The metal cofactor zinc and interacting membranes modulate SOD1 conformation-aggregation landscape in an in vitro ALS Model

  1. Achinta Sannigrahi
  2. Sourav Chowdhury
  3. Bidisha Das
  4. Amrita Banerjee
  5. Animesh Halder
  6. Mohammed Saleem
  7. Athi N Naganathan
  8. Sanat Karmakar
  9. Krishnananda Chattopadhyay  Is a corresponding author
  1. CSIR-Indian Institute of Chemical Biology, India
  2. Harvard University, United States
  3. Jadavpur University, India
  4. National Institute of Science Education and Research (NISER), India
  5. Indian Institute of Technology Madras, India

Abstract

Aggregation of Cu-Zn superoxide dismutase (SOD1) is implicated in the motor neuron disease, ALS. Although more than 140 disease mutations of SOD1 are available, their stability or aggregation behaviors in membrane environment are not correlated with disease pathophysiology. Here, we use multiple mutational variants of SOD1 to show that the absence of Zn, and not Cu, significantly impacts membrane attachment of SOD1 through two loop regions facilitating aggregation driven by lipid induced conformational changes. These loop regions influence both the primary (through Cu intake) and the gain of function (through aggregation) of SOD1 presumably through a shared conformational landscape. Combining experimental and theoretical frameworks using representative ALS disease mutants, we develop a 'co-factor derived membrane association model' wherein mutational stress closer to the Zn (but not to the Cu) pocket is responsible for membrane association mediated toxic aggregation and survival time scale after ALS diagnosis.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Achinta Sannigrahi

    Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Sourav Chowdhury

    Chemistry and Chemical Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Bidisha Das

    Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Amrita Banerjee

    Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
    Competing interests
    The authors declare that no competing interests exist.
  5. Animesh Halder

    Department of Physics, Jadavpur University, Kolkata, India
    Competing interests
    The authors declare that no competing interests exist.
  6. Mohammed Saleem

    School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneshwar, India
    Competing interests
    The authors declare that no competing interests exist.
  7. Athi N Naganathan

    Biotechnology, Indian Institute of Technology Madras, Chennai, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1655-7802
  8. Sanat Karmakar

    Department of Physics, Jadavpur University, Kolkata, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7627-8904
  9. Krishnananda Chattopadhyay

    Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
    For correspondence
    krish@iicb.res.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1449-8909

Funding

University Grants Commission (Fellowship)

  • Achinta Sannigrahi

University Grants Commission (Fellowship)

  • Sourav Chowdhury

Department of Biotechnology, Ministry of Science and Technology, India (BT/PR8475/BRB/10/1248/2013)

  • Sanat Karmakar

Science and Engineering Research Board (EMR/2016/000310)

  • Krishnananda Chattopadhyay

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Hannes Neuweiler, University of Würzburg, Germany

Version history

  1. Received: July 25, 2020
  2. Accepted: April 1, 2021
  3. Accepted Manuscript published: April 7, 2021 (version 1)
  4. Version of Record published: April 30, 2021 (version 2)

Copyright

© 2021, Sannigrahi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,061
    views
  • 384
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Achinta Sannigrahi
  2. Sourav Chowdhury
  3. Bidisha Das
  4. Amrita Banerjee
  5. Animesh Halder
  6. Mohammed Saleem
  7. Athi N Naganathan
  8. Sanat Karmakar
  9. Krishnananda Chattopadhyay
(2021)
The metal cofactor zinc and interacting membranes modulate SOD1 conformation-aggregation landscape in an in vitro ALS Model
eLife 10:e61453.
https://doi.org/10.7554/eLife.61453

Share this article

https://doi.org/10.7554/eLife.61453

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Shun Kai Yang, Shintaroh Kubo ... Khanh Huy Bui
    Research Article

    Acetylation of α-tubulin at the lysine 40 residue (αK40) by αTAT1/MEC-17 acetyltransferase modulates microtubule properties and occurs in most eukaryotic cells. Previous literatures suggest that acetylated microtubules are more stable and damage resistant. αK40 acetylation is the only known microtubule luminal post-translational modification site. The luminal location suggests that the modification tunes the lateral interaction of protofilaments inside the microtubule. In this study, we examined the effect of tubulin acetylation on the doublet microtubule (DMT) in the cilia of Tetrahymena thermophila using a combination of cryo-electron microscopy, molecular dynamics, and mass spectrometry. We found that αK40 acetylation exerts a small-scale effect on the DMT structure and stability by influencing the lateral rotational angle. In addition, comparative mass spectrometry revealed a link between αK40 acetylation and phosphorylation in cilia.

    1. Structural Biology and Molecular Biophysics
    Sebastian Jojoa-Cruz, Adrienne E Dubin ... Andrew B Ward
    Research Advance

    The dimeric two-pore OSCA/TMEM63 family has recently been identified as mechanically activated ion channels. Previously, based on the unique features of the structure of OSCA1.2, we postulated the potential involvement of several structural elements in sensing membrane tension (Jojoa-Cruz et al., 2018). Interestingly, while OSCA1, 2, and 3 clades are activated by membrane stretch in cell-attached patches (i.e. they are stretch-activated channels), they differ in their ability to transduce membrane deformation induced by a blunt probe (poking). Here, in an effort to understand the domains contributing to mechanical signal transduction, we used cryo-electron microscopy to solve the structure of Arabidopsis thaliana (At) OSCA3.1, which, unlike AtOSCA1.2, only produced stretch- but not poke-activated currents in our initial characterization (Murthy et al., 2018). Mutagenesis and electrophysiological assessment of conserved and divergent putative mechanosensitive features of OSCA1.2 reveal a selective disruption of the macroscopic currents elicited by poking without considerable effects on stretch-activated currents (SAC). Our results support the involvement of the amphipathic helix and lipid-interacting residues in the membrane fenestration in the response to poking. Our findings position these two structural elements as potential sources of functional diversity within the family.