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Abstract Human diseases arise in a complex ecosystem composed of disease mechanisms and

the whole-body state. However, the precise nature of the whole-body state and its relations with

disease remain obscure. Here we map similarities among clinical parameters in normal physiological

settings, including a large collection of metabolic, hemodynamic, and immune parameters, and

then use the mapping to dissect phenotypic states. We find that the whole-body state is faithfully

represented by a quantitative two-dimensional model. One component of the whole-body state

represents ‘metabolic syndrome’ (MetS) – a conventional way to determine the cardiometabolic

state. The second component is decoupled from the classical MetS, suggesting a novel ‘non-

classical MetS’ that is characterized by dozens of parameters, including dysregulated lipoprotein

parameters (e.g. low free cholesterol in small high-density lipoproteins) and attenuated cytokine

responses of immune cells to ex vivo stimulations. Both components are associated with disease,

but differ in their particular associations, thus opening new avenues for improved personalized

diagnosis and treatment. These results provide a practical paradigm to describe whole-body states

and to dissect complex disease within the ecosystem of the human body.

Introduction
In humans, there is a large variability in physiological and molecular parameters, which make up spe-

cific baseline phenotypic states. These states differ substantially between individuals, whether mea-

sured in healthy individuals or in patients. Even individuals within a well-defined clinical subgroup,

such as a group of obese individuals or a group of patients with the same complex disease, demon-

strate substantial inter-individual variation in their metabolic, immunological, and physiological phe-

notypes. Such differences in states often have important clinical implications. For example, specific

phenotypic states such as high serum lipids, increased waist circumference, and high blood pressure

are associated with a variety of complex diseases and with the severity of disease (Mørkedal et al.,

2011; Cameron and Zimmet, 2008). Heterogeneous phenotypic states can be a barrier to success-

ful therapeutic interventions, since treatments are usually the same for a certain disease (‘one-size-
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fits-all’ treatments) (Mach et al., 2018; Ridker et al., 2012). Gaining an understanding of phenotypic

diversity within relatively homogeneous populations of individuals, and developing frameworks to

reliably describe the different phenotypic states, is therefore of fundamental interest and could lead

to development of more effective personalized approaches to diagnosis and treatment.

It is generally believed that each individual has a ‘whole-body state’ in which immune, metabolic,

and hemodynamic parameters are coordinately regulated (Brodin and Davis, 2017; Price et al.,

2017; Trachana et al., 2018). Current attempts to describe these states typically rely on compari-

sons between healthy and disease groups (Bouhaddou et al., 2019; Hwang et al., 2019;

Huang, 2009). They were thus of limited usefulness to describe the overall phenotypic state in any

given individual. For instance, a conventional way to describe the whole-body state in the context of

cardiometabolic disease is ‘metabolic syndrome’ (MetS), which is defined as a small cluster of meta-

bolic and hemodynamic factors that are associated with cardiovascular disease (Huang, 2009); as

the concept of MetS is focused on cardiometabolic disease, it is not necessarily relevant to other

types of disease. Consequently, to date, little is known about the most basic aspects of the whole-

body state: its nature and structure in healthy humans, its variation between individuals, and its asso-

ciation with disease have not been well characterized.

Here we provide a framework to describe the whole-body state in individuals, characterize the

molecular and functional properties of the whole-body state, and describe the potential applications

of the state as a marker of disease. We start with the construction of a comprehensive map of immu-

nological, hemodynamic, and metabolic parameters based on the natural diversity in healthy sub-

jects. The resulting map of parameters (in short, a ‘map’) is consistent and reproducible in two

healthy human cohorts of different age and body mass index (BMI) ranges, and in separate analyses

of males and females. We show how prototypical co-regulation patterns in this map are used to con-

struct a robust quantitative model for the whole-body state. The model consists of two components

that together represent the wide diversity in healthy subjects – one component (‘IM1’) explains an

average of 25% of the inter-individual variation and the second component (‘IM2’) explains addi-

tional 25% (on average) of the variation. Thus, only two components are sufficient to describe the

whole-body state, shedding light on a longstanding goal of describing and understanding pheno-

typic states. Whereas IM1 resembles the conventional definition of MetS, we highlight IM2 as a non-

classical type of MetS, driven by another set of clinical parameters. Compared to the conventional

characterization of the whole-body state by MetS, we observe that the two-component model

presents enhanced associations with disease, thus providing an opportunity to improve personalized

diagnosis and treatment. We also show that a small number of measured parameters is sufficient for

an accurate assessment of the whole-body state, making this a practical model for future

applications.

Results

Clinical and physiological data in healthy cohorts
In this study, we used two cohorts of healthy individuals with different characteristics and distinct ori-

gins. One cohort consists of healthy young adults with BMIs in the normal range (75% aged 18–40

with BMI 18–25 kg/m2; n = 473; data from the 500-FG Project Ter Horst et al., 2016). For the other

cohort, we sampled older adults who are either overweight or obese (aged 53–78 with BMI >27 kg/

m2; n = 126) and are generally healthy (e.g., did not have diabetes and carotid atherosclerosis)

(Ter Horst et al., 2020). For simplicity, we refer to these two healthy cohorts as ‘normal BMI’ and

‘obesity’ cohorts, respectively. Subjects in both cohorts are of Western-European (Dutch) back-

ground, and both cohorts are part of the Human Functional Genomics Project (http://www.human-

functionalgenomics.org/site/). Characterization of these cohorts can be found in the

Materials and methods and supplementary material (Supplementary file 1A, B and Figure 1—fig-

ure supplement 1A).

We performed extensive phenotyping of these individuals with clinical and physiological parame-

ters (in short, ‘parameters’) relating to four main immunometabolic categories: immune, hemody-

namic, metabolism parameters, and lipoprotein parameters (a total of 292 and 259 parameters in

the obesity and normal-BMI cohorts, respectively; Supplementary file 1C, D). The immunological

parameters include the immune composition of blood and the cytokine production capacity of
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isolated peripheral blood mononuclear cells (PBMCs) in response to ex vivo stimulation with micro-

bial products. The hemodynamic parameters include cardiovascular parameters such as heart rate,

as well as hematological parameters such as hematocrit. The metabolic parameters include metabo-

lites in blood and markers of body fat distribution. Finally, the data consists of 168 lipoprotein

parameters, which include the composition of lipids within various subfractions of circulating lipopro-

teins. The validity of these data sets is demonstrated in Figure 1—figure supplements 1 and

2. Throughout this study, we used the relative measured levels of each parameter – that is, for each

parameter, its measured levels were centered and scaled across the entire cohort (for simplicity, rela-

tive levels are also referred to as ‘measured levels’).

These two cohorts provide an attractive opportunity for a comprehensive evaluation of reproduc-

ibility due to their high overlap of clinical parameters (Supplementary file 1C). As more parameters

were available for the obesity cohort than for the normal BMI cohort, we first demonstrate our main

findings in the obesity cohort and then evaluate the generality of these findings through additional

analyses of the normal-BMI cohort.

An integrative map of clinical and physiological parameters
The map of parameters was constructed in a two-step approach (Materials and methods). In the first

step, we applied data transformation in order to amplify signals of similarity among clinical parame-

ters. The transformation is guided by lipoproteins: if two clinical parameters are correlated (after the

transformation), it means that they have similar interrelations with lipoproteins. The transformation

indeed amplifies the correlations among parameters (Figure 1—figure supplement 3A–C). The sec-

ond step relies on this amplification to define a robust structure of clinical and physiological parame-

ters. Specifically, the structure was inferred from the transformed data using dimensionality

reduction (principal component analysis). The result of this two-step procedure is a low-dimensional

space (called a ‘map’) in which each clinical and physiological parameter is embedded in a certain

position within the space.

