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Abstract Antibodies are critical components of adaptive immunity, binding with high affinity to

pathogenic epitopes. Antibodies undergo rigorous selection to achieve this high affinity, yet some

maintain an additional basal level of low affinity, broad reactivity to diverse epitopes, a

phenomenon termed ‘polyreactivity’. While polyreactivity has been observed in antibodies isolated

from various immunological niches, the biophysical properties that allow for promiscuity in a

protein selected for high-affinity binding to a single target remain unclear. Using a database of

over 1000 polyreactive and non-polyreactive antibody sequences, we created a bioinformatic

pipeline to isolate key determinants of polyreactivity. These determinants, which include an

increase in inter-loop crosstalk and a propensity for a neutral binding surface, are sufficient to

generate a classifier able to identify polyreactive antibodies with over 75% accuracy. The

framework from which this classifier was built is generalizable, and represents a powerful,

automated pipeline for future immune repertoire analysis.

Introduction
Antibodies are immunogenic proteins expressed by B cells that play a major role in the adaptive

immune response against non-self. Upon recognition of target epitopes, these antibodies undergo

multiple rounds of somatic hypermutation and affinity maturation inside a germinal center, whereby

the amino acid sequence of the epitope-binding surface is selected for optimal binding to the

target (Victora and Nussenzweig, 2012; Eisen and Siskind, 1964; McKean et al., 1984). The lon-

ger this affinity maturation process extends, the higher the affinity and specificity of the antibodies

toward their target antigen, primarily through mutagenesis of the six complementarity determining

region (CDR) loops of the antibody (Victora and Nussenzweig, 2012). Using a combination of affin-

ity matured CDR loops, these antibodies bind strongly to the target and aid in invader neutraliza-

tion. While the process of affinity maturation and somatic hypermutation of antibodies results in

high-affinity and incredibly specific binders to a particular epitope, some antibodies have been

shown to display signs of reactivity toward diverse off-target epitopes. This broad but low-affinity

binding has been termed ‘polyreactivity’.

Antibody polyreactivity has been hypothesized to be beneficial in the early stages of antibody

maturation, acting as a pool of diverse binders ready to recognize novel antigens and initiate the
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more stringent selection process (Dimitrov et al., 2013). To this end, a majority of B cell receptors

and antibodies which have not undergone somatic hypermutation, including those on immature B

cells and early ‘natural’ antibodies, have been found to be polyreactive to some extent and are sug-

gested to have an innate-like response to pathogens (Ochsenbein et al., 1999; Wardemann et al.,

2003). While these mostly unmutated polyreactive antibodies remain at low frequency in antigen-

experienced individuals, a distinct population of polyreactive antibodies that have undergone selec-

tion are still expressed by mature B cells that circulate in blood (Tiller et al., 2007). In fact, some

studies have found that the polyreactivity status of an antibody is mostly independent of the number

of somatic hypermutations in the antibody sequence (Mouquet et al., 2010; Prigent et al., 2016).

In line with this finding, only 5–10% of the repertoire of naive B cells circulating in the periphery are

polyreactive, but this increases to 20–30% in the memory B cell compartment, showing a distinct

capability of polyreactivity to survive selection (Tiller et al., 2007; Koelsch et al., 2007). These

results suggest that polyreactivity can persist, or perhaps even be selected for during the selection

process within the germinal center.

In a few notable cases, polyreactivity may in fact augment the efficacy of a given immune

response. Polyreactive IgA antibodies have been shown to have an inherent reactivity to microbiota

in the mouse gut, with a predicted role in host homeostasis (Bunker et al., 2017). These previously

identified antibodies so far have no known primary ligands, yet play a key role in facilitating the gut

immune response to the plethora of exogenous antigens encountered in the dynamic dietary and

microbial environment of the gut. This implies the existence of antibodies whose primary function is

to act as polyreactive sentries in the gut, yet the downstream effects of polyreactive antibodies coat-

ing commensal bacteria is so far unclear. Similar polyreactive IgA and IgG mucosal antibodies were

found in the gut of human immunodeficiency virus (HIV)-infected patients, but these antibodies

either had low affinity to the virus or lacked neutralization capabilities (Planchais et al., 2019). The

benefit of singular antibody sequences with the ability to sample large portions of the commensal

population may represent an improvement in efficiency of the homeostatic machinery of the gut.

While the precise role of these primarily polyreactive gut antibodies is still a topic of debate, poly-

reactivity has been suggested to augment the immune response in other immunological niches.

Broadly neutralizing antibodies (bnAbs), which bind robustly to conserved epitopes on the surface

glycoproteins of influenza viruses or HIV are more likely to be polyreactive (Haynes et al., 2005;

Mouquet et al., 2011; Andrews et al., 2015). In one study of HIV-binding antibodies, over half of

all tested bnAbs were found to be polyreactive (Prigent et al., 2018). These bnAbs have been the

subject of intense study for their potential as the central components of an HIV treatment or as the

byproduct of an immune response to a universal Influenza vaccine (Andrews et al., 2015;

eLife digest To defend itself against bacteria and viruses, the body depends on a group of

proteins known as antibodies. Each subset of antibodies undergoes a rigorous training regimen to

ensure it recognizes a single epitope well – that is, one specific region on the surface of foreign,

harmful organisms.

Most antibodies stick extremely tightly to their one unique epitope, but some can also weakly

bind to molecules that are vastly different from their main trained targets. This feature – known as

polyreactivity – can in some cases help the immune system fight against multiple strains of viruses.

On the other hand, when antibodies are designed in the laboratory to treat diseases, this

characteristic can sometimes lead to the failure of pre-clinical trials. Yet it is currently unclear why

some antibodies are polyreactive when others are not.

To investigate this question, Boughter et al. compared over 1,000 polyreactive and non-

polyreactive antibody sequences from a large database, revealing differences in the physical

properties of the region of the antibodies that attaches to epitopes. Using these defining features,

Boughter et al. went on to design a new piece of freely available, automated software that could

predict which antibodies would be polyreactive more than 75% of the time.

Such software could ultimately help to guide the design of antibody-based treatments, while

bypassing the need for costly laboratory tests.
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Haynes et al., 2019; Crowell et al., 2019; Li et al., 2012). One hypothesized mechanism for the

capability of polyreactive antibodies to confer this broad neutralization in the face of a changing viral

epitope is heteroligation, the ability of a single antibody to bind the primary target with one binding

domain and use the other binding domain to bind in a polyreactive manner (Mouquet et al., 2010).

This heteroligation allows the antibody to take advantage of the significant avidity increase afforded

by bivalent binding, despite the low envelope protein density of HIV or a geometry which does not

readily lend itself to bivalent binding on the surface of influenza viruses (Klein and Bjorkman, 2010).

Although polyreactivity may play a positive role in natural immune responses, oftentimes this

same property is considered undesirable from the point of view of generating therapeutic antibodies

with high specificity. Antibody-based treatments, which generally take the form of an intravenous

transfusion, are sensitive to the accelerated systemic clearance of polyreactive

antibodies (Hötzel et al., 2012; Kelly et al., 2015; Kelly et al., 2018; Datta-Mannan et al., 2015).

In general, much work has focused on attempting to answer the question of optimizing ‘developabil-

ity’ of a given antibody. These efforts have been dedicated to determining the most critical compo-

nents of developability through a large array of experimental assays, in silico structural prediction-

based methods, sequence-based analysis and their correlations with clearance, sequence-based

SASA predictions, and sequence-based aggregation propensity predictors (Jain et al., 2017b;

Raybould et al., 2019; Sharma et al., 2014; Jain et al., 2017a; Obrezanova et al., 2015). In many

of these studies, polyreactivity or non-specificity in general was seen to be a negative indicator of

the developability of a drug, suggesting that therapeutic antibodies should strive toward a drug-like

specificity (Starr and Tessier, 2019).

