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Abstract Humans have relied on sourdough starter microbial communities to make leavened

bread for thousands of years, but only a small fraction of global sourdough biodiversity has been

characterized. Working with a community-scientist network of bread bakers, we determined the

microbial diversity of 500 sourdough starters from four continents. In sharp contrast with

widespread assumptions, we found little evidence for biogeographic patterns in starter

communities. Strong co-occurrence patterns observed in situ and recreated in vitro demonstrate

that microbial interactions shape sourdough community structure. Variation in dough rise rates and

aromas were largely explained by acetic acid bacteria, a mostly overlooked group of sourdough

microbes. Our study reveals the extent of microbial diversity in an ancient fermented food across

diverse cultural and geographic backgrounds.

Introduction
Sourdough bread is a globally distributed fermented food that is made using a microbial community

of yeasts and bacteria. The sourdough microbiome is maintained in a starter that is used to inoculate

dough for bread production (Figure 1A). Yeasts, lactic acid bacteria (LAB), and acetic acid bacteria

(AAB) in the starter produce CO2 that leavens the bread. Microbial activities including the produc-

tion of organic acids and extracellular enzymes also impact bread flavor, texture, shelf-stability, and

nutrition (Arendt et al., 2007; De Vuyst et al., 2016; Gobbetti et al., 2014; Hansen and Schie-

berle, 2005; Salim-ur-Rehman et al., 2006). Starters can be generated de novo by fermenting flour

and water or acquired as established starters from community members or commercial sources.

Home-scale fermentation of sourdough is an ancient and historically important practice

(Cappelle et al., 2013) that experienced a cultural resurgence during the COVID-19 pandemic (East-

erbrook-Smith, 2020).

Despite being an economically and culturally significant microbiome, a comprehensive survey of

sourdough starter microbial communities has not yet been conducted. Previous studies have primar-

ily focused on starters from regions within Europe (De Vuyst et al., 2014; Gänzle and Ripari, 2016;

Landis, Oliverio, et al. eLife 2021;10:e61644. DOI: https://doi.org/10.7554/eLife.61644 1 of 24

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.61644
https://creativecommons.org/
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


Hammes et al., 2005; Minervini et al., 2014) and the diversity of sourdough starters in North Amer-

ica is poorly characterized (Kline and Sugihara, 1971; Sugihara et al., 1971). Most previous studies

have applied a range of culture-based techniques to characterize sourdough microbial diversity

(De Vuyst et al., 2014; Gänzle and Ripari, 2016) making it difficult to understand distributions of

sourdough bacterial and fungal taxa due to the variability and biases in these approaches. Sour-

dough starters are maintained in many households, but these starters have generally been over-

looked in previous studies which have focused on large bakeries and industrial settings. Household

starters are likely distinct from those found in bakeries due to a greater heterogeneity in environ-

ments, production practices, and ingredients.

Two major factors, geographic location and maintenance practices, are often invoked as major

drivers of sourdough biodiversity. Sourdough communities in the same region may be similar in com-

position due to restricted dispersal of microbes or in response to regional microclimates. Producers

often tout their breads’ distinct regional properties, crediting the environment for unique bread

characteristics. There is some evidence of local geographic structure of sourdough microbes

(Liu et al., 2018; Scheirlinck et al., 2007b), but biogeographic patterns of sourdough diversity have

not been quantified at a continental-scale. Likewise, experimental evidence from individual sour-

doughs suggests that abiotic conditions (process parameters including differences in starter mainte-

nance techniques, ingredients, and environmental conditions) and microbial interactions can impact

starter community structure (De Vuyst et al., 2014; Gänzle and Ripari, 2016; Minervini et al.,

2014; Ripari et al., 2016; Van Kerrebroeck et al., 2017), but the relative importance of these pro-

cesses across diverse starters is unknown.

Through the collaborative power of a global network of community scientists, we collected 500

sourdough starters from across the world with dense sampling of the United States (United

States = 429; Canada = 29; Europe n = 24; Australia and New Zealand = 17; and Thailand = 1;

Figure 1B) to comprehensively characterize the microbial diversity of household sourdough starters.

These starters varied greatly in their reported ages and maintenance histories (Figure 1C–G).

Through both cultivation-dependent and cultivation-independent methods, we revealed the

eLife digest Sourdough bread is an ancient fermented food that has sustained humans around

the world for thousands of years. It is made from a sourdough ‘starter culture’ which is maintained,

portioned, and shared among bread bakers around the world. The starter culture contains a

community of microbes made up of yeasts and bacteria, which ferment the carbohydrates in flour

and produce the carbon dioxide gas that makes the bread dough rise before baking.

The different acids and enzymes produced by the microbial culture affect the bread’s flavor,

texture and shelf life. However, for such a dependable staple, sourdough bread cultures and the

mixture of microbes they contain have scarcely been characterized. Previous studies have looked at

the composition of starter cultures from regions within Europe. But there has never been a

comprehensive study of how the microbial diversity of sourdough starters varies across and between

continents.

To investigate this, Landis, Oliverio et al. used genetic sequencing to characterize the microbial

communities of sourdough starters from the homes of 500 bread bakers in North America, Europe

and Australasia. Bread makers often think their bread’s unique qualities are due to the local

environment of where the sourdough starter was made. However, Landis, Oliverio et al. found that

geographical location did not correlate with the diversity of the starter cultures studied. The data

revealed that a group of microbes called acetic acid bacteria, which had been overlooked in past

research, were relatively common in starter cultures. Moreover, starters with a greater abundance of

this group of bacteria produced bread with a strong vinegar aroma and caused dough to rise at a

slower rate.

This research demonstrates which species of bacteria and yeast are most commonly found in

sourdough starters, and suggests geographical location has little influence on the microbial diversity

of these cultures. Instead, the diversity of microbes likely depends more on how the starter culture

was made and how it is maintained over time.
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ecological distributions of widespread sourdough yeasts and bacteria. By analyzing a broad suite of

starter metadata, our intensive sampling identified the roles of geography and process parameters

in shaping starter diversity.

Using synthetic sourdough communities, we identified a dynamic network of species interactions

within sourdough microbiomes that helps explain the distributions of major yeasts and bacteria. We

also determined linkages between sourdough starter microbial diversity and baking-relevant func-

tions including the rate of dough rise and volatile organic compound (VOC) production. This study is

the first to combine a large-scale survey of sourdough starter microbial diversity with quantitative

analysis of the factors that shape the composition and function of starter microbiomes.
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Figure 1. The distribution of sourdough starters sampled in this study. (A) Overview of the process of serial transfer of a sourdough starter. (B)

Locations of the 500 sourdough starters analyzed in this study. Each dot represents one sourdough starter. (C-G) Characteristics of collected sourdough

starters. In (D), RT = room temperature. In (G), ‘Individual’ = participant reported acquiring their starter from another individual (not a commercial

source); ‘Business’ = participant reported acquiring their starter from a commercial source.
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Results

Diversity of sourdough starters
We first identified the microbial communities of sourdough starters by 16S and ITS rRNA gene

amplicon sequencing of samples that were shipped to us and frozen upon arrival. When considering

both fermentation-relevant microbes (yeasts, LAB, and AAB) as well as other microbial taxa, each

starter sample contained a median of seven bacterial and 35 fungal amplicon sequence variants

(ASVs). LAB (order: Lactobacillales) and AAB (order: Rhodospirillales) together comprised over 97%

of bacterial reads (per sample mean), with yeasts (order: Saccharomycetales) comprising over 70% of

fungal reads (Figure 2—figure supplement 1, Figure 2—source data 1, 2). The other fungi and

bacteria detected were common indoor and outdoor molds, plant pathogens, and plant endophytes

as well as microbes associated with human skin, drinking water, and soil. Unless otherwise indicated,

we did not include these environmental microbes in our further analyses because of their limited

roles in sourdough fermentation.