Applying this construction on the obesity cohort yielded a two-dimensional map that could

describe a large part of the variability (80%) in clinical and physiological parameters. The two dimen-

sions of the map are referred to as ‘axis IM1’ and ‘axis IM2’ (Figure 1A and Supplementary file 2A).

In this map, the various parameters fall in a circular pattern along a nearly continuous spectrum. The

circular organization of the map reflects a relatively simple structure of interrelations among parame-

ters: proximal parameters are positively correlated and parameters that are located in opposite sides

of the map are negatively correlated (Figure 1B, Figure 1—figure supplement 1B–D, and

Supplementary file 2B). For instance, as demonstrated in Figure 1B, the proximal glucose and tri-

glycerides parameters are positively correlated (23% correlation of measured levels), and two param-

eters located in opposing sides of the map – adiponectin and liver fat – are negatively correlated

(43% anti-correlation of measured levels). We confirmed that the positions of parameters in the map

of the obesity cohort are similar to the positions of parameters in a map that was constructed using

the normal-BMI cohort (Figure 1C, left), despite major differences in age and BMI ranges (see

details of the normal-BMI map in Figure 1—figure supplement 4A and Supplementary file 2A). In

addition, the map is also consistent in separate analyses of males and females (Figure 1C, right).

Next, to assess the biological organization of the map, we examined the map within each of the

four main immunometabolic categories. We noted a different distribution of each category: lipopro-

teins span the entire boundary of the circle, hemodynamic parameters are primarily localized at the

top-right edge of the circle, metabolic parameters are localized in two defined regions (on the left

and top-right sides of the circle), and immunological parameters do not have specific localization

(Figure 1D and Figure 1—figure supplement 4B). We then focused on the organization within the

lipoprotein parameters, which consist of multiple measures in 10 lipoprotein subfractions of the

‘endogenous’ lipoprotein pathway – a central pathway of a gradual change from the subfraction of

large very-low-density lipoproteins (XXL-VLDLs) to the subfraction of small low-density lipoproteins

(S-LDLs) (Figure 1E, right). We found that for each of the particular measures, there is a clear corre-

spondence between the order of subfractions along the known endogenous pathway and the anti-

clockwise order of parameters along the map (Figure 1E and Figure 1—figure supplement 4C),

indicating that the circle reflects gradual changes in the maturation of lipoproteins. For instance, all

10 parameters of ‘triglyceride content’ within 10 different lipoprotein subfractions are ordered along
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Figure 1. A continuous map of clinical and physiological parameters in healthy humans. (A) The map of parameters: a map of similarities among clinical

and physiological parameters. A principle component analysis (PCA) plot based on dimension reduction in which each clinical and physiological

parameter is a dot embedded in a space of two principle components. The principle components are referred to as the IM1 and IM2 axes. Selected

pairs of parameters (color coded) are detailed in B. Data are from individuals in the obesity cohort. (B) The organization of the map: representative

examples. Presented are measured levels of four pairs of clinical parameters (color coded as in A). Each individual is represented by a dot. The plots

represent the positive correlation between proximal parameters on the map (top) and negative correlation between parameters in opposite sides of the

map (bottom). (C) Robustness of the parameter map in different healthy subpopulations. Shown are four maps that were constructed independently

using the obesity cohort, normal BMI cohort, only females in the obesity cohort, and only males in the obesity cohort (ordered from left to right). All

four panels have the same color coding based on the angle of the parameter in the map of the obesity cohort (clockwise color coding starting from

right). (D) Distribution of biological categories in the map. Shown are the positions of immune, metabolic, hemodynamic, and lipoprotein parameters in

the map. (E) Lipoprotein data supports the continuous nature of the map. Right: illustration of the known endogenous lipoprotein pathway. The data

from the obesity cohort consist of several different measures within each of the 10 lipoprotein subfractions. Left: Each subpanel shows the map from A

with highlighting the 10 parameters corresponding to one measure that was evaluated in each of the 10 lipoprotein subfractions (colored by

Figure 1 continued on next page
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the circular pattern by their known order in the endogenous pathway. Thus, the map is organized by

biological properties of the various clinical and physiological parameters.

Collectively, systematic dissection of the natural diversity in healthy subjects generated a compre-

hensive and reproducible map that can be used as a reference for subsequent analyses of the

whole-body state.

The map enables identification of two main components of the whole-
body state – the IM1 and IM2 states
Our next goal was to characterize the overall physiological status of any given individual. To study

individual subjects, we started with a personalized visualization of the map of parameters: for each

individual, its measurements were presented as color coding of all parameters in the map (indicating

the measured levels of all parameters in one individual). Surprisingly, in 91% of the individuals from

the two healthy cohorts, we found a global gradient of measurements over the map: in each individ-

ual, the measured levels varied from negative (i.e., lower than average) values in one side of the map

to positive (i.e., higher than average) values in the opposite side of the map (e.g., obese individuals

#1–8 in Figure 2A and normal-BMI individuals #9–18 in Figure 2—figure supplement 1A). For

example, individual #1 has positive measured levels at the top-right side and negative measured lev-

els at the bottom-left side of the map. Individuals are distinctively defined by their spatial direction

of their gradients (e.g., eight different directions in individuals #1–8) and by their extent of imbal-

ance between the two sides of the gradient (e.g., strong and moderate imbalanced state in individu-

als #9–16 versus #17–18, respectively). For 9% of the individuals, there were no major differences in

measured levels between the two opposing sides of the map – that is, these individuals are in a ‘bal-

anced state’ without any observed gradient (e.g., individuals #19 and #20 in Figure 2—figure sup-

plement 1A).

Given that most individuals are characterized by a certain global gradient over a two-dimensional

map, only two quantitative scores are needed to describe the overall phenotypic state of each indi-

vidual. In accordance, each individual is described by two scores, called ‘IM1 state’ and ‘IM2 state’,

which reflect the contributions of the respective axes IM1 and IM2 to the global gradient

(Materials and methods). Importantly, the two scores explain substantial fractions of the variation in

clinical data, including the variation of each parameter across individuals (the ‘percentage of

explained inter-individual variation’) and among parameters within individuals (the ‘percentage of

explained inter-parameter variation’) (Figure 2B and Figure 2—figure supplement 1B,C). For

instance, in the obesity cohort, for 50% of the individuals, the two scores explain 50% or more of the

total inter-parameter variation; similarly, for 50% of the clinical parameters studied, the two scores

explain 40% or more of the total inter-individual variation in the obesity cohort. Even when the map

from one cohort was used to calculate scores of individuals from the other cohort, the scores still

explain substantial percentages of the variation (Figure 2—figure supplement 1D). Furthermore,

the calculation of IM1 and IM2 states is robust to different sets of parameters (Figure 2—figure sup-

plement 2). Thus, these data suggest that the combination of only two numbers (i.e., the IM1 and

IM2 states) is sufficient to specify the ‘whole-body state’ for the clinical parameters included in our

cohort data.

As an overview of the whole-body state across individuals, each individual is described by a point

whose coordinates are its IM1-state and IM2-state scores (obesity cohort: Figure 2C, normal-BMI

cohort: Figure 2—figure supplement 1E; individuals #1–20 are highlighted). This presentation is

Figure 1 continued

subfractions, as illustrated on the left). Five of the six measures show gradual anticlockwise changes in positions that are in agreement with the known

process of maturation along the endogenous pathway.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Validity of clinical parameters.