In line with this goal of understanding the predominant factors involved in the specificity of thera-

peutic antibodies, many researchers have worked to identify the biophysical underpinnings of poly-

reactivity in natural immune responses. The most popular hypotheses for the primary biophysical

predictors of polyreactivity have included CDR3 length (Prigent et al., 2016), CDR3

flexibility (Prigent et al., 2018), net hydrophobicity (Lecerf et al., 2019), and net

charge (Rabia et al., 2018). More observational studies have found an increased prevalence of argi-

nine and tyrosine in polyreactive antibodies (Kelly et al., 2018; Birtalan et al., 2008). While these

previous studies represent substantial advances in the study of polyreactivity, they have often been

limited in scope, focusing on a singular antibody source and primarily focused on CDR3H. Compar-

ing across these individual antibody sources highlights discrepancies between the proposed predic-

tors of polyreactivity. The aforementioned properties determined to be key to polyreactivity in

previous studies were found to be statistically insignificant in studies of HIV-binding and mouse gut

polyreactive antibodies (Bunker et al., 2017; Mouquet et al., 2010).

Clearly, a computational framework that would enable us to predict the polyreactivity of a given

antibody a priori, whether evaluating the efficacy of a natural immune response or the potential fate

of a therapeutic antibody, would be tremendously useful. Such a framework, for example, could be

used to assist in the isolation of broadly neutralizing antiviral antibodies, or speed up the process of

therapeutic antibody screening. To achieve this goal, a thorough understanding of the molecular

features behind polyreactive binding interactions is critical. Experimental approaches utilizing next-

generation sequencing and ELISA allow for the identification of hundreds of polyreactive antibody

sequences. However, the systematic characterization of these antibodies is difficult. Issues immedi-

ately arise when defining the conditions by which we determine an antibody to be polyreactive.

While polyreactivity may exist on some continuous spectrum, we are inclined to frame the problem

as binary. This binary discretization is useful for the identification of meaningful differences, yet must

be recognized as an imperfect assumption. In addition to this more philosophical challenge, experi-

mental efforts must also overcome significant hurdles. Detailed biochemical studies of polyreactive

antibodies via protein crystallography, quantitative binding experiments, and mutagenesis provide

exceptional insight but are inherently low throughput. Structural modeling of these polyreactive anti-

bodies represent a high-throughput approach, but models of flexible loops are relatively unreliable,

and are unlikely to capture nuances in side-chain placement (Karami et al., 2019). A bioinformatics-

based approach, centered around high-throughput analysis that minimizes structural assumptions

while maintaining positional context of amino acid sequences would provide a thorough, unbiased

analysis of existing data and create a powerful pipeline for future studies.

In this study, we show that using just the amino acid sequences of antibodies from a database of

over 1000 sequences tested for polyreactivity, unifying biophysical properties that distinguish
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polyreactive antibodies from non-polyreactive antibodies can be identified. We find that, while

charge and hydrophobicity are in fact important determinants of polyreactivity, the characteristic

feature of polyreactive antibodies appears to be a shift toward neutrality of the binding interface. In

addition, loop crosstalk is more prevalent in the heavy chain of polyreactive antibodies than non-pol-

yreactive antibodies. From these properties, a machine learning-based classification software was

developed with the capability to determine the polyreactivity status of a given sequence. This soft-

ware is generalizable and can be retrained on any binary classification problem and identify the key

differences between two distinct populations of antibodies, T cell receptors, or MHC-like molecules

at the amino acid level.

Results

Database
Our aggregate database of over 1000 antibody sequences is compiled from our own previously pub-

lished and new data, in addition to data from published studies by the Mouquet and Nussenzweig

labs (Table 1; Mouquet et al., 2010; Bunker et al., 2017; Planchais et al., 2019; Mouquet et al.,

2011; Prigent et al., 2018). Using an ELISA-based assay, the reactivity of each antibody is tested

against a panel of 4–7 biochemically diverse target antigens: DNA, insulin, lipopolysaccharide (LPS),

flagellin, albumin, cardiolipin, and keyhole limpet hemocyanin (KLH). This panel has become increas-

ingly prevalent in the literature for experimental measures of polyreactivity in

antibodies (Mouquet et al., 2010; Prigent et al., 2016; Bunker et al., 2017; Planchais et al., 2019;

Mouquet et al., 2011; Andrews et al., 2015; Prigent et al., 2018; Jain et al., 2017b; Neu et al.,

2019; Wrammert et al., 2011). The ligands represent a diverse sampling of biophysical and bio-

chemical properties: for example, enrichment in negative charge (DNA, insulin, LPS, albumin),

amphipathic in nature (LPS, cardiolipin), exceptionally polar (KLH), or large in size (KLH, flagellin).

From this panel, a general rating of ‘polyreactive’ or ‘non-polyreactive’ is given to 529 and 524 anti-

bodies, respectively. For the purposes of this study, antibodies are determined to be polyreactive if

the authors of the original studies determined a particular clone binds to two or more ligands in the

panel. Those that bind to one or none of the ligands in the panel are deemed non-polyreactive.

A limitation of this full polyreactivity dataset is that there exists an intermediate between the two

classes. As discussed in the introduction, it is not immediately obvious where the line for polyreactiv-

ity should be drawn. An antibody that binds to 2–3 ligands may not necessarily achieve broad reac-

tivity through the same mechanism as an antibody that binds four or more ligands from a panel of 6

or 7. To remove these ambiguities, a so-called ’parsed’ dataset is generated whereby antibodies

that bind 4–7 ligands are labeled polyreactive, antibodies that bind 0 panel ligands are labeled non-

polyreactive, and those that bind 1–3 are removed from the analysis. The results presented below

utilize the full dataset of 1053 antibody sequences, unless otherwise noted. Analysis of the parsed

dataset can be found in the supplementary figures.

A surface-level analysis of polyreactive antibody sequences
As a first pass at the given dataset, we focus on the most simplistic of the possible explanations for

differences between polyreactive and non-polyreactive antibodies, specifically the J- and V-gene

usage of each group. Figure 1A and B, rendered with code adapted from the Dash et al. derived

program TCRdist (Dash et al., 2017), represents each antibody V-gene as a line connecting a single

heavy and light chain gene for the full human-derived antibody dataset (685 sequences). We repeat

this analysis in Figure 1—figure supplement 1 using the parsed human-derived antibody dataset

Table 1. A quantification of the antibodies used in this study.

Dataset # Polyreactive # Non-Polyreactive Total

Mouse IgA 205 240 445

HIV reactive 172 124 296

Influenza reactive 152 160 312

Complete dataset 529 524 1053
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Figure 1. A comparative genetic analysis of human-derived polyreactive and non-polyreactive antibody sequences uncovers population level

differences. Gene usage diagrams comparing (A) human polyreactive and (B) non-polyreactive sequences show a qualitative difference in the VH gene

usage. Shared colors indicate identical genes, gray indicates genes that are not seen in the other population at a level over 2%. Unlabeled genes are

colored randomly to highlight genetic variation in the populations. (C) Sequence alignment of the most prevalent genes in the polyreactive and non-

polyreactive populations compared to a reference gene common to each population. Hydrophobic amino acids are colored white, hydrophilic amino

acids are colored gray, and positively or negatively charged amino acids are colored blue or red, respectively. (D) Percentage and raw count of

observed gene usage for the polyreactive and non-polyreactive sequences.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure 1 continued on next page
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(472 sequences). Direct comparisons between mouse and human derived antibodies is difficult at

the gene usage level. A similar analysis highlighting differences between mouse polyreactive and

non-polyreactive antibodies can be found in the supplement (Figure 1—figure supplement 2).

