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Abstract In ambiguous or conflicting sensory situations, perception is often ‘multistable’ in that it 
perpetually changes at irregular intervals, shifting abruptly between distinct alternatives. The interval 
statistics of these alternations exhibits quasi- universal characteristics, suggesting a general mech-
anism. Using binocular rivalry, we show that many aspects of this perceptual dynamics are repro-
duced by a hierarchical model operating out of equilibrium. The constitutive elements of this model 
idealize the metastability of cortical networks. Independent elements accumulate visual evidence at 
one level, while groups of coupled elements compete for dominance at another level. As soon as 
one group dominates perception, feedback inhibition suppresses supporting evidence. Previously 
unreported features in the serial dependencies of perceptual alternations compellingly corroborate 
this mechanism. Moreover, the proposed out- of- equilibrium dynamics satisfies normative constraints 
of continuous decision- making. Thus, multistable perception may reflect decision- making in a vola-
tile world: integrating evidence over space and time, choosing categorically between hypotheses, 
while concurrently evaluating alternatives.

Introduction
In deducing the likely physical causes of sensations, perception goes beyond the immediate sensory 
evidence and draws heavily on context and prior experience (von Helmholtz, 1867; Barlow et al., 
1972; Gregory, 1980; Rock, 1983). Numerous illusions in visual, auditory, and tactile perception – 
all subjectively compelling, but objectively false – attest to this extrapolation beyond the evidence. 
In natural settings, perception explores alternative plausible causes of sensory evidence by active 
readjustment of sensors (‘active perception,’ Mirza et al., 2016; Yang et al., 2018; Parr and Friston, 
2017a). In general, perception is thought to actively select plausible explanatory hypotheses, to 
predict the sensory evidence expected for each hypothesis from prior experience, and to compare the 
observed sensory evidence at multiple levels of scale or abstraction (‘analysis by synthesis,’ ‘predictive 
coding,’ ‘hierarchical Bayesian inference,’ Yuille and Kersten, 2006, Rao and Ballard, 1999, Parr and 
Friston, 2017b, Pezzulo et al., 2018). Active inference engages the entire hierarchy of cortical areas 
involved in sensory processing, including both feedforward and feedback projections (Bar, 2009; 
Larkum, 2013; Shipp, 2016; Funamizu et al., 2016; Parr et al., 2019).

The dynamics of active inference becomes experimentally observable when perceptual illusions 
are ‘multistable’ (Leopold and Logothetis, 1999). In numerous ambiguous or conflicting situations, 
phenomenal experience switches at irregular intervals between discrete alternatives, even though the 
sensory scene is stable (Necker, 2009; Wheatstone, 1838; Rubin, 1958; Attneave, 1971; Ramachan-
dran and Anstis, 2016; Pressnitzer and Hupe, 2006; Schwartz et al., 2012). Multistable illusions are 
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enormously diverse, involving visibility or audibility, perceptual grouping, visual depth or motion, and 
many kinds of sensory scenes, from schematic to naturalistic. Average switching rates differ greatly 
and range over at least two orders of magnitude (Cao et al., 2016), depending on sensory scene, 
perceptual grouping (Wertheimer, 1912; Koffka, 1935; Ternus, 1926), continuous or intermittent 
presentation (Leopold and Logothetis, 2002; Maier et al., 2003), attentional condition (Pastukhov 
and Braun, 2007), individual observer (Pastukhov et al., 2013c; Denham et al., 2018; Brascamp 
et al., 2019), and many other factors.

In spite of this diversity, the stochastic properties of multistable phenomena appear to be quasi- 
universal, suggesting that the underlying mechanisms may be general. Firstly, average dominance 
duration depends in a characteristic and counterintuitive manner on the strength of dominant and 
suppressed evidence (‘Levelt’s propositions I–IV,’ Levelt, 1965; Brascamp et al., 2006; Klink et al., 
2016; Kang, 2009; Brascamp et al., 2015; Moreno- Bote et al., 2010). Secondly, the statistical distri-
bution of dominance durations shows a stereotypical shape, resembling a gamma distribution with 
shape parameter  r ≃ 3 − 4  (‘scaling property,’ Cao et al., 2016; Fox and Herrmann, 1967; Blake 
et al., 1971; Borsellino et al., 1972; Walker, 1975; De Marco et al., 1977; Murata et al., 2003; 
Brascamp et al., 2005; Pastukhov and Braun, 2007; Denham et al., 2018; Darki and Rankin, 2021). 
Thirdly, the durations of successive dominance periods are correlated positively, over at least two or 
three periods (Fox and Herrmann, 1967; Walker, 1975; Van Ee, 2005; Denham et al., 2018).

Here, we show that these quasi- universal characteristics are comprehensively and quantitatively 
reproduced, indeed guaranteed, by an interacting hierarchy of birth- death processes operating out of 
equilibrium. While the proposed mechanism combines some of the key features of previous models, 
it far surpasses their explanatory power.

Several possible mechanisms have been proposed for perceptual dominance, the triggering of 
reversals, and the stochastic timing of reversals. That a single, coherent interpretation typically domi-
nates phenomenal experience is thought to reflect competition (explicit or implicit) at the level of 
explanatory hypotheses (e.g., Dayan, 1998), sensory inputs (e.g., Lehky, 1988), or both (e.g., Wilson, 
2003). That a dominant interpretation is occasionally supplanted by a distinct alternative has been 
attributed to fatigue processes (e.g., neural adaptation, synaptic depression, Laing and Chow, 2002), 
spontaneous fluctuations (‘noise,’ e.g., Wilson, 2007, Kim et al., 2006), stochastic sampling (e.g., 
Schrater and Sundareswara, 2006), or combinations of these (e.g., adaptation and noise, Shpiro 
et  al., 2009; Seely and Chow, 2011; Pastukhov et  al., 2013c). The characteristic stochasticity 
(gamma- like distribution) of dominance durations has been attributed to Poisson counting processes 
(e.g., birth- death processes, Taylor and Ladridge, 1974; Gigante et al., 2009; Cao et al., 2016) 
or stochastic accumulation of discrete samples (Murata et al., 2003; Schrater and Sundareswara, 
2006; Sundareswara and Schrater, 2008; Weilnhammer et al., 2017).

‘Dynamical’ models combining competition, adaptation, and noise capture well the characteristic 
dependence of dominance durations on input strength (‘Levelt’s propositions’) (Laing and Chow, 
2002; Wilson, 2007; Ashwin and Aureliu, 2010), especially when inputs are normalized (Moreno- 
Bote et al., 2007; Moreno- Bote et al., 2010; Cohen et al., 2019), and when the dynamics emphasize 
noise (Shpiro et al., 2009; Seely and Chow, 2011; Pastukhov et al., 2013c). However, such models 
do not preserve distribution shape over the full range of input strengths (Cao et al., 2016; Cohen 
et al., 2019). On the other hand, ‘sampling’ models based on discrete random processes preserve 
distribution shape (Taylor and Ladridge, 1974; Murata et al., 2003; Schrater and Sundareswara, 
2006; Sundareswara and Schrater, 2008; Cao et al., 2016; Weilnhammer et al., 2017), but fail to 
reproduce the dependence on input strength. Neither type of model accounts for the sequential 
dependence of dominance durations (Laing and Chow, 2002).

Here, we reconcile ‘dynamical’ and ‘sampling’ approaches to multistable perception, extending 
an earlier effort (Gigante et al., 2009). Importantly, every part of the proposed mechanism appears 
to be justified normatively in that it may serve to optimize perceptual choices in a general behavioral 
situation, namely, continuous inference in uncertain and volatile environments (Bogacz, 2007; Veliz- 
Cuba et  al., 2016). We propose that sensory inputs are represented by birth- death processes in 
order to accumulate sensory information over time and in a format suited for Bayesian inference (Ma 
et al., 2006; Pouget et al., 2013). Further, we suggest that explanatory hypotheses are evaluated 
competitively, with a hypothesis attaining dominance (over phenomenal experience) when its support 
exceeds the alternatives by a certain finite amount, consistent with optimal decision- making between 
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multiple alternatives (Bogacz, 2007). Finally, we assume that a dominant hypothesis suppresses its 
supporting evidence, as required by ‘predictive coding’ implementations of hierarchical Bayesian 
inference (Pearl, 1988; Rao and Ballard, 1999; Hohwy et al., 2008). In contrast to many previous 
models, we do not require a local mechanisms of fatigue, adaptation, or decay.

Based on these assumptions, the proposed mechanism reproduces dependence on input strength, 
as well as distribution of dominance durations and positive sequential dependence. Additionally, it 
predicts novel and unsuspected dynamical features confirmed by experiment.

Results
Below we introduce each component of the mechanism and its possible normative justification, before 
describing out- of- equilibrium dynamics resulting from the interaction of all components. Subse-
quently, we compare model predictions with multistable perception of human observers, specifi-
cally, the dominance statistics of binocular rivalry (BR) at various combinations of left- and right- eye 
contrasts (Figure 1a).

Hierarchical dynamics
Bistable assemblies: ‘local attractors’
As operative units of sensory representation, we postulate neuronal assemblies with bistable ‘attractor’ 
dynamics. Effectively, assembly activity moves in an energy landscape with two distinct quasi- stable 
states – dubbed ‘on’ and ‘off’ – separated by a ridge (Figure 1b). Driven by noise, assembly activity 
mostly remains near one quasi- stable state (‘on’ or ‘off’), but occasionally ‘escapes’ to the other state 
(Kramers, 1940; Hanggi et al., 1990; Deco and Hugues, 2012; Litwin- Kumar and Doiron, 2012; 
Huang and Doiron, 2017).

An important feature of ‘attractor’ dynamics is that the energy of quasi- stable states depends 
sensitively on external input. Net positive input destabilizes (i.e., raises the potential of) the ‘off’ state 
and stabilizes (i.e., lowers the potential of) the ‘on’ state. Transition rates  ν±  are even more sensitive 
to external input as they depend approximately exponentially on the height of the energy ridge (‘acti-
vation energy’).

Figure 1b illustrates ‘attractor’ dynamics for an assembly of 150 spiking neurons with activity levels 
of approximately  7 Hz  and  21 Hz  per neuron in the ‘off’ and ‘on’ states, respectively. Full details are 
provided in Appendix 1, section Metastable population dynamics, and Appendix 1—figure 2.

Binary stochastic variables
Our model is independent of neural details and relies exclusively on an idealized description of 
‘attractor’ dynamics. Specifically, we reduce bistable assemblies to discretely stochastic, binary activity 
variables  x(t) ∈ {0, 1} , which activate and inactivate with Poisson rates  ν+  and  ν− , respectively. These 
rates  ν

±(s)  vary exponentially and anti- symmetrically with increments or decrements of activation 
energy  ∆u = u(s) + u0

 :

 
ν+ =

ν

2
exp

(
∆u
2

)
, ν− =

ν

2
exp

(
−∆u

2

)

  
(1)

where  u0  and  ν  are baseline potential and baseline rate, respectively, and where the input- 
dependent part  u(s) = ws  varies linearly with input  s , with synaptic coupling constant  w  (see Appendix 
1, section Metastable population dynamics and Appendix 1—figure 2e).

Pool of  N   binary variables
An extended network, containing  N   individually bistable assemblies with shared input  s , reduces to 
a ‘pool’ of  N   binary activity variables  xi(t) ∈ {0, 1}  with identical rates  ν±(s) . Although all variables 
are independently stochastic, they are coupled through their shared input  s . The number of active 
variables  n(t) =

∑
i xi(t)  or, equivalently, the active fraction  x(t) = n(t)/N  , forms a discretely stochastic 

process (‘birth- death’ or ‘Ehrenfest’ process; Karlin and McGregor, 1965).
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Figure 1. Proposed mechanism of binocular rivalry. (a) When the left and right eyes see incompatible images in the visual field, phenomenal 
appearance reverses at irregular intervals, sometimes being dominated by one image and sometimes by the other (gray and white regions). Sir Charles 
Wheatstone studied this multistable percept with a mirror stereoscope (not as shown!). (b) Spiking neural network implementation of a ‘local attractor.’ 
An assembly of 150 neurons (schematic, dark gray circle) interacts competitively with multiple other assemblies (light gray circles). Population activity 
of the assembly explores an effective energy landscape (right) with two distinct steady states (circles), separated by a ridge (diamond). Driven by 
noise, activity transitions occasionally between ‘on’ and ‘off’ states (bottom), with transition rates  ν±  depending sensitively on external input to the 
assembly (not shown). Here,  ν+ = ν− ≈ 1 Hz . Spike raster shows 10 representative neurons. (c) Nested attractor dynamics (central schematic) that 
quantitatively reproduces the dynamics of binocular rivalry (left and right columns). Independently bistable variables (‘local attractors,’ small circles) 
respond probabilistically to input, transitioning stochastically between on- and off- states (red/blue and white, respectively). The entire system comprises 
four pools, with 25 variables each, linked by excitatory and inhibitory projections. Phenomenal appearance is decided by competition between decision 
pools  R  and  R′  forming ‘non- local attractors’ (cross- inhibition  wcomp  and self- excitation  wcoop ). Visual input  c  and  c′  accumulates, respectively, in evidence 
pools  E   and  E′  and propagates to decision pools (feedforward selective excitation  wexc  and indiscriminate inhibition  winh ). Decision pools suppress 
associated evidence pools (feedback selective suppression  wsupp ). The time course of the number of active variables (active count) is shown for decision 
pools (top left and right) and evidence pools (bottom left and right), representing the left eye (red traces) and the right eye image (blue traces). The 
state of individual variables (black horizontal traces in left and middle columns) and of perceptual dominance (gray and white regions) is also shown. In 
decision pools, almost all variables become active (black trace) or inactive (no trace) simultaneously. In evidence pools, only a small fraction of variables 
is active at any given time. (d) Fractional activity dynamics of decision pools  R  and  R′  (top, red and blue traces) and evidence pools  E   and  E′  (bottom, 
red and blue traces). Reversals of phenomenal appearance are also indicated (gray and white regions).
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Relaxation dynamics
While activity  x(t)  develops discretely and stochastically according to Equation 5 (Materials and 
methods), its expectation  ⟨x(t)⟩  develops continuously and deterministically,

 ⟨ẋ⟩ =
(
1 − ⟨x⟩

)
ν+ − ⟨x⟩ν−  (2)

relaxing with characteristic time  τx = 1
ν++ν−   towards asymptotic value  x∞ = ν+

ν++ν−  . As rates  ν±  
change with input  s  (Equation 1), we can define the functions  τs = Υ(s)  and  x∞ = Φ(s)  (see Materials 
and methods). Characteristic time  τx  is longest for small input  s ≃ 0  and shortens for larger positive or 
negative input  |s| ≫ 0 . The asymptotic value  x∞  ranges over the interval (0, 1) and varies sigmoidally 
with input  s , reaching half- activation for  s = −u0/w .