Figure supplement 2. Analysis of lipoproteins.

Figure supplement 3. Relations among clinical parameters.

Figure supplement 4. Organization of clinical and physiological parameters in the normal BMI map.

Figure supplement 5. Data transformation.
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referred to as a ‘landscape of states’. According to the definition of the IM1 and IM2 states, the

direction and distance of an individual from the center of the landscape reflect the direction and

extent of its gradient along the map of parameters (Materials and methods). Importantly, the land-

scape of states indicates that (i) there is a similar diversity of IM1 and IM2 states in the healthy popu-

lation, and (ii) the two states are decoupled, with the observation that healthy individuals span the

entire spectrum of IM1/2-state combinations. These two observations suggest that the IM1 and IM2

states are of similar importance. Consistent with this notion, the two states indeed have similar con-

tribution to phenotypic diversity: whereas the IM1 state explains 25% (on average) of the variation

among obese individuals, the IM2 state explains, on average, additional 25% of this variation
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Figure 2. The whole-body state consists of two key components – the IM1 and IM2 states. (A) Representative patterns of co-regulation over the map of

parameters. Shown are measured levels of eight individuals along the map of parameters. Each map (subpanel) is shown with color coding of measured

levels from one specific individual: blue/red scale for low/high (relative) measured levels (no data transformation; data were not smoothed). The

observed gradient-like patterns of measured levels over the map, indicated with gray arrows, allow reduction of data for each individual into two scores

– the ‘IM1-state’ and ‘IM2-state’ scores – which together specify the ‘whole-body state’ of each individual. Original individual identifiers were

renumbered as #1–8. For each individual, the signs of the two scores are indicated on top (IM– and IM+ for negative and positive scores, IMlow for zero

and nearly zero scores). (B) Box plots of percentage of inter-individual variance that is explained by IM1 state only (left), IM1 and IM2 states (middle)

and using permuted data (right). (C) The landscape of states. Scatter plot of inferred IM1-state scores (x axis) and IM2-state scores (y axis) for all

individuals in the obesity cohort. The coordinate of each individual (a dot) is a representation of its whole-body state. Indicated individuals (#1–8) are

detailed in A.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Characterization of the whole-body state in the normal BMI cohort.

Figure supplement 2. The IM1-state and IM2-state scores are consistently reproduced with subsets of clinical parameters.

Figure supplement 3. Association of parameters with the IM1 and IM2 states.
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(Figure 2B); similarly, the IM1 and IM2 states explain 20% and 28% of the variation among normal-

BMI individuals, respectively (Figure 2—figure supplement 1B). Particularly, the best explained

parameters for each spectrum of states were found at the two extremities of its relevant axis (Fig-

ure 2—figure supplement 3 and Supplementary file 2A).

Collectively, we identified two decoupled states (IM1 and IM2) that together describe the human

body with respect to a wide array of clinical and physiological measures. The two states have similar

contribution to the overall phenotypic diversity.

Biological characterization of the IM1 and IM2 states
Using the landscape, we were able to demonstrate that distinct states are marked by different clini-

cal characteristics (Figure 3A). For example, IM1-positive individuals showed high percentage of

monounsaturated fatty acids (MUFAs) and a high waist circumference; IM1-negative individuals

showed high high-density lipoprotein (HDL) cholesterol and adiponectin; IM2-positive individuals

showed high LDL cholesterol levels and high percentage of basophils; and IM2-negative individuals

showed an elevated response of pro-inflammatory cytokines (TNF-a, IL-6, and IL-1b) to bacterial

stimulations. Interestingly, IM2 is associated with cytokine responses to all four bacterial stimulations

but not to the fungal stimulation (C. albicans; Figure 3B). Fungal pathogens are mainly recognized

by C-type lectin receptors (CLRs), unlike the bacterial stimuli used in the study that are typically rec-

ognized by the TLR/RLR pathways (Plato et al., 2015), suggesting that pathogen-specific signal

transduction may have a role in the creation or maintenance of the IM2-state spectrum. Finally, mul-

tiple parameters are markers of a composite IM1/IM2 state – e.g., the ApoB/ApoA ratio is a marker

of the IM1-positive and IM2-positive subset of individuals, and triglycerides in L-VLDLs is a marker of

individuals carrying the IM1-positive and IM2-negative state (Figure 3C). We note that the positions

of parameters in the map correspond to their associations with the state, as exemplified in

Figure 3A,C (see Figure 2—figure supplement 3 for other parameters). Thus, the map can be used

as a bird’s-eye view for the particular markers of each state.

Next, to better understand the states, we focused on unique biomarkers for the IM1 and IM2

states (namely, markers of one score that are not associated with the other score;

Materials and methods). The top 24 markers primarily consist of lipoprotein parameters (Figure 3D,

E, Figure 3—figure supplement 1A and Supplementary file 2C), consistent with the computational

construction of the map around lipoproteins (see above for definition of the map). We observed that

the IM1 and IM2 markers differ strongly between HDL, LDLs, and VLDLs – particularly, IM1-specific

markers consist of VLDLs/intermediate density lipoproteins (IDLs), while IM2-specific markers consist

of LDL and HDL subfractions. To understand this observation, we expanded the analysis to all lipo-

protein subfractions. We found a continuous change in associations along the lipoprotein pathways

– for instance, the IM1 state demonstrates a gradual change in associations with a peak in XS/S-

VLDLs (Figure 3—figure supplement 1B–D). One exception is the signature of associations with

S-HDLs that is different from other HDL subfractions (Figure 3—figure supplement 1E).

The identified markers provide important insights into unique functions of each state. (1) The

peak of associations with the IM1 state is in XS/S-VLDL parameters (Figure 3—figure supplement

1B), which is the last step in the removal of triglycerides from VLDLs to peripheral tissues. Triglycer-

ides are removed from VLDLs into cells in the form of fatty acids and glycerol, which are subse-

quently used for storage and energy production by beta-oxidation, glycolysis, and gluconeogenesis

(Feingold and Grunfeld, 2018). Thus, we suspect that the variation in the release of triglycerides

from VLDLs, which has an effect on fatty acid metabolism, specifically associated with the IM1 state

(Figure 3F). This hypothesis is consistent with the observation that IM1 (but not IM2) is linked to the

composition of fatty acids in serum (Figure 3—figure supplement 1F). Furthermore, expression lev-

els of glycolysis/gluconeogenesis genes and beta-oxidation genes are indeed associated with the

IM1 (but not IM2) state across individuals (p<10�6, 0.04, respectively, state-function association test,

using expression in PBMCs across the normal-BMI cohort; Materials and methods). Collectively,

these findings suggest that carbohydrate metabolism in peripheral cells specifically associates with

the IM1 spectrum of states. (2) IM2-positive markers include LDL levels and LDL cholesterol, which

relate to the influx of cholesterol into peripheral cells and the liver (Feingold and Grunfeld, 2018),

and IM2-negative markers include phospholipid and free cholesterol in S-HDLs, which relate to the

pick-up of free cholesterol together with phospholipid from peripheral cells into S-HDLs

(Feingold and Grunfeld, 2018; Figure 3F). The specificity of this S-HDL association (Figure 3—
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Figure 3 continued on next page
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figure supplement 1E) is in agreement with phospholipid transfer and the esterification of free cho-

lesterol in subsequent HDL subfractions. Thus, these findings suggest that the spectrum of IM2

states relates to variation in cholesterol homeostasis in peripheral tissues.