Genes are identified from nucleotide sequences using NCBI’s IgBLAST command line

tool (Ye et al., 2013). Heavy and light chain genes that are shared between polyreactive and non-

polyreactive sequences are colored for the top labeled instances. Genes that are labeled but not

found above a 2% threshold in the opposite population are colored gray, whereas those that do not

have a visible name are colored randomly to highlight variation in gene usage. From this compari-

son, it is clear that the variable gene usage is skewed between polyreactive and non-polyreactive

sequences, with an enrichment of VH1�69, VH1�46, and VH4�59 in the polyreactive population, a

trend that persists in the parsed dataset (Figure 1—figure supplement 1). In contrast, no qualitative

differences in the J-gene usage are readily discernible between these two groups (Figure 1—figure

supplement 3).

While the full alignment of these most used heavy chain variable genes shows a high degree of

sequence similarity (Figure 1—figure supplement 4), Figure 1C highlights the regions of highest

dissimilarity between the biophysical properties of amino acids in prevalent genes within each popu-

lation. VH3�23, the most prevalent gene in the non-polyreactive human dataset and the second

most prevalent gene in the polyreactive human dataset, can be used as a reference for comparisons

between genes enriched in each individual population. This reference gene shares a high degree of

sequence similarity with the second and third most frequently occurring genes in the non-polyreac-

tive dataset, VH3�7 and VH3�9, save for a lysine and aspartic acid pair in framework 2 of VH3�7.

The genes enriched in the polyreactive dataset, however, are quite different from this reference. All

three of the polyreactive enriched genes have charged residues where the non-polyreactive enriched

genes have hydrophilic residues (or vice versa) at IMGT positions 1, 13, and 90. These initial results

hint at some systematic differences between the polyreactive and non-polyreactive antibody

populations.

Figure 1D quantifies the extent of the difference in gene usage in each population by comparing

these most prominent genes from our accumulated dataset of HIV- and influenza virus-reactive anti-

bodies. While the two most common genes in the polyreactive dataset account for 27% of the

human polyreactive antibodies in this study, the top three most common genes in the non-polyreac-

tive dataset account for just over 17% of the total population. In addition to being the most preva-

lent gene in the polyreactive dataset, VH1�69
�
01 has also been found historically to be more

prevalent in broadly neutralizing antibodies against influenza viruses, in line with the previously men-

tioned overlap between bnAbs and polyreactivity (Andrews et al., 2015; Wrammert et al., 2011).

Overall, there is a noticeable difference between the gene usage frequency of polyreactive and

non-polyreactive antibodies, but the overlap in the usage of the two populations suggests that gene

usage alone is not sufficient to distinguish the two groups. While there exist qualitative differences

between framework sequences enriched in the polyreactive dataset compared to the non-polyreac-

tive population, a look at the amino acid usage of the CDR loops of each group shows no significant

differences (Figure 1—figure supplement 5). This implies that the positional context of a given

amino acid is critical to tease out differences in antibody binding properties.

A position-sensitive matrix representation of sequences provides
further insights into polyreactivity
To identify deeper trends in the biophysical properties of polyreactive antibodies, we utilize a new

methodology to analyze and represent a range of different properties inherent to these sequences.

Figure 1 continued

Figure supplement 1. A comparative genetic analysis of the parsed human-derived polyreactive and non-polyreactive antibody sequences uncovers

stronger population level differences.

Figure supplement 2. A comparative genetic analysis of the mouse-derived polyreactive and non-polyreactive antibody sequences uncovers

population differences and a movement away from charged residues in heavy chain poly-enrich genes at IMGT positions 20, 47, 48, 69, and 95.

Figure supplement 3. Data from Figure 1A and B including J-gene usage, using default TCRdist color scheme.

Figure supplement 4. Sequence alignment from Figure 1C, including the full amino acid sequences of each heavy chain gene.

Figure supplement 5. The raw count of amino acids found in polyreactive and non-polyreactive antibody sequences shows no notable differences.
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Although the framework regions of antibodies are highly conserved, the CDR loops vary significantly

in length and show very low conservation between populations. This makes alignment of CDR loops

difficult without creating subgroups for loops of identical length. To overcome this, the sequence

data is reorganized into a matrix representation (Figure 2A). Each sequence is aligned by the center

of each CDR loop, with spaces between the loops set to zero and each amino acid encoded as a

number from 1 to 21. While this alignment method excludes the framework regions of the antibod-

ies and slightly averages out some of the properties at the edge of the CDR loops, we reason that

most of these differences are evident in the gene usage analysis of the previous section. From this
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Figure 2. A new representation of CDR loop sequences improves the position-sensitivity of quantitative antibody analysis. (A) Matrix representation of

the amino acid sequences used in this study provides a framework for further analysis. Each amino acid is encoded as a number from 1 to 21,

represented by a distinct color in the matrix. A 0-value is used as a buffer between loops and is represented by the dark blue regions. The red line

separates polyreactive and non-polyreactive sequences. (B) Amino acid frequency difference between polyreactive and non-polyreactive sequences for

all six CDR loops. Residues more common in polyreactive sequences are shown in green, while those more common in non-polyreactive sequences are

shown in pink. Loop positions correspond to the numerical position within the matrix of panel (A). (C) An in-depth representation highlighting the

amino acid frequencies used to create panel (B). Only frequency changes greater than 10% are shown for clarity.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Identical analysis to that in Figure 2 using the parsed dataset displays more pronounced differences between polyreactive and

non-polyreactive antibodies.
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simple alignment, no obvious patterns emerge separating polyreactive and non-polyreactive anti-

bodies; however, we can clearly see that mouse gut-derived IgA antibodies have generally shorter

CDR3H loops, and more conserved CDR3L sequences when compared to the human-derived anti-

body sequences. All subsequent analysis is derived from this matrix representation of the

sequences.

With this new positionally sensitive and quantitative alignment method, we are able to further dis-

sect the differences in amino acid sequences presented in Figure 1. Figure 2B uses this positional

sequence encoding to determine the amino acid frequency difference between polyreactive and

non-polyreactive sequences. For example, phenylalanine is found at position 93 in roughly 40% of

polyreactive sequences and nearly 60% of non-polyreactive sequences. Therefore position 93, amino

acid F has an intensity of �0.2 in Figure 2B.

From this panel it is evident that most of the major differences are in the germline encoded

regions CDR1H and CDR2H, in line with the observations from Figure 1 that suggest polyreactive

antibodies have a distinct gene usage when compared to non-polyreactive antibodies. Figure 2C

further expands on these differences, showing the largest changes in amino acid frequencies

between the two populations. We can see that there is a slight decrease of phenylalanine frequency

in CDR1H of polyreactive antibodies, in favor of isoleucine. Additionally, there is a general shift

toward hydrophobicity in CDR2H, as the hydrophilic residue serine at matrix positions 78 and 82 is

less prevalent in polyreactive antibodies, instead replaced by the more hydrophobic residues isoleu-

cine and glycine. In the parsed dataset, these differences become larger in magnitude, particularly in

CDR1L, where phenylalanine is again found less frequently in polyreactive sequences (Figure 2—fig-

ure supplement 1).