Sourdough communities exhibited consistent patterns of strong species dominance or co-occur-

rence (Figure 2A). Many communities were dominated by a single yeast and/or bacterial species

with a median of three LAB/AAB and one yeast per starter (Figure 2A-Figure 2—figure supplement

2). For example, Saccharomyces cerevisiae accounted for >50% of fungal ITS reads in 77% of sam-

ples. The LAB L. sanfranciscensis was the dominant bacterium in most sourdoughs where it occurred

and was negatively associated with the widespread L. plantarum and L. brevis (p<0.001; Figure 2A,

Figure 2—figure supplement 1, Figure 2—source data 3). The LAB Lactobacillus plantarum and L.

brevis were the most commonly observed pair of co-occurring taxa (in 177 of 500 starters, p<0.001;

Figure 2A-Figure 2—figure supplement 3). Interactions predicted in the literature, including L. san-

franciscensis:Kazachstania humilis co-occurrence (Brandt et al., 2004; De Vuyst et al., 2016) and L.

sanfranciscensis:S. cerevisiae co-exclusion (Gobbetti et al., 1994), were supported by in situ pat-

terns of diversity (L. sanfranciscensis:K. humilis p<0.01, L. sanfranciscensis:S. cerevisiae p=0.01).

One striking pattern across our dataset was the highly variable abundance of AAB across individ-

ual starters. These bacteria have been reported in sourdough (Minervini et al., 2014; Ripari et al.,

2016), but are generally understudied as indicated by their almost complete absence in many key

reviews of sourdough microbial diversity (De Vuyst et al., 2014; Gänzle and Ripari, 2016;

Van Kerrebroeck et al., 2017). In our sample set, 147 starters contained AAB (>1% relative abun-

dance) including Acetobacter, Gluconobacter, or Komagataeibacter species (Figure 2A, Figure 2—

source data 2). AAB require specialized culture conditions (Kim et al., 2019) and cultivation biases

in previous studies (De Vuyst et al., 2014; Gänzle and Ripari, 2016; Van Kerrebroeck et al., 2017)

may explain their widespread omission from our understanding of sourdough biodiversity.

Geography, process parameters, and abiotic factors are poor
predictors of sourdough starter microbiome composition
We first examined whether sourdough starter community composition was correlated with geo-

graphic distance between starters using a distance-decay analysis. Across the continental U.S. where

we had the highest sample density, taxonomic composition was not correlated with geographic dis-

tance (Mantel r = 0.0, p>0.05 for both LAB/AAB and yeasts). At the global-scale, yeast taxonomic

composition was weakly predicted by geography (Mantel r = 0.07, p<0.01). The geographic signal

was stronger when all fungal ASVs were included (Mantel r = 0.23, p�0.001 globally), potentially

due to differences in the non-yeast fungi (molds, plant pathogens) found within local ingredients

and/or environments (Barberán et al., 2015).

While differences in the overall composition of sourdough starter communities were not corre-

lated with geographic distance between starters, species of fermentation-relevant bacteria or yeast

may be enriched in some geographic regions due to dispersal or production processes. To deter-

mine if there are sourdough microbial species which are restricted to particular regions of the U.S.,

we used k-means clustering to group samples at two scales: k = 4 (larger regions, Figure 2B) and

k = 15 (smaller geographic regions, Figure 2C). Next, we identified indicator taxa that were signifi-

cantly enriched in these regions. Indicator species analysis detects individual taxa that are enriched

under particular conditions, where indicator strength ranges from 0 to 1. An indicator strength

above 0.25 is traditionally classified as a species that is strongly associated with a condition
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Figure 2. Process parameters and geography weakly predict the diversity of sourdough starters. (A) Starters (n = 500) hierarchically clustered by Bray-

Curtis dissimilarities. The stacked bar chart on the left shows the proportion of total reads across all samples belonging to the orders Rhodospirillales

(AAB), Lactobacillales (LAB), and Saccharomycetales (yeast) (see Figure 2—source data 1, 2 for a complete list of these taxa). On the right, each

column represents an individual sourdough starter. See Figure 2—source data 3 for co-occurrence analysis results. Below the barchart, + indicates

Figure 2 continued on next page
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(Dufrebne and Legendre, 1997; Gebert et al., 2018). We detected several taxa enriched within

regions of the continental U.S., although indicator strength for each of these was weak (�0.2;

Figure 2B–C). Collectively, the distance-decay and indicator species analyses demonstrate a limited

role of geography in structuring the taxonomic diversity of sourdough microbial communities

(Figure 2B–C-Figure 2—figure supplement 4).

We next tested whether 33 other types of metadata collected for each starter could predict the

observed composition of starters; these factors included age of starter, storage location, feed fre-

quency, grain input, home characteristics, and climatic factors (Figure 2D–E; Figure 2—source data

4). Together, these predictors accounted for less than 10% of the variation in community composi-

tion for both bacterial and fungal communities in both the U.S. and global datasets (PERMANOVA

R2 of all bacterial ASVs = 8.3% and R2 of all fungal ASVs = 7.5% of the overall variation in Bray-Curtis

dissimilarities for the global dataset; R2 bacteria = 9.0% and fungi = 5.0% for the U.S.; Figure 2D–E,

Figure 2—source data 5).

Some fermentation-relevant taxa were enriched under particular conditions (Figure 2D–E, Fig-

ure 2—source data 6). For example, younger starters were often dominated by the LAB L. planta-

rum (indicator strength (IS) = 0.238, p<0.001) and L. brevis (IS = 0.254, p<0.001), while older starters

often contained L. sanfranciscensis (IS = 0.043, p=0.01) and P. parvulus (IS = 0.222, p<0.001;

Figure 2D, Figure 2—source data 6). Previous studies have not found strong associations between

flour type or other fermentation practices and yeast species present (De Vuyst et al., 2014;

Vrancken et al., 2010). In our study, S. cerevisiae was weakly associated with starters whose grain

base was whole wheat (IS = 0.157, p=0.04). Most of the other fungal indicator species were non-

yeast molds and plant endophytes, which were enriched under particular climatic conditions

(Figure 2E, Figure 2—source data 6). No AAB taxa were enriched under any particular fermenta-

tion practice or climatic condition.

The history and origins of sourdough starters may also explain the distribution of some wide-

spread microbial species. Sourdough bakers can either begin their starters de novo from flour and

water or obtain an established starter from a business or individual. The LAB L. brevis was associated

with de novo starters (IS = 0.206, p=0.04). There were 73 starters in our collection that were origi-

nally acquired by home bakers from a bakery or other commercial source and L. sanfranciscensis was

abundant in these commercial starters (IS = 0.267, p=0.04). This suggests that L. sanfranciscensis

thrives under commercial production conditions and has been widely distributed among bakers,

where it persists in home fermentations.

Figure 2 continued

samples selected for functional analysis (Figure 4). Continental U.S. geographic regions were clustered at two scales: k = 4 (B) and k = 15 (C). Dots

represent individual samples. Each geographic cluster is encircled. Colored dots represent clusters where indicator taxa were significantly (p<0.05)

associated with geographic clusters according to indicator species analysis. In (D) and (E), indicator strengths (Figure 2—source data 6) illustrate

individual ASVs that are significantly associated with (D) process parameters including starter maintenance techniques and (E) climatic parameters. Each

individual dot or triangle represents an individual ASV of bacterium or fungus, respectively.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. The most abundant bacterial and fungal taxa across the 500 sourdough starter samples that are not typically considered an active part

of starter communities (e.g. excluding yeasts, lactic acid bacteria, and acetic acid bacteria).

Source data 2. The most abundant yeast, lactic acid bacteria, and acetic acid bacteria species across the 500 sourdough starter samples.