Quality of representation
Pools of bistable variables belong to a class of neural representations particularly suited for Bayesian 
integration of sensory information (Beck et al., 2008; Pouget et al., 2013). In general, summation 
of activity is equivalent to optimal integration of information, provided that response variability is 
Poisson- like, and response tuning differs only multiplicatively (Ma et al., 2006; Ma et al., 2008). Pools 
of bistable variables closely approximate these properties (see Appendix 1, section Quality of repre-
sentation: Suitability for inference).

The representational accuracy of even a comparatively small number of bistable variables can be 
surprisingly high. For example, if normally distributed inputs drive the activity of initially inactive pools 
of bistable variables, pools as used in the present model ( N = 25 ,  w = 2.5 ) readily capture 90% of the 
Fisher information (see Appendix 1, section Quality of representation: Integration of noisy samples).

Conflicting evidence
Any model of BR must represent the conflicting evidence from both eyes (e.g., different visual orienta-
tions), which supports alternative perceptual hypotheses (e.g., distinct grating patterns). We assume that 
conflicting evidence accumulates in two separate pools of  N = 25  bistable variables,  E  and  E′ , (‘evidence 
pools,’ Figure 1c). Fractional activations  e(t)  and  e′(t)  develop stochastically following Equation 5 (Mate-
rials and methods). Transition rates  ν

±
e   and  ν

±
e′   vary exponentially with activation energy (Equation 1), 

with baseline potential  u0
e   and baseline rate  νe . The variable components of activation energy,  ue  and  ue′ , 

are synaptically modulated by image contrasts,  c  and  c′ :

 

ue = wvis I,
ue′ = wvis I′  

(3)

where  wvis  is a coupling constant and  I = f(c) ∈ [0, 1]  is a monotonic function of image contrast  c  
(see Materials and methods).

Competing hypotheses: ‘non-local attractors’
Once evidence for, and against, alternative perceptual hypotheses (e.g., distinct grating patterns) has 
been accumulated, reaching a decision requires a sensitive and reliable mechanism for identifying the 
best supported hypothesis and amplifying the result into a categorical read- out. Such a winner- take- all 
decision (Koch and Ullman, 1985) is readily accomplished by a dynamical version of biased competi-
tion (Deco and Rolls, 2005; Wang, 2002; Deco et al., 2007; Wang, 2008).

We assume that alternative perceptual hypotheses are represented by two further pools of  N = 25  
bistable variables,  R  and  R′ , forming two ‘non- local attractors’ (‘decision pools,’ Figure 1c). Similar to 
previous models of decision- making and attentional selection (Deco and Rolls, 2005; Wang, 2002; 
Deco et al., 2007; Wang, 2008), we postulate recurrent excitation within pools, but recurrent inhi-
bition between pools, to obtain a ‘winner- take- all’ dynamics. Importantly, we assume that ‘evidence 
pools’ project to ‘decision pools’ not only in the form of selective excitation (targeted at the corre-
sponding decision pool), but also in the form of indiscriminate inhibition (targeting both decision 
pools), as suggested previously (Ditterich et al., 2003; Bogacz et al., 2006).

Specifically, fractional activations  r(t)  and  r′(t)  develop stochastically according to Equation 
5 (Materials and methods). Transition rates  ν

±
s   and  ν

±
s′   vary exponentially with activation energy 
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(Equation 1), with baseline difference  u0
r   and baseline rate  νr . The variable components of activation 

energy,  ur  and  ur′ , are synaptically modulated by evidence and decision activities:

 

ur = wexc e − winh
(
e + e′

)
+ wcoop r − wcomp r′

ur′ = wexc e′ − winh
(
e + e′

)
+ wcoop r′ − wcomp r  

(4)

where coupling constants  wexc ,  winh ,  wcoop ,  wcomp  reflect feedforward excitation, feedforward inhi-
bition, lateral cooperation within decision pools, and lateral competition between decision pools, 
respectively.

This biased competition circuit expresses a categorical decision by either raising  r  towards unity 
(and lowering  r′  towards zero) or vice versa. The choice is random when visual input is ambiguous, 
 I ≃ I′ , but becomes deterministic with growing input bias  |I − I′| > 0  . This probabilistic sensitivity to 
input bias is reliable and robust under arbitrary initial conditions of  e ,  e′ ,  r  and  r′  (see Appendix 1, 
section Categorical choice with Appendix 1—figure 3).

Feedback suppression
Finally, we assume feedback suppression, with each decision pool selectively targeting the corre-
sponding evidence pool. A functional motivation for this systematic bias against the currently domi-
nant appearance is given momentarily. Its effects include curtailment of dominance durations and 
ensuring that reversals occur from time to time. Specifically, we modify Equation 3 to

 

ue = wvis f(c) − wsupp r
ue′ = wvis f(c′) − wsupp r′  

(3a)

where  wsupp  is a coupling constant.

Previous models of BR (Dayan, 1998; Hohwy et  al., 2008) have justified selective feedback 
suppression of the evidence supporting a winning hypothesis in terms of ‘predictive coding’ and 
‘hierarchical Bayesian inference’ (Rao and Ballard, 1999; Lee and Mumford, 2003). An alternative 
normative justification is that, in volatile environments, where the sensory situation changes frequently 
(‘volatility prior’), optimal inference requires an exponentially growing bias against evidence for the 
most likely hypothesis (Veliz- Cuba et al., 2016). Note that feedback suppression applies selectively to 
evidence for a winning hypothesis and is thus materially different from visual adaptation (Wark et al., 
2009), which applies indiscriminately to all evidence present.

Reversal dynamics
A representative example of the joint dynamics of evidence and decision pools is illustrated in 
Figure 1c,d, both at the level of pool activities  e(t) ,  e′(t) ,  r(t) ,  r′(t) , and at the level of individual 
bistable variables  x(t) . The top row shows decision pools  R  and  R′ , with instantaneous active counts, 

 Nr(t)  and  Nr′(t)  and active/inactive states of individual variables  x(t) . The bottom row shows evidence 
pools  E  and  E′ , with instantaneous active counts,  Ne(t)  and  Ne′(t)  and active/inactive states of indi-
vidual variables  x(t) . Only a small fraction of evidence variables is active at any one time.

Phenomenal appearance reverses when the differential activity  ∆e = e − e′  of evidence pools,  E  
and  E′ , contradicts sufficiently strongly the differential activity  ∆r = r − r′  of decision pools,  R  and 
 R′ , such that the steady state of decision pools is destabilized (see further below and Figure 4). As 
soon as the reversal has been effected at the decision level, feedback suppression lifts from the newly 
non- dominant evidence and descends upon the newly dominant evidence. Due to this asymmetric 
suppression, the newly non- dominant evidence recovers, whereas the newly dominant evidence habit-
uates. This opponent dynamics progresses, past the point of equality  s ≃ s′ , until differential evidence 
activity  ∆e  once again contradicts differential decision activity  ∆r . Whereas the activity of decision 
pools varies in phase (or counterphase) with perceptual appearance, the activity of evidence pools 
changes in quarterphase (or negative quarterphase) with perceptual appearance (e.g., Figures 1c,d, 
2a), consistent with some previous models (Gigante et al., 2009; Albert et al., 2017; Weilnhammer 
et al., 2017).

https://doi.org/10.7554/eLife.61581
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Binocular rivalry
To compare predictions of the model described above to experimental observations, we measured 
spontaneous reversals of BR for different combinations of image contrast. BR is a particularly well- 
studied instance of multistable perception (Wheatstone, 1838; Diaz- Caneja, 1928; Levelt, 1965; 
Leopold and Logothetis, 1999; Brascamp et al., 2015). When conflicting images are presented to 
each eye (e.g., by means of a mirror stereoscope or of colored glasses, see Materials and methods), 
the phenomenal appearance reverses from time to time between the two images (Figure 1a). Impor-
tantly, the perceptual conflict involves also representations of coherent (binocular) patterns and is not 
restricted to eye- specific (monocular) representations (Logothetis et al., 1996; Kovács et al., 1996; 
Bonneh et al., 2001; Blake and Logothetis, 2002).

Specifically, our experimental observations established reversal sequences for  5 × 5  combinations 
of image contrast,  cdom, csup ∈ { 1

16 , 1
8 , 1

4 , 1
2 , 1} . During any given dominance period,  cdom  is the contrast 

of the phenomenally dominant image and  csup  the contrast of the other, phenomenally suppressed 
image (see Materials and methods). We analyzed these observations in terms of mean dominance 
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e′∞
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e′∞
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Figure 2. Joint dynamics of evidence habituation and recovery. Exponential development of evidence activities is governed by input- dependent 
asymptotic values and characteristic times. (a) Fractional activities  e  (blue traces) and  e′  (red traces) of evidence pools  E  and  E  , respectively, over several 
dominance periods for unequal stimulus contrast ( c = 7

8 , c′ = 1
8 ). Stochastic reversals of finite system ( N = 25  units per pool, left) and deterministic 

reversals of infinite system ( N  , right). Perceptual dominance (decision activity) is indicated along the upper margin (red or blue stripe). Dominance 
evidence habituates (dom), and non- dominant evidence recovers (sup), until evidence contradicts perception sufficiently (black vertical lines) to trigger 
a reversal (gray and white regions). (b) Development of stronger- input evidence  e  (blue) and weaker- input evidence  e′  (red) over two successive 
dominance periods ( c = 15

16 , c′ = 1
16 ). Activities recover, or habituate, exponentially until reversal threshold  ∆rev  is reached. Thin curves extrapolate to 

the respective asymptotic values,  e∞  and  e′∞ . Dominance durations depend on distance  ∆∞  and on characteristic times  τe  and  τe′ . Left: incrementing 
non- dominant evidence  e  (dashed curve) raises upper asymptotic value  e∞  and shortens dominance  T′  by  ∆T′ . Right: incrementing dominant evidence 
 e  (dashed curve) raises lower asymptotic value  e∞  and shortens dominance  T   by  ∆T  . (c) Increasing asymptotic activity difference  ∆∞  accelerates 
the development of differential activity and curtails dominance periods  T  ,  T′  (and vice versa). As the dependence is hyperbolic, any change to  ∆∞  
disproportionately affects longer dominance periods. If  T > T′ , then  ∆T > ∆T′  (and vice versa).
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durations  ⟨T⟩ , higher moments  cV   and  γ1/cV   of the distribution of dominance durations, and sequen-
tial correlation  cc1  of successive dominance durations.

Additional aspects of serial dependence are discussed further below.
As described in Materials and methods, we fitted 11 model parameters to reproduce observations with 

more than 50 degrees of freedom:  5 × 5  mean dominance durations  ⟨T⟩ ,  5 × 5  coefficients of variation 

 cV  , one value of skewness  γ1/cV = 2 , and one correlation coefficient  cc1 = 0.06 . The latter two values 
were obtained by averaging over  5 × 5  contrast combinations and rounding. Importantly, minimization 
of the fit error, by random sampling of parameter space with a stochastic gradient descent, resulted 
in a three- dimensional manifold of suboptimal solutions. This revealed a high degree of redundancy 
among the 11 model parameters (see Materials and methods). Accordingly, we estimate that the effec-
tive number of degrees of freedom needed to reproduce the desired out- of- equilibrium dynamics was 
between 3 and 4. Model predictions and experimental observations are juxtaposed in Figures 3 and 4.

The complex and asymmetric dependence of mean dominance durations on image contrast — 
aptly summarized by Levelt’s ‘propositions’ I to IV (Levelt, 1965; Brascamp et al., 2015) — is fully 
reproduced by the model (Figure 3). Here, we use the updated definition of Brascamp et al., 2015: 
increasing the contrast of one image increases the fraction of time during which this image dominates 
appearance (‘predominance,’ Levelt I). Counterintuitively, this is due more to shortening dominance of 
the unchanged image than to lengthening dominance of the changed image (Levelt II, Figure 3b, left 
panel). Mean dominance durations grow (and alternation rates decline) symmetrically around equal 
predominance as contrast difference  cdom − csup  increases (Levelt III, Figure 3b, right panel). Mean 
dominance durations shorten when both image contrasts  cdom = csup  increase (Levelt IV, Figure 3c).

Successive dominance durations are typically correlated positively (Fox and Herrmann, 1967; 
Walker, 1975; Pastukhov et al., 2013c). Averaging over all contrast combinations, observed and 
fitted correlation coefficients were comparable with  cc1 = 0.06 ± 0.06  (mean and standard devia-
tion). Unexpectedly, both observed and fitted correlations coefficients increased systematically with 
image contrast ( ρ = 0.9 ,  p < .01 ), growing from  cc1 = 0.02 ± 0.05  at  cdom = csup = 1

16  to  0.21 ± 0.06  
at  cdom = cdom = 1  (Figure 3e, blue symbols). It is important to that this dependence was not fitted. 

