Abstract

Human and non-human primates are good at identifying an object based on its motion, a task that is believed to be carried out by the ventral visual pathway. However, the neural mechanisms underlying such ability remains unclear. We trained macaque monkeys to do orientation discrimination for motion-boundaries (MB) and recorded neuronal response in area V2 with microelectrode arrays. We found 10.9% of V2 neurons exhibited robust orientation-selectivity to MBs, and their responses correlated with monkeys' orientation-discrimination performances. Furthermore, the responses of V2 direction-selective neurons recorded at the same time showed correlated activity with MB neurons for particular MB stimuli, suggesting that these motion-sensitive neurons made specific functional contributions to MB discrimination tasks. Our findings support the view that V2 plays a critical role in MB analysis and may achieve this through a neural circuit within area V2.

Data availability

Data and codes are available in Mendeley dataset.http://dx.doi.org/10.17632/fjy37kc8pd.3

The following data sets were generated

Article and author information

Author details

  1. Heng Ma

    State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0322-278X
  2. Pengcheng Li

    State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Jiaming Hu

    State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5306-445X
  4. Xingya Cai

    State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7829-3833
  5. Qianling Song

    State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9177-7429
  6. Haidong D Lu

    State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
    For correspondence
    haidong@bnu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1739-9508

Funding

National Natural Science Foundation of China (31530029)

  • Haidong D Lu

National Natural Science Foundation of China (31625012)

  • Haidong D Lu

National Natural Science Foundation of China (31371111)

  • Haidong D Lu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kristine Krug, University of Oxford, United Kingdom

Ethics

Animal experimentation: Four hemispheres from two adult male macaque monkeys (Macaca mulatta) were used in this study. All procedures were performed in accordance with the National Institutes of Health Guidelines and were approved by the Institutional Animal Care and Use Committee of the Beijing Normal University (protocol number: IACUC(BNU)-NKCNL2013-13).

Version history

  1. Received: July 22, 2020
  2. Accepted: March 24, 2021
  3. Accepted Manuscript published: March 24, 2021 (version 1)
  4. Version of Record published: April 7, 2021 (version 2)
  5. Version of Record updated: April 13, 2021 (version 3)

Copyright

© 2021, Ma et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 868
    views
  • 131
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Heng Ma
  2. Pengcheng Li
  3. Jiaming Hu
  4. Xingya Cai
  5. Qianling Song
  6. Haidong D Lu
(2021)
Processing of motion-boundary orientation in macaque V2
eLife 10:e61317.
https://doi.org/10.7554/eLife.61317

Share this article

https://doi.org/10.7554/eLife.61317

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.