Source data 3. Co-occurrence statistics of sourdough yeasts and bacteria calculated with the R package ‘cooccur’.

Source data 4. Predictors (n=33) included in PERMANOVA tests on bacterial and fungal dissimilarities.

Source data 5. Abiotic properties are poor predictors of overall variation in both bacterial and fungal community composition across sourdough starters.

Source data 6. Complete list of indicator taxa and summary statistics, as described in Figure 2.

Figure supplement 1. Phylogenetic trees of (A) lactic acid bacteria (LAB) and (B) acetic acid bacteria (AAB) detected in the 500 sourdough starters.

Figure supplement 2. Richness across starter microbial communities.

Figure supplement 3. A co-occurrence analysis showing all significant associations.

Figure supplement 4. Geographic location is a weak predictor of fungal sourdough starter community and not a significant predictor of bacteria.
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Ecological distributions of sourdough microbes are structured by biotic
interactions
We next determined whether individual growth rate and/or biotic interactions among taxa could

help to explain distributions of sourdough species (Friedman et al., 2017; Vega and Gore, 2018).

Whereas previous studies have focused on single pairs of interacting sourdough microbes (De Vuyst

and Neysens, 2005; Gobbetti et al., 1994; Sieuwerts et al., 2018), we chose eight isolates: four

LAB and four yeasts, representing the most frequent yeasts and bacteria in sourdough that also dis-

played strong positive and/or negative patterns of co-occurrence (Figure 3A, Figure 2—source

data 2, 3). We did not include AAB in these interaction experiments because they were not signifi-

cantly associated with other microbial taxa in the amplicon dataset. To determine the growth ability

of each species alone, we measured colony forming units at the end of six 48 hr transfers in a liquid,

cereal-based fermentation medium (Figure 3A). To determine competitive ability, we serially pas-

saged 1:1 mixtures of each pair of the eight microbial species through this medium for six 48 hr

transfers and assessed the relative abundance of each isolate in each pair (Figure 3A–B-Figure 3—

figure supplement 1). We determined whether each of the eight species could co-persist in pairwise

competitions, where co-persistence was defined as both isolates being present at >1% relative

abundance after the six transfers.

Taxa that are able to reach high cell densities in the sourdough environment may be able to out-

compete many other sourdough species. When comparing the growth of each isolate alone over six

transfers to its ability to persist in pairwise competitions, we found a significant positive relationship

(Spearman’s r = 0.81, p<0.05, Figure 3C). For example, the LAB L. brevis is able to reach high den-

sities when grown alone in our synthetic sourdough environment and is also able to persist when

paired with all seven competing LAB and yeast species. In contrast, the LAB L. sanfranciscensis has

one of the lowest densities when grown alone and is only able to persist when grown with the yeast

K. humilis. We did not detect a significant correlation between the ability to persist in pairwise com-

petitions and frequency of each taxon across the amplicon sequencing dataset (Spearman’s

r = 0.39, p>0.05, Figure 3D), or between growth alone and frequency in the amplicon sequencing

dataset (Spearman’s r = 0.57, p>0.05).

To test how well specific interactions among yeast and LAB detected in sourdoughs could be

recapitulated in our in vitro system, we compared significant co-occurrence patterns inferred from

amplicon sequence data (positive or negative associations), with synthetic co-persistence patterns

from the competition experiments. Of the 16 significant associations detected in the amplicon data-

set, most (14 out of 16) were within-kingdom interactions (yeast:yeast and bacteria:bacteria) and

only two were cross-kingdom interactions: a negative pattern of co-occurrence between Saccharo-

myces cerevisiae and Lactobacillus sanfranciscensis, and a positive pattern of co-occurrence between

Kazachstania servazzii and Pediococcus damnosus. In the competition experiment, yeasts and bacte-

ria co-persisted with each other in half of all pairings (8 of 16), and within-kingdom (yeast:yeast or

bacteria:bacteria) species pairs co-persisted in 3 of 12 pairings (Figure 3B and E). Most species pairs

(20 of 28) did not show significant positive or negative associations in the amplicon dataset. For the

eight significant co-occurrence interactions detected in the amplicon sequence dataset, seven out of

eight were recapitulated in our synthetic communities (Figure 3E; p<0.05). The consistency in direc-

tionality between pairwise co-occurrence patterns observed between the 500 sourdough starters

and in vitro suggests robust microbial interactions in sourdough despite differences in environmental

conditions and fermentation practices.

Microbial composition influences dough rise and aroma profiles
To determine how variation in starters’ community composition impacts their functional attributes,

we selected a subset of 40 starters that spanned the spectrum of sourdough diversity (Figure 2A).

We measured two baking-relevant functions: emissions of volatile organic compounds (VOCs), which

can impact baked sourdough bread aromas (Pétel et al., 2017), and leavening (measured as rate of

dough rise), which can impact bread structural properties (Arendt et al., 2007).

Across all samples, 123 volatile compounds were detected by GC/MS including well-known sour-

dough compounds 3-methyl-1-butanol, ethyl alcohol, acetic acid, and ethyl acetate (median number

of compounds detected per starter = 85; Figure 4—figure supplement 1). Sensory analysis yielded

14 dominant notes across the 40 starters, including yeasty, vinegar/acetic acid/acetic sour, green

Landis, Oliverio, et al. eLife 2021;10:e61644. DOI: https://doi.org/10.7554/eLife.61644 7 of 24

Research article Ecology Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.61644


Figure 3. Growth rate and competitiveness fail to explain abundance patterns, but co-occurrence patterns in situ

are recovered in pairwise coexistence experiments. (A) All possible species 1:1 pairs were grown in 200 mL liquid

flour media (n = 5) and 10 mL was serially transferred every 48 hr. This conceptual schematic follows one pairing, K.

humilis and L. sanfranciscensis, to illustrate the experimental approach. (B) Mean relative abundance of pairs at the

end of transfer six. Pairs where both isolates persisted (>1% relative abundance) at the end of the experiment are

outlined; error bars are ± SE. For all replicates at transfers one, three, and six, see Figure 3—figure supplement

1. (C) Correlation between growth of individual isolates alone (CFUs of each isolate after six transfers) and a

simple persistence index (the number of competitions where the isolate persisted) found a positive and significant

relationship (detection limit of mean one percent abundance across replicates; Spearman’s r = 0.81, p=0.02). (D)

Frequency of each taxon in the amplicon sequencing dataset and the number of competitions where that isolate

persisted was positively associated, but not significant (Spearman’s r = 0.39, p=0.34). (E) Significant (Bonferroni-

corrected p<0.05) patterns of co-occurrence between taxa in our amplicon sequencing (top) were replicated 7 of 8

times in our experimental manipulation (bottom). All pairwise experimental outcomes from transfer six are

represented in the bottom part of the figure; the eight pairs that have significant co-occurrence associations are

highlighted and the experimental outcomes that matched the co-occurrence data have an asterisk. Refer to

Figure 2—figure supplement 3- Figure 2—source data 3 for all amplicon co-occurrence data.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. CFU counts and relative abundance data from competitions, transfers one, three, and six.

Figure supplement 1. Pairwise competition experimental outcomes at transfers one, three, and six.
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apple, fermented sour, and ethyl acetate/solventy (Figure 4—figure supplement 3, Figure 4—

source data 2). The source of the starter inoculum explained most of the variation in VOC profile

dissimilarities (PERMANOVA R2 = 91% and p�0.001), differences in maximum dough height

(adjusted R2 = 22%, ANOVA p<0.05), and dough rise rates (adjusted R2 = 42%, ANOVA p<0.001;

Figure 4—figure supplements 1–2 and Video 1). This demonstrates wide variation in functional

capacities across the 40 starters and low variation across experimental replicates within one starter.