Model

0.1

0.2

Al
te

rn
at

io
n 

ra
te

 (1
/s

)

0

3

6

0

0

0.1

0.2

10 100
c  (%)dom

10

100

50

50

c
 (%

)
su

p

Experiment

10 100
c  (%)dom

50

M
ea

n 
du

ra
tio

n 
(s

)

0

3

6

a

10 100
Contrast, c  (%)dom/sub

50

b

10 100
c  = c  (%)dom sup

50

mod.sup. dom.
exp.

mod.sup. = dom.
exp.

Levelt I & II Levelt IVLevelt III c

10 100
c  = 100 - c  (%)dom sup

50

C
or

re
la

tio
n 

, C
C

1

10 100
c  = c  (%)dom sup

50

Model

10 100
c  (%)dom

10

100

50

50

c
 (%

)
su

p

d

0.2

C
or

re
la

tio
n,

 C
C

1

0

3

6

ρ=0.9, p<0.01

M
ea

n 
du

ra
tio

n 
〈T
〉

 (s
)

M
ea

n 
du

ra
tio

n 
〈T
〉

 (s
)

e

N=25 N=40

Figure 3. Dependence of mean dominance duration on dominant and suppressed image contrast (‘Levelt’s propositions’). (a) Mean dominance 
duration  ⟨T⟩  (color scale), as a function of dominant contrast  cdom  and suppressed contrast  csup , in model (left) and experiment (right). (b) Model 
prediction (solid traces) and experimental observation (dashed traces and symbols) compared. Levelt I and II: weak increase of  ⟨T⟩  with  cdom  when 

 csup = 1  (red traces and symbols), and strong decrease with  csup  when  cdom = 1  (brown traces and symbols). Levelt III: symmetric increase of  ⟨T⟩  with 

 cdom  (orange traces and symbols) and decrease with  csup  (brown traces and symbols), when  cdom + cdom = 1 . Alternation rate (green traces and symbols) 
peaks at equidominance and decreases symmetrically to either side. (c) Levelt IV: decrease of  ⟨T⟩  with image contrast, when  csup = cdom . (d) Predicted 
dependence of sequential correlation  cc1  (color scale) on  cdom  and  csup . (e) Model prediction (black trace,  N = 25 ) and experimental observation (blue 
trace and symbols, mean ± SEM, Spearman’s rank correlation ρ), when  csup = cdom . Also shown is a second model prediction (red trace,  N = 40 ).
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Rather, this previously unreported dependence constitutes a model prediction that is confirmed by 
observation.

The distribution of dominance durations typically takes a characteristic shape (Cao et al., 2016; 
Fox and Herrmann, 1967; Blake et al., 1971; Borsellino et al., 1972; Walker, 1975; De Marco 
et al., 1977; Murata et al., 2003; Brascamp et al., 2005; Pastukhov and Braun, 2007; Denham 
et al., 2018), approximating a gamma distribution with shape parameter  r ≃ 3 − 4 , or coefficient of 
variation  cV = 1/

√
r ≃ 0.5 − 0.6 . The fitted model fully reproduces this ‘scaling property’ (Figure 4). The 

observed coefficient of variation remained in the range  cV ≃ 0.05 − 0.06  for nearly all contrast combi-
nations (Figure 4b). Unexpectedly, both observed and fitted values increased above, or decreased 
below, this range at extreme contrast combinations (Figure 4b, left panel). Along the main diagonal 

 cdom = csup  , where observed values had smaller error bars, both observed and fitted values of skewness 
were  γ1/cV ≃ 2  and thus approximated a gamma distribution (Figure 4d, blue symbols).

Specific contribution of evidence and decision levels
What are the reasons for the surprising success of the model in reproducing universal characteristics 
of multistable phenomena, including the counterintuitive input dependence (‘Levelt’s propositions’), 
the stereotypical distribution shape (‘scaling property’), and the positive sequential correlation (as 
detailed in Figures 3 and 4)? Which level of model dynamics is responsible for reproducing different 
aspects of BR dynamics?

Below, we describe the specific contributions of different model components. Specifically, we show 
that the evidence level of the model reproduces ‘Levelt’s propositions I–III’ and the ‘scaling prop-
erty,’ whereas the decision level reproduces ‘Levelt’s proposition IV.’ A non- trivial interaction between 
evidence and decision levels reproduces serial dependencies. Additionally, we show that this interac-
tion predicts further aspects of serial dependencies – such as sensitivity to image contrast – that were 
not reported previously, but are confirmed by our experimental observations.
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Levelt’s propositions I, II, and III
The characteristic input dependence of average dominance durations emerges in two steps (as in 
Gigante et  al., 2009). First, inputs and feedback suppression shape the birth- death dynamics of 
evidence pools  E  and  E′  (by setting disparate transition rates  ν± , following Equation 3’ and Equa-
tion 1). Second, this sets in motion two opponent developments (habituation of dominant evidence 
activity and recovery of non- dominant evidence activity, both following Equation 2) that jointly deter-
mine dominance duration.

To elucidate this mechanism, it is helpful to consider the limit of large pools ( N → ∞ ) and its 
deterministic dynamics (Figure 2), which corresponds to the average stochastic dynamics. In this limit, 
periods of dominant evidence  E  or  E′  start and end at the same levels ( estart = e′start  and  eend = e′end ), 
because reversal thresholds  ∆rev  are the same for evidence difference  e − e′  and  e′ − e  (see section 
Levelt IV below).

The rates at which evidence habituates or recovers depend, in the first instance, on asymptotic 
levels  e∞  and  e′∞  (Equation 1 and 2, Figure  2b and Appendix  1—figure 4). In general, domi-
nance durations depend on distance  ∆∞  between asymptotic levels: the further apart these are, the 
faster the development and the shorter the duration. As feedback suppression inverts the sign of the 
opponent developments, dominant evidence decreases (habituates) while non- dominant evidence 
increases (recovers). Due to this inversion,  ∆∞  is roughly proportional to  enon−dom

∞ − edom
∞ + wsupp . 

It follows that the distance  ∆∞  is smaller and the reversal dynamics slower when dominant input is 
stronger, and vice versa. It further follows that incrementing one input (and raising the corresponding 
asymptotic level) speeds up recovery or slows down habituation, shortening or lengthening periods 
of non- dominance and dominance, respectively (Levelt I).

In the second instance, rates of habituation or recovery depend on characteristic times  τe  and  τe′  
(Equation 1 and 2). When these rates are unequal, dominance durations depend more sensitively 
on the slower process. This is why dominance durations depend more sensitively on non- dominant 
input (Levelt II): recovery of non- dominant evidence is generally slower than habituation of domi-
nant evidence, independently of which input is weaker or stronger. The reason is that the respective 
effects of characteristic times  τe  and  τe′  and asymptotic levels  e∞  and  e′∞  are synergistic for weaker- 
input evidence (in both directions), whereas they are antagonistic for stronger- input evidence (see 
Appendix 1, section Deterministic dynamics: Evidence pools and Appendix 1—figure 4).

In general, dominance durations depend hyperbolically on  ∆∞  (Figure  2c and Equation 7 in 
Appendix 1). Dominance durations become infinite (and reversals cease) when  ∆∞  falls below the 
reversal threshold  ∆rev . This hyperbolic dependence is also why alternation rate peaks at equidomi-
nance (Levelt III): increasing the difference between inputs always lengthens longer durations more 
than it shortens shorter durations, thus lowering alternation rate.

Distribution of dominance durations
For all combinations of image contrast, the mechanism accurately predicts the experimentally 
observed distributions of dominance durations. This is owed to the stochastic activity of pools of 
bistable variables.

Firstly, dominance distributions retain nearly the same shape, even though average durations vary 
more than threefold with image contrast (see also Appendix 1—figure 6a,b). This ‘scaling property’ 
is due to the Poisson- like variability of birth- death processes (see Appendix 1, section Stochastic 
dynamics). Generally, when a stochastic accumulation approaches threshold, the rates of both accu-
mulation and dispersion of activity affect the distribution of first- passage- times (Cao et al., 2014; 
Cao et al., 2016). In the special case of Poisson- like variability, the two rates vary proportionally and 
preserve distribution shape (see also Appendix 1—figure 6c,d).

Secondly, predicted distributions approximate gamma distributions with scale factor  r ≃ 3 − 4 . As 
shown previously (Cao et al., 2014; Cao et al., 2016), this is due to birth- death processes accumu-
lating activity within a narrow range (i.e., evidence difference  ∆e ≤ 0.2 ). In this low- threshold regime, 
the first- passage- times of birth- death processes are both highly variable and gamma distributed, 
consistent with experimental observations.

Thirdly, the predicted variability (coefficients of variation) of dominance periods varies along the 
 c + c′ = 1  axis, being larger for longer than for shorter dominance durations (Figure 4a,b). The reason 
is that stochastic development becomes noise- dominated. For longer durations, stronger- input 
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evidence habituates rapidly into a regime where random fluctuations gain importance (see also 
Appendix 1—figure 4a,b).

Levelt’s proposition IV
The model accurately predicts how dominance durations shorten with higher image contrast  c = c′  
(Levelt IV). Surprisingly, this reflects the dynamics of decision pools  R  and  R′  (Figure 5).

Here again it is helpful to consider the deterministic limit of large pools ( N → ∞ ). In this limit, a 
dominant decision state  r′ ≃ 1  is destabilized when a contradictory evidence difference  ∆e = e − e′  
exceeds a certain threshold value  ∆rev  (Figure 5b and Appendix 1, section Deterministic dynamics: 
Decision pools). Due to the combined effect of excitatory and inhibitory feedforward projections, 

 wexc  and  winh  (Equation 4 and Figure  5a), this average reversal threshold decreases with mean 
evidence activity  ̄e = (e + e′)/2 . Simulations of the fully stochastic model ( N = 25 ) confirm this analysis 
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value  rcrit  (dotted vertical line), at which the steady state turns unstable, is reached when  ∆e  reaches the reversal threshold  ∆rev . At this point, a reversal 
ensues with  r → 1  and  r′ → 0 . (c) The reversal threshold  ∆rev  diminishes with combined evidence  e + e′ . In the deterministic limit,  ∆rev  decreases 
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(Figure 5c). As average evidence activity  ⟨ē⟩  increases with image contrast, the average evidence bias 

 ⟨∆e⟩  at the time of reversals decreases, resulting in shorter dominance periods (Figure 5d).

Serial dependence
The proposed mechanism predicts positive correlations between successive dominance durations, a 
well- known characteristic of multistable phenomena (Fox and Herrmann, 1967; Walker, 1975; Van 
Ee, 2005; Denham et al., 2018). In addition, it predicts further aspects of serial dependence not 
reported previously.

In both model and experimental observations, a long dominance period tends to be followed by 
another long period, and a short dominance period by another short period (Figure 6). In the model, 
this is due to mean evidence activity  ̄e = (e + e′)/2  fluctuating stochastically above and below its 
long- term average. The autocorrelation time of these fluctuations increases monotonically with image 
contrast and, for high contrast, spans multiple dominance periods (see Appendix 1, section Character-
istic times and Appendix 1—figure 7). Note that fluctuations of  ̄e  diminish as the number of bistable 
variables increases and vanishe in the deterministic limit  N → ∞ .

Crucially, fluctuations of mean evidence  ̄e  modulate both reversal threshold  ∆rev  and dominance 
durations  T  , as illustrated in Figure 6a,b. To obtain Figure 6a, dominance durations were grouped 
into quantiles and the average duration  ⟨T0⟩  of each quantile was compared to the conditional expec-
tation of preceding and following durations  ⟨T±n⟩  (upper graph). For the same quantiles (compare 
color coding), average evidence activity  ⟨ē0⟩  was compared to the conditional expectation  ⟨ē±n⟩  at the 
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Figure 6. Serial dependency predicted by model and confirmed by experimental observations. (a) Conditional expectation of dominance duration 

 ⟨T±n⟩  (top) and of average mean evidence activity,  ⟨ē±n⟩  (bottom), in model simulations with maximal stimulus contrast ( c = c′ = 1 ). Dominance periods 
T0 were grouped into octiles, from longest (yellow) to shortest (black). For each octile, the average duration  ⟨T±n⟩  of preceding and following dominance 
periods, as well as the average mean evidence activity  ⟨ē±n⟩  at the end of each period, is shown. All times in multiples of the overall average duration, 

 ⟨T⟩ , and activities in multiples of the overall average activity  ⟨ē⟩ . (b) Example reversal sequence from model. Bottom: stochastic development of 
evidence activities  e  and  e′  (red and blue traces), with large, joint fluctuations raising or lowering mean activity  ̄e = (e + e′)/2  above or below long- term 
average (dashed line). Top left: episode with  ̄e  above average, lower  ∆rev , and shorter dominance periods. Top right: episode with  ̄e  below average, 
higher  ∆rev , and longer dominance durations. (c) Examples of reversal sequences from human observers ( c = c′ = 1  and  c = c′ = 1/2 ). (d) Positive 
lagged correlations predicted by model (mean, middle) and confirmed by experimental observations (mean ± std, top). Alternative model (Laing and 
Chow, 2002) with adaptation and noise (mean, bottom), fitted to reproduce the values of  ⟨T⟩ , cv,  γ1 , and  cc1  predicted by the present model (blue stars).
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end of preceding and following periods (lower graph). Both the inverse relation between  ⟨T±n⟩  and 

 ⟨ē±n⟩  and the autocorrelation over multiple dominance periods are evident.
This source of serial dependency – comparatively slow fluctuations of  ̄e  and  ∆rev  – predicts several 

qualitative characteristics not reported previously and now confirmed by experimental observations. 
First, sequential correlations are predicted (and observed) to be strictly positive at all lags (next period, 
one- after- next period, and so on) (Figure 6d). In other words, it predicts that several successive domi-
nance periods are shorter (or longer) than average.

Second, due to the contrast dependence of autocorrelation time, sequential correlations are 
predicted (and observed) to increase with image contrast (Figure 6d). The experimentally observed 
degree of contrast dependence is broadly consistent with pool sizes between  N = 25  and  N = 40  
(black and red curves in Figure 3e). Larger pools with hundreds of bistable variables do not express 
the observed dependence on contrast (not shown).

