The metal cofactor zinc and interacting membranes modulate SOD1 conformation-aggregation landscape in an in vitro ALS Model

  1. Achinta Sannigrahi
  2. Sourav Chowdhury
  3. Bidisha Das
  4. Amrita Banerjee
  5. Animesh Halder
  6. Mohammed Saleem
  7. Athi N Naganathan
  8. Sanat Karmakar
  9. Krishnananda Chattopadhyay  Is a corresponding author
  1. CSIR-Indian Institute of Chemical Biology, India
  2. Harvard University, United States
  3. Jadavpur University, India
  4. National Institute of Science Education and Research (NISER), India
  5. Indian Institute of Technology Madras, India

Abstract

Aggregation of Cu-Zn superoxide dismutase (SOD1) is implicated in the motor neuron disease, ALS. Although more than 140 disease mutations of SOD1 are available, their stability or aggregation behaviors in membrane environment are not correlated with disease pathophysiology. Here, we use multiple mutational variants of SOD1 to show that the absence of Zn, and not Cu, significantly impacts membrane attachment of SOD1 through two loop regions facilitating aggregation driven by lipid induced conformational changes. These loop regions influence both the primary (through Cu intake) and the gain of function (through aggregation) of SOD1 presumably through a shared conformational landscape. Combining experimental and theoretical frameworks using representative ALS disease mutants, we develop a 'co-factor derived membrane association model' wherein mutational stress closer to the Zn (but not to the Cu) pocket is responsible for membrane association mediated toxic aggregation and survival time scale after ALS diagnosis.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Achinta Sannigrahi

    Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Sourav Chowdhury

    Chemistry and Chemical Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Bidisha Das

    Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Amrita Banerjee

    Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
    Competing interests
    The authors declare that no competing interests exist.
  5. Animesh Halder

    Department of Physics, Jadavpur University, Kolkata, India
    Competing interests
    The authors declare that no competing interests exist.
  6. Mohammed Saleem

    School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneshwar, India
    Competing interests
    The authors declare that no competing interests exist.
  7. Athi N Naganathan

    Biotechnology, Indian Institute of Technology Madras, Chennai, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1655-7802
  8. Sanat Karmakar

    Department of Physics, Jadavpur University, Kolkata, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7627-8904
  9. Krishnananda Chattopadhyay

    Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
    For correspondence
    krish@iicb.res.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1449-8909

Funding

University Grants Commission (Fellowship)

  • Achinta Sannigrahi

University Grants Commission (Fellowship)

  • Sourav Chowdhury

Department of Biotechnology, Ministry of Science and Technology, India (BT/PR8475/BRB/10/1248/2013)

  • Sanat Karmakar

Science and Engineering Research Board (EMR/2016/000310)

  • Krishnananda Chattopadhyay

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Sannigrahi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,592
    views
  • 438
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Achinta Sannigrahi
  2. Sourav Chowdhury
  3. Bidisha Das
  4. Amrita Banerjee
  5. Animesh Halder
  6. Mohammed Saleem
  7. Athi N Naganathan
  8. Sanat Karmakar
  9. Krishnananda Chattopadhyay
(2021)
The metal cofactor zinc and interacting membranes modulate SOD1 conformation-aggregation landscape in an in vitro ALS Model
eLife 10:e61453.
https://doi.org/10.7554/eLife.61453

Share this article

https://doi.org/10.7554/eLife.61453

Further reading

    1. Structural Biology and Molecular Biophysics
    Gabriel E Jara, Francesco Pontiggia ... Dorothee Kern
    Research Article

    Transition-state (TS) theory has provided the theoretical framework to explain the enormous rate accelerations of chemical reactions by enzymes. Given that proteins display large ensembles of conformations, unique TSs would pose a huge entropic bottleneck for enzyme catalysis. To shed light on this question, we studied the nature of the enzymatic TS for the phosphoryl-transfer step in adenylate kinase by quantum-mechanics/molecular-mechanics calculations. We find a structurally wide set of energetically equivalent configurations that lie along the reaction coordinate and hence a broad transition-state ensemble (TSE). A conformationally delocalized ensemble, including asymmetric TSs, is rooted in the macroscopic nature of the enzyme. The computational results are buttressed by enzyme kinetics experiments that confirm the decrease of the entropy of activation predicted from such wide TSE. TSEs as a key for efficient enzyme catalysis further boosts a unifying concept for protein folding and conformational transitions underlying protein function.

    1. Neuroscience
    2. Structural Biology and Molecular Biophysics
    Yangyu Wu, Yangyang Yan ... Fred J Sigworth
    Research Article

    We present near-atomic-resolution cryoEM structures of the mammalian voltage-gated potassium channel Kv1.2 in open, C-type inactivated, toxin-blocked and sodium-bound states at 3.2 Å, 2.5 Å, 3.2 Å, and 2.9 Å. These structures, all obtained at nominally zero membrane potential in detergent micelles, reveal distinct ion-occupancy patterns in the selectivity filter. The first two structures are very similar to those reported in the related Shaker channel and the much-studied Kv1.2–2.1 chimeric channel. On the other hand, two new structures show unexpected patterns of ion occupancy. First, the toxin α-Dendrotoxin, like Charybdotoxin, is seen to attach to the negatively-charged channel outer mouth, and a lysine residue penetrates into the selectivity filter, with the terminal amine coordinated by carbonyls, partially disrupting the outermost ion-binding site. In the remainder of the filter two densities of bound ions are observed, rather than three as observed with other toxin-blocked Kv channels. Second, a structure of Kv1.2 in Na+ solution does not show collapse or destabilization of the selectivity filter, but instead shows an intact selectivity filter with ion density in each binding site. We also attempted to image the C-type inactivated Kv1.2 W366F channel in Na+ solution, but the protein conformation was seen to be highly variable and only a low-resolution structure could be obtained. These findings present new insights into the stability of the selectivity filter and the mechanism of toxin block of this intensively studied, voltage-gated potassium channel.