Starter community composition did not correlate with the dominant sensory note assigned by the

sensory panel (PERMANOVA R2 = 37%, p=0.16). While total bacterial and yeast species richness was

not significantly correlated with VOC richness (Spearman’s r = �0.09, p>0.05), starter microbial

community composition was significantly correlated with VOC profiles (Bray-Curtis dissimilarity for

community composition and VOC profiles; Mantel r = 0.19, p�0.01).

When we determined whether VOC variation was driven by particular sourdough species, only

the Acetobacter malorum spp. group emerged as significant (r = 0.528, FDR-corrected p<0.05; Fig-

ure 4—source data 1). More generally, total % AAB explained was strongly correlated with variation

in VOCs (Mantel r = 0.73, p<0.001; Figure 4) and sensory notes (Kruskal-Wallis p<0.05; Figure 4),

with the differences most strongly tied to the vinegar note compared to green apple and fermented

sour notes (Dunn test p=0.04 and 0.06 respectively; Figure 4—figure supplement 3). The total rela-

tive abundance of AAB was also negatively correlated with the rate of dough rise (r = �0.51,

p<0.001; Figure 4), which may be explained by the production of compounds such as acetic acid

and inhibition of yeast or LAB growth in sourdough starters. The combined functional datasets high-

light that variation in AAB abundances is a key driver of functional diversity across our sourdough

collection.

Discussion
This study presents the first intercontinental atlas of sourdough starter microbial communities. Our

unprecedented scale of sampling demonstrates how sourdough maintenance and acquisition practi-

ces as well as microbial interactions can impact the biodiversity of starters. We also reveal novel

structure-function linkages in this ancient fer-

mented food. In combination with thousands of

years of traditional knowledge about how to

make good bread, these results provide possible

management strategies for manipulating starter

diversity.

Contradicting widespread beliefs about the

regionality of sourdough microbiomes (e.g. the

famous ‘San Francisco sourdough’), our compre-

hensive sampling demonstrates that geographic

location does not determine sourdough micro-

bial composition. Previous studies using limited

sampling have suggested that sourdough start-

ers can vary across geographic regions

(Liu et al., 2018; Scheirlinck et al., 2007b), but

we are unaware of other studies that have rigor-

ously explored sourdough microbiome biogeo-

graphic patterns in a distance-decay framework.

The limited role of geography in explaining sour-

dough diversity may be driven by the wide-

spread movement of starters across large

geographic distances through starter sharing or

commercial distribution. Flour, a major potential

source of microbes in de novo starters

(Minervini et al., 2015; Reese et al., 2020), is

also moved across large spatial scales. This geo-

graphic homogenization of starter and flour

microbes likely swamps out any regional

Video 1. Dough rise analysis using a common garden

sourdough starter approach. Video shows the first of

three batches of sterilized flour and water (n = 40, three

replicates of each) that were inoculated with sourdough

starters. Dough rise was measured by tracking the tops

of each dough using video tracking software over the

course of 36 hrs. Changes from the starting position

were fitted with logistic growth curves using the R

package GrowthCurver. Videos for each tube were

trimmed if they fell to more than 5% of their maximum

rise value. Dough rise rates ranged from 0.1 to 1.5 mm/

hr. For scale, tubes are 103 mm tall with their caps.

Doughs were removed part way through for placement

of volatile organic compound collection bars which

were present during hours 12–36. Video also available

at: https://youtu.be/iK4lyRw2acA.

https://elifesciences.org/articles/61644#video1
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differences in potential yeasts or bacteria that can disperse into starters.

Biogeographic patterns of sourdough microbes may exist at finer-scale resolutions than those

used in the current study. We used amplicon sequencing to assess taxonomic diversity of sourdough

because we were interested in species-level distributions of sourdough microbes. We acknowledge

that intraspecific strain diversity plays important roles in many fermented foods (El Khoury et al.,

2017; Niccum et al., 2020; Walsh et al., 2017), that microbial strains may have unique biogeo-

graphic patterns (Gayevskiy and Goddard, 2012), and that amplicon sequencing does not typically

have the resolution to fully capture strain-level diversity (Turaev and Rattei, 2016). However, previ-

ous studies of other ecosystem types using similar amplicon sequencing approaches and at similar

spatial scales have found strong distance-decay relationships of both fungal and bacterial communi-

ties (Finkel et al., 2012; Ma et al., 2017; Talbot et al., 2014). Future work using shotgun metage-

nomic sequencing or whole-genome sequencing of widespread sourdough microbes may reveal

more nuanced biogeographic patterns in sourdough biodiversity.

Relative to bakeries, home producers likely follow less strict and sustained regimens for starter

maintenance; they may vary techniques over time or keep imperfect records in regard to reported

metadata. Still, process parameters explained some of the variation we detected through amplicon

sequencing, with individual taxa being significantly associated with certain parameters. For example,

L. sanfranciscensis was prevalent in older starters and starters purchased by participants from a busi-

ness, which supports the hypothesis that it is selected for by bakers over generations of sourdough

production (Gänzle and Ripari, 2016). Future studies that explicitly test how starter composition

changes over time and across geographies in home fermentations are needed to better understand

selection and stability in these ecosystems.

The concordance between our amplicon sequencing and competition experiment suggest that

commonly or uncommonly observed species pairs may be due to complementary or competitive

inter-species interactions. An important caveat is that the single representative isolates used in these

experiments do not capture strain-level genomic and metabolic diversity, which has been shown to

produce different competitive outcomes among and between strains of these sourdough taxa

(Rogalski et al., 2020). Additionally, the pairwise interaction assay that we used does not capture

the potential for interactions between three or more species. Though pairwise competitions have

been shown to be predictive of higher-order interactions in simple microbial ecosystems

(Friedman et al., 2017), outcomes of interactions in more complex synthetic sourdough communi-

ties with three or more species may differ from what we observed here. Future studies that use

‘leave-one-out’ approaches can identify potential roles of multidimensional microbial interactions in

sourdough microbiomes.

We observed many striking microbial interactions in our synthetic system that were not predicted

by sequencing. For example, W. anomalus was a strong competitor in vitro in this and other studies

(Daniel et al., 2011; Vrancken et al., 2010), but it is not frequently found across the starters we

sampled and co-occurred with other yeast species in the sourdoughs that were sequenced. This

work adds to an existing body of evidence suggesting that W. anomalus is strongly competitive in

sourdough, but may be dispersal limited, and/or that environmental conditions or multispecies inter-

actions in home sourdough starters mitigate its competitive performance in situ.

Our integrative functional analysis of starter microbiomes highlights the disproportionate effects

of AAB in shaping the sensory and leavening properties of sourdough. These bacteria have been his-

torically underappreciated in most studies of sourdough microbes (De Vuyst et al., 2014;

Gänzle and Ripari, 2016; Van Kerrebroeck et al., 2017). The limited use of media that can selec-

tively grow AAB and the lack of metagenomic approaches in previous studies are two potential

explanations for the underestimation of AAB abundances in the literature. Based on our findings, we

argue that the relative abundance of this group should be considered a key factor in predicting the

functional attributes of sourdough. However, the influence of AAB on sensory properties and dough

rise is not straightforward and the correlation between percentage of AAB and vinegar sensory

properties as well as slower dough rise rates was not seen in all samples. Further studies are needed

to understand how VOCs produced by AAB contribute to the quality of baked sourdough bread.

Sourdough starters exemplify a unique type of microbial community: a top-down engineered

microbiome that is stably maintained for many years. As our co-occurrence analysis and synthetic

community validation revealed, these simple countertop microbial ecosystems provide ample oppor-

tunities to identify processes that structure microbiomes. Further experimental approaches that
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manipulate other dimensions of sourdough, including phages, genomic heterogeneity, and evolu-

tionary dynamics, will continue to uncover mechanisms of microbiome assembly in this ancient fer-

mented food.