To identify the additional functions of the IM1 and IM2 states, we leveraged gene expression

data. Specifically, we tested whether a statistically significant fraction of genes in pre-defined func-

tional genesets are associated coordinately with the state (a ‘state-function association’ test; Meth-

ods). We identified 640 functional annotations that are significantly associated (q-value <0.05) with

the IM1 or IM2 states (Figure 3—figure supplement 2A and Supplementary file 2D). When top

100 functional annotations were examined, 14% and 25% were broadly categorized as immunologi-

cal and metabolic functions, respectively. Many of the functions were exclusively associated with one

spectrum of state, such as antigen processing, coagulation, proteasome and electron transport chain

(ETC) (IM2 positive associations); transcription and chromatin organization (IM2 negative associa-

tions); glycolysis, translation, TCA cycle, and DNA replication (IM1 positive associations); and TNF

signaling via NFkB (IM1 negative associations). Other functions were significantly associated with

both IM1 and IM2, such as RNA processing, transcription factor activity, and interferon/antiviral sig-

naling. IM1 and IM2 are therefore heavily intertwined – e.g., both IM1 and IM2 relate to energy pro-

duction (glycolysis – IM1; ETC – IM2), immune functions (e.g., TNF signaling – IM1; antigen

presentation – IM2), and regulation of proteins (translation – IM1; proteasome – IM2). To validate

the associations, we projected gene transcripts onto the map (forming an ‘extended map’, Fig-

ure 3—figure supplement 2B, Materials and methods) and then examined areal patterns of func-

tional annotations over the map. Areal patterns were consistent with our predictions: a coordinated

associations of genes with the state reflects a pronounce co-localization of these genes in the corre-

sponding region of the map (e.g., Figure 3—figure supplement 2A,C). We further note that varia-

tion between genes within the same pathway is well fitted to the overall state (e.g., Figure 3—

figure supplement 2D). Overall, the analysis provides a large repertoire of biological functions that

are associated with each spectrum of states.

Taken together, our study suggests that the IM1 and IM2 states are characterized by (1) clinical

characteristics – for example, adiponectin and waist circumference (IM1) and pro-inflammatory

response (IM2); (2) metabolic processes – for example, cellular metabolism of carbohydrates (IM1)

and cellular homeostasis of cholesterol (IM2); and (3) expression of signatures related to molecular

functions such as translation, transcription, and RNA processing.

The state of IM1 is tightly linked to MetS
Given that MetS is an established way to characterize the state of the human body within the context

of cardiometabolic risk, we compared the IM1 and IM2 states with the standard MetS classification

(using the NCEP ATP-III criteria Huang, 2009). We found a strong association between the spectrum

of IM1 states and the classification of MetS. First, within the landscape of states, individuals fulfilling

the classical criteria for MetS tend toward the positive IM1-state scores (p<10�4, t-test, Figure 4A,

B and Figure 4—figure supplement 1A). Second, within the map of parameters, all five MetS crite-

ria – low HDL cholesterol, high triglycerides, high waist circumference, high glucose, and hyperten-

sion – are nearby the extremes of the IM1 axis (Figure 4C); circulating lipoproteins and free

cholesterol that are not clustered together with MetS characteristics (Huang, 2009) are indeed

Figure 3 continued

of PBMCs is associated with the IM2 state. Top: Distribution of correlations between the IM2 state and the pro-inflammatory response to bacterial (left)

and fungal (right) stimulations. Bottom: The position of pro-inflammatory response parameters within the map. Presented are parameters of pro-

inflammatory response (TNF-a, IL-6, and IL-1b ) to bacterial (PHA, LPS, Staphylococcus aureus, and Porphyromonas gingivalis) and fungal (Candida

albicans) stimulations. (D) Top IM1- and IM2-specific markers, presented by their positions in the map. Highlighted are four groups of six parameters

(color coded), a group for each side of each axis. (E) Representative examples of top markers, presented as in A. (F) Marker genes in the context of

cellular influx and efflux of lipids. Illustration was compiled from known lipoprotein processes. Markers are color coded as in D. Abbreviations: TG –

triglycerides, C – cholesterol, FC – free cholesterol, EC – esterified cholesterol, PL – phospholipids, L – total lipid content, P – particle level.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Top markers for the whole-body state.

Figure supplement 2. Associations of biological functions with the state.

Figure supplement 3. Estimating the whole-body state from reduced parameter sets.
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located far from the IM1 axis (Figure 1A). Third, coloring of the map with the association between

MetS and each clinical parameter reveals a global gradient from negative to positive associations

along the IM1 axis (Figure 4C), which is in agreement with the identified association between MetS

and the IM1 state. Fourth, clinical parameters are similarly associated with MetS and the IM1 state

(Figure 4D). In agreement, the top markers of IM1 (but not IM2) are significantly associated with

MetS (Figure 4D, Supplementary file 2C), the combination of standard MetS parameters predicted

the IM1 state with high accuracy (CV r = 0.87, p<10�27, a linear regression model; Figure 1—figure

supplement 1B,C), and carbohydrate metabolism has a known role in MetS (Lonardo et al., 2015).

Finally, analysis of independent data indicates that MetS and the IM1 state share similar associations

with disease (diabetes and cardiovascular disease [CVD], see below).

These findings suggest that the state of IM1 is a quantitative representation of the conventional

MetS classification. Interestingly, we found that the top biomarkers of IM1 correlate well with MetS

(Figure 4D), suggesting alternative markers that could be useful in MetS diagnosis. Some IM1-
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The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Relationships between metabolic syndrome (MetS) and the whole-body state model.
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associated functions have a known role in the pathophysiology of MetS (e.g., S/XS-VLDL-triglycer-

ides Kolovou et al., 2005); other IM1-associated functions may offer new insights into the biology

of MetS.

Whereas the state of IM1 is linked to MetS, the state of IM2 has substantial contribution to phe-

notypic diversity but is decoupled from MetS. We therefore reasoned that if the IM2 state is associ-

ated with (immunometabolic or cardiometabolic) disease, it is a representation of a novel type of

MetS that is uncoupled from the conventional definition of MetS. We therefore next sought to study

the whole-body state in the context of disease.

Analysis of independent disease data identifies IM2 as a novel non-
classical type of MetS
We first asked whether patients with specific disease states are represented well by the IM1/IM2-

state model that was initially constructed based on healthy subjects. In analysis of two diseases (dia-

betes mellitus [within the context of obesity] and systemic lupus erythematosus [SLE];

Materials and methods and Supplementary file 2E), we observed that the whole-body state of

almost all disease patients is indeed represented well by the IM1/IM2-state model – that is, (i) dis-

ease patients are characterized by a global gradient over the map, (ii) there is a wide spectrum of

directions and extents of these gradients, and (iii) the IM1/IM2 states of disease patients explain

much of their observed inter-individual variation (Figure 5—figure supplement 1A,B). Thus, the

IM1/IM2 states are a general characteristics of the human body in both health and disease. These

findings led us to use the same health-based map for the calculation of states in both healthy and

disease subjects, providing states that are comparable across different individual groups.

When we compared the states of healthy and disease subjects (Supplementary file 2E), we found

that both the IM1 and IM2 states are associated with disease, and each disease associates with a dif-

ferent combination of these two states. In particular, diabetes is associated with a positive IM1 state

(p<0.0002) rather than with an IM2 state (p>0.05), in agreement with the fact that MetS is strongly

associated with diabetes (Balkau et al., 2007). SLE, in contrast, is associated with a positive IM2

state and a negative IM1 state (p<10�10, 10�8, respectively, Figure 5A,B). Analyses of additional

cohorts show broadly similar behaviors, in both males and females (Figure 1—figure supplement

1C,D).