Third, for high image contrast, reversal sequences are predicted (and observed) to contain 
extended episodes with dominance periods that are short or extended episodes with periods that 
are long (Figure 6c). When quantified in terms of a ‘burstiness index,’ the degree of inhomogeneity 
in predicted and observed reversal sequences is comparable (see Appendix 1, section Burstiness and 
Appendix 1—figure 8).

Many previous models of BR (e.g., Laing and Chow, 2002) postulated selective adaptation of 
competing representations to account for serial dependency. However, selective adaptation is an oppo-
nent process that favors positive correlations between different dominance periods, but negative correla-
tions between same dominance periods. To demonstrate this point, we fitted such a model to reproduce 
our experimental observations ( T  ,  cV  ,  γ1 , and  cc1 ) for five image contrasts  c = c′ . As expected, the 
alternative model predicts negative correlations  cc2  for same dominance periods (Figure 6d, right panel), 
contrary to what is observed.

Discussion
We have shown that many well- known features of BR are reproduced, and indeed guaranteed, by a 
particular dynamical mechanism. Specifically, this mechanism reproduces the counterintuitive input 
dependence of dominance durations (‘Levelt’s propositions’), the stereotypical shape of dominance 
distributions (‘scaling property’), and the positive sequential correlation of dominance periods. The 
explanatory power of the proposed mechanism is considerably higher than that of previous models. 
Indeed, the observations explained exhibited more effective degrees of freedom (approximately 14) 
than the mechanism itself (between 3 and 4).

The proposed mechanism is biophysically plausible in terms of the out- of- equilibrium dynamics of 
a modular and hierarchical network of spiking neurons (see also further below). Individual modules 
idealize the input dependence of attractor transitions in assemblies of spiking neurons. All synaptic 
effects superimpose linearly, consistent with extended mean- field theory for neuronal networks (Amit 
and Brunel, 1997; Van Vreeswijk and Sompolinski, 1996). The interaction between ‘rivaling’ sets 
of modules (‘pools’) results in divisive normalization, which is consistent with many cortical models 
(Carandini and Heeger, 2011; Miller, 2016).

It has long been suspected that multistable phenomena in visual, auditory, and tactile perception 
may share a similar mechanistic origin. As the features of BR explained here are in fact universal 
features of multistable phenomena in different modalities, we hypothesize that similar out- of- 
equilibrium dynamics of modular networks may underlie all multistable phenomena in all sensory 
modalities. In other words, we hypothesize that this may be a general mechanism operating in many 
perceptual representations.

Dynamical mechanism
Two principal alternatives have been considered for the dynamical mechanism of perceptual decision- 
making: drift- diffusion models (Luce, 1986; Ratcliff and Smith, 2004) and recurrent network models 
(Wang, 2008; Wang, 2012). The mechanism proposed here combines both alternatives: at its 
evidence level, sensory information is integrated, over both space and time, by ‘local attractors’ in a 
discrete version of a drift- diffusion process. At its decision level, the population dynamics of a recur-
rent network implements a winner- take- all competition between ‘non- local attractors.’ Together, the 
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two levels form a ‘nested attractor’ system (Braun and Mattia, 2010) operating perpetually out of 
equilibrium.

A recurrent network with strong competition typically ‘normalizes’ individual responses relative to 
the total response (Miller, 2016). Divisive normalization is considered a canonical cortical computation 
(Carandini and Heeger, 2011), for which multiple rationales can be found. Here, divisive normaliza-
tion is augmented by indiscriminate feedforward inhibition. This combination ensures that decision 
activity rapidly and reliably categorizes differential input strength, largely independently of total input 
strength.

Another key feature of the proposed mechanism is that a ‘dominant’ decision pool applies feed-
back suppression to the associated evidence pool. Selective suppression of evidence for a winning 
hypothesis features in computational theories of ‘hierarchical inference’ (Rao and Ballard, 1999; Lee 
and Mumford, 2003; Parr and Friston, 2017b; Pezzulo et  al., 2018), as well as in accounts of 
multistable perception inspired by such theories (Dayan, 1998; Hohwy et al., 2008; Weilnhammer 
et  al., 2017). A normative reason for feedback suppression arises during continuous inference in 
uncertain and volatile environments, where the accumulation of sensory information is ongoing and 
cannot be restricted to appropriate intervals (Veliz- Cuba et al., 2016). Here, optimal change detec-
tion requires an exponentially rising bias against evidence for the most likely state, ensuring that even 
weak changes are detected, albeit with some delay.

The pivotal feature of the proposed mechanism are pools of bistable variables or ‘local attrac-
tors.’ Encoding sensory inputs in terms of persistent ‘activations’ of local attractors assemblies (rather 
than in terms of transient neuronal spikes) creates an intrinsically retentive representation: sites that 
respond are also sites that retain information (for a limited time). Our results are consistent with a few 
tens of bistable variables in each pool. In the proposed mechanism, differential activity of two pools 
accumulates evidence against the dominant appearance until a threshold is reached and a reversal 
ensues (see also Barniv and Nelken, 2015; Nguyen et al., 2020). Conceivably, this discrete non- 
equilibrium dynamics might instantiate a variational principle of inference such as ‘maximum caliber’ 
(Pressé et al., 2013; Dixit et al., 2018).

Emergent features
The components of the proposed mechanism interact to guarantee the statistical features that 
characterize BR and other multistable phenomena. Discretely stochastic accumulation of differen-
tial evidence against the dominant appearance ensures sensitivity of dominance durations to non- 
dominant input. It also ensures the invariance of relative variability (‘scaling property’) and gamma- like 
distribution shape of dominance durations. Due to a non- trivial interaction with the competitive 
decision, discretely stochastic fluctuations of evidence- level activity express themselves in a serial 
dependency of dominance durations. Several features of this dependency were unexpected and not 
reported previously, for example, the sensitivity to image contrast and the ‘burstiness’ of dominance 
reversals (i.e., extended episodes in which dominance periods are consistently longer or shorter than 
average). The fact that these predictions are confirmed by our experimental observations provides 
further support for the proposed mechanism.

Relation to previous models
How does the proposed mechanism compare to previous ‘dynamical’ models of multistable 
phenomena? It is of similar complexity as previous minimal models (Laing and Chow, 2002; Wilson, 
2007; Moreno- Bote et al., 2010) in that it assumes four state variables at two dynamical levels, one 
slow (accumulation) and one fast (winner- take- all competition). It differs in reversing their ordering: 
visual input impinges first on the slow level, which then drives the fast level. It also differs in that 
stochasticity dominates the slow dynamics (as suggested by van Ee, 2009), not the fast dynamics. 
However, the most fundamental difference is discreteness (pools of bistable variables), which shapes 
all key dynamical properties.

Unlike many previous models (e.g., Laing and Chow, 2002; Wilson, 2007; Moreno- Bote et al., 
2007; Moreno- Bote et al., 2010; Cohen et al., 2019), the proposed mechanism does not include 
adaptation (stimulation- driven weakening of evidence), but a phenomenologically similar feedback 
suppression (perception- driven weakening of evidence). Evidence from perceptual aftereffects 
supports the existence of both stimulation- and perception- driven adaptation, albeit at different levels 
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of representation. Aftereffects in the perception of simple visual features – such as orientation, spatial 
frequency, or direction of motion (Blake and Fox, 1974; Lehmkuhle and Fox, 1975; Wade and 
Wenderoth, 1978) – are driven by stimulation rather than by perceived dominance, whereas afteref-
fects in complex features – such as spiral motion, subjective contours, rotation in depth (Wiesenfelder 
and Blake, 1990; Van der Zwan and Wenderoth, 1994; Pastukhov et al., 2014a) – typically depend 
on perceived dominance. Several experimental observations related to BR have been attributed to 
stimulation- driven adaptation (e.g., negative priming, flash suppression, generalized flash suppres-
sion; Tsuchiya et al., 2006). The extent to which a perception- driven adaptation could also explain 
these observations remains an open question for future work.

Multistable perception induces a positive priming or ‘sensory memory’ (Pearson and Clifford, 
2005; Pastukhov and Braun, 2008; Pastukhov et al., 2013a), which can stabilize a dominant appear-
ance during intermittent presentation (Leopold et al., 2003; Maier et al., 2003; Sandberg et al., 
2014). This positive priming exhibits rather different characteristics (e.g., shape-, size- and motion- 
specificity, inducement period, persistence period) than the negative priming/adaptation of rivaling 
representations (de Jong et  al., 2012; Pastukhov et  al., 2013a; Pastukhov and Braun, 2013b; 
Pastukhov et al., 2014a; Pastukhov et al., 2014b; Pastukhov, 2016). To our mind, this evidence 
suggest that sensory memory is mediated by additional levels of representation and not by self- 
stabilization of rivaling representations, as has been suggested (Noest et  al., 2007; Leptourgos, 
2020). To incorporate sensory memory, the present model would have to be extended to include 
three hierarchical levels (evidence, decision, and memory), as previously proposed by Gigante et al., 
2009.

BR arises within local regions of the visual field, measuring approximately  0.25◦  to  0.5◦  in the fovea 
(Leopold, 1997; Logothetis, 1998). No rivalry ensues when the stimulated locations in the left and 
right eye are more distant from each other. The computational model presented here encompasses 
only one such local region, and therefore cannot reproduce spatially extended phenomena such as 
piecemeal rivalry (Blake et al., 1992) or traveling waves (Wilson et al., 2001). To account for these 
phenomena, the visual field would have to be tiled with replicant models linked by grouping interac-
tions (Knapen et al., 2007; Bressloff and Webber, 2012).

A particularly intriguing previous model (Wilson, 2003) postulated a hierarchy with competing and 
adapting representations in eight state variables at two separate levels, one lower (monocular) and 
another higher (binocular) level. This ‘stacked’ architecture could explain the fascinating experimental 
observation that one image can continue to dominate (dominance durations  ∼ 2 s ) even when images 
are rapidly swapped between eyes (period  1/3 s ) (Kovács et al., 1996; Logothetis et al., 1996). We 
expect that our hierarchical model could also account for this phenomenon if it were to be replicated 
at two successive levels. It is tempting to speculate that such ‘stacking’ might have a normative justifi-
cation in that it might subserve hierarchical inference (Yuille and Kersten, 2006; Hohwy et al., 2008; 
Friston, 2010).

Another previous model (Li et al., 2017) used a hierarchy with 24 state variables at three separate 
levels to show that a stabilizing influence of selective visual attention could also explain slow rivalry 
when images are swapped rapidly. Additionally, this rather complex model reproduced the main 
features of Levelt’s propositions, but did not consider scaling property and sequential dependency. 
The model shared some of the key features of the present model (divisive inhibition, differential 
excitation- inhibition), but added a multiplicative attentional modulation. As the present model already 
incorporates the ‘biased competition’ that is widely thought to underlie selective attention (Sabine 
and Ungerleider, 2000; Reynolds and Heeger, 2009), we expect that it could reproduce attentional 
effects by means of additive modulations.

Continuous inference
The notion that multistable phenomena such as BR reflect active exploration of explanatory hypoth-
eses for sensory evidence has a venerable history (von Helmholtz, 1867; Barlow et  al., 1972; 
Gregory, 1980; Leopold and Logothetis, 1999). The mechanism proposed here is in keeping with 
that notion: higher- level ‘explanations’ compete for control (‘dominance’) of phenomenal appearance 
in terms of their correspondence to lower- level ‘evidence.’ An ‘explanation’ takes control if its corre-
spondence is sufficiently superior to that of rival ‘explanations.’ The greater the superiority, the longer 
control is retained. Eventually, alternative ‘explanations’ seize control, if only briefly. This manner of 
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operation is also consistent with computational theories of ‘analysis by synthesis’ or ‘hierarchical infer-
ence,’ although there are many differences in detail (Rao and Ballard, 1999; Parr and Friston, 2017b; 
Pezzulo et al., 2018).

Interacting with an uncertain and volatile world necessitates continuous and concurrent evaluation 
of sensory evidence and selection of motor action (Cisek and Kalaska, 2010; Gold and Stocker, 
2017). Multistable phenomena exemplify continuous decision- making without external prompting 
(Braun and Mattia, 2010). Sensory decision- making has been studied extensively, mostly in episodic 
choice- task, and the neural circuits and activity dynamics underlying episodic decision- making – 
including representations of potential choices, sensory evidence, and behavioral goals – have been 
traced in detail (Cisek and Kalaska, 2010; Gold and Shadlen, 2007; Wang, 2012; Krug, 2020). Inter-
estingly, there seems to be substantial overlap between choice representations in decision- making 
and in multistable situations (Braun and Mattia, 2010).

Continuous inference has been studied extensively in auditory streaming paradigms (Winkler 
et al., 2012; Denham et al., 2014). The auditory system seems to continually update expectations 
for sound patterns on the basis of recent experience. Compatible patterns are grouped together in 
auditory awareness, and incompatible patterns result in spontaneous reversals between alternatives. 
Many aspects of this rich phenomenology are reproduced by computational models driven by some 
kind of ‘prediction error’ (Mill et al., 2013). The dynamics of two recent auditory models (Barniv and 
Nelken, 2015; Nguyen et al., 2020) are rather similar to the model presented here: while one sound 
pattern dominates awareness, evidence against this pattern is accumulated at a subliminal level.

Relation to neural substrate
What might be the neural basis of the bistable variables/‘local attractors’ proposed here? Ongoing 
activity in sensory cortex appears to be low- dimensional, in the sense that the activity of neurons 
with similar response properties varies concomitantly (‘shared variability,’ ‘noise correlations,’ Ponce- 
Alvarez et al., 2012, Mazzucato et al., 2015, Engel et al., 2016, Rich and Wallis, 2016, Mazzu-
cato et al., 2019). This shared variability reflects the spatial clustering of intracortical connectivity 
(Muir and Douglas, 2011; Okun et al., 2015; Cossell et al., 2015; Lee et al., 2016; Rosenbaum 
et al., 2017) and unfolds over moderately slow time scales (in the range of  100 ms  to  500 ms)  both in 
primates and rodents (Ponce- Alvarez et al., 2012; Mazzucato et al., 2015; Cui et al., 2016; Engel 
et al., 2016; Rich and Wallis, 2016; Mazzucato et al., 2019).