Figure 4. Acetic acid bacteria are drivers of sourdough starter functional diversity. Heatmap shows the relative abundances of VOCs (z-scores) across

samples. Columns represent the 40 starter samples clustered with Bray-Curtis dissimilarities of VOC profiles, resulting in two main clusters. Rows show

the top 48 VOCs clustered by correlation similarity. Numbered VOCs are unknown compounds. Top rows indicate the total percentage of AAB and the

three measured functional outputs. Functional outputs were all predicted by % AAB including: (1) mean dough rise rate (r = �0.51, p<0.001), (2) the

overall VOC composition represented by the first NMDS axis (see Figure 4—figure supplement 1; Mantel r = 0.73, p<0.001) and (3) the dominant

sensory note (adj. R2 = 37%, p<0.01, see Figure 4—source data 2 for all sensory notes).

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. The relationships between microbial taxa (lactic acid bacteria, acetic acid bacteria, and yeast) and functional outputs.

Source data 2. Complete list of sensory panel notes.

Source data 3. Dough rise data over the course of 36 hours of rise.

Source data 4. Volatile organic compound profiles collected for a subset of 40 starters.

Figure supplement 1. VOC data across replicate sourdough starters.

Figure supplement 2. Dough rise rates are predicted by starting microbial inoculum (adj. R2 = 0.42, p<0.001).

Figure supplement 3. The four most frequently reported sensory notes from the 40 samples analyzed by an expert sensory panel.
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Materials and methods

Key resources table

Reagent type
(species) or
resource Designation Source or reference Identifiers Additional information

Commercial
assay or kit

Powersoil Qiagen Cat No./ID: 47014

Sequence-based
reagent

515 f Caporaso et al., 2011 PCR primer Forward primer used for
amplifying bacterial DNA
for amplicon sequencing

Sequence-based
reagent

806 r Caporaso et al., 2011 PCR primer Reverse primer used for
amplifying bacterial DNA
for amplicon sequencing

Sequence-based
reagent

ITS1f Gardes and Bruns, 1993 PCR primer Forward primer used for
amplifying fungal DNA for
amplicon sequencing and
Sanger sequencing

Sequence-based
reagent

ITS2 White et al., 1990 PCR primer Reverse primer used for
amplifying fungal DNA for
amplicon sequencing

Sequence-based
reagent

ITS4 White et al., 1990 PCR primer Reverse primer used for
amplifying fungal DNA for
Sanger sequencing

Sequence-based
reagent

27 f Lane, 1991 PCR primer Forward primer used for
amplifying bacterial DNA
for amplicon sequencing
and Sanger sequencing

Sequence-based
reagent

1492 r Turner et al., 1999 PCR primer Reverse primer used for
amplifying bacterial DNA
for amplicon sequencing
and Sanger sequencing

Software,
algorithm

Dada2 Callahan et al., 2016 Software package for
identifying amplicon
sequence variants (ASVs)

Software,
algorithm

raxml-HPC Stamatakis, 2014 Phylogenetic tree builder
for taxonomic assignments
of ASVs

Software,
algorithm

Kaiju Menzel et al., 2016 Metagenomic taxonomy
assignment software using
unassembled reads

Database Refseq https://www.ncbi.nlm
.nih.gov/refseq/

RRID:SCR_003496 Database used with Kaiju
for bacterial species
assignments of
metagenomic reads

Software,
algorithm

R R Core Team, 2019 RRID:SCR_001905 Used for statistical analyses

Software,
algorithm

Matlab-based DLTdv-5 Hedrick, 2008 Used for video tracking of
sourdough height for
dough rise profiles

Other Twister PDMS stir bar Gerstel Collection medium for
volatile organic
compounds in functional
assays

Other Lactobacilli MRS agar Criterion C5930 Growth medium for the
cultivation of lactic acid
bacteria

Continued on next page
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Continued

Reagent type
(species) or
resource Designation Source or reference Identifiers Additional information

Other CHROMagar Candida CHROMagar CA222 Differential growth
medium; creates
differential pigmentation
and growth phenotypes for
distinguishing yeast

Strain Lactobacillus sanfranciscensis 17B2 This paper MW218985

Strain Lactobacillus brevis 0092a This paper MW218986

Strain Lactobacillus paralimentarius 0316d This paper MW218987

Strain Lactobacillus plantarum 232 This paper MW218988

Strain Saccharomyces cerevisiae 253 This paper MW219042

Strain Wickerhamomyces anomalus 163 This paper MW219039

Strain Kazachstania humilis 228 This paper MW219040

Strain Kazachstania servazzii 177 This paper MW219041

Sample collection and processing
Sourdough starters were submitted by community scientists participating as part of the Sourdough

Project (http://robdunnlab.com/projects/sourdough/). Community scientists were recruited through

web sites, social media, and email campaigns worldwide January-March 2017. They were directed to

an online Informed Consent form approved by the North Carolina State University’s Human Research

Committee (IRB Approval Reference #10590). Each participant first answered an extensive online

questionnaire consisting of 40 questions related to the source, history, maintenance, and use of their

sourdough starter. Upon completion, participants were assigned a unique ID. Participants were

instructed to triple-bag ~4 oz of their freshly fed sourdough starter in a new resealable plastic bag,

label the bag with their participant ID, and then ship it to Tufts University. In order to preserve par-

ticipant confidentiality, samples were reassigned a new Sample ID number upon arrival. Each starter

sample was subdivided into two subsamples: (1) 1 mL was transferred to a 1.5 mL tube and stored

at �80˚C until samples could be processed for DNA sequencing, (2) glycerol stocks (15% glycerol)

were made of each sample by combining equal parts sample and 30% glycerol and stored at �80˚C

for competition and VOC analyses. In total, we received, processed, and sequenced 560 sourdough

starter samples with completed surveys from participants. After quality filtering and rarefying ampli-

con datasets (see below), 500 were retained.

Amplicon 16S and ITS rRNA gene and shotgun metagenomic
sequencing
To characterize the bacterial and fungal communities of sourdough starters, we followed previously

described molecular marker gene sequencing protocols (Ramirez et al., 2014; Oliverio et al.,

2017). In brief, we extracted DNA from 2 mL sub-samples using a Qiagen PowerSoil DNA extraction

kit, and then amplified extracted DNA with barcoded primers to enable multiplexed sequencing in

duplicate, using the 515 f/806 r for bacteria and ITS1f/ITS2 for fungi. Amplicon concentrations were

normalized and sequenced on the Illumina MiSeq platform at the University of Colorado Next Gen-

eration Sequencing Facility with 2 � 150 and 2 � 250 bp paired-end chemistry for bacterial and fun-

gal sequencing, respectively. We sequenced multiple DNA extractions and PCR negative controls to

check for contamination.

Raw sequences were processed with the DADA2 pipeline (Callahan et al., 2016). The DADA2

pipeline detects ASVs as opposed to clustering sequences by percent sequence similarity. Briefly,

sequences with N’s were removed prior to primer removal with Cutadapt (Martin, 2011). Then

sequences were quality filtered. For the bacterial sequence data, we used the following parameters:

truncLen = 150 for forward reads and 140 for reverse reads, maxEE = 1, and truncQ = 11 and for

the fungal data we used the following parameters: minLen = 50, maxEE = 2, truncQ = 2 and

maxN = 0. The parameters are different for 16S and ITS due to the variable nature of the ITS region.
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After quality filtering, sequence variants were inferred with the DADA2 algorithm, and then we

merged paired-end reads. We removed chimeras and taxonomy was determined using the Silva

database for bacteria (Quast et al., 2013) and the UNITE database (Nilsson et al., 2019) for fungi.