This increased prevalence in loop hydrophobicity of polyreactive antibodies has been suggested

before in the literature (Prigent et al., 2018) along with a net increase in positive

charge (Rabia et al., 2018), so we next aimed to analyze this matrix systematically using biophysical

properties inherent to the loops. A simple analysis of the full human and mouse-derived dataset

investigating classical parameters explored previously by other groups (CDR loop length, net charge,

net hydrophobicity, and gene usage) and some new properties (side chain flexibility, side chain bulk,

and the Kidera Factors from Kidera et al., 1985) show some significant differences between poly-

reactive and non-polyreactive antibodies (Figure 3A,B). The versatility of the positionally sensitive

amino acid matrix allows for the application of multiple ’property masks’ to tease out the specific

regions of each CDR loop that contributes most to these significant differences. Given a property,

amino acid charge for example, we can replace each simple 1–21 representation with a distinct

representation based upon amino acid properties.

In the matrix of Figure 2A leucine, histidine, and arginine are represented by the integers 3, 16,

and 17. As an example, when the charge property mask is applied, the matrix representations of

these three amino acids in all sequences is changed to 0.00, 0.091, and 1.00, respectively. We apply

62 such masks to this matrix, including simple metrics like charge, hydrophobicity, side chain flexibil-

ity, and side chain bulkiness to go along with more carefully curated metrics from the works of

Kidera et al., 1985; Liu et al., 2018. A complete description of these properties can be found in

the ’Key resources table’ and in Appendix 1—table 1. The application of these masks gives an

entirely new matrix describing the localization of amino acids with a given property.

By averaging across all sequences in the polyreactive or non-polyreactive dataset when these

masks are applied, we can readily see differences in charge patterning and hydrophobicity when

comparing polyreactive and non-polyreactive sequences (Figure 3C,D).

Including errors obtained via bootstrapping, we see that these differences are most pronounced

in the center of CDR3H, with some differences also apparent in the remaining five loops. This analy-

sis shows an overall bias toward neutrality in these regions; that is neither positively nor negatively

charged, neither strongly hydrophilic nor hydrophobic. These results also contextualize the findings

of Figure 2C. The trend toward hydrophobic residues in CDR2H of polyreactive antibodies impor-

tantly does not make these regions net hydrophobic, but instead make these regions slightly less

hydrophilic on average. This effect is yet again more pronounced in the parsed dataset (Figure 3—

figure supplement 1), with a strong trend toward interface neutrality. Conversely, when comparing

bootstrap samples drawn from the null distribution, that is the ’polyreactive’ or ’non-polyreactive’

labels are given to antibody sequences at random, we see no difference between the biophysical

properties of the two populations (Figure 3—figure supplement 2).
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Systematic determination of the key contributions to polyreactivity
Along with simple property averaging, these masks also give a high dimensional space from which

we can determine, in an unbiased way, the primary factors that discriminate polyreactive and non-

polyreactive antibodies. As a first pass, we apply a principal component analysis (PCA) to the matrix

of all antibody sequences in an attempt to separate the polyreactive or non-polyreactive populations

along the axes of highest variation in the dataset. Unfortunately, the principal components of these

data do not effectively distinguish between the two populations (Figure 4—figure supplement 1).

To further investigate the physical and sequence-based properties of polyreactivity in antibodies

in a more targeted manner, we employ linear discriminant analysis (LDA), a common algorithm often

applied in classification problems (Barker and Rayens, 2003; Cordeiro et al., 2009; Ma et al.,

2013). LDA works in a manner conceptually similar to PCA, reducing the dimensionality of a given

dataset via a linear combination of the original dimensions. However, LDA takes one additional
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Figure 3. Position-sensitive quantification of CDR loop properties of mouse and human antibody sequences highlights differences between

polyreactive and non-polyreactive populations. Plotting the average CDR loop lengths (A) and net antibody biophysical properties (B) show small but

significant differences when analyzed in bulk. Basic properties 1–5 are hydrophobicity1, charge, hydrophobicity2, side chain flexibility, and side chain

bulk. Plotting the average net charge (C) and hydrophobicity (D) as a function of position of polyreactive and non-polyreactive sequences highlights

significant differences in CDR3H. Light shadow around lines represent bootstrap standard errors. All uncertainties obtained via bootstrapping. Stars

indicate p-value � 0.05 calculated via nonparametric Studentized bootstrap test. Bars with a single star above represent contiguous regions of

significance. p-values in panels (A) and (B) corrected for multiple tests using the Bonferroni correction.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Identical analysis to that in Figure 3 using the parsed dataset displays more pronounced differences between polyreactive and

non-polyreactive antibodies.

Figure supplement 2. Identical analysis to that in Figure 3 using bootstrapped means drawn from the null distribution.
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input, the label or class of each sequence. Whereas the objective of PCA is to identify the axes which

maximize the variance in the dataset, LDA has the dual objective of maximizing the projected dis-

tance between two classes while minimizing the variance within a given class. While LDA is well

adapted for classifying two distinct populations, it is susceptible to overfitting, unlike

PCA (Qiao et al., 2009). Here, we have labeled our two classes in the matrix with either a ‘1’ for pol-

yreactive, or ‘0’ for non-polyreactive. In our application of LDA, we parse down the large number of

input vectors using either PCA or an algorithm which selects the vectors with the largest average dif-

ferences between the two populations. This reduction in dimensionality ensures the data are not

being overfit, and the tunable number of input vectors allows us to control for overfitting in each

individual application.

Figure 4A shows the results of LDA when applied to the parsed dataset comprised of 311 poly-

reactive antibodies and 362 non-polyreactive antibodies. As discussed in the introduction, the fram-

ing of polyreactivity as a binary problem is not a perfect assumption. The inclusion of intermediate

levels of polyreactivity further confounds this issue. Indeed, the application of LDA to the full dataset

shows a reduced ability to split polyreactive and non-polyreactive antibodies (Figure 4—figure sup-

plement 2), likely due to this spectrum of polyreactivity. By considering only the parsed dataset for

these classification analyses, we can improve confidence that the differences identified are those

that separate strongly polyreactive and strongly non-polyreactive antibodies.

LDA analysis is versatile in its applications, and in this work, we utilize the method in two distinct

modes. In the first mode, all available data is used as input with the output vector representing the

features that best distinguish between the two complete populations. Plots of the data projected

onto this vector (as in Figure 4A) represent the maximum achievable separation between the two

populations for a defined number of input components from the given biophysical property matrix.

In the second mode, we utilize LDA as a more canonical classification algorithm separating the data

randomly into training and test groups. In this classification mode of operation, a combination of

correlation analysis coupled with maximal average differences is used to parse input features, and a

support vector machine (SVM) is used to generate the final classifier from these features. Accuracy

of the resultant classifiers is assessed via leave one out cross validation, these accuracies are shown

in Figure 4B.

In the first mode, we find that the data can be split more effectively when the parsed dataset is

broken up into the distinct ‘reactivity’ groups, that is those antibodies specific for influenza viruses,

HIV, or found in the mouse gut (Figure 4A). This suggests there may be some bias due to antigen

specificity, or lack thereof, whereby influenza virus-specific antibodies take a slightly different path

toward polyreactivity compared to HIV reactive or mouse gut IgA antibodies. However, when using

the classification mode, the classification accuracy is roughly equivalent across all tested datasets

(Figure 4B). Testing this classifier with a scrambled dataset, where the labels are randomly assigned,

shows the expected decrease in classification accuracy for each individual dataset for all ranges of

input features.

