Cytoneme delivery of sonic hedgehog from ligand-producing cells requires Myosin 10 and a dispatched-BOC/CDON co-receptor complex

  1. Eric T Hall
  2. Miriam E Dillard
  3. Daniel P Stewart
  4. Yan Zhang
  5. Ben Wagner
  6. Rachel M Levine
  7. Shondra M Pruett-Miller
  8. April Sykes
  9. Jamshid Temirov
  10. Richard E Cheney
  11. Motomi Mori
  12. Camenzind G Robinson
  13. Stacey K Ogden  Is a corresponding author
  1. St. Jude Children's Research Hospital, United States
  2. St Jude Children's Research Hospital, United States
  3. University of North Carolina School of Medicine, United States

Abstract

Morphogens function in concentration-dependent manners to instruct cell fate during tissue patterning. The cytoneme morphogen transport model posits that specialized filopodia extend between morphogen-sending and responding cells to ensure that appropriate signaling thresholds are achieved. How morphogens are transported along and deployed from cytonemes, how quickly a cytoneme-delivered, receptor-dependent signal is initiated, and whether these processes are conserved across phyla are not known. Herein, we reveal that the actin motor Myosin 10 promotes vesicular transport of Sonic Hedgehog (SHH) morphogen in mouse cell cytonemes, and that SHH morphogen gradient organization is altered in neural tubes of Myo10-/- mice. We demonstrate that cytoneme-mediated deposition of SHH onto receiving cells induces a rapid, receptor-dependent signal response that occurs within seconds of ligand delivery. This activity is dependent upon a novel Dispatched (DISP)-BOC/CDON co-receptor complex that functions in ligand-producing cells to promote cytoneme occurrence and facilitate ligand delivery for signal activation.

Data availability

All data generated or analyzed during the study are included in the manuscript and supporting files. Source files are provided for Figure 2.

Article and author information

Author details

  1. Eric T Hall

    Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Miriam E Dillard

    Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniel P Stewart

    Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yan Zhang

    Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ben Wagner

    Cellular Imaging, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Rachel M Levine

    Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Shondra M Pruett-Miller

    Department of Cell and Molecular Biology, St Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3793-585X
  8. April Sykes

    Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jamshid Temirov

    Cell and Molecular Biology, St. Jude Children's Research Hospital, memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Richard E Cheney

    Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Motomi Mori

    Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Camenzind G Robinson

    Cell and Tissue Imaging, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7277-692X
  13. Stacey K Ogden

    Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
    For correspondence
    stacey.ogden@stjude.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8991-3065

Funding

National Institute of General Medical Sciences (R35GM122546)

  • Stacey K Ogden

National Institute of General Medical Sciences (R01GM134531)

  • Richard E Cheney

National Cancer Institute (P30 CA021765)

  • Camenzind G Robinson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Duojia Pan, UT Southwestern Medical Center and HHMI, United States

Ethics

Animal experimentation: The study was performed per recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animals were handled according to the approved institutional animal care and use committee protocol number 608-100616-10/19 of St. Jude Children's Research Hospital. All effort was made to minimize suffering.

Version history

  1. Received: July 25, 2020
  2. Accepted: February 10, 2021
  3. Accepted Manuscript published: February 11, 2021 (version 1)
  4. Version of Record published: March 17, 2021 (version 2)

Copyright

© 2021, Hall et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,554
    views
  • 505
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eric T Hall
  2. Miriam E Dillard
  3. Daniel P Stewart
  4. Yan Zhang
  5. Ben Wagner
  6. Rachel M Levine
  7. Shondra M Pruett-Miller
  8. April Sykes
  9. Jamshid Temirov
  10. Richard E Cheney
  11. Motomi Mori
  12. Camenzind G Robinson
  13. Stacey K Ogden
(2021)
Cytoneme delivery of sonic hedgehog from ligand-producing cells requires Myosin 10 and a dispatched-BOC/CDON co-receptor complex
eLife 10:e61432.
https://doi.org/10.7554/eLife.61432

Share this article

https://doi.org/10.7554/eLife.61432

Further reading

    1. Cell Biology
    Joanne Tung, Lei Huang ... Adriana Ordonez
    Research Article

    Activating transcription factor 6 (ATF6) is one of three endoplasmic reticulum (ER) transmembrane stress sensors that mediate the unfolded protein response (UPR). Despite its crucial role in long-term ER stress adaptation, regulation of ATF6 alpha (α) signalling remains poorly understood, possibly because its activation involves ER-to-Golgi and nuclear trafficking. Here, we generated an ATF6α/Inositol-requiring kinase 1 (IRE1) dual UPR reporter CHO-K1 cell line and performed an unbiased genome-wide CRISPR/Cas9 mutagenesis screen to systematically profile genetic factors that specifically contribute to ATF6α signalling in the presence and absence of ER stress. The screen identified both anticipated and new candidate genes that regulate ATF6α activation. Among these, calreticulin (CRT), a key ER luminal chaperone, selectively repressed ATF6α signalling: Cells lacking CRT constitutively activated a BiP::sfGFP ATF6α-dependent reporter, had higher BiP levels and an increased rate of trafficking and processing of ATF6α. Purified CRT interacted with the luminal domain of ATF6α in vitro and the two proteins co-immunoprecipitated from cell lysates. CRT depletion exposed a negative feedback loop implicating ATF6α in repressing IRE1 activity basally and overexpression of CRT reversed this repression. Our findings indicate that CRT, beyond its known role as a chaperone, also serves as an ER repressor of ATF6α to selectively regulate one arm of the UPR.

    1. Cancer Biology
    2. Cell Biology
    Alex Weiss, Cassandra D'Amata ... Madeline N Hayes
    Research Article

    High-throughput vertebrate animal model systems for the study of patient-specific biology and new therapeutic approaches for aggressive brain tumors are currently lacking, and new approaches are urgently needed. Therefore, to build a patient-relevant in vivo model of human glioblastoma, we expressed common oncogenic variants including activated human EGFRvIII and PI3KCAH1047R under the control of the radial glial-specific promoter her4.1 in syngeneic tp53 loss-of-function mutant zebrafish. Robust tumor formation was observed prior to 45 days of life, and tumors had a gene expression signature similar to human glioblastoma of the mesenchymal subtype, with a strong inflammatory component. Within early stage tumor lesions, and in an in vivo and endogenous tumor microenvironment, we visualized infiltration of phagocytic cells, as well as internalization of tumor cells by mpeg1.1:EGFP+ microglia/macrophages, suggesting negative regulatory pressure by pro-inflammatory cell types on tumor growth at early stages of glioblastoma initiation. Furthermore, CRISPR/Cas9-mediated gene targeting of master inflammatory transcription factors irf7 or irf8 led to increased tumor formation in the primary context, while suppression of phagocyte activity led to enhanced tumor cell engraftment following transplantation into otherwise immune-competent zebrafish hosts. Altogether, we developed a genetically relevant model of aggressive human glioblastoma and harnessed the unique advantages of zebrafish including live imaging, high-throughput genetic and chemical manipulations to highlight important tumor-suppressive roles for the innate immune system on glioblastoma initiation, with important future opportunities for therapeutic discovery and optimizations.