We reasoned that the presence of state-disease associations does not necessarily imply that the

entire state of the human body is associated with disease. An alternative possibility is that particular

clinical parameters led to the state-disease association because they are associated with disease and

are also used for the calculation of the state. Two lines of evidence alleviate this concern. First, simi-

lar results were obtained when using a different set of parameters for the calculation of IM1/2-state

scores (Figure 2—figure supplement 2), suggesting that the associations are not due to several par-

ticular parameters. Second, we used two approaches to calculate the association between each clini-

cal parameter and disease: using a standard association test that accounts for variation in gender,

age, and BMI (a ‘conventional association’) and using an extension of the association test that also

accounts for variation in IM1/2 states (termed ‘state-independent associations’). This analysis con-

firmed that most associations with clinical parameters reflect the association with the whole-body

state: (i) although the map of parameters was constructed using only healthy individuals, we

observed global gradients over the map for the conventional associations between each clinical

parameter and disease (Figure 5C, left), which is in agreement with the direction of associations of

each disease with the IM1 and IM2 states (Figure 5A,B), and (ii) accounting for the state drastically

reduced the number of significant associations (Figure 5D). Similar results were obtained using addi-

tional data sets and using an independent map of parameters (Figure 5—figure supplement 2A,B).

As most parameter-specific associations are largely explained by the global state-disease associa-

tion, it is unlikely that the association with the state is due to confounding parameter-specific

associations.

Because each of the two states is associated with disease but only IM1 associates with the known

MetS classification, our data supports the notion that the spectrum of IM2 states relates to a distinct

immunometabolic syndrome, hereafter referred to as ‘non-classical MetS’. For clarity, the conven-

tional MetS – which relates to the spectrum of IM1 states – is referred to as ‘classical MetS’ (Fig-

ure 5—figure supplement 3A).
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A unified signature for atherosclerosis
CVD is generally associated with MetS (Balkau et al., 2007) and is therefore expected to be linked

with a positive IM1 state. We found a role for both IM1 and IM2 in atherosclerosis, and hence in

CVD. First, both IM1 and IM2 relate to clinical parameters with a known causal role in atherosclero-

sis: out of two known causal atherosclerosis factors (Ference et al., 2017; Nordestgaard, 2016),

one is located nearby the most extreme point of the IM1 axis (the percentage of triglyceride in

VLDL-remnants [also called ‘IDLs’]) and one is located nearby the most extreme point of the IM2 axis

(LDL cholesterol; Figure 6A). More globally, using a literature survey of known CVD risk factors

(Supplementary file 2F), we found that for both the IM1 and IM2 axes, their positive arms are

enriched with previously documented positive CVD risk factor and their negative arms are enriched

with documented negative CVD risk factors (Figure 6A). As in the case of SLE and diabetes
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Figure 5. Characterization of the IM2 state as a novel immunometabolic syndrome (‘non-classical metabolic syndrome’). The analysis is based on

independent disease data sets of systemic lupus erythematosus (SLE; left) and diabetes (right) compared to control subjects. (A and B) Disease-specific

associations with the whole-body state. The comparison is presented using the landscape of states (A) and as box plots (B), demonstrating bias of each

disease toward a certain combination IM1/IM2 states, and emphasizing the utility of IM2 as a novel risk factor of disease. (C) Association of each clinical

and physiological parameter with disease along the map of parameters. Each parameter (dot) in the map is colored based on its association with

disease (signed �log p-value of association scores, with negative/positive scores in purple/green). Shown are conventional association scores that

account for age, gender, and body mass index (BMI). (D) Relations between disease, the state, and specific clinical parameters. A quantile–quantile plot

for all tests of association between disease and clinical parameters using conventional association tests (accounting for age, gender, and BMI; orange)

and using association tests that account also for the state (light blue). Each plot shows ranked observed associations versus expected associations by an

empirical null model; the dashed line (slope = 1) is shown for reference. In both SLE and diabetes, most associations are cancelled out when accounting

for variation in states, highlighting a small number of factors that are associated independently of the state. (E) Schematic illustration of the inferred

relations between SLE, interferon signaling, and the whole-body state.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Analysis of states in disease patients.

Figure supplement 2. Additional analysis of states in disease patients.

Figure supplement 3. Relations between disease, specific causal factors, and the whole-body state.
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(Figure 5C), such a trend reflects a general association between CVD and positive states of both

IM1 and IM2.

Second, focusing on atherosclerosis in obese older adult males, in which reported associations

between MetS and atherosclerosis are weak (Ballantyne et al., 2008; He et al., 2007; Camhi et al.,

2011; International Diabetes Federation, 2006), we indeed found weak relations between positive

IM1 states and atherosclerosis (Figure 6B,C). Interestingly, in addition to the expected weak associa-

tion with IM1, we found a significant link between atherosclerosis and an IM2-positive state

(p<0.001). These relations are further supported by the trend of parameter-specific associations over

the map (Figure 6D, left), by the fact that parameter-specific associations are eliminated when

accounting for the state (Figure 6D, right, and Figure 6E), by using an independent map for the cal-

culation of states (Figure 5—figure supplement 2C), and by recalculation of association values

when excluding diabetic patients (Figure 5—figure supplement 2D).

Collectively, these findings suggest that both the positive IM1 state and the positive IM2 state

are risk factors for CVD. Thus, the two-component model generalizes the large number of specific

risk factors for CVD (Figure 6A), offering a unified view of how specific parameters are linked to

CVD. We note that the link of atherosclerosis to IM2 is only relevant for males (Figure 5—figure sup-

plement 1E), in agreement with the understanding that the mechanisms of atherosclerosis in men

are different from those in women (Fairweather, 2014; Mathur et al., 2015). Thus, whereas both

p = 0.001n.s

Healthy controls  (males)

Atheroscleros is  (males)

IM1 state

IM
2

 s
ta

te

0

IM1 state

IM
2

 s
ta

te

0

Healthy controls  (males)

Atheroscleros is  (males)

0

A

IM1 state IM2 state

E xpected association

with atheroscleros is  (-logP )

y = x

D

LDL-C

F

LDL-C

Atheroscleros is

IM2

state
O

b
s

e
rv

e
d

 a
s

s
o

c
ia

ti
o

n

w
it

h
 a

th
e

ro
s

c
le

ro
s

is
 (

-l
o

g
P

) LDL-C

LDL-C

ApoB /ApoA1

B

Negatively associated

P ositively associated

Documented C V D risk factors :
C

LDL-C

E
C onventional associations

S tate-independent associations

IM1 axis

IM
2

 a
x

is

IM1 axis

IM
2

 a
x

is

C onventional 

associations

S tate-independent 

associations

Association with

atheroscleros is

- +

0

S
c

o
re

IDL-T G

IDL-T G : T riglycerides  in IDLs

LDL-C : C holesterol in LDLs

T riglycerides
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known associations are not shown. References for these documented associations are listed in Supplementary file 2F. The observed trend over the
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classical and non-classical MetS are associated with CVD, the relative contribution of each of these

syndromes likely depends on the particular context, such as ethnicity, age, gender, and BMI. Overall,

our findings coincide with the interpretation of IM1-positive and IM2-positive states as two types of

MetS.

Modeling the relations between the whole-body state, causal factors,
and disease
What are the tripartite relations between disease, specific causal mechanisms and the whole-body

state? For instance, a causal mechanism and the state could have independent effects on disease, or

alternatively, the state could mediate between a causal mechanism and disease. As candidate causal

mechanisms, we used clinical parameters that are associated with disease independently of the state

(based on the state-independent association test). For each disease, we first describe below the can-

didate causal mechanisms and then consider the results. Diabetes is omitted because it is only linked

to one factor (IM1), as it is associated neither with IM2 nor with any clinical parameter independently

of the state (except from its defining elements; Figure 5D, right).