When applying LDA in the first mode (Figure 4A), we can directly pull the linear weights of each

component comprising linear discriminant one and reveal which biophysical properties at each CDR

position best distinguish between the two populations. The differences in the linear weights from

the heavy chain CDR loops comprising each discriminant show clear differences when comparing the

complete parsed dataset (Figure 4C) to the HIV only dataset (Figure 4D). In the parsed dataset, the

discriminating weights are heavily concentrated in CDR2H. Whereas in the HIV dataset, these

weights are centered around the CDR3H loop. Only the top 10 linear weights are shown in

Figure 4C,D. The full matrix of linear weights can be found in Figure 4—figure supplement 3. The

predominant discriminating factors between datasets might be due to the significant difference in

CDR3H length between the mouse (IgA) and the human datasets, which confounds the analysis in

this region. However, when examining each individual subset of the complete dataset we do find

that there are common properties that seem to be the primary discriminators (i.e. largest linear

weights). These are hydrophobicity 1, hydrophobicity 2, and hotspot variable 6 (a structural parame-

ter related to a-helix propensity).

An information theoretic approach
While analysis of the biophysical property differences between polyreactive and non-polyreactive

sequences provides some insight into the molecular basis for the polyreactivity phenomenon, a
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broad unifying pattern which could discern the biophysical mechanism behind polyreactivity was not

readily evident across all types of antibodies. To probe these polyreactive sequences in a quantita-

tive yet more coarse manner, we applied the formalism of information theory to our dataset of anti-

body sequences. Information theory, a theory classically applied to communication across noisy

channels, is incredibly versatile in its applications, with high potential for further applications in

immunology (Shannon, 1948; Román-Roldán et al., 1996; Cheong et al., 2011; Vinga, 2014;

Mora et al., 2010; Murugan et al., 2012). In this work, we utilize two powerful concepts from infor-

mation theory, namely Shannon entropy and mutual information.

Shannon entropy, in its simplest form, can be used as a proxy for the diversity in a given input

population. This entropy, denoted as H, has the general form shown in Equation 1:

Figure 4. Linear discriminant analysis (LDA) can meaningfully separate the two populations and these meaningful differences can be used to generate a

polyreactivity classifier. (A) LDA applied individually to the complete parsed, Influenza, HIV, and mouse datasets. Percentages indicate the accuracy of

the linear discriminant in labeling polyreactive and non-polyreactive antibodies. For these data, the plotted linear discriminants are comprised of

different linear weights. (B) Accuracies of a polyreactivity classifier with a separate test and training dataset. Groupings in this figure are the same as

those in panel (A). A support vector machine is generated for each individual population, and the reported values are accuracies calculated through

leave one out cross validation. Shown are test data and a scrambled dataset where the labels of ‘polyreactive’ or ‘non-polyreactive’ are applied

randomly (gray bars). The dotted line indicates 50% accuracy threshold. (C) Property matrices highlighting the top 10 weights of the linear discriminants

in panel A for the parsed dataset with 75 vectors (C) and the HIV dataset with 75 vectors (D). Color bar represents the normalized weight of each

property, where pink rectangles represent properties correlated with increased polyreactivity, and green rectangles represent properties correlated with

decreased polyreactivity.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Principal component analysis (PCA) applied to the full amino acid usage matrix and the top 75 discriminating vectors used for

linear discriminant analysis.

Figure supplement 2. Analysis using the same approach as Figure 4 applied to the complete dataset of 1053 polyreactive and non-polyreactive

antibodies highlights the expected decrease in classification accuracy when considering intermediate levels of polyreactivity.

Figure supplement 3. The complete representation of the 75 linear weights that most effectively separate polyreactive and non-polyreactive

sequences in the parsed complete dataset (A) and the parsed HIV dataset (B).
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HðXÞ ¼�
X

X

pðxÞ log2 pðxÞ (1)

where pðxÞ is the occurrence probability of a given event, and X is the set of all events. We can then

calculate this entropy at every position along the CDR loops, where X is the set of all amino acids,

and pðxÞ is the probability of seeing a specific amino acid at the given position. In other words, we

want to determine, for a given site in a CDR loop, how much diversity (or entropy) is present.

Figure 5A shows this Shannon entropy distribution for the full dataset of polyreactive and non-poly-

reactive antibodies. Given there are only 20 amino acids used in naturally derived antibodies, we can

calculate a theoretical maximum entropy of 4.2 bits, which assumes that every amino acid occurs at

a given position with equal probability. Although the observed entropy of the CDR3H loop

approaches this theoretical maximum, it hovers below it (3.5 Bits) due to the relative absence of the

amino acids cysteine and proline in the center of this loop. The difference in the entropy distribu-

tions in CDR1H are consistent with the bias in amino acid usage in this region, shown previously in

Figure 2.

Importantly, from this entropy we can calculate an equally interesting property of the dataset,

namely the mutual information. Mutual information is similar, but not identical to, correlation.

Whereas correlations are required to be linear, if two amino acids vary in any linked way, this will be

reflected as an increase in mutual information. In addition, due to some of the highly conserved resi-

dues in the non-CDR3H loops, high covariance can be achieved for residues that have not been spe-

cifically selected for in the germinal center. Using this information theory framework, these

conserved residues have a mutual information of 0. Overall, the mutual information can be used to

identify patterns in antibody sequences that were not readily evident through the previous analysis

in this or other studies. If there is some coevolution or crosstalk between residues undergoing some

selection pressure in the antibody maturation process, it will be reflected as an increase in the

mutual information. In this work, mutual information IðX; YÞ is calculated by subtracting the Shannon

entropy described above by the conditional Shannon entropy HðXjYÞ at each given position as seen

in Equations 2 and 3:

HðXjYÞ ¼�
X

y2Y

pðyÞ
X

x2X

pðxjyÞ log2 pðxjyÞ (2)

IðX;YÞ ¼HðXÞ�HðXjYÞ (3)

To orient ourselves in physical space, Figure 5B gives an example crystal structure (PDB: 5UGY)

(Whittle et al., 2011; Ziegler et al., 2014) highlighting the lateral arrangements of the CDR loops.

The matrix in Figure 5C shows that the mutual information between CDR loops on this binding sur-

face is increased in the heavy chains of polyreactive antibodies over non-polyreactive ones, suggest-

ing an increase in loop crosstalk in antibodies that exhibit polyreactivity. Interestingly, it appears that

there is a corresponding decrease of loop crosstalk in the light chains of polyreactive antibodies.

Importantly, this crosstalk is increased across and within all loops when analyzing the parsed dataset

(Figure 5—figure supplement 1). This observed crosstalk persists across all polyreactive antibodies

within all subsets of our tested dataset and is evident both in intra-loop and inter-loop interactions.

Figure 5D highlights some examples of the interesting significant differences of this crosstalk at dis-

tinct given positions within CDR1L, CDR1H, and CDR3H. A complete plot of the statistically signifi-

cant differences (p� 0:05) of Figure 5C shows that a large portion of these differences are in fact

significant (Figure 5—figure supplement 2).