We then filtered out reads assigned to either chloroplasts or mitochondria from the bacterial taxa

table, along with reads that were unassigned at the phylum level. Likewise, we filtered out fungal

reads unassigned at the phylum or class levels. We then rarefied the ASV tables to 1260 bacterial

reads per sample and 4000 fungal reads per sample and converted to percent relative abundances

for downstream analyses. We retained 500 sourdough samples for analyses (e.g. those samples for

which we obtained both bacterial and fungal amplicon data).

To obtain high-quality taxonomic species assignments for LAB and AAB and to facilitate compari-

sons to longer 16S rRNA sequences of isolates, we built phylogenetic trees for both bacterial groups

(Figure 2A-Figure 2—figure supplement 1). We included high-quality (�1200 bp) isolate sequences

for both groups from the ribosomal database project (Cole et al., 2014). In order to preserve conti-

nuity between our analysis and previously published studies of sourdough ecology, we refer to the

Lactobacillus species by their traditional names rather than recently proposed taxonomic reassign-

ments (Zheng et al., 2020). To obtain assignments, we created alignments with MUSCLE

(Edgar, 2004) and then built phylogenetic trees with raxml-HPC (Stamatakis, 2014) with the GTR-

GAMMA model. We used a patristic distance of 0.97 to assign species taxonomic labels

(Pommier et al., 2009). ASVs that clustered with two closely related reference sequences were

assigned both names. ASVs that are clustered with more than two reference sequences were named

by their cluster number, except when reference sequences in a cluster are documented to be closely

related, as in the case for the L. plantarum/L. pentosus/L. fabifermentans spp. group (Mao et al.,

2015), which is referred to as the L. plantarum spp. group or L. plantarum; the L. casei/L. paracasei/

L. zeae/L. rhamnosus spp. group (Dobson et al., 2004) referred to as the L. casei spp. group; the L.

crustorum/L. mindensis/L. farcisminis spp. group (Scheirlinck et al., 2007a), referred to as the L.

crustorum spp. group; the A. lambici/A. lovaniensis/A. okinawensis/A. syzygii/A. ghanensis/A. faba-

rum spp. group (Iino et al., 2012; Spitaels et al., 2014), which is referred to as the A. lovaniensis

spp. group; the A. orientalis/A. farinalis/A. malorum/A. cerevisiae/A. persici/A. cibinongensis spp.

group (Li et al., 2014), referred to as the A. malorum spp. group; and the Gluconobacter wancher-

nii/G. jabonicus/G. thailandicus/G. cerinus/G. nephelii spp. goup (Matsutani et al., 2014), referred

to as the G. frateurii spp. group.

We also characterized 40 sourdough starters used for functional analyses (dough rise, VOCs, and

sensory notes) via shotgun metagenomic sequencing in order to confirm that the experimental com-

munities revived from glycerol stocks were similar to the original samples. We prepared the samples

for shotgun metagenomic sequencing as per Oliverio et al., 2020 and samples were sequenced on

the Illumina NextSeq platform with 2 � 150 bp chemistry at the University of Colorado Next Genera-

tion Sequencing Facility. We filtered raw reads with Sickle (Joshi and Fass, 2011) with the specified

parameters -q 50 and -I 20. On average, each sample consisted of ~3.7 million paired-end reads

after quality filtering. We classified the taxonomy of metagenomic reads with Kaiju, using the RefSeq

database (Menzel et al., 2016).

Culturing LAB and yeasts
Eight individual isolates of abundant yeasts and bacteria from amplicon data (four yeasts and four

bacteria) were isolated from glycerol stocks which were plated onto Lactobacilli MRS agar (Criterion)

or Yeast Potato Dextrose (YPD). The yeasts S. cerevisiae, W. anomalus, K. humilis, and K. servazii as

well as the LAB L. sanfranciscensis, L. brevis, L. paramilentarius, and L. plantarum were chosen

because of their abundance (within the top five bacteria and yeast in amplicon sequencing, respec-

tively; mean relative abundance). The eight isolates were sourced from eight different starters in our

collection. Identities were confirmed using Sanger sequencing of the ITS region for yeast using the

primer ITS1f (Gardes and Bruns, 1993) and ITS4 (White et al., 1990) and 16s regions of bacteria

using the primers 27f (Lane, 1991) and 1492r (Turner et al., 1999). Sanger sequences of the four

bacterial isolates were included in the tree used for ASV classification and all clustered with their

respective presumed identities’ reference taxa (Figure 2A-Figure 2—figure supplement 1).
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Growth and pairwise competition assays of LAB and yeast isolates
For growth and competition assays, a liquid cereal-based fermentation medium (CBFM) was made

to approximate the dough environment similar to a previously described approach

(Charalampopoulos et al., 2002). To make CBFM, 100% whole wheat and all-purpose flour were

combined in equal proportion (1:1 by mass). The flour mixture was suspended in room temperature

(24˚C) deionized water (1:9 flour:water by mass) in 500 ml plastic conical centrifuge bottles by shak-

ing for 1 min. This mixture was immediately centrifuged (Beckman GS-6 Series) at x3000 rpm for 30

min (24˚C) and the pellet was discarded. The CBFM was then filtered to exclude microbial cells

through Falcon disposable filter funnels (0.20 mm pore size).

To quantify growth of each yeast and LAB alone, we standardized input inocula to 2,000 CFUs

per 10 mL. Inocula were standardized by diluting 15% glycerol stocks (stored at �80˚C) that had a

known concentration of CFUs with 1X phosphate buffered saline (PBS). We inoculated 10 mL of each

species into 190 mL of CBFM in individual wells of a 96-well plate (n = 5). After cultures grew stati-

cally for 48 hr, cultures were homogenized and then transferred 10 mL of the culture into 190 mL of

fresh CBFM. We repeated these transfers a total of six times. All incubations were kept at 24˚C

throughout the duration of the experiment. Total abundance of each species was determined using

CFU plating described below.

For competition experiments, yeasts and bacteria were inoculated into wells of a 96-well plate in

a fully factorial pairwise design from frozen glycerol stocks (glycerol stocks prepared as described

for growth assays). For each inoculum, frozen stocks were plated and counted on either MRS or YPD

and standardized to 1,000 CFUs per 5 mL. All reciprocal pairs of each standardized inoculum (5 mL of

each member of the pair) were added to 190 mL of CBFM, for a total of 200 mL. After 48 hr of

growth at room temperature, cultures were homogenized and 10 mL of each culture was transferred

to 190 mL of fresh CBFM. All pairs were replicated five times. A few replicates were lost due to unex-

pected contamination (Figure 3—figure supplement 1). For both growth and competition assays,

the number of replicates was chosen based on pilot experiments that demonstrated the extent of

variability across replicates.

All replicates were plated and relative abundance of the interacting species was determined after

transfers one, three and six. Yeast:yeast pairs were plated on Chromagar Candida plates (CHROMa-

gar) at a 10�4 dilution to differentiate species based on colony morphology, with the exception of

pairs containing Wickerhamomyces anomalus, which were differentiated on YPD. Bacteria:bacteria

pairs were plated at 10�5 dilutions on MRS where species could be differentiated based on colony

morphology. Yeast:bacteria pairs were spot-plated (5 mL of each dilution) on selective media at full

to 10�5 dilutions to quantify CFUs. Selective media were YPD plus chloramphenicol (50 mg/L) to

select for yeast and MRS plus natamycin (21.6 mg/L) to select for bacteria. Individual isolates for our

experiment were determined to have ‘persisted’ if they were above the detection limit of 1/100th of

the total population at the end of the experiment (transfer six). Co-persistence was defined as both

isolates being detectable at that threshold.

