Abstract

Human and non-human primates are good at identifying an object based on its motion, a task that is believed to be carried out by the ventral visual pathway. However, the neural mechanisms underlying such ability remains unclear. We trained macaque monkeys to do orientation discrimination for motion-boundaries (MB) and recorded neuronal response in area V2 with microelectrode arrays. We found 10.9% of V2 neurons exhibited robust orientation-selectivity to MBs, and their responses correlated with monkeys' orientation-discrimination performances. Furthermore, the responses of V2 direction-selective neurons recorded at the same time showed correlated activity with MB neurons for particular MB stimuli, suggesting that these motion-sensitive neurons made specific functional contributions to MB discrimination tasks. Our findings support the view that V2 plays a critical role in MB analysis and may achieve this through a neural circuit within area V2.

Data availability

Data and codes are available in Mendeley dataset.http://dx.doi.org/10.17632/fjy37kc8pd.3

The following data sets were generated

Article and author information

Author details

  1. Heng Ma

    State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0322-278X
  2. Pengcheng Li

    State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Jiaming Hu

    State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5306-445X
  4. Xingya Cai

    State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7829-3833
  5. Qianling Song

    State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9177-7429
  6. Haidong D Lu

    State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
    For correspondence
    haidong@bnu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1739-9508

Funding

National Natural Science Foundation of China (31530029)

  • Haidong D Lu

National Natural Science Foundation of China (31625012)

  • Haidong D Lu

National Natural Science Foundation of China (31371111)

  • Haidong D Lu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kristine Krug, University of Oxford, United Kingdom

Ethics

Animal experimentation: Four hemispheres from two adult male macaque monkeys (Macaca mulatta) were used in this study. All procedures were performed in accordance with the National Institutes of Health Guidelines and were approved by the Institutional Animal Care and Use Committee of the Beijing Normal University (protocol number: IACUC(BNU)-NKCNL2013-13).

Version history

  1. Received: July 22, 2020
  2. Accepted: March 24, 2021
  3. Accepted Manuscript published: March 24, 2021 (version 1)
  4. Version of Record published: April 7, 2021 (version 2)
  5. Version of Record updated: April 13, 2021 (version 3)

Copyright

© 2021, Ma et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 885
    views
  • 131
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Heng Ma
  2. Pengcheng Li
  3. Jiaming Hu
  4. Xingya Cai
  5. Qianling Song
  6. Haidong D Lu
(2021)
Processing of motion-boundary orientation in macaque V2
eLife 10:e61317.
https://doi.org/10.7554/eLife.61317

Share this article

https://doi.org/10.7554/eLife.61317

Further reading

    1. Neuroscience
    Jack W Lindsey, Elias B Issa
    Research Article

    Object classification has been proposed as a principal objective of the primate ventral visual stream and has been used as an optimization target for deep neural network models (DNNs) of the visual system. However, visual brain areas represent many different types of information, and optimizing for classification of object identity alone does not constrain how other information may be encoded in visual representations. Information about different scene parameters may be discarded altogether (‘invariance’), represented in non-interfering subspaces of population activity (‘factorization’) or encoded in an entangled fashion. In this work, we provide evidence that factorization is a normative principle of biological visual representations. In the monkey ventral visual hierarchy, we found that factorization of object pose and background information from object identity increased in higher-level regions and strongly contributed to improving object identity decoding performance. We then conducted a large-scale analysis of factorization of individual scene parameters – lighting, background, camera viewpoint, and object pose – in a diverse library of DNN models of the visual system. Models which best matched neural, fMRI, and behavioral data from both monkeys and humans across 12 datasets tended to be those which factorized scene parameters most strongly. Notably, invariance to these parameters was not as consistently associated with matches to neural and behavioral data, suggesting that maintaining non-class information in factorized activity subspaces is often preferred to dropping it altogether. Thus, we propose that factorization of visual scene information is a widely used strategy in brains and DNN models thereof.

    1. Neuroscience
    Zhaoran Zhang, Huijun Wang ... Kunlin Wei
    Research Article

    The sensorimotor system can recalibrate itself without our conscious awareness, a type of procedural learning whose computational mechanism remains undefined. Recent findings on implicit motor adaptation, such as over-learning from small perturbations and fast saturation for increasing perturbation size, challenge existing theories based on sensory errors. We argue that perceptual error, arising from the optimal combination of movement-related cues, is the primary driver of implicit adaptation. Central to our theory is the increasing sensory uncertainty of visual cues with increasing perturbations, which was validated through perceptual psychophysics (Experiment 1). Our theory predicts the learning dynamics of implicit adaptation across a spectrum of perturbation sizes on a trial-by-trial basis (Experiment 2). It explains proprioception changes and their relation to visual perturbation (Experiment 3). By modulating visual uncertainty in perturbation, we induced unique adaptation responses in line with our model predictions (Experiment 4). Overall, our perceptual error framework outperforms existing models based on sensory errors, suggesting that perceptual error in locating one’s effector, supported by Bayesian cue integration, underpins the sensorimotor system’s implicit adaptation.