The ordering of these entropy and information plots was chosen to reflect the spatial arrange-

ment of the loops on the antibody surface; as such they show also that mutual information between

loops drops off with physical distance between these loops. In other words, loops (and residues)

that are located close to each other will have more of an effect on their direct neighbors as opposed

to those that are more physically distant. This increased mutual information suggests that in the

heavy chains of polyreactive antibodies, there is enhanced cooperativity or co-evolution of the amino

acids of intra- and inter-CDR loop pairs.
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Figure 5. An information theoretic analysis of antibody sequences shows an increase in polyreactive antibody loop crosstalk. (A) The sequence diversity

of the polyreactive and non-polyreactive datasets, quantified using Shannon Entropy, highlight similar diversities between the two groups. (B) A crystal

structure (PDB: 5UGY) provides a visual representation of the lateral organization of the CDR loops on the antibody binding surface. (C) The difference

in mutual information between polyreactive and non-polyreactive sequences shows that CDR loops of the heavy chain have more crosstalk in

polyreactive antibodies. Each individual row represents the given condition, whereas each column gives the location the mutual information is

calculated. (D) Singular slices of the mutual information show the data in (C), projected from the matrix onto a line, highlighting the significance of the

differences at these particular locations. The positions of the ‘given’ amino acid, that is the particular Y in HðXjYÞ, are highlighted by gray boxes in

panel C. Solid black lines indicate where on the X-axis this ‘given’ amino acid is located. Stars indicate statistical significance (p � 0.05) calculated

through a nonparametric permutation test. Bars with a single star above represent contiguous regions of significance.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. An information theoretic analysis of the parsed antibody sequences shows an increase in polyreactive antibody loop crosstalk

that is more pronounced when compared to the full dataset.

Figure supplement 2. The statistical significance of the values reported in Figure 5C.
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Extension of the analysis to MHC and MHC-like molecules
Given the ability of this analysis pipeline to find nuanced differences between polyreactive and non-

polyreactive antibodies, we next sought to expand the range of applications of our approach. Exten-

sion of the pipeline to the analysis of TCR sequences is trivial, due to the similar arrangement of

CDR loops on the binding surface and the capability of IgBLAST to annotate TCR sequences

(Ye et al., 2013). Instead, we sought to significantly expand the scope of this software by applying a

similar approach to the analysis of MHC and MHC-like molecules. MHC molecules are encoded by a

large superfamily of genes that are spread throughout the genome (Adams and Parham, 2001;

Piertney and Oliver, 2006). MHC and MHC-like genes are found across a wide range of divergent

species, and these genes have diversified extensively over time, making the distinction between

orthologs and instances of convergent evolution difficult. In some cases, the divergence is extreme

enough that phylogenetics cannot provide predictions of function. Given that these MHC molecules

have evolved to present different antigen subtypes, such as lipid molecules in the case of CD1

proteins (Borg et al., 2007; Luoma et al., 2013; Adams, 2014), we explored the use of our pipeline

as a classifier based on biophysical properties rather than phylogeny. In achieving this new function-

ality, the critical step lies in the transformation of the MHC sequences into a numeric form as in

Figure 2A.

To accomplish this, we split the sequences by their most prominent structural features. For MHC

and MHC-like molecules, these features are the two b-strands and a-helices of the so-called platform

domain. As a test case, we use two example training classes; a representative list of human MHC

Class I molecules, and the output from a BLAST query on CD1d (Sayers et al., 2020). We can then

assess our ability to separate these two training classes, while also introducing a test class derived

from the data of Almeida et al. (Almeida et al., 2020). Each sequence within a given class is globally

aligned, and one representative sequence from each class is sent through the Phyre2 structural pre-

diction server (Kelley et al., 2015). We then use these structural predictions to identify the start and

end points of each major structural feature in the alignment space. These start and end points then

define the boundaries that are numerically encoded into our position-sensitive matrix, as seen in

Figure 6A.

Once the data are in this form, all downstream analysis outlined previously can be applied in a

similar manner. In this example case, we find that average biophysical properties across these

sequences reveal expected differences in hydrophobicity, with the lipid binding CD1 molecules dis-

playing increased hydrophobicity when compared to the peptide binding MHC class I molecules

(Figure 6B). Interestingly, unlike in the case of the antibody analysis, a simple PCA can effectively

discriminate between the two training classes in this example case. Figure 6C shows the projection

of the biophysical property data of each class onto the first two principal components. Here, we see

that the peptide binding molecules (HLA-E, HLA-A2, H2-D) and the lipid binding molecules (Human

CD1b, Chicken CD1) of the test dataset cluster with the respective peptide and lipid binding training

data. The majority of the data of Almeida et al., comprised of non-classical MHC class I molecules

from cartilaginous fish, clusters as its own distinct group, likely due to evolutionary distance between

these molecules and those derived from mammalian and avian immune systems.

Discussion
Previous research has highlighted the importance of hydrophobicity, charge, and CDR loop flexibility

on antibody specificity. In this work, we expand upon these previous results with a new bioinformatic

and biophysical characterization of polyreactive antibodies. The software generated for this study

provides a powerful computational tool which can be utilized by researchers interested in discerning

differences between populations of adaptive immune molecules in broad contexts. Building off of

the efforts of our own work and that of experimental collaborators, we were able to aggregate to

date one of the largest publicly available datasets of antibodies tested for polyreactivity. Differences

in the germline gene frequency and amino acid frequencies show there exists some underlying dif-

ferences between polyreactive and non-polyreactive antibodies. A surface level analysis of this data-

set is able to discriminate certain features of polyreactive and non-polyreactive antibodies, namely

that on average, polyreactive antibodies are less strongly negatively charged, less hydrophilic, and

have a higher prevalence of antibodies with longer CDR loops of the heavy chain. Importantly, how-

ever, these binding surfaces do not have a net positive charge nor are they net hydrophobic.
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Our results highlight an increase in VH1�69 gene usage in polyreactive antibodies, an interesting

finding given the substantial literature outlining its importance in diverse immune environments. In

addition to the aforementioned role of VH1�69 in broadly neutralizing anti-influenza and anti-HIV

antibodies (Haynes et al., 2005; Mouquet et al., 2011; Andrews et al., 2015; Prigent et al.,

2018), autoreactive chronic lymphocytic leukemic B cells commonly express receptors bearing

VH1�69 (Sasso et al., 1993; Forconi et al., 2010), and anti-HIV antibodies which target the mem-

brane-proximal external region of HIV-1 envelope glycoproteins frequently utilize

VH1�69 (IAVI Protocol G Investigators et al., 2019). While previous reports suggest that the key

feature permitting these auto-reactive or polyreactive interactions of VH1�69 is an exceptionally

hydrophobic CDR2H loop (Chen et al., 2019) our results suggest this does not explain the over-

representation of this antibody in the polyreactive dataset, as on average the CDR2H of polyreactive

antibodies is strongly hydrophilic. Instead, certain structural or dynamic features of the antibody may

contribute to its out-sized role in critical biological contexts.

To dig deeper into the biophysical differences between polyreactive and non-polyreactive anti-

bodies, we created an adaptable software for the automated analysis of large antibody datasets and

the application of a new analysis pipeline for the study of polyreactive antibodies. Overall, the

improvements of this software to the current state of antibody sequence analysis are sufficient to

highlight key differences in the two populations with improved spatial resolution. The position sensi-

tive sequence alignment is able to further parse through the genetic differences and show that in

general, polyreactive antibodies have a tendency to have more hydrophobic residues in CDR2H, and

a decreased preference for phenylalanine in CDR1H. While these observational differences provided

some initial insight, a more rigorous biophysical treatment was necessary. With the addition of 62

biophysical properties analyzed using the position sensitive alignment, significant differences

between the CDR3H loops in polyreactive and non-polyreactive antibodies become immediately evi-

dent, providing a more detailed depiction of the antigen binding surface of polyreactive antibodies.
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Figure 6. The analysis pipeline is flexible and sufficiently identifies differences between MHC Class I and CD1-like molecules, and has the potential to

be used as a classifier moving forward. (A) Similar to antibody sequences, the MHC and CD1 sequences can be encoded into a matrix. Here, we focus

on human Class I MHC molecules and CD1 molecules from various organisms, and use these sequences as training data to classify sequences collected

in Almeida et al., 2020.(B) Comparisons of simple biophysical properties across these molecular species highlight differences between classes. (C)

Projection of the biophysical properties of each class on to the first two principal components can be used to classify MHC- and CD1-like molecules.