To study the relations in SLE, we focused on 88 genes that have significant state-independent

associations (q < 10�3; Figure 5D, left) as the candidate causal mechanism. These genes are primar-

ily responsible for interferon/antiviral signaling (p<10�61, hyper-geometric enrichment test), consis-

tent with the known causal role of interferon/antiviral signaling in SLE (Salloum and Niewold, 2011;

Supplementary file 2G). We evaluated a combined multivariate linear model consisting of three fac-

tors: IM1, IM2, and averaged expression of the interferon/antiviral-signaling genes. To quantify the

relative contribution of each factor, we determined how much additional variance was explained

when a given factor was added to the model. Because the different factors may have inter-relations

and may interact in a nonlinear manner, all possible ordering combinations were examined. The

three factors together accounted for nearly 84% of the variance in SLE. Of these 84%, interferon/

antiviral signaling explained 14–80%, and IM1/IM2 explained 4–70%. IM1, IM2, and interferon signal-

ing were independent predictors of SLE (p<10�13, 10�13, and 10�103, respectively), and each factor

was also a significant predictor of disease in a separate analysis of males and females (p<0.05 in all

cases). Thus, these results suggest that interferon signaling and the classical/non-classical MetS state

have independent relationships with SLE (Figure 5E and Figure 5—figure supplement 3B).

The example of atherosclerosis in obese males is particularly interesting, as in our cohort none of

the clinical parameters is associated with atherosclerosis when accounting for variation in the state

(Figure 6E). Even LDL cholesterol, which has a known causal effect on atherosclerosis (both directly

and indirectly Ference et al., 2017; Nordestgaard, 2016), is strongly associated with atherosclero-

sis but is completely decoupled from atherosclerosis when accounting for the IM2 state (Figure 6D,

E). Based on systematic analysis of the tripartite relations between LDL cholesterol, IM2, and athero-

sclerosis (Figure 5—figure supplement 3C), a plausible model is that the indirect effect of

LDL cholesterol on atherosclerosis in obese men is mediated through the IM2 state (Figure 6F). It is

therefore likely that non-classical MetS has an effect on atherosclerosis, in addition to the known

effect of specific causal mechanisms.

Overall, these findings suggest that (1) SLE has independent contributions from specific risk

mechanisms and the state, and (2) LDL cholesterol affects atherosclerosis both directly and indirectly

through the non-classical MetS state. We conclude that human diseases are directly related to the

complex ecosystem within the human body, in addition to the contribution of specific disease

mechanisms.

Estimating the whole-body state from reduced parameter sets
We also asked whether the IM1- and IM2-state scores could be predicted well using a small set of

parameters, allowing practical assessment of the whole-body state. For the assessment of a given

score, we selected arbitrarily four parameters from the 12 top markers (two from each side of the

relevant axis, Figure 3D) and used a linear regression model to predict the score

(Materials and methods). Applying the analysis 100 times, we found that the accuracy is high regard-

less of the specific four-parameters set used (IM1 mean r = 0.96, IM2 mean r = 0.95; cross validation

Pearson’s r; Figure 3—figure supplement 3A, see example in Figure 3—figure supplement 3B).

Thus, any small set of top parameters can be used for the assessment of the score. These results
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exemplify the power of reduced sets of parameters for the assessment of the whole-body state in

practical applications.

Discussion
In this study, we make use of healthy cohorts in which a vast amount of immunological, metabolic,

and hemodynamic parameters were measured, and report that using a tailored transformation of

these data, we could construct an informative two-dimensional map of parameters. Using this map,

we found that the normal physiological state of the human body is largely characterized by two com-

ponents – the IM1 state and IM2 state. Although the number of individuals in our data is relatively

small, the reproducibility of the map (and thereby the reproducibility of the IM1 and IM2 states) has

been validated in three independent cohorts (300-OB, 500-FG, and the REPROGRAM cohorts) and

in different individual groups (men and women, health and disease, different age, and BMI groups).

A large percentage of the variation in clinical parameters among individuals (50%, on average) is

captured by these two components, emphasizing that the two-component model is a faithful repre-

sentation of the whole-body state. To the best of our knowledge, this provides the first systematic

description for the informal concept of the whole-body state and a framework to faithfully describe

the state in individuals, shedding light on a longstanding debate in biomedicine.

Studies of cardiometabolic disease have defined MetS as an aggregate of co-regulated clinical

parameters that are associated with a high risk of diabetes and CVD (Balkau et al., 2007). Our de

novo reconstruction of the whole-body state (within healthy subjects) supports this classical defini-

tion of MetS: we show that the IM1 component of the whole-body state resembles the classical

MetS – that is, the spectrum of IM1 states ranges between negative values in non-MetS individuals

and positive values in MetS individuals. Importantly, we further show that the other component of

the whole-body state (IM2) reflects a novel ‘non-classical MetS’: the IM2 spectrum explains substan-

tial fraction of the variation within healthy subjects, is associated with disease risk, and is decoupled

from the classical MetS. Thus, our analysis highlights a MetS-independent mode of the human body

that is associated with the onset and progression of human disease.

Among our key findings is the identification of the whole-body state as a general risk factor to

various complex diseases. Compared to the classical MetS model, the suggested two-component

model (i) improves disease-state associations and (ii) extends the set of diseases that are associated

with the whole-body state (Figure 7A). This emphasizes the importance of a combined analysis of

the two types of MetS: instead of using the classical MetS as a risk factor for a few diseases, different

combinations of the classical/non-classical MetS states could be used as risk factors for a larger num-

ber of diseases.

An important application of the framework is the ability to discern disease-specific markers whose

associations are independent of the whole-body state (e.g., interferon/antiviral signaling in SLE).

Thus, our framework offers a strategy for a superior diagnostics based on a combination of general

markers (for the state) and specific markers (for a specific disease), which can be tested in future

studies. Another application of the model is to study tripartite relations between specific mecha-

nisms, the whole-body state, and disease. For example, we found that SLE has independent contri-

butions from specific disease mechanisms and the whole-body state (Figure 5E), and

LDL cholesterol affects atherosclerosis both directly and indirectly through the whole-body state

(Figure 6F). Because it is enough to use a small number of markers for the calculation of the state

(Figure 3—figure supplement 3), our strategy can be pursued in clinical practice. As our study

cohorts are limited in size and are focused on specific genetic background/ethnicity, future work is

needed to test the generality and repeatability of the identified associations and relations in addi-

tional populations and contexts.

The analysis specifies a large set of factors that are associated with non-classical MetS. These

include a mixture of metabolic factors (e.g., serum cholesterol, LDL cholesterol, LDL particle number,

and the composition of phospholipid/free-cholesterol in LDLs and S-HDLs), immune factors (e.g., the

percentage of circulating basophils and cytokine production capacity of PBMCs to bacterial stimuli),

and transcriptional regulation of intracellular functions (e.g., coagulation, antigen processing, and

presentation). By leveraging the fine granularity of lipoproteins, the analysis provides specific

hypotheses for the roles of cholesterol metabolism in non-classical MetS. We do not know the
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identity of the true drivers of non-classical MetS, as the relations between these parameters consist

of multiple intertwined feedback loops.