Possible dynamical origins of shared and moderately slow variability have been studied extensively 
in theory and simulation (for reviews, see Miller, 2016; Huang and Doiron, 2017; La Camera et al., 
2019). Networks with weakly clustered connectivity (e.g., 3% rewiring) can express a metastable 
attractor dynamics with moderately long time scales (Litwin- Kumar and Doiron, 2012; Doiron and 
Litwin- Kumar, 2014; Schaub et al., 2015; Rosenbaum et al., 2017). In a metastable dynamics, indi-
vidual (connectivity- defined) clusters transition spontaneously between distinct and quasi- stationary 
activity levels (‘attractor states’) (Tsuda, 2001; Stern et al., 2014).

Evidence for metastable attractor dynamics in cortical activity is accumulating steadily (Mattia 
et al., 2013; Mazzucato et al., 2015; Rich and Wallis, 2016; Engel et al., 2016; Marcos et al., 2019; 
Mazzucato et al., 2019). Distinct activity states with exponentially distributed durations have been 
reported in sensory cortex (Mazzucato et al., 2015; Engel et al., 2016), consistent with noise- driven 
escape transitions (Doiron and Litwin- Kumar, 2014; Huang and Doiron, 2017). And several reports 
are consistent with external input modulating cortical activity mostly indirectly, via the rate of state 
transitions (Fiser et al., 2004; Churchland et al., 2010; Mazzucato et al., 2015; Engel et al., 2016; 
Mazzucato et al., 2019).

The proposed mechanism assumes bistable variables with noise- driven escape transitions, with 
transition rates modulated exponentially by external synaptic drive. Following previous work (Cao 
et al., 2016), we show this to be an accurate reduction of the population dynamics of metastable 
networks of spiking neurons.

Unfortunately, the spatial structure of the ‘shared variability’ or ‘noise correlations’ in cortical activity 
described above is poorly understood. However, we estimate that the cortical representation of our 
rivaling display involves approximately  400 mm2  and  200 mm2  of cortical surface in cortical areas V1 
and V4, respectively (Winawer and Witthoft, 2015; Winawer and Benson, 2021). Accordingly, in 
each of these two cortical areas, the neural representation of rivaling stimulation can comfortably 
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accommodate several thousand recurrent local assemblies, each capable of expressing independent 
collective dynamics (i.e., ‘classic columns’ comprising several ‘minicolumns’ with distinct stimulus selec-
tivity Nieuwenhuys R, 1994, Kaas, 2012). Thus, our model assumes that the representation of two 
rivaling images engages approximately 1–2% of the available number of recurrent local assemblies.

Neurophysiological correlates of BR
Neurophysiological correlates of BR have been studied extensively, often by comparing reversals 
of phenomenal appearance during binocular stimulation with physical alternation (PA) of monocular 
stimulation (e.g., Leopold and Logothetis, 1996; Scheinberg and Logothetis, 1997; Logothetis, 
1998; Wilke et al., 2006; Aura et al., 2008; Keliris et al., 2010; Panagiotaropoulos et al., 2012; 
Bahmani et al., 2014; Xu et al., 2016; Kapoor et al., 2020; Dwarakanath et al., 2020). At higher 
cortical levels, such as inferior temporal cortex (Scheinberg and Logothetis, 1997) or prefrontal 
cortex (Panagiotaropoulos et al., 2012; Kapoor et al., 2020; Dwarakanath et al., 2020), BR and PA 
elicit broadly comparable neurophysiological responses that mirror perceptual appearance. Specifi-
cally, activity crosses its average level at the time of each reversal, roughly in phase with perceptual 
appearance (Scheinberg and Logothetis, 1997; Kapoor et al., 2020). In primary visual cortex (area 
V1), where many neurons are dominated by input from one eye, neurophysiological correlates of BR 
and PA diverge in an interesting way: whereas modulation of spiking activity is weaker during BR than 
PA (Leopold and Logothetis, 1996; Logothetis, 1998; Wilke et al., 2006; Aura et al., 2008; Keliris 
et al., 2010), measures thought to record dendritic inputs are modulated comparably under both 
conditions (Aura et al., 2008; Keliris et al., 2010; Bahmani et al., 2014; Yang et al., 2015; Xu et al., 
2016). A stronger divergence is observed at an intermediate cortical level (visual area V4), where 
neurons respond to both eyes. Whereas some units modulate their spiking activity comparably during 
BR and PA (i.e., increased activity when preferred stimulus becomes dominant), other units exhibit 
the opposite modulation during BR (i.e., reduced activity when preferred stimulus gains dominance) 
(Leopold and Logothetis, 1996; Logothetis, 1998; Wilke et al., 2006). Importantly, at this interme-
diate cortical level, activity crosses its average level well before and after each reversal (Leopold and 
Logothetis, 1996; Logothetis, 1998), roughly in quarter phase with perceptual appearance.

Some of these neurophysiological observations are directly interpretable in terms of the model 
proposed here. Specifically, activity modulation at higher cortical levels (inferotemporal cortex, 
prefrontal cortex) could correspond to ‘decision activity,’ predicted to vary in phase with perceptual 
appearance. Similarly, activity modulation at intermediate cortical levels (area V4) could correspond 
to ‘evidence activity,’ which is predicted to vary in quarter phase with perceptual appearance. This 
identification would also be consistent with the neurophysiological evidence for attractor dynamics 
in columns of area V4 (Engel et  al., 2016). The subpopulation of area V4 with opposite modula-
tion could mediate feedback suppression from decision levels. If so, our model would predict this 
subpopulation to vary in counterphase with perceptual appearance. Finally, the fascinating interac-
tions observed within primary visual cortex (area V1) are well beyond the scope of our simple model. 
Presumably, a ‘stacked’ model with two successive levels of competitive interactions at monocular 
and binocular levels or representation (Wilson, 2003; Li et al., 2017) would be required to account 
for these phenomena.

Conclusion
As multistable phenomena and their characteristics are ubiquitous in visual, auditory, and tactile 
perception, the mechanism we propose may form a general part of sensory processing. It bridges 
neural, perceptual, and normative levels of description and potentially offers a ‘comprehensive task- 
performing model’ (Kriegeskorte and Douglas, 2018) for sensory decision- making.

Materials and methods
Psychophysics
Six practiced observers participated in the experiment (four males, two females). Informed consent, 
and consent to publish, was obtained from all observers, and ethical approval Z22/16 was obtained 
from the Ethics Commission of the Faculty of Medicine of the Otto- von- Guericke University, Magde-
burg. Stimuli were displayed on an LCD screen (EIZO ColorEdge CG303W, resolution  2560 × 1600  
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pixels, viewing distance was 104 cm, single pixel subtended  0.014◦ , refresh rate 60 Hz) and were 
viewed through a mirror stereoscope, with viewing position being stabilized by chin and head rests. 
Display luminance was gamma- corrected and average luminance was  50 cd/m2 .

Two grayscale circular orthogonally oriented gratings ( +45◦  and  −45◦ ) were presented foveally to 
each eye. Gratings had diameter of  1.6◦ , spatial period  2 cyc/deg . To avoid a sharp outer edge, grating 
contrast was modulated with Gaussian envelope (inner radius  0.6◦ ,  σ = 0.2◦ ). Tilt and phase of grat-
ings was randomized for each block. Five contrast levels were used: 6.25, 12.5, 25, 50, and 100%. 
Contrast of each grating was systematically manipulated, so that each contrast pair was presented in 
two blocks (50 blocks in total). Blocks were  120 s  long and separated by a compulsory 1 min break. 
Observers reported on the tilt of the visible grating by continuously pressing one of two arrow keys. 
They were instructed to press only during exclusive visibility of one of the gratings, so that mixed 
percepts were indicated by neither key being pressed (25% of total presentation time). To facilitate 
binocular fusion, gratings were surrounded by a dichoptically presented square frame (outer size 9.8°, 
inner size 2.8°).

Dominance periods of ‘clear visibility’ were extracted in sequence from the final  90 s  of each block 
and the mean linear trend was subtracted from all values. Values from the initial  30 s  were discarded. 
To make comparable the dominance periods of different observers, values were rescaled by the 
ratio of the all- condition- all- observer average ( 2.5 s ) and the all- condition average of each observer 
( 2.5 ± 1.3 s ). Finally, dominance periods from symmetric conditions  (cleft, cright)  with  cleft = cright  were 
combined into a single category  (cdom, csup) , where  cdom  ( csup ) was the contrast viewed by the dominant 
(suppressed) eye. The number of observed dominance periods ranged from 900 to 1700 per contrast 
combination ( 1300 ± 240 ).

For the dominance periods  T   observed in each condition, first, second, and third central moments 
were computed, as well as coefficient of variation  cV   and skewness  γ1  relative to coefficient of variation:

 µ1 = ⟨T⟩, µ2 = ⟨T2⟩ − ⟨T⟩, µ3 = ⟨T3⟩ − 3⟨T⟩⟨T2⟩ + 2⟨T⟩3
  

 
cV =

√
µ2

µ1
,

γ1

cV
=

µ3 µ1

µ2
2   

The expected standard error of the mean for distribution moments is 2% for the mean, 3% for 
the coefficient of variation, and 12% for skewness relative to coefficient of variation, assuming 1000 
gamma- distributed samples.

Coefficients of sequential correlations were computed from pairs of periods  (Ti, Tj)  with opposite 
dominance (first and next: ‘lag’  j − i = 1 ), pairs of periods with same dominance (first and next but 
one: ‘lag’  j − i = 2 ), and so on,

 

cck =
⟨Ti − ⟨Ti⟩⟩ ⟨Tj − ⟨Tj⟩⟩√(

⟨T2
i ⟩ − ⟨Ti⟩2) (⟨T2

j ⟩ − ⟨Tj⟩2)
  

where  ⟨T⟩  and  ⟨T2⟩  are mean duration and mean square duration, respectively. The expected stan-
dard deviation of the coefficient of correlation is 0.03, assuming 1000 gamma- distributed samples.

To analyze ‘burstiness,’ we adapted a statistical measure used in neurophysiology (Compte 
et  al., 2003). First, sequences of dominance periods were divided into all possible subsets of 

 k ∈ {2, 3, . . . , 16}  successive periods and mean durations computed for each subset. Second, hetero-
geneity was assessed by computing, for each size  k , the coefficient of variation cV over mean dura-
tions, compared to the mean and variance of the corresponding coefficient of variation for randomly 
shuffled sequences of dominance periods. Specifically, a ‘burstiness index’ was defined for each 
subset size  k  as.

 
BI(k) =

cV−⟨cV⟩shuffle√
⟨c2

V⟩shuffle−⟨cV⟩2
shuffle   

where  cV   is the coefficient of variation over subsets of size  k  and where  ⟨cV⟩shuffle  and  ⟨c2
V⟩shuffle  are, 

respectively, mean and mean square of the coefficients of variation from shuffled sequences.
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Model
The proposed mechanism for BR dynamics relies on discretely stochastic processes (‘birth- death’ or 
generalized Ehrenfest processes). Bistable variables  x ∈ {0, 1}  transition between active and inac-
tive states with time- varying Poisson rates  ν

+(t)  (activation) and  ν
−(t)  (inactivation). Two ‘evidence 

pools’ of  N   such variables,  E  and  E′ , represent two kinds visual evidence (e.g., for two visual orienta-
tions), whereas two ‘decision pools,’  R  and  R′ , represent alternative perceptual hypotheses (e.g., two 
grating patterns) (see also Appendix 1—figure 1). Thus, instantaneous dynamical state is represented 
by four active counts  ne, ne′ , nr, nr′ ∈ [0, N]  or, equivalently, by four active fractions  e, e′, r, r′ ∈ [0, 1] .

The development of pool activity over time is described by a master equation for probability  Pn(t)  
of the number  n(t) ∈ [0, N]  active variables.

 

∂t Pn(t) = (N − n + 1) ν+ Pn−1(t) + (n + 1) ν− Pn+1(t)
−[(N − n) ν+ + n ν−] Pn(t)   

(5)

For constant  ν± , the distribution  Pn(t)  is binomial at all times Karlin and McGregor, 1965, van 
Kampen, 1981. The time development of the number of active units  nX(t)  in pool  X   is an inhomoge-
neous Ehrenfest process and corresponds to the count of activations, minus the count of deactivations,

 

∆nX(t) = B
(
N − nX, ν+∆t

)
� �� �

activations

−B
(
nX, ν−∆t

)
� �� �

inactivations   

where  B
(
n, ν∆t

)
  is a discrete random variable drawn from a binomial distribution with trial number 

 n  and success probability  ν∆t .
All variables of a pool have identical transition rates, which depend exponentially on the ‘potential 

difference’  ∆u = u + u0  between states, with a input- dependent component  u  and a baseline compo-
nent  u0 :

 

ν±s =
νs

2
e±(ue+u0

e )/2, ν±
s′ =

νs

2
e±(ue′+u0

e )/2

ν±r =
νr

2
e±(ur+u0

r )/2, ν±
r′ =

νr

2
e±(ur′+u0

r )/2
  

where  νe  and  νr  are baseline rates and  u0
e   and  u0

r   baseline components. The input- dependent 
components of effective potentials are modulated linearly by synaptic couplings

 

us = wvis f(c) − wsupp r
us′ = wvis f(c′) − wsupp r′

ur = wexc e − winh
(
e + e′

)
+ wcoop r − wcomp r′

ur′ = wexc e − winh
(
e + e′

)
+ wcoop r′ − wcomp r  

Visual inputs are  I = f(c)  and  I′ = f(c′) , respectively, where

 
f(c) = ln(1 + c/γ)

ln(1 + 1/γ)
∈ {0, 1}

  

is a monotonically increasing, logarithmic function of image contrast, with parameter γ.