Molecules present in Almeida et al., 2020 but absent from the training data are labeled.
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These data suggest a movement toward neutrality or ‘inoffensive’ residues in the CDR loops of

polyreactive antibodies: amino acids that are neither exceptionally hydrophobic nor hydrophilic and

with a net charge close to 0. Previous studies have suggested that polyreactive antibodies tend to

have more hydrophobic CDR loops, such that low-affinity Van der Waals interactions might be the

primary means of polyreactive interactions (Prigent et al., 2018; Starr and Tessier, 2019). However,

these studies counted the number of hydrophobic residues per sequence or averaged the hydropho-

bicity of all six CDR loops. While our results partially agree with these previous findings, our analysis

extends much further into defining the biophysical basis of this phenomenon. For example, while

our position sensitive representation of the sequences shows that CDR3H does become more hydro-

phobic in polyreactive sequences, it is still net hydrophilic on average. A highly hydrophobic binding

surface would provide an avenue for non-specific interactions with other hydrophobic proteins, but

it would occlude binding to highly hydrophilic ligands like DNA. A slightly hydrophilic, neutral-

charged binding surface would permit weak interactions with a wide range of ligands.

Using these and other biophysical properties as input feature vectors, we were able to generate a

generalizable protocol for binary comparisons between two distinct populations of Ig-domain

sequences. This framework is able to successfully split all tested polyreactive and non-polyreactive

antibody datasets. Care was taken to not overfit these data and a preliminary classifier built from

this algorithm was able to identify the proper number of input vectors for each LDA application.

While there are general features which best split the polyreactive and non-polyreactive antibodies in

these datasets, including charge, hydrophobicity, and a-helix propensity, these features alone are

not sufficient to discriminate between the two populations. Instead, 75 vectors taken from the posi-

tion-sensitive biophysical property matrix are necessary to properly split the groups, including both

simple properties like charge, hydrophobicity, flexibility, and bulkiness and more carefully curated

properties like the often used Kidera factors and the hotspot detecting variables of Liu

et al. (Kidera et al., 1985; Liu et al., 2018; Vihinen et al., 1994). The inability to arrive at a core few

biophysical properties that could effectively distinguish polyreactive and non-polyreactive antibodies

necessitated the application of further approaches, namely information theory.

The tools provided by information theory proved to be effective in the present study. The classic

approach to information theory considers some input, communication of this input across a noisy

channel, and then reception of a meaningful message from the resultant output. We can think of the

analogous case for these antibodies, whereby the sequence and structure of the antibodies can be

seen as our input, the thermal noise inherent to biological systems can complicate biochemical inter-

actions, and the necessary output is antigen recognition, i.e. binding between the antibody and the

ligand. Focusing just on the antibody side of this communication channel, we determined the under-

lying loop diversity through the Shannon entropy of the polyreactive and non-polyreactive datasets.

This diversity was found to be nearly equivalent while the mutual information, a metric of ‘crosstalk’

across populations, between and within CDR loops was found to be increased in the heavy chain

and decreased in the light chain of polyreactive antibodies. What this loop crosstalk entails physically

is not immediately clear from these measurements.

The mutual information increase could come from gene usage being somehow coupled, amino

acid usage coupling with the cognate ligand, or the amino acids directly interacting physically with

each other. In some way, this crosstalk appears to be selected for in the polyreactive population. If

this increase in mutual information manifests as an increase of charge-charge interactions, this could

explain why there is a minimal change in net charge of antibodies between the two groups, yet a sig-

nificant move toward neutrality in the CDR loops of polyreactive antibodies. The pairing of two

charged groups would help move the binding surface of polyreactive antibodies toward a more

‘inoffensive’ binding surface. A binding surface that is neither exceptionally hydrophobic nor hydro-

philic, and lacks a significant positive or negative charge, would represent a relatively appealing

binding interface for a low-affinity interaction with a large array of diverse ligands. A patchwork of

hydrophobic and hydrophilic non-charged residues exposed to potential ligands would provide an

ideal candidate polyreactive surface. The corresponding decrease in the mutual information between

the light chain CDR loops of polyreactive antibodies could be caused by a de-emphasis in the

involvement of these loops due to differential binding configurations of polyreactive ligands, as has

been previously hypothesized (Dimitrov et al., 2013; Sethi et al., 2006).

While further crystallographic, biochemical, and dynamic studies are necessary to identify the true

source of this increase in mutual information across polyreactive antibodies, we can speculate what
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these results may mean in the context of the results obtained using linear discriminant analysis. In

addition to standard side chain properties, many of the most important features for splitting poly-

reactive and non-polyreactive antibodies were structural in nature. Specifically, hotspot variables 6,

24, 25, and 41 all correspond to the structural tendencies of a given amino acid. Coupled with the

increase in side chain interactions that may be implied by the increased mutual information across

the loops of polyreactive antibodies, this potential for increased loop structure may suggest more

rigid CDR loops in polyreactive antibodies.

In addition to the insights into polyreactivity, the computational tools developed for this study

are broadly applicable to future studies of large antibody or T cell receptor repertoires. One of the

strengths of this approach is a decreased emphasis on structural information when crystal structures

are unavailable. Computational prediction of loop conformation is difficult, and drawing inferences

from incorrect models regarding side-chain interactions and positioning could be misleading. Reli-

able structural information on these polyreactive antibodies will be critical to a further understanding

of the mechanisms of polyreactivity, including complex structures of antibodies bound to various

ligands. In the high-throughput analysis of antibody sequences, our approach strikes a careful bal-

ance of the structural assumptions that should apply consistently across antibody populations.

Further experimental assays will be necessary to more comprehensively identify the underlying

mechanisms of polyreactivity, including further sequencing and biochemical analysis of polyreactive

and non-polyreactive antibodies. Antibodies specific to other pathogens or those from other organ-

isms tested for polyreactivity will help form a more complete picture and improve the generality of

the results. As with any machine learning based approach, the classification algorithm is only as

good as the data it is trained on. Adding further data in the training set, including more mutations

and germline reversions that turn a polyreactive antibody non-polyreactive or vice-versa, will be criti-

cal for a comprehensive analysis of polyreactivity. Additionally, a more robust assay for determining

polyreactivity such as a chip based screen to test for binding to many diverse targets, would greatly

broaden our perspective and help understand just how broadly reactive these polyreactive antibod-

ies are. Lastly, a more complete understanding of the germinal center and the selection processes

inherent to the affinity maturation process will assist in the determination of whether polyreactivity is

a byproduct or a purposeful feature of the affinity maturation process.