Our unbiased approach offers a comprehensive view of how biological functions are linked to

MetS. The IM1 state associates with the standard MetS parameters and with additional parameters

(e.g., adiponectin, %MUFA and the composition of XS/S-VLDLs, cellular metabolism of carbohy-

drates, protein translation, DNA replication, and TNF signaling). These include many of the known

MetS-associated functions (e.g., fatty acid metabolism; Lonardo et al., 2015), as well as previously

unknown candidates. Thus, the integrated analysis allows to identify new candidates even in the

heavily investigated MetS state. Given that the IM1 markers are more strongly associated with IM1

compared to the five conventional MetS parameters (Figure 4D), we hypothesize that the IM1

markers may describe in more detail the (patho)physiological MetS state of individuals. It is therefore

possible that the definition of MetS might be improved with IM1-specific markers, potentially lead-

ing to a stronger association of classical MetS with cardiometabolic disease. Additional studies are

required to test this hypothesis and explore the association of IM1 markers with cardiometabolic dis-

ease across large cohorts.

Through inspection of the states, we found that most individuals exist in a certain imbalanced

state in which one side of the map is upregulated whereas the opposite side of the map is downre-

gulated. Cellular immunometabolism is indeed thought to be in a ‘dynamic balance’ between antag-

onistic programs, such as a balance between the pro- and anti-inflammatory signaling and a balance

between cell proliferation and apoptosis (Cicchese et al., 2018; Guo and Hay, 1999). Our observa-

tions suggest that similar rules of homeostatic balance are prevalent not only at the molecular and

cellular level, but are also effective at the clinical and physiological scale.

Finally, our framework offers opportunities for future medical interventions targeting the state. In

particular, the ability to quantify the relations between different diseases and the whole-body state

provides a unique opportunity to design changes in the whole-body state (Figure 7B). For example,

an attractive possibility is to use the landscape of states to design transitions from a high-risk state

into a low-risk state. Given that some transitions are likely blocked by energetic boundaries, activa-

tion energy (such as drug interventions or long-term changes in lifestyle) would be required to go

through these boundaries. We therefore expect that the landscape of states would have an impact

on the development of future therapeutic interventions.
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Figure 7. Implications of the whole-body state for disease research. Shown are two schematic representations for the landscape of states, highlighting

a potential future utility of these states in diagnosis and treatment. (A) Distribution of disease risk over the landscape of states. Indicated are regions in

the landscape that have a higher disease risk (gray outline). The conventional (‘classical’) metabolic syndrome (MetS) and the newly defined ‘non-

classical MetS’ are indicated as blue and orange regions, respectively. The landscape highlights the utility of classical/non-classical MetS scores as risk

factors for common, complex disease. (B) Energy landscape of the whole-body state. Each state in the landscape is associated with a certain level of

energy. Possible sites of disease risk are also indicated. The energy landscape highlights our hypothesis that transitions from one state to another state

are blocked by energetic boundaries. Thus, transitions from a disease-associated state to a low-risk state may therefore require a certain activation

energy, such as changes in lifestyle and drug treatments (dashed lines).
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Materials and methods

The 300-OB cohort
The 300-OB cohort, which we generated as a part of the human functional genomics project (HFGP),

consists of 167 males and 135 females (Supplementary file 1A). These Dutch volunteers are all over-

weight or obese (BMI >27) and range in age from 53 to 79 years. The presence of diabetes and

carotid atherosclerosis were determined. In particular, the presence of atherosclerotic plaques was

determined by ultrasound of the carotid artery. Subjects with a recent cardiovascular event (myocar-

dial infarction, transient ischemic attack, or stroke in the previous 6 months), a history of bariatric sur-

gery or bowel resection, inflammatory bowel disease, renal dysfunction, increased bleeding

tendency, use of oral or subcutaneous anti-coagulant therapy, or use of thrombocyte aggregation

inhibitors other than acetylsalicylic acid and carbasalate calcium were excluded. The study was

approved by the Ethical Committee of the Radboud University Medical Center Nijmegen

(NL46846.091.13, 2013/505). Inclusion of volunteers and experiments were conducted according to

Declaration of Helsinki, and all subjects signed written informed consent.

Experimental procedures for the 300-OB cohort
We took blood samples in the morning following an overnight fast. Participants who used lipid-low-

ering therapy temporarily discontinued this medication 4 weeks prior to the measurements. For each

of the individuals, a variety of immune, metabolic, and hemodynamic parameters were monitored

(Supplementary file 1C,D). We used a high-throughput nuclear magnetic resonance (NMR) metabo-

lomics platform (Nightingale’s Biomarker Analysis Platform) for the quantification of lipid and metab-

olite measures. Circulating inflammatory mediators were measured in human EDTA plasma using

Enzyme Linked Immunosorbent Assay (ELISA). All individuals from the 300-OB study underwent a

cardiovascular assessment. This included the measurement of carotid intima-media thickness (cIMT),

plaque presence, and maximum plaque thickness. After a resting period of at least 30 min, baseline

resting diameter and wall thickness of both carotid arteries were assessed by a well-trained sonogra-

pher. The cIMT and diameter measurements were performed in the proximal 1 cm straight portion

of the carotid artery at three different angles (90˚, 120˚, and 180˚) for six heart beats. The primary

outcome variable was defined as the mean cIMT of the three angles. The presence of plaque was

defined as focal thickening of the wall of at least 1.5� the mean cIMT or a cIMT >1.5 mm according

to the Mannheim intima-media thickness consensus.

Healthy cohorts
The obesity cohort
The 300-OB cohort includes 126 healthy volunteers (63 males and 63 females without atherosclerosis

and diabetes), all are older adults (range from 53 to 78 years) who are either overweight or obese

(BMI >27). This healthy cohort of 126 individuals is referred to as the ‘obesity cohort’

(Supplementary file 1A). Volunteers and experimental procedures that we used to generate the

cohort are described in detail in ‘The 300-OB cohort’ section.

The normal BMI cohort
We further used the 500-FG cohort (Ter Horst et al., 2016), which includes 473 healthy individuals

(202 males and 271 females) of Caucasian origin. The individuals range from 18 to 75 years of age

with 82% of individuals younger than 30. Individuals had BMIs ranging from 15 to 35 with the major-

ity (388 individuals) in the normal BMI range (18–25). None of these individuals were diagnosed with

atherosclerosis or diabetes. We refer to this cohort as the ‘normal BMI cohort’ (Supplementary file

1B).

Clinical parameters
The parameters of the obesity and normal-BMI cohorts relate to three main immunometabolic cate-

gories (Supplementary file 1C,D). The first category consists of immunological parameters including

the immune composition of blood (e.g., cell quantities and circulatory levels of cytokines and adipo-

kines; 19 and 8 parameters in the obesity and normal BMI cohorts, respectively). In addition, it

includes cytokine production capacity of isolated PBMCs in response to ex vivo stimulation with
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microbial products. For example, in the obesity cohort, data includes levels of four cytokines (IL-1b,

IL-1RA, IL-6, and TNF-a) in response to five stimulations (phytohaemagglutinin [PHA], lipopolysaccha-

ride [LPS], Staphylococcus aureus, Porphyromonas gingivalis, and Candida albicans). The second cat-

egory of clinical measurements is a collection of hemodynamic parameters, including heart rate,

pulse wave velocity, and blood pressure, as well as hematological parameters such as hematocrit.