Sourdough experiments to measure functional outputs
To test how distinct sourdough community structures impacted functions, we revived frozen glycerol

stocks of 40 starters in a standard flour medium (see medium preparation description below) using a

common garden approach. These 40 starters spanned the diversity we encountered in sequencing

(Figure 2A); we limited our functional analysis to 40 starters due to practical constraints in annotat-

ing VOC data. Rather than directly using frozen starters which were shipped to us from

community scientists, we first grew up samples in a ‘pre-inoculum’ that was used to inoculate doughs

for functional analysis. We did this to ensure that all cultures were at comparable growth stages prior

to inoculation. The flour used was the same mixture used for CBFM (100% whole wheat and all-pur-

pose flour combined in equal proportion 1:1 by mass), but it was prepared differently in order to

approximate the moisture content of dough. Flour was autoclaved on a gravity cycle for 20 min to

reduce microbial load. Glycerol-stocked communities (200 mL) were added to 1.8 mL sterile distilled

water and 2 g autoclaved flour in three replicate communities for each starter pre-inoculum (n = 3

captured the variability we encountered in pilot experiments). Pre-inoculum was mixed with flour

and sterile water using a sterile wooden dowel until no dry flour was visible. The mixture was briefly

centrifuged in a 15 mL culture tube (to remove dough stuck to the side of the tube walls) and then
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incubated for 72 hr at room temperature. Inoculum was created by mixing sterile water (4 mL) and

pre-inoculum (~4 g) and was vortexed to homogenize. Autoclaved flour (2 g), water (1600 mL), and

inoculum (400 mL) were added to 15 mL falcon tubes and mixed using sterile wooden dowels and

then briefly centrifuged to remove from the sides of tubes.

To confirm that the microbial community that formed in these experimental sourdoughs (grown

from the 40 starters selected for functional analyses) resembled the sourdough starters from which

they originated, we compared microbial community composition between shotgun metagenomic

data collected from experimental sourdoughs and the corresponding amplicon sequence data from

the original sourdoughs. We calculated Bray-Curtis dissimilarities for the 40 samples from: (1) the ini-

tial amplicon data and (2) 16S taxonomic annotations from the shotgun metagenomic data from the

experimental samples. We then compared the two dissimilarity matrices with a Mantel test (based

on Spearman rank correlation and 999 permutations). We also correlated relative abundances of

some of the most dominant taxa including L. sanfranciscensis, L. brevis, L. plantarum, P. damnosus,

and also the total percent of AAB detected in each sample. Initial and experimental communities

were similar in terms of their overall bacterial composition (Mantel r = 0.55, p�0.001) and abundan-

ces of common taxa (L. sanfranciscensis r = 0.64, p�0.001; L. brevis r = 0.50, p�0.001; L. plantarum

r = 0.70, p�0.001; P. damnosus r = 0.47,�0.001; and % total AAB r = 0.75, p�0.001).

Measuring rates of dough rise
Dough rise was recorded with a Canon EOS 70D DSLR camera set to image every two minutes for

36 hr. The camera was centered at the vertical and horizontal midpoint of each dough batch. Time-

lapse photos were compiled, cropped, and enhanced for contrast using Adobe AfterEffects. The top

of every dough was tracked through each frame in the MatLab-based digitizing program DLTdv5

(Hedrick, 2008). The height of each culture tube (Th) was measured in pixels in Adobe Photoshop.

Changes in dough height (DX) were normalized to account for distance from the camera and differ-

ences in starting height using the following formula: DX = (X-Xº)/Th. Distances relative to tube length

were converted to absolute distance (mm/hr) by multiplying values by the dimensions of culture

tubes (103 mm). Before fitting curves, data was truncated to cut instances where dough fell by more

than 5 percent of its maximum height. For each replicate, a logistic growth curve was fitted, and

growth rate (r) was calculated with the R package Growthcurver (Sprouffske and Wagner, 2016),

with a goodness of fit cutoff for r values of p�0.01.

VOC collection and sensory panel
Sourdough starter volatiles were collected using headspace sorptive extraction, which is an equilib-

rium-driven sample enrichment technique employing a polydimethylsiloxane coated magnetic stir

bar (commercially known as Twister, Gerstel). Stir bars (10 mm long x 0.5 mm thick) were suspended

in the headspace of each sample using a magnet on the outside of the sample tube cap to suspend

the stir bar above the sample. Three replicates of each community were sampled for 24 hr (begin-

ning 12 hr after inoculation). After collection, the stir bars were removed and spiked with 1 mL of 10

ppm ethylbenzene-d10, which was used as an internal standard (Restek). Relative peak areas (ana-

lyte/internal standard) served to measure relative concentrations of each compound in the sample.

Sterile deionized water and autoclaved flour were analyzed to measure chemical interferences from

background samples. Compounds in the starters measured at concentrations less than or equal to

concentrations in the water/flour samples were eliminated from the data.

Stir bars were thermally desorbed into the GC column in the gas chromatograph/mass spectrom-

eter (GC/MS, Agilent models 7890A/5975C). The instrument was equipped with an automated

multi-purpose sampler (Gerstel) that transferred stir bars to the thermal desorber (TDU)/programma-

ble temperature vaporization inlet (CIS). The TDU (Gerstel) provided transfer of the VOCs from the

stir bar to the CIS by heating it from 40˚C (0.70 min) to 275˚C (3 min) at 600 ˚C/min, using 50 mL/min

of helium. After 0.1 min the CIS, operating in solvent vent mode, was heated from �100˚C to 275˚C

(5 min) at 12 ˚C/s. The GC column (30 m x 250 mm x 0.25 mm HP5-MS, Agilent) was heated from 40˚

C (1 min) to 280˚C at 5 ˚C/min with 1.2 mL/min of constant helium flow. MS operating conditions

were: 40 to 350 m/z at 10 scans/s, 70 eV electron impact source energy, with ion source and quadru-

pole temperatures of 230˚C and 150˚C, respectively.
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The retention index (RI) for each compound in the sample was calculated based on a standard

mixture of C7 to C30 n-alkanes (Sigma-Aldrich, St. Louis, MO). Approximately 300 reference stand-

ards were purchased from Sigma-Aldrich, Fisher Scientific, Alfa Aesar (Ward Hill, MA), TCI (Tokyo,

Japan), Acros Organics (Pittsburgh, PA) and MP Biomedicals (Santa Ana, CA) to confirm compound

identity.

Detailed descriptions of data analysis procedures have been previously described (Kfoury et al.,

2018; Robbat et al., 2017). Briefly, Ion Analytics (Gerstel) data analysis software was used to analyze

the data. Peak identification was based on the match between sample and reference compound RI

and mass spectrum (positive identification) and between sample and compounds found in NIST05/

17, Adams Essential Oil Library, and the literature (tentative identification). In instances where no

identification was possible, a numerical identifier was assigned such that the data can be used in

other metabolomic studies and to capture knowledge of elution and mass spectral profiles should

these compounds become important enough to warrant independent collection and analysis. Com-

pound identity is assigned as follows. First, peak scans were required to be constant for five or more

consecutive scans (�20% difference). Second, the level of scan-to-scan variance (SSV) had to be �5.

The SSV represents the relative error of each scan compared to all other mass spectrum scans in the

peak. The smaller the difference, i.e., the closer the SSV is to zero, the better the MS agreement.

Third, the Q-value was set to �93. The Q-value is an integer between 1 and 100; it measures the

total ratio deviation of the absolute value calculated by dividing the difference between the

expected and observed ion ratios by the expected ion ratio, then multiplied by 100 for each ion

across the peak. The closer the value is to 100, the higher the certainty of accuracy between sample

and reference compound spectrum (positive) or sample and database/library spectrum (tentative

identification). Finally, the Q-ratio represents the ratio of the molecular ion intensity to confirmatory

ion intensities across the peak; it also must be �20%. When all of the individual criteria are met, they

form a single criterion of acceptance and the software assigns a compound name or numerical

identifier.