Degrees of freedom
The proposed mechanism has 11 independent parameters – 6 synaptic couplings, 2 baseline rates, 2 
baseline potentials, 1 contrast nonlinearity – which were fitted to experimental observations. A 12th 
parameter – pool size – remained fixed.

Symbol Description Value

N Pool size 25

 Continued on next page
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Symbol Description Value

1/ve Baseline rate, evidence 1.95 ± 0.10 s

1/vr Baseline rate, decision 0.018 ± 0.010 s

 u0
e  

Baseline potential, evidence -1.65 ± 0.24

 u0
r  

Baseline potential, decision -4.94 ± 0.67

wvis Visual input coupling 1.780 ± 0.092

wexc Feedforward excitation 152.2 ± 3.7

winh Feedforward inhibition 32.10 ± 2.3

wcomp Lateral competition 33.4 ± 1.2

wcoop Lateral cooperation 15.21± 0.59

wsupp Feedback suppression 2.34 ± 0.14

γ Contrast nonlinearity 0.071 ± 0.011

Fitting procedure
The experimental dataset consisted of two 5 × 5 arrays  X

exp
i   for mean  ⟨T⟩  and coefficient of variation 

 cV  , plus two scalar values for skewness  γ1 = 2  and correlation coefficient  cc1 = 0.06 . The two scalar 
values corresponded to the (rounded) average values observed over the 5 × 5 combinations of image 
contrast. In other words, the fitting procedure prescribed contrast dependencies for the first two 
distribution moments, but not for correlation coefficients.

The fit error  Efit  was computed as a weighted sum of relative errors

 
Efit =

4∑
i=1

wiδi

/ 4∑
i=1

wi , δi =

�����
Xmod

i − Xexp
i

X̄exp
i

�����
  

with weighting  w = [1, 1, 1, 1/4]  emphasizing distribution moments.
Approximately 400 minimization runs were performed, starting from random initial configurations 

of model parameters. For the optimal parameter set, the resulting fit error for the mean observer 
dataset was approximately 13%. More specifically, the fit errors for mean dominance  ⟨T⟩ , coefficient of 
variation  cV  , relative skewness  γ1/cV  , and correlation coefficients  cc1  and  cc2  were 9.8, 7.9, 8.7, 70, and 
46%, respectively. Here, fit errors for relative skewness and correlation coefficients were computed for 
the isocontrast conditions, where experimental observations were least noisy.

To confirm that resulting fit was indeed optimal and could not be further improved, we studied 
the behavior of the fit error in the vicinity of the optimal parameter set. For each parameter  αi , 30 

values  α
(j)
i   were picked in the direct vicinity of the optimal parameter  α

opt
i   (Appendix 1—figure 9). 

The resulting scatter plot of value pairs  α
(j)
i   and fit error  E

(j)
fit   was approximated by a quadratic func-

tion, which provided 95% confidence intervals for  α
(j)
i  . For all parameters except  νr , the estimated 

quadratic function was convex and the coefficient of the Hessian matrix associated with the fit error 
was positive. Additionally, the estimated extremum of each parabola was close to the corresponding 
optimal parameter, confirming that the parameter set was indeed optimal (Appendix 1—figure 9).

To minimize fit error, we repeated a stochastic gradient descent from randomly chosen initial 
parameter. Interestingly, the ensemble of suboptimal solutions found by this procedure populated 
a low- dimensional manifold of the parameter space in three principal components accounted for 
95% of the positional variance. Thus, models that reproduce experimental observations with varying 
degrees of freedom exhibit only 3–4 effective degrees of freedom. We surmise that this is due, on 
the one hand, to the severe constraints imposed by our model architecture (e.g., discrete elements, 
exponential input dependence of transition rates) and, on the other hand, by the requirement that the 
dynamical operating regime behaves as a relaxation oscillator.

In support of this interpretation, we note that our 5 × 5 experimental measurements of  ⟨T⟩  and 

 cV   were accurately described by ‘quadric surfaces’ ( z = a1 + a2x + a3y + a4x2 + a5xy + a6y2
 ) with six 

 Continued
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coefficients each. Together with the two further measurements of  γ1/cV   and  cc1 , our experimental 
observations accordingly exhibited approximately  6 × 2 + 2 = 14  effective degrees of freedom. This 
number was sufficient to constrain the 3–4 dimensional manifold of parameters, where the model 
operated as a relaxation oscillator with a particular dynamics, specifically, a slow- fast dynamics associ-
ated, respectively, with the accumulation and reversal phases of BR.

Alternative model
As an alternative model (Laing and Chow, 2002), a combination of competition, adaptation, and 
image- contrast- dependent noise was fitted to reproduce four 5 × 5 arrays  X

exp
i   for mean  ⟨T⟩ , coeffi-

cient of variation  cV  , skewness  γ1 , and correlation coefficient  cc1 . Fit error  Efit  was computed as the 
average of relative errors

 
Efit =

1
n

n∑
i=1

δi, δi =

�����
Xmod

i − Xexp
i

X̄exp
i

�����
  

For purposes of comparison, a weighted fit error with weighting  w = [1, 1, 1, 1/4]  was computed, 
as well.

The model comprised four state variables and independent colored noise:

 

τr ṙ1,2 = −r1,2 + F
(
−βr2,1 − ϕaa1,2 + I1,2 + n1,2

)

τa ȧ1,2 = −a1,2 + r1,2

τn ṅ1,2 = −n1,2 + σ1,2

√
2τn ξ(t)   

where  F(x) = [1 + exp(−x/κ)]−1
  is a nonlinear activation function and  ξ(t)  is white noise.

Additionally, both input  I1,2  and noise amplitude  σ1,2  were assumed to depend nonlinearly on 
image contrast  c1,2 :

 I1,2 = f(c1,2) = bI ckI
1,2, σ1,2 = g(c1,2) = bσ ckσ

1,2  

This coupling between input and noise amplitude served stabilizes the shape of dominance distri-
butions over different image contrasts (‘scaling property’).

Parameters for competition β = 10, activity time constant  τr = 50 ms , noise time constant  τn = 500 ms , 
and activation function  k = 0.1  were fixed. Parameters for adaptation strength  ϕa ∈ [1, 100] , adaptation 
time constant  τa ∈ [1, 00] , contrast dependence of input  bI ∈ [1, 5] ,  kI ∈ [0.1, 5] , and contrast depen-
dence of noise amplitude  bσ ∈ [0.1, 1] ,  kσ ∈ [0.1, 1]  were explored within the ranges indicated.

The best fit (determined with a genetic algorithm) was as follows:  ϕa = 18.39 ,  τa = 22.78 ,  kI = 1.52 , 

 bI = 2.92 ,  kσ = 0.57 ,  bσ = 0.19 . The fit errors for mean dominance  ⟨T⟩ , coefficient of variation  cV  , skew-
ness  γ1 , and correlation coefficient  cc1  were, respectively, 11.3, 8.3, 20, and 55%. The fit error for correla-
tion coefficient  cc2  was 180% (because the model predicted negative values). The combined average for 

 ⟨T⟩ ,  cV  , and  γ1  was 13.2%. The fit error obtained with weighting  w = (1, 1, 1, 1/4)  was 16.4%.
For Figure  6d, the alternative model was fitted only to observations at equal image contrast, 

 c = c′ : mean dominance  ⟨T⟩ , coefficient of variation  cV  , skewness  γ1 , and correlation coefficient  cc1 . The 
combined average fit error for  ⟨T⟩ ,  cV  , and  γ1  was 11.2%. The combined average for all four observables 
was 22%.

Spiking network simulation
To illustrate a possible neural realization of ‘local attractors,’ we simulated a competitive network 
with eight identical assemblies of excitatory and inhibitory neurons, which collectively expresses a 
spontaneous and metastable dynamics (Mattia et al., 2013). One assembly (denoted as ‘foreground’) 
comprised 150 excitatory leaky- integrate- and- fire neurons, which were weakly coupled to the 1050 
excitatory neurons of the other assemblies (denoted as ‘background’), as well as 300 inhibitory neurons. 
Note that background assemblies are not strictly necessary and are included only for the sake of 
verisimilitude. The connection probability between any two neurons was  c = 2/3 . Excitatory synaptic 
efficacy between neurons in the same assembly and in two different assemblies was  Jintra = 0.612mV   
and  Jinter = 0.403mV  , respectively. Inhibitory synaptic efficacy was  JI = −1.50mV  , and the efficacy of 

https://doi.org/10.7554/eLife.61581
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excitatory synapses onto inhibitory neurons was  JIE = 0.560mV  . Finally, ‘foreground’ neurons, ‘back-
ground neurons,’ and ‘inhibitory neurons’ each received independent Poisson spike trains of  2400Hz , 

 2280Hz  and  2400Hz , respectively. Other settings were as in Mattia et al., 2013. As a result of these 
settings, ‘foreground’ activity transitioned spontaneously between an ‘off’ state of approximately 

 4 Hz  and an ‘on’ state of approximately  40 Hz .
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Appendix 1
Model schematics
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Appendix 1—figure 1. Proposed mechanism of binocular rivalry dynamics (schematic). Bistable variables are 
represented by white (inactive) or red (active) circles. Four pools, each with  N = 25  variables, are shown: two 
evidence pools  E   and  E′ , with active counts  ne(t)  and  ne′ (t) , and two decision pools,  R  and  R′ , with active 
counts  nr(t)  and  nr′ (t) . Excitatory and inhibitory synaptic couplings include selective feedforward excitation  wexc , 
indiscriminate feedforward inhibition  winh , recurrent excitation  wcoop , and mutual inhibition  wcomp  of decision 
pools, as well as selective feedback suppression  wsupp  of evidence pools. Visual input to evidence pools  f(c)  and 

 f(c′)  is a function of image contrast  c  and  c′ .
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Appendix 1—figure 2. Metastable dynamics of spiking neural network. (a) Eight assemblies of excitatory neurons 
(schematic, light and dark gray disks) and one pool of inhibitory neurons (white disc) interact competitively with 
recurrent random connectivity. We focus on one ‘foreground’ assembly (dark gray), with firing rate  νfore  and 
selective external input  ∆νext . (b) ‘Foreground’ activity explores an effective energy landscape with two distinct 
steady states (circles), separated by ridge points (diamonds). As this landscape changes with external input 

 ∆νext , transition rates  ν±  between ‘on’ and ‘off’ states also change with external input. (c) Simulation to establish 
transition rates  ν±  of foreground assembly. External input  ∆νext  is stepped periodically between  −44 Hz  and 

 −4 Hz .  
Spiking activity of 10 representative excitatory neurons in a single trial, population activity over 25 trials, 
thresholded population activity over 25 trials, and activation probability (fraction of ‘on’ states). (d) 
Relaxation dynamics in response to step change of  ∆νext , with ‘on’ transitions (left) and ‘off’ transitions 
(right). (e) Average state transition rates  ν±  vary anti- symmetrically and exponentially with external input: 

 ν
+ ≃ 2.2 Hz exp

(
+0.8 5s∆νext

)
  and  ν

− ≃ 0.5 Hz exp
(
−0.79 s∆νext

)
  (red and blue lines).

We postulate assemblies or clusters of neurons with recurrent random connectivity as operative 
units of sensory representations. In our model, such assemblies are reduced to binary variables with 
Poisson transitions. Our key assumption is that the rates  ν±  of activation and inactivation events are 
modulated exponentially by synaptic input (Equation 1):

 ν± = ν e±(ws+u0)  

Here, we show that these assumptions are a plausible reduction of recurrently connected 
assemblies of spiking neurons.

Following earlier work, we simulated a competitive network with eight identical assemblies 
of excitatory and inhibitory neurons (Appendix 1—figure 2a), configured to collectively express 
a metastable activity dynamics (Mattia et  al., 2013). Here, we are interested particularly in the 
activity dynamics of one excitatory assembly (dubbed ‘foreground’), which expresses two quasi- 
stable ‘attractor’ states: an ‘on’ state with high activity. In the context of the metastable network, 
the ‘foreground’ assembly is bistable in that it transitions spontaneously between ‘on’ and ‘off’ 
states. Such state transitions are noise- driven escape events from an energy well and therefore occur 
with Poisson- like rates  ν+  (activation) and  ν−  (inactivation). Figure  1b and Appendix  1—figure 
2b illustrate this energy landscape for the ‘diffusion limit’ of very large assemblies, where quasi- 
stable activity levels are  νfore ≃ 45 Hz  for the ‘on’ state and  νfore ≃ 4 Hz  for the ‘off’ state. For small 
assemblies with fewer neurons, the difference between ‘on’ and ‘off’ states is less pronounced.

https://doi.org/10.7554/eLife.61581
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To establish the dependence of transition rates on external input to the ‘foreground’ assembly, we 
stepped external input rate  ∆νext  between two values selected from a range  ∆νext ∈ [−120 Hz, 50 Hz]  
and monitored the resulting spiking activity in individual neurons, as well as activity  νfore  of the entire 
population (Appendix 1—figure 2c, upper and middle panels). Comparing population activity to a 
suitable threshold, we identified ‘on’ and ’off’ states of the ‘foreground’ assembly (Appendix 1—
figure 2c, lower panel), as well as the probability of ‘on’ or ‘off’ states at different points in time 
following a step in  ∆νext  (Appendix 1—figure 2d). From the hazard rate (temporal derivative of 
probability), we then estimated the rates  ν±  of state transitions shown in Appendix 1—figure 2d. 
Transition rates  ν±  vary approximately anti- symmetrically and exponentially with external input 
 ∆νext . In the present example,  ν

+ ≃ 2.2 Hz exp
(
+0.85 s∆νext

)
  and  ν

− ≃ 0.5 Hz exp
(
−0.79 s∆νext

)
  

(Appendix 1—figure 2e, red and blue lines). This Arrhenius–Van’t- Hoff- like dependence of escape 
rates is a consequence of the approximately linear dependence of activation energy on external 
input. Escape kinetics is typical for attractor systems and motivates Equation 1.