The software generated for this study is publicly available as a python application (see

Materials and methods). The unique aspect of this software is its hybrid approach to position-sensi-

tive amino acid sequence analysis. Structural information is implicitly encoded by the alignment strat-

egy employed, yet these assumptions are weaker than those imposed by explicit structural

prediction. Downstream analysis from this positional encoder is streamlined and can be generalized

to analyze any binary or higher order classification problems. This streamlined analysis allows for the

generation of each figure in this study to be applied to thousands of sequences in a matter of

minutes. The classification capabilities of the software could prove particularly useful when compar-

ing binary classes, such as T cell receptors or antibody sequences derived from healthy and diseased

tissue samples. Acceptable inputs are not restricted to CDR loops of immunoglobulins, and we have

shown that the software can be adapted for the analysis of MHC-like molecules. Moving forward,

this MHC analysis has the potential to classify the antigen binding properties of highly-divergent

MHC sequences from a broad range of species, providing insights where phylogenetic approaches

prove difficult. This software represents a strong addition to the existing toolkit for repertoire analy-

sis of diverse molecular species.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Software, algorithm Jupyter notebook DOI:10.3233/978-1-61499-649-1-87 RRID:SCR_018413 https://pypi.org/
project/jupyter-client/5.2.3/

Software, algorithm MatPlotLib DOI:10.1109/MCSE.2007.55 RRID:SCR_008624 http://matplotlib.sourceforge.net

Software, algorithm Seaborn DOI:10.5281/zenodo.12710 RRID:SCR_018132 https://seaborn.pydata.org/

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Software, algorithm Pandas https://github.com/
pandas-dev/pandas

RRID:SCR_018214 https://pandas.pydata.org

Software, algorithm SciPy DOI:10.1038/s41592-019-0686-2 RRID:SCR_008058 http://www.scipy.org/

Software, algorithm Scikit-Learn DOI:10.5555/1953048.2078195 RRID:SCR_002577 http://scikit-learn.org/

Software, algorithm AIMS This Paper Boughter et al. 2020 https://github.com/
ctboughter/AIMS

Software, algorithm TCRdist Dash et al., 2017
DOI:10.1038/nature22383

https://github.com/
phbradley/tcr-dist

Software, algorithm IgBLAST DOI:10.1093/nar/gkt382 RRID:SCR_002873 http://www.ncbi.nlm.nih.gov/igblast/

Software, algorithm BLAST DOI:10.1093/nar/gkv1290 RRID:SCR_004870 http://blast.ncbi.nlm.nih.gov/Blast.cgi

Software
All analyses were performed in python, with code tested and finalized using Jupyter

Notebooks (Kluyver et al., 2016). Figures were generated with MatPlotLib (Hunter, 2007) or

seaborn (Ziegler et al., 2014), while the majority of data analysis was carried out using

Pandas (McKinney, 2015), SciPy (Virtanen et al., 2020), and SciKit-learn (Pedregosa et al., 2011).

All code and data is available at https://github.com/ctboughter/AIMS, including the original Jupyter

Notebooks used to generate the data in this manuscript as well as generalized Notebooks and a

python-based GUI application for analysis of novel datasets (Boughter, 2020; copy archived at swh:

1:rev:f6c855ef4a7ce63f72dba6b34e9d0e9edd9200ce).

Statistical analysis
Error bars in all plots are provided by the standard deviation of 1000 bootstrap iterations. Statistical

significance is calculated using either a two-sided nonparametric Studentized bootstrap or a two-

sided nonparametric permutation test as outlined in ‘Bootstrap Methods and Their

Application’ (Davison and Hinkley, 2011). For the Studentized bootstrap, the bootstrapped data

are drawn from a resampling of the null distribution of the data, with replacement. Practically, this

entails combining the polyreactive and non-polyreactive antibodies into a single matrix, without

labels, and using the Scikit-learn resample module to randomly separate this matrix into two classes,

preserving the number of sequences in each population. To calculate bootstrapped averages, we

draw from the empirical rather than null distribution. Statistical significance is estimated by calculat-

ing the p-value using the relation:

p¼
1þ ]ðz2 � z2

0
Þ

Rþ 1
(4)

Here, we calculate the p-value by counting the number of bootstrap iterations where z2 is greater

than or equal to z2
0
:z2 and z2

0
are Studentized test statistics taken from the null and empirical and dis-

tributions, respectively. R is the number of times this bootstrapping process is repeated. The general

form of z is given by:

z¼
�Y2 � �Y1

ð
s
2

2

n2
�

s
1

1

n1
Þ1=2

(5)

where �Y represents the bootstrapped sample mean of each population, s is the bootstrapped sam-

ple standard deviation, and n is the number of samples. Populations 1 and 2 in this case correspond

to polyreactive and non-polyreactive antibodies. To calculate z for the empirical distribution (z0), all

values correspond to the empirical rather than bootstrapped values.

To calculate p-values for differences in mutual information, the permutation test was used rather

than the Studentized bootstrap. Here, the test statistic t is set to a simple difference of means, and

rather than sampling with replacement from the empirical or null distributions with replacement, we

randomly permute the data into ‘polyreactive’ or ‘non-polyreactive’ bins. We then count the number
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of permutations where the randomly permuted test statistic is greater than or equal to the empirical

test statistic. This count then replaces the count (#) in the above equation for p.
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Appendix 1

Appendix 1—table 1. List of all biophysical properties used for this study.

For hotspot detecting variables (HS) a simplified form of the description is used. For more in-depth

descriptions, the original reference should be used.

Property shorthand Description

Phob1 Hydrophobicity scale [�1,1]

Charge Charge [ec]

Phob2 Octanol-interface hydrophobicity scale

Bulk Side-chain bulkiness

Flex Side-chain flexibility

KD1 Helix/bend preference

KD2 Side-chain size

KD3 Extended structure preference

KD4 Hydrophobicity

KD5 Double-bend preference

KD6 Flat extended preference

KD7 Partial specific volume

KD8 Occurrence in alpha-region

KD9 pK-C

KD10 Surrounding hydrophobicity

HS1 Normalized positional residue Freq at helix C-term

HS2 Normalized positional residue Freq at helix C4-term

HS3 Spin-spin coupling constants

HS4 Random parameter

HS5 pK-N

HS6 Alpha-helix indices for beta-proteins

HS7 Linker propensity from 2-linker dataset

HS8 Linker propensity from long dataset

HS9 Normalized relative Freq of helix end

HS10 Normalized relative Freq of double bend

HS11 pK-COOH

HS12 Relative mutability

HS13 Kerr-constant increments

HS14 Net charge

HS15 Norm Freq Zeta-R

HS16 Hydropathy scale

HS17 Ratio of average computed composition

HS18 Intercept in regression analysis

HS19 Correlation coefficient in Reg Anal

HS20 Weights for alpha-helix at window pos

HS21 Weights for beta-sheet at window pos �3

HS22 Weights for beta-sheet at window pos 3

HS23 Weights for coil at win pos �5

Continued on next page
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Appendix 1—table 1 continued

Property shorthand Description

HS24 Weights coil win pos �4

HS25 Weights coil win pos 6

HS26 Avg Rel Frac occur in AL

HS27 Avg Rel Frac occur in EL

HS28 Avg Rel Frac occur in A0

HS29 Rel Pref at N

HS30 Rel Pref at N1

HS31 Rel Pref at N2

HS32 Rel Pref at C1

HS33 Rel Pref at C

HS34 Information measure for extended without H-bond

HS35 Information measure for C-term turn

HS36 Loss of SC hydropathy by helix formation

HS37 Principal component 4 (Sneath, 1966)

HS38 Zimm-Bragg parameter

HS39 Normalized Freq of ZetaR

HS40 Rel Pop conformational state A

HS41 Rel Pop conformational state C

HS42 Electron-ion interaction potential

HS43 Free energy change of epsI to epsEx

HS44 Free energy change of alphaRI to alphaRH

HS45 Hydrophobicity coeff

HS46 Principal property value z3 (Hellberg et al., 1987)
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