There were two sets of sensory descriptors that were used in our study: those that were provided

by individuals at the time of sample collection (Figure 1; Figure 2—source data 4), and those that a

trained sensory panel used during the functional analysis of a subset of sourdough starters (Fig-

ure 4—source data 2). We used a simplified system with the larger set of study participants. More-

over, our trained sensory panel was able to distinguish additional sensory notes that we did not

anticipate when we sent out the survey to participants. For the initial survey, the aroma characteris-

tics were guided by a list of aroma characteristics commonly used when discussing aroma notes in

maltose-based fermented products with consumers. The list was reduced and condensed for survey

purposes. For example, ‘medicinal’ was used to combine the descriptors ‘phenolic antiseptic’ and

‘solvent nail polish,’ and the term ‘rose’ was translated to the more general ‘floral.’ The descriptor

‘musty’ was additionally included to account for the ‘farmyard’ aroma and the potential contribution

of VOCs from filamentous fungal growth.

For our detailed functional analysis of the subset of 40 starter samples, sourdough starter aromas

were assessed after 36 hr of incubation by a trained and certified descriptive sensory analysis panel

from the Tufts University Sensory and Science Center. Samples were coded, randomized, and served

blind to the panel one at a time. The panel used modified flavor profile analysis to measure the

intensity and characteristics of the aroma in each sample (Hootman and Keane, 1992), resulting in

primary (dominant) and secondary notes for each sample (Figure 4—source data 2).

Statistical analyses
All statistical analyses were performed in the R environment (‘R Core Team, 2019,” 2012). To assess

and visualize overall similarity in sample composition (Figure 2A), we hierarchically clustered samples

based on pairwise distances in Bray-Curtis dissimilarities (method = ward.d2), as implemented in

hclust. Bacteria including LAB and AAB were weighted equally to fungi (yeast only). To test whether

geographic location explained any of the variation in observed microbial composition, we ran Mantel

tests (method = Spearman with 999 permutations) comparing bacterial and fungal community dis-

similarities (Bray-Curtis) to geographic distances (calculated with the Haversine distance from the R

package geosphere). We evaluated this relationship for the whole dataset (n = 500) and using conti-

nental US samples only (n = 424). We also compared overall fungal to bacterial dissimilarities with

Mantel tests for the global and US-only datasets (Figure 2—figure supplement 4).
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To assess whether abiotic factors including process parameters (data collected from participants

in initial survey) and climatic variables (obtained from latitude/longitude of sample submission) were

correlated with any of the observed patterns in microbial composition, we performed PERMANOVA

tests on bacterial and fungal dissimilarities, including 33 potential predictors (Figure 2D–E; Fig-

ure 2—source data 4): grain base inputs, other process attributes (starter origin, starter input, stor-

age location, number of feeds per month, frequency opened per week, container material, container

lid); water source; sensory notes described by participant; pet presence; and location-based climatic

variables obtained from latitude/longitude reported (mean annual temperature, maximum tempera-

ture, minimum temperature, precipitation, and net primary productivity). We tested pairwise correla-

tions between all continuous predictor variables. Absolute Pearson correlation values were <0.6,

except for the following pairs: maximum temperature and temperature (0.8), maximum temperature

and seasonality (�0.9), filtered water and tap water (�0.7). Final PERMANOVA models only included

significant predictors of community composition (Figure 2D–E; Figure 2—source data 5). Some sur-

vey responses were not completed by all participants and we excluded those missing predictors

from our models (thus, n = 426 samples for all models).

For those variables found to explain a significant portion of the variation in overall microbial com-

munity composition (for either fungal or bacterial communities), we tested whether particular taxa

were enriched under specific conditions (e.g. ‘indicator taxa’; Figure 2D–E). To test this with contin-

uous variables (for example, starter age or mean annual temperature of starter location) we used

Spearman rank correlations to compare to the relative abundances of particular taxa (ASVs). For cat-

egorical variables (for example, whether the starter grain base included rye flour ‘grain base rye’ or

the starter storage location) we used indicator correlation indices (r) values as implemented in the

indicspecies package (De Caceres et al., 2016). For all comparisons, we only included taxa that

were detected in �10% of samples, and we considered taxa to be indicators if the false-discovery

rate (fdr) corrected p-value was �0.05. To determine if there are sourdough microbial species that

might be restricted to particular regions of the U.S. (Figure 2B–C), we used k-means clustering to

group samples at two scales: k = 4 (larger regions) and k = 15 (smaller geographic regions) and iden-

tified indicator taxa that were significantly (<0.05) enriched in these regions (Gebert et al., 2018).

Positive and negative co-occurrence interactions (Figure 3F; Figure 2A-Figure 2—figure supple-

ment 3) were detected using the R package Cooccur (Griffith et al., 2016), which uses a probabilis-

tic approach to determine whether, given their abundance in data, species occur more or less often

than is expected by chance. Data were transformed to presence-absence of assigned species taxon-

omy of LAB, AAB, and yeast above a one percent within-sample threshold. Additionally, only species

interactions that were predicted to co-occur more than once were considered. To control for multi-

ple comparisons and minimize false positives, Bonferroni-corrected p values are reported. A Monte

Carlo simulation was used to determine the likelihood that seven out of eight synthetic co-persis-

tence tests would match our co-occurrence data. We constructed a matrix with the same distribution

as that of our significant (p�0.05) positive and negative co-occurrence interactions; of 16 significant

interactions, eight were positive. We randomly drew from that matrix (n = 10,000) to determine the

likelihood that the prediction from our synthetic system- that is, that at least seven of a series of

eight interactions, would be correct (four negative and four positive interactions, representing the

eight interactions observed in our experimental system).

For two functional outputs, dough rise rate and VOC profiles (Figure 4—figure supplements 1–

2), we first assessed how similar starters were from the same initial inoculum. For VOC profiles, we

ran a PERMANOVA to assess how much variation in VOC profiles (represented as Bray-Curtis dissim-

ilarities) was explained by initial starter inoculum. For dough rise, we ran an ANOVA to assess how

differences in observed dough rise rates were predicted again, by initial starter inoculum. We then

assessed whether overall community composition (of yeast, LAB, or AAB) predicted the composition

of VOCs, using mean values within replicates from the same initial inoculum (thus, n = 40) for both

VOC profiles and dough rise rates. We used Mantel tests to compare community dissimilarities in

VOCs to LAB, AAB and yeast dissimilarities, and also to the Euclidean distances in total % AAB

across samples. We also assessed whether any particular taxa were driving differences in the overall

VOC composition with Spearman’s correlations between taxa relative abundances and the two non-

metric multidimensional scaling (NMDS) axes representing dissimilarities in VOC compositions. Like-

wise, for dough rise we assessed whether any particular taxa were driving differences in the

observed rates via Spearman’s correlations. For both, taxa were considered significantly correlated if
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the p-value�0.05 (fdr-corrected). Sensory analysis yielded 14 dominant notes across the 40 starters,

including yeasty (n = 8), vinegar/acetic acid/acetic sour (n = 9), green apple (n = 6), fermented sour

(n = 5), ethyl acetate/solventy (n = 3), and n = 1 sample for alcoholic sour, bready, cheesy, fer-

mented apple, fruity sour, sweaty, toasted corn chips, veggie sulfide, and winey sour. To test

whether the dominant sensory note observed from the Tufts Expert Sensory Panel was predicted by

% total AAB, we ran a Kruskal-Wallis test with the dominant note as the predictor and used a Dunn

test to assess significance of pairwise comparisons. For the sensory analyses (Figure 4—figure sup-

plement 3), we only tested notes that were dominant in � . 5 samples, thus n = 26 samples rather

than 40. We included only the first note reported by the expert sensory panel for our analyses, as

this represented the most dominant note.
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