 cents, how much you think on average pairs of scenes of its type (indoor or out-

door) are worth. You will have 5 s to enter your estimate.

You will not know the answer at first, but please make your best guess of what the average value

of a pair of scenes of this type is. To submit your answer, press enter.

After submitting your estimate, the true value of the pair will appear along with the second photo

belonging to the chosen pair. Although different pairs of photos have different values, their worth is

solely determined by the general value of that type of scene (indoor or outdoor). The average value

of each type of scene does not change over this whole task.

Pay attention to the money reward you get, so you can update your estimate of the average value

of outdoor and indoor scenes

Instructed memory: IMPORTANT: You will be paid a portion of the worth of the photos you see.

You will receive approximately 1 cent for every 10 cents rewarded. Additionally, you will be able to

use the reward value of each pair to choose between the same photos later in the task, and win their

values. The more you win, the more you will be paid at the end of this HIT.

Incidental memory: IMPORTANT: These outcomes are real. You will be paid a portion of the out-

comes of the photos you see. You will receive approximately 1 cent for every 10 cents rewarded.

The order of the task is as follows: (1) you will first see one of the two photos that the computer

chose, and determine whether it’s an indoors or outdoors scene, (2) you will give an estimate of how

much this type of photo (indoor or outdoor) is worth overall, and after submitting your answer, (3)

you will see how much the pair is actually worth along with the second photo belonging to the pair.

Please pay close attention! You will have 3 s to view the first photo in a pair, 5 s to submit your

estimate of its average value and 3 s to see the second photo and the value of the chosen pair.

After looking through all of the photos, you will then be asked to indicate the ‘winner’. In other

words, you will indicate which type of scene (indoor or outdoor) has the higher value on average.

To receive full payment, you will need to complete this experiment and submit it. In the case of

an event that precludes you from completing the experiment, please return the HIT and do not sub-

mit it. In that case, please e-mail nrouhani@princeton.edu to be compensated for the time you did

spend on the task.

Comprehension questions (must be answered correctly before starting the task)

Before starting the experiment, please answer the following questions and click submit. Once

you’ve answered all the questions correctly, the task will automatically load. if you do not answer

correctly, you will see the instructions again.

Which statement is true about indoor versus outdoor photos?

a. One type of scene (either indoor or outdoor) is more valuable, on average
b. Scenes can take on any value, and whether it is indoor or outdoor does not matter
c. Photos within a pair can belong to different scene types

Which statement is true about the value of each pair?

a. The value of each pair dosen’t affect your winnings
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b. The value of each pair represents the amount you are winning
c. The value of each pair can change without warning

What determines the value of each pair?

a. The average value of outdoor and indoor scenes (although pair may take on different values
from each other)

b. The quality of the photos in the pair
c. The attractiveness of the scenes in the pair

Practice instructions
You will now complete a short practice run before starting the real task.

Remember:

1. On each turn, the computer will choose a pair of photos and you will estimate how much, on

average, you think the type of scene on the screen (indoor or outdoor) is worth.

2. After submitting your estimate (by clicking or pressing enter), you will see the second photo

and the true value of that pair, and will win a portion of the reward.

Instructed memory: 3. Note each pair and its value - you will be choosing the same photos later

in the task.

Incidental memory: (this point is deleted)

4. At the end of this task, you will indicate whether indoor or outdoor scenes were the ‘winner’.

Please do not take notes, it is not necessary for successful performance, and will ruin the

experiment.
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