Quality of representation
Accumulation of information
A birth- death process – defined as  N   bistable variables with transition rates  ν± = ve±ws , where 
 ν  is a baseline rate and  w  a coupling constant – accumulates and retains information about input 
 s , performing as a ‘leaky integrator’ with a characteristic time scale [Braun and Mattia, 2010]. 
Specifically, the value of  s  may be inferred from fractional activity  x(t)  at time  t , if coupling  w  and 
baseline rate  ν  are known. The inverse variance of the maximum likelihood estimate is given by the 
Fisher information

 
Jx(s, t) =

N
[
∂s⟨x⟩

]2

⟨x⟩(1 − ⟨x⟩)  
(1)

Its value grows with time, approaching  Jx = Nw2/cosh2(ws/2)  for  t → ∞ . For small inputs  s ≃ 0 , 
the Fisher information increases monotonically as  Jx(t) ≈

(
Nw2/4

)
tanh

(
νt/2

)
 . Surprisingly, the upper 

bound of  Jx ≤ Nw2/4  depends linearly on pool size  N  , but quadratically on coupling  w . Thus, stronger 
coupling substantially improves encoding accuracy (of input  s ).

The rate at which Fisher information is accumulated by a pool is set by the baseline transition 
rate  ν . An initially inactive pool, with n0 = 0, accumulates Fisher information at an initial rate of 

 ∂t Jx
��

t=0
=
(
νNw2/4

)
ews/2

 . Thus, any desired rate of gaining Fisher information may be obtained 
by choosing an appropriate value for  ν . However, unavoidably, after an input  s  has ceased (and was 
replaced by another), information about  s  is lost at the same rate.
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Appendix 1—figure 3. Information retained by stochastic pool activity from normally distributed inputs. Inputs 

 s ∈ N (µ,σ)  provide Fisher information  Js = 1
σ2   about mean  µ . Stochastic activity  n(t)  of a birth- death process 

( N ∈ {10, 20, 40, 80}  and  w = 2.5 ) driven by such inputs accumulates Fisher information  Jn(t)  about mean  µ . 
(a) Accumulation over input interval  t = [0, 1]  of fractional information  Jrel(t) = Jn(t)σ2

  by an initially inactive 
pool of size  N  . (b) Information about μ retained by summed activity  ̂n = n1 + . . . + n4  of four independent pools 

Appendix 1—figure 3 continued on next page
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(all initially inactive and of size  N  ) receiving concurrently four independent inputs ( s ∈ N (µ,σ) ) over an interval 

 t = [0, 1] . Retained fraction  Jrel = Jn̂(1)σ2/4  depends on pool size  N   and input variance  σ2 . (c) Information 
about  µ  retained by activity  n  of one pool (initially inactive and of size  N  ) receiving successively four independent 
inputs ( s ∈ N (µ,σ) ) over an interval  t = [0, 4] . Retained fraction  Jrel = Jn(4)σ2/4  depends on pool size  N   and 
input variance  σ2 .

Integration of noisy samples
Birth- death processes are able to encode also noisy sensory inputs, capturing much of the information 
provided. When an initially inactive pool receives an input  s  over time  t , stochastic activity  n(t)  
gradually accumulates information about the value of  s . Normally distributed inputs  s ∈ N(µ,σ)  
provide Fisher information  Js = 1/σ2  about mean µ. Pool activity  n(t)  accumulates Fisher information 

 Jn(t)  about input mean µ, which may be compared to  Js . Comparatively small pools with strong 
coupling (e.g.,  N = 25 ,  w = 2.5 ) readily capture 90% of the information provided (Appendix 1—
figure 5a).

Moreover, pools readily permit information from multiple independent inputs to be combined 
over space and/or time. For example, the combined activity of four pools ( N = 25 ,  w = 2.5 ), which 
receive concurrently four independent samples, captures approximately 80% of the information 
provided, and a single pool receiving four samples in succession still retains approximately 60% of 
the information provided (Appendix 1—figure 5b,c). In the latter case, retention is compromised 
by the ‘leaky’ nature of stochastic integration. Whether signals are being integrated over space or 
time, the retained fraction of information is highest for inputs of moderate and larger variance  σ2  
(Appendix 1—figure 5b,c). This is because inputs with smaller variance are degraded more severely 
by the internal noise of a birth- death process (i.e., stochastic activations and inactivations).

Suitability for inference
Summation of heterogeneous neural responses can be equivalent to Bayesian integration of sensory 
information [Beck et al., 2008; Pouget et al., 2013]. In general, this is the case when response 
variability is ‘Poisson- like’ and response tuning differs only multiplicatively [Ma et  al., 2006; Ma 
et al., 2008]. We now show that bistable stochastic variables  xi(t) , with heterogeneous transition 
rates  ν

±
i (s) , satisfy these conditions as long as synaptic coupling  w  is uniform.

Assuming initially inactive variables,  xi(0) = 0 , incremental responses  xi(∆t)  after a short interval 
 ∆t  are binomially distributed about mean  ⟨xi(∆t)⟩ , which is approximately

 

⟨xi(∆t)⟩ ≈ ∆t
d⟨xi⟩

dt

∣∣∣∣
t=0

= νi∆t/2︸ ︷︷ ︸
Φi

ews/2︸︷︷︸
f(s)   

where  ϕi = νi∆t/2  reflects (possibly heterogeneous) response tuning and  f(s) = e ws /2  represents a 
common response function which depends only on synaptic coupling  w . The Fisher information, 
about  s , of individual responses is

 
Ji(s) =

[∂s⟨xi⟩]2

⟨xi⟩
[
1 − ⟨xi⟩

] ≈ ϕi
f′2(s)
f(s)

, ⟨xi⟩ ≪ 1
  

as long as expected activation  ⟨xi⟩  is small. The Fisher information of summed responses  
∑

i xi  is

 
Jsum ≈

[
f′2(s)

∑
i ϕi

]2

f(s)
∑

i ϕi
=

f′2(s)
f(s)

∑
i
ϕi =

∑
i

Ji(s)
  

and equals the combined Fisher information of individual responses. Accordingly, the summation 
of bistable activities with heterogeneous transition rates  νi  optimally integrates information, provided 
expected activations remain small,  ⟨xi⟩ 1, and synaptic coupling  w  is uniform.

Appendix 1—figure 3 continued
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Categorical choice
The ‘biased competition’ circuit proposed here expresses a categorical decision by either raising  r  
towards unity (and lowering  r′  towards zero) or vice versa. Here, we describe its stochastic steady- 
state response to constant visual inputs  I = f(c)  and  I′ = f(c′)  and for arbitrary initial conditions of  e , 
 e′ ,  r  and  r′  (Appendix 1—figure 3). Note that, for purposes of this analysis, evidence activity  e ,  e′  
was not subject to feedback suppression.

The choice is random when the input is ambiguous,  I ≃ I′ , but quickly becomes deterministic 
with growing input bias  |I − I′| > 0 . Importantly, the choice is consistently determined by visual input 
for all initial conditions. The 75% performance level is reached for biases  |I − I′| ≈ 0.04 to 0.06 .

Mutual inhibition  wcomp  controls the width of the ambiguous region around  I = I′ , and self- 
excitation  wcoop  ensures a categorical decision even for small  I, I′ ≃ 0 . The balance between 
feedforward excitation  wexc  and inhibition  winh  eliminates decision failures for all but the largest 
values of  I, I′ > 0.7  and reduces the degree to which sensitivity to differential input  |I − I′|  varies 
with total input  I + I′ .

For particularly high values of input  I, I′ > 0.7 , no categorical decision is reached and activities 
of both  r  and  r′  grow above 0.5. In the full model, such inconclusive outcomes are eliminated by 
feedback suppression.

Deterministic dynamics
In the deterministic limit of  N → ∞ , fractional pool activity  x  equals its expectation  ⟨x⟩  and the 
relaxation dynamics of Equation 2 becomes

 
τx

dx
dt

= −x + x∞
  

with characteristic time 
 τx = 1

ν++ν− = Υ(∆u)  and asymptotic values  x∞ = ν+

ν++ν− = Φ(∆u) , 
where  ∆u  is the potential difference. Input dependencies of characteristic time and of asymptotic 
value follow from Equation 1:

 
Υ(s) =

1
ν

sech
∆u
2

, Φ(s) =
[
1 + e−∆u

]−1

  

Evidence pools
The relaxation dynamics of evidence pools is given by Equation 2 and Equation 3′. As shown in the next 
section, reversals occur when evidence difference  |e − e′|  reaches a reversal threshold  ∆rev . For example, 
a dominance period of evidence  e′  begins with  e′start = estart + ∆rev  and ends when the concurrent 
habituation of  e′  and recovery of  e  have inverted the situation to  eend = e′end + ∆rev  (Appendix 1—
figures 4). Once the deterministic limit has settled into a limit cycle, all dominance periods start from, 
and end at, the same evidence levels.
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Appendix 1—figure 4. Decision response to fixed input  I  ,  I′ , for random initial conditions of  e ,  e′ ,  r  ,  r′ . (a) 
Expected differential steady- state activation  ⟨

∣∣r − r′
∣∣⟩  of decision level. Steady- state activity  r + r′ ≃ 1  implies 

a categorical decision with activity  ≃ 1  of one pool and activity of another. (b) Probability that decision correctly 
reflects input bias ( r > r′  if  I > I′ ), and vice versa.

If pool  R′  has just become dominant, so that  r′ ≃ 1  and  r ≃ 0 , the state- dependent potential 
differences are

 

ue ≃ wvis f(c)
ue′ ≃ wvis f(c′) − wcoop  

and the deterministic development is

 
τe

de
dt

= −e + e∞, τe′
de′

dt
= −e′ + e′∞

  

with asymptotic values

 e∞ = Φ(ue + u0
e ), e′∞ = Φ(ue′ + u0

e )  

and characteristic times

 
τe = Υ

(
ue + u0

e

)
, τe′ = Υ

(
ue′ + u0

e

)
,
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Appendix 1—figure 5. Exponential habituation and recovery of evidence activities. Dominance durations 
depend on distance between asymptotic values and on characteristic times. (a, b) Development of evidence 
 e  (blue) and  e′  (red), over two successive dominance periods. Input  c = 15/16  is stronger, input  c′ = 1/16  
weaker. Activities recover, or habituate, exponentially until reversal threshold  ∆rev  is reached. Thin curves 
extrapolate to the respective asymptotic values,  e∞  and  e′∞ . (a) Evidence  e′  (with weaker input  c′ ) is dominant. 
Incrementing input  c  to non- dominant evidence  e  shortens dominance  T′ . (b) Evidence  e  (with stronger input 
 c ) is dominant. Incrementing input  c  to  e  extends dominance  T  . (c–f) Contrast dependence of relaxation 
dynamics, as a function of differential contrast  c − c′ , for  c + c′ = 1 . Values when evidence  e  is dominant (dom, 
thick solid curves), and when it is non- dominant (sup, thick dotted curves). Values for  e′  are mirror symmetric 
(about vertical midline  c − c′ = 0 ). (c) Effective potential  ∆ue + ue . (d) Characteristic time  τe . (e) Relaxation 
range  erev → e∞  (bottom left, thin curves  erev , thick curves  e∞ ). (f) Effective rate  ρe  of development. Symbols 
and arrows correspond to subfigures (a, b) and represent recovery (up arrow) or habituation (down arrow) of 
stronger- input evidence (blue) or weaker- input evidence (red). Underlying color patches indicate dominance of 
stronger- input evidence (blue patches) or of weaker- input evidence (red patches). Dominance durations depend 
more sensitively on the slower development, with smaller  ρ , which generally is the recovery of non- dominant 
evidence (up arrows).

The starting points of the development,  erev  and  e′rev  (dashed lines in Appendix 1—figure 4a,b), 
depend mostly on total input  c + c′  and only little on input difference  c − c′ . Accordingly, for a given 
level of total input  c + c′ , the situation is governed by the distance between asymptotic evidence 
levels  ∆∞ = e′∞ − e∞  and by characteristic times  τe ,  τe′ .

The dependence on input bias  c − c′  of effective potential  ∆ue + ue , characteristic time  τe , and 
asymptotic value  e∞  is illustrated in Appendix 1—figure 4c–e. The potential range of relaxation is 

 erev → e∞  and  e′rev → e′∞ , where reversal levels  erev  and  e′rev  can be obtained numerically.
Dominance durations depend more sensitively on the slower of the two concurrent processes as 

it sets the pace of the combined development. The initial rates  ρe  and  ρe′  after a reversal of the two 
opponent relaxations

 
ρe =

d|e|
dt

=
|erev − e∞|

τe
, ρe′ =

d|e′|
dt

=
|e′rev − e′∞|

τe′   
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provide a convenient proxy for relative rate. As shown in app. Figure 4f, when stronger- input 
evidence  e  dominates, recovery of weaker- input evidence (red up arrow on blue background) 
is slower than habituation of stronger- input evidence (blue down arrow on blue background). 
Conversely, when weaker- input evidence  e′  dominates, recovery of stronger- input evidence (blue up 
arrow on red background) is slower than habituation of weaker- input evidence (red down arrow on 
red background). In short, dominance durations always depend more sensitively on the recovery of 
the currently non- dominant evidence than on the habituation of the currently dominant evidence.

If the two evidence populations  E ,  E′  have equal and opposite potential differences,  ∆ue = −∆ue′ , 
then they also have equal and opposite activation and inactivation rates (Equation 1)

 ν+
e = ν−

e′ = ν+, ν−e = ν+
e′ = ν−  

and identical characteristic times  τe  (recovery of  E ) and  τe′  (habituation of  E′ ). In this special case, 
the two processes may be combined and the development of evidence difference  ∆e = e − e′  is

 
τ∆

d∆e(t)
dt

= −∆e(t) + ∆∞
  

 
τ∆ =

1
ν+ + ν−

, ∆∞ =
ν+ − ν−

ν+ + ν−   

Starting from  ∆e(0) = −∆rev , we consider the first- passage- time of  ∆e(t)  through  +∆rev . If a 
crossing is certain (i.e. when  

ν+

ν++ν− > ∆rev ), the first- passage- time  T   writes

 
T = τ∆ ln

(
∆∞ + ∆rev

∆∞ −∆rev

)

  
(2)

A similar hyperbolic dependence obtains also in all other cases. When the distance between 
asymptotic levels  ∆∞  falls below the reversal threshold  ∆rev , dominance durations become infinite 
and reversals cease.

The hyperbolic dependence of dominance durations, illustrated in Appendix  1—figure 4d, 
has an interesting implication. Consider the point of equidominance, at which both dominance 
durations are equal and of moderate duration. Increasing the difference between image contrasts 
(e.g., increasing  c → c + ∆c  and decreasing  c′ → c′ −∆c ) increases  ∆∞  during the dominance of  e  
and decreases it during the dominance of  e′ . Due to the hyperbolic dependence, longer dominance 
periods lengthen more ( T → T + ∆T  ) than shorter dominance periods shorten ( T′ → T′ −∆T′ ), 
consistent with the contemporary formulation of Levelt III [Brascamp et al., 2015].

Decision pools
We wish to analyze steady- state conditions for decision pools  R ,  R′ , as illustrated in Appendix 1—
figure 4a,b. From Equation 4, we can write

 r∞ = ϕ
(
e, e′, r∞, r′

)
, r′∞ = ϕ

(
e, e′, r, r′∞

)
,  

Under certain conditions – in particular, for sufficient self- coupling  wcoop  – the steady- state 
equations admit more than one solution: a low- activity fixed point with  r′∞ ≃ 0 , and a high- activity 
fixed point with  r∞ ≃ 1 . Importantly, the low- activity fixed point can be destabilized when evidence 
activities change.

Consider a non- dominant decision pool  R  with fractional activity  r = nr/N ≃ 0  and its dominant 
rival pool  R′  with fractional activity  r′ = nr′ /N ≃ 1 . The steady- state condition then becomes

 

r∞ ≃ ϕ
[
wcoop

(
r∞ − xeff

)]

xeff =
wcomp − wexce + winh(e + e′) − ur

wcoop   
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For certain values  xeff ≤ xcrit , the low- activity fixed point becomes unstable, causing a sudden 
upward activation of pool  R  and eventually a perceptual reversal. We call  rcrit  the steady- state value 
of  r∞  at the point of disappearance.

We can now define a threshold  ∆rev  in terms of the value of evidence bias  ∆e = e − e′  which 
ensures that  xeff ≥ xcrit :

 
∆rev ≥

2
wexc

(
wcomp − xcritwcoop − ur

)
− 2

wexc
(wexc − 2winh)

e + e′

2   

We find that the threshold value  ∆rev  decreases linearly with average evidence  ̄e = (e + e′)/2 , so 
that higher evidence activity necessarily entails lower thresholds (dashed red line in Figure 5c).

For  wcoop = 15.21 , we find  xcrit = 0.24006 ,  rcrit = 0.0708 , and  ∆rev = 0.4554 − 1.1564 ē .
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Appendix 1—figure 6. Birth- death dynamics of evidence pools ensures gamma- like distribution and ‘scaling 
property’ (invariance of distribution shape). (a) Representative examples for the time development of evidence bias 
 ∆e = e − e′  between reversals (i.e., between  −∆rev  and approximately  +∆rev ). (b) Dominance distributions for 
 c = c′ = 1/16  (blue),  c = c′ = 1/4  (green), and  c = c′ = 1  (yellow). Distribution mean  µ  changes approximately 
threefold, but coefficient of variation  cV   and skewness  γ1  are nearly invariant (inset), largely preserving distribution 
shape. (c) Development of expectation  ⟨∆x⟩  between reversals (schematic). Left: a Poisson variable process, such 
Appendix 1—figure 6 continued on next page
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as the difference  ∆x  between two birth- death processes. Mean  ⟨∆x⟩  grows linearly with  t  (lines, with slopes  µ , 

 µ
′
 ) and variance  

⟨
(∆x − ⟨∆x⟩)2⟩

  grows linearly with  
√

t  (dashed curves, with scaling factors  σ ,  σ′ ). Constants 

 µ  and  σ  change with stimulus contrast (blue and red). Proportionality  µ ∝ σ2
  ensures constant dispersion of  ∆x  

at threshold ( δx = δ′x ), and, consequently, a dispersion of threshold- crossing times that grows linearly with mean 
threshold- crossing time ( δt/trev = δ′t /t′rev = const ), preserving distribution shape. Right: a process with constant 
variance,  σ = σ′ . Dispersion of  ∆x  at threshold increases with threshold- crossing time ( δ

′
x > δx ) and dispersion 

of threshold- crossing times grows supra- linearly with mean threshold- crossing time ( δt/trev < δt/trev < δ′t /t′rev ), 
broadening distribution shape.

Potential landscape
In Figure  5b, we illustrate the steady- state condition  r∞ = ϕ

[
wcoop

(
r∞ − xeff

)]
  in terms of an 

effective potential landscape  U(x) . The functional form of this landscape was obtained by integrating 
‘restoring force’  F(x)  over activity  x :

 

F(x) = Φ[wcoop(x − xeff)] − x,

u(x) = −
˛ x

xeff

F(x
′
)dx

′

  

Stochastic dynamics
Poisson-like variability
The discretely stochastic process  x(t) ∈ {0, 1

N , 2
N , ..., 1}  has a continuously stochastic ‘diffusion limit,’ 

 xdiff(t) , for  N → ∞ , with identical mean  ⟨xdiff⟩ = ⟨x⟩  and variance  ⟨xdiff
2⟩ − ⟨xdiff⟩2 = ⟨x2⟩ − ⟨x⟩2

 . This 
diffusion limit is a Cox–Ingersoll process and its dynamical equation

 
ẋdiff =

(
1 − xdiff

)
ν+ − xdiff ν

− +

√(
1 − xdiff

)
ν+ + xdiffν−

N
ξ(t),

  

where  ξ(t)  is white noise, reveals that its increments  N ẋdiff   (and thus also the increments of the 
original discrete process) exhibit Poisson- like variability. Specifically, in the low- activity regime, 

 xdiff ≪ 1 , both mean and variance of increments approximate activation rate  N ν+ :

 

⟨Nẋ⟩ = ⟨Nẋdiff⟩ ≃ Nν+,
⟨N2ẋ2⟩ − ⟨Nẋ⟩2 = ⟨N2ẋ2

diff⟩ − ⟨Nẋdiff⟩2 ≃ Nν+.  

Gamma-distributed first-passage times
When the input to a pool of bistable variables undergoes a step change, the active fraction  x(t)  
transitions stochastically between old and new steady states,  xold

∞   and  xnew
∞   (set by old and new 

input values, respectively). The time that elapses until fractional activity crosses an intermediate 
‘threshold’ level  θ  ( xold

∞ < θ < xnew
∞  ) is termed a ‘first- passage- time.’ In a low- threshold regime, birth- 

death processes exhibit a particular and highly unusual distribution of first- passage times.
Specifically, the distribution of first- passage- times assumes a characteristic, gamma- like shape 

for a wide range of value triplets ( xold
∞  ,  θ ,  xnew

∞  ) [Cao et al., 2014]: skewness  γ1  takes a stereotypical 
value  γ1 ≃ 2cV  , the coefficient of variation  cV   remains constant (as long as the distance between  xold

∞   
and  θ  remains the same), whereas the distribution mean may assume widely different values. This 
gamma- like distribution shape is maintained even when shared input changes during the transition 
(e.g., when bistable variables are coupled to each other) [Cao et al., 2014].

Importantly, only a birth- death process (e.g., a pool of bistable variables) guarantees a gamma- 
like distribution of first- passage- times under different input conditions [25]. Many other discretely 
stochastic processes (e.g., Poisson process) and continuously stochastic processes (e.g., Wiener, 
Ornstein–Uhlenbeck, Cox–Ingersoll) produce inverse Gaussian distributions with  γ1 ≃ 3 cv . Models 
combining competition, adaptation, and noise can produce gamma- like distributions, but require 
different parameter values for every input condition (see Materials and methods: Alternative model).

Appendix 1—figure 6 continued
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Scaling property
In the present model, first- passage- times reflect the concurrent development of two opponent 
birth- death processes (pools of  N = 25  binary variables). Dominance periods begin with newly 
non- dominant evidence  e  well below newly dominant evidence  e′ ,  ∆e = e − e′ ≃ −∆rev , and end 
with the former well above the latter,  ∆e ≃ +∆rev  (Appendix 1—figure 6a). The combination of 
two small pools with  N = 25  approximates a single large pool with  N = 25 . When image contrast 
changes, distribution shape remains nearly the same, with a coefficient of variation  cV ≃ 0.6  and 
a gamma- like skewness  γ1 ≃ 2 , even though mean  µ  of first- passage- times changes substantially 
(Appendix 1—figure 6b).

This ‘scaling property’ (preservation of distribution shape) is owed to the Poisson- like variability 
of birth- death processes (see above, Appendix 1—figure 6c). Poisson- like variability implies that 
accumulation rate  µ  and dispersion rate  σ2  are proportional,  µ ∼ σ2

 . This proportionality ensures 
that activity at threshold disperses equally widely for different accumulation rates (i.e., for different 
input strengths), preserving the shape of first- passage- time distributions [Cao et al., 2016].
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Appendix 1—figure 7. Characteristic times of evidence activity. (a) Characteristic times  τe ,  τe′  for different image 
contrast  c = c′ , when evidence pool is dominant (dom) and non- dominant (sup). (b) Autocorrelation of evidence 
activity  e ,  e′  as a function of image contrast (color) and latency, expressed in multiples of average dominance 
duration  ⟨T⟩ . (c) Autocorrelation of joint evidence activity  ̄e = (e + e′)/2  as a function of image contrast (color) 
and latency. Note that autocorrelation time lengthens substantially for high image contrast.

Characteristic times
As mentioned previously, the characteristic times of pools of bistable variables are not fixed but 
vary with input (Equation 2). In our model, the characteristic times of evidence activities lengthen 
with increasing input contrast and shorten with feedback suppression (Appendix  1—figure 7a). 
Characteristic times are reflected also in the temporal autocorrelation, which averages over periods 
of dominance and non- dominance alike. Autocorrelation times lengthen with increasing input 
contrast, both in absolute terms and relative to the average dominance duration (Appendix 1—
figure 7b).

Importantly, the autocorrelation time of mean evidence activity  ̄e = (e + e′)/2  is even longer, 
particularly for high input contrast (Appendix  1—figure 7c). The reason is that spontaneous 
fluctuations of  ̄e  are constrained not only by birth- death dynamics, but additionally by the reversal 
dynamics that keeps evidence activities  e  and  e′  close together (i.e., within reversal threshold 

 ∆rev ). As a result, the characteristic timescale of spontaneous fluctuations of  ̄e  lengthens with input 
contrast. The amplitude of such fluctuations also grows with contrast (not shown).

The slow fluctuations of  ̄e  induce mirror- image fluctuations of reversal threshold  ∆rev  and thus are 
responsible for the serial dependency of reversal sequences (see Deterministic dynamics: Decision 
pools).
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Appendix 1—figure 8. Burstiness of reversal sequences predicted by model and confirmed by experimental 
observations. (a) Burstiness index (BI) (mean) for  n  successive dominance periods in experimentally observed 
reversal sequences, for contrasts 12.5% (green), 50% (yellow), and 100% (red). (b) BI for reversal sequences 
generated by model (mean ± std).

The proposed mechanism predicts that reversal sequences include episodes with several 
successive short (or long) dominance periods. It further predicts that this inhomogeneity increases 
with image contrast. Such an inhomogeneity may be quantified in terms of a ‘burstiness index’ (BI), 
which compares the variability of the mean for sets of  n  successive periods to the expected variability 
for randomly shuffled reversal sequences. In both model and experimental observations, this index 
rises far above chance (over broad range of  n ) for high image contrast (Appendix 1—figure 8). The 
degree of inhomogeneity expressed by the model at high image contrast is comparable to that 
observed experimentally, even though the model was neither designed nor fitted to reproduce 
non- stationary aspects of reversal dynamics. This correspondence between model and experimental 
observation compellingly corroborates the proposed mechanism.

Robustness of fit
The parameter values associated with the global minimum of the fit error define the model used 
throughout the article. As described in Materials and methods, we explored the vicinity of this 
parameter set by individually varying each parameter within a certain neighborhood. This allowed 
us to estimate 95% confidence intervals for each parameter value. The results are illustrated in 
Appendix 1—figure 9.

https://doi.org/10.7554/eLife.61581
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Appendix 1—figure 9. Dependence of fit error on individual parameter values (with all other parameter values 
fixed). 30 equally spaced values were tested (blue dots) and fitted by a quadratic function (red solid curve, with 
95% confidence intervals indicated by dotted curves). For each parameter, both the optimal value (red cross) and 
the extremum of the parabolic fit (green circle) are shown.

Note that optimal parameter values (red crosses) are consistently near extrema of the parabolic 
fits (green circles), indicating the robustness of the fit. Note further that instead of the parameter 
pair  wvis  and  u0

e  , we show the related parameter pair  α  and  β , which is defined through the relations 

 wvis = α ln((1 + γ)/γ)  and  u0
e = α ln γ + β .

https://doi.org/10.7554/eLife.61581
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The code used to analyze optimization statistics is available in the folder ‘analyzeOptimizationStatistics’ 
of the Github repository provided with this article (https://github.com/mauriziomattia/2021.Bistable 
PerceptionModel) copy archived at.

https://doi.org/10.7554/eLife.61581
https://github.com/mauriziomattia/2021.BistablePerceptionModel
https://github.com/mauriziomattia/2021.BistablePerceptionModel
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