These hemodynamic parameters were only measured in the obesity cohort (15 parameters). The

third category consists of metabolism-related parameters: concentrations of fatty acids, sugars,

amino acids, lipids, and apolipoproteins in blood; insulin resistance index; and markers of body fat

distribution such as visceral and subcutaneous abdominal fat (71 and 59 parameters in the obesity

and normal BMI cohorts, respectively). This category also consists of a high-resolution map of lipo-

proteins, consisting of 10 subfractions over the VLDL to LDL ‘endogenous’ pathway and four param-

eters over the HDL ‘reverse transport’ pathway, with 12 compiled parameters for each subfraction –

including the content of phospholipids, triglycerides, esterified cholesterol, and free cholesterol (a

total of 168 lipoprotein parameters for each cohort). Importantly, MetS was assessed only in the

obesity cohort but not in the normal-BMI cohort.

Data pre-processing
For each parameter, centering and scaling were done by fitting all measured levels across a given

cohort to the Johnson function. The resulting ‘relative measured levels’ (in short, ‘measured levels’)

were used throughout this study. The data set of all relative measured levels of all clinical parameter

is referred to as ‘measured data’. Given the limited number of missing values (an average of 5%

missing values across parameters), we performed all analyses without any data imputations. In all

individual-level analyses, parameters with more than 65% missing values were omitted. For 68 indi-

viduals from the normal BMI cohort, RNA-seq data of PBMCs were available from Bakker et al.,

2018 Raw reads of RNA-sequencing were initially normalized across the samples, and genes were

centered and scaled by fitting to the Johnson function. We identified 11,810 genes that were

expressed in at least 63 of the 68 individuals and used them to reconstruct the extended map of

parameters.

The map of parameters
To generate the map of parameters, we first transformed the data so as to reduce the level of noise

while maintaining the original interrelations among clinical parameters. To this end, we tested the

correlation between each pair of parameters across individuals. As many parameters lacked mean-

ingful correlations with any other parameter and the lipoproteins showed exceptionally strong corre-

lations (Figure 1—figure supplement 5A), we transformed the measured levels of each clinical and

physiological parameter based on its collection of associations with the entire set of lipoprotein

parameters. Thus, the transformation represents the measured data of each clinical parameter as a

large set of associations with all lipoprotein parameters – substantially different from the original

representation in which each clinical parameter is described by a set of measured levels in all individ-

uals. This transformation is based on the notion that (i) associations would allow amplification of cor-

relations (‘similarities’) among clinical parameters, since they provide a reduced level of noise: small

fluctuations in measurements of specific individuals are smoothly averaged at the association level;

and (ii) the associations maintain the original interrelationships among clinical parameters: if two clin-

ical parameters behave in a similar way, the complete sets of associations with lipoprotein parame-

ters would be potentially similar.

We tested two alternative transformation methods – a linear transformation that does not account

for covariates and a covariate-corrected transformation that accounts for variation in age, gender,

and BMI. In both cases, the input is a ‘measured profile’ of each clinical parameter (represented as

an n-length vector of relative measured levels across the n individuals), and the output is a ‘trans-

formed profile’ for each clinical parameter.

I. A linear lipoprotein-based transformation. We used the lipoprotein data as a transformation
matrix that sends each clinical parameter from a profile of measurements across individuals
to a new profile of relations (cosine of angles) between a given parameter and all lipoprotein
parameters. In particular, for a given clinical parameter k, we applied the following linear
transformation: Tk ¼ X � Yk, where Yk is the measured profile of the k-th parameter (using
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unit vectors for all parameters), X is the 168 � n transformation matrix in which entry Xij is
the measured profile of the i-th lipoprotein parameter (i=1,. . .,168) in individual j (j=1,. . .,n),
and finally Tk is a transformed 168-length vector of the k-th parameter, referred to as the
‘transformed profile’. Since the measured profiles are unit vectors, the i-th position in the
transformed profile of parameter k (Tk;i) reflects the cosine of angle between the n-length
vectors of relative measured levels for the k-th clinical parameter and the i-th lipoprotein
parameter. Thus, the transformed profile of any given parameter k is a vector of all its rela-
tions with the list of lipoprotein parameters.

II. A covariate-corrected lipoprotein-based transformation. We reasoned that the linear trans-
formation defines relationships of any parameter to the lipoprotein parameters, and that
these relationships are possibly biased due to certain covariates such as age, gender, and
BMI. To account for these potential confounding effects, we used an alternative transformed
profile Tk in which Tk;i reflects the relations between clinical parameter k and lipoprotein
parameter i while accounting for covariates. In particular, for a given clinical parameter k and
a lipoprotein parameter i, we used a standard linear regression model

Yk ¼ c
k;i
0
þ c

k;i
1
Xi þ c

k;i
2
Aþ c

k;i
3
Gþ c

k;i
4
B, where Yk, Xi, A, G, and B represent n-length vectors of

data across the n individuals including the measured profiles (unit vectors) for clinical parame-
ter k (Yk) and lipoprotein parameter i (Xi), as well as age (A), gender (G), and BMI (B). Using

this formulation, we set Tk;i ¼ c
k;i
1
. Thus, Tk;i reflects the relations between the lipoprotein

parameter i and the clinical parameter k while accounting for covariates.

Transformations based on associations with other sets of parameters (instead of lipoproteins)

were not as effective as a lipoprotein-based transformation (Figure 1—figure supplement 5B). As

both the linear transformation and the covariate-corrected transformations provided qualitatively

similar results (Figure 1—figure supplement 5C), in this study we focus only on maps that were gen-

erated using the covariate-corrected transformed profiles.

Using data from a healthy cohort, the map of parameters was constructed in two steps. First,

measured levels of all clinical and physiological parameters were transformed using the covariate-

corrected lipoprotein-based transformation. Transformed values were then scaled so that the trans-

formed profile of each clinical parameter had unit length. Second, the map of parameters was con-

structed by dimension reduction (PCA) of this transformed-and-scaled data. The two first principle

components are termed ‘immunometabolic axis 1’ (in short, ‘IM1 axis’) and ‘immunometabolic axis

1’ (in short, ‘IM2 axis’).

The extended map of parameter
To extend the map with gene transcripts, we focused on transcription profiles of PBMCs that were

measured in 68 individuals from the normal-BMI cohort, which enabled us to project each gene onto

the map of parameters. This extension was applied in two steps: First, we constructed the map using

clinical and physiological parameters based on data from the normal-BMI cohort. Second, each gene

parameter was projected onto the resulting PCA map (a total of 11,810 genes; see ‘Data prepro-

cessing’ section). The result is an ‘extended map’ consisting of 11,810 new parameters where each

new parameter is an expressed gene (Figure 3—figure supplement 2B). The extended map was

used in the analysis of biological annotations and in all analyses of SLE.

The whole-body state model
The calculation of the whole-body state for each individual i takes as input (i) a map of parameters,

where each parameter is associated with a certain coordinate on the IM1 and IM2 axes, and (ii) the

relative measured levels of each parameter for individual i. The entire calculation of states relies on

the relative measured levels (namely, without using the lipoprotein-based transformation).

To infer the state of individual i, we solved the following linear regression: Zi ¼ siIM1
V1 þ siIM2

V2,

where Zi is the vector of all relative measured levels of individual i, V1 and V2 are the vectors of coor-

dinates of all parameters on the IM1 and IM2 axes, respectively (namely, the coordinates of all clini-

cal parameters in the map of parameters), and siIM1
and siIM2

indicate the unknown ’IM1 state’ and

’IM2 state’ (respectively) in individual i. The IM1/2-state scores are signed based on the direction of

the gradient, with a positive IM1 state (IM2 state) for upregulation in the right (top) side of the map

and vice versa. For instance, the scores of an individual with downregulation in the top-left region of

the map and upregulation in the bottom-right region of the map are IM1-positive and IM2-negative
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(e.g., individual no. #3 in Figure 2). The distance between the (siIM1
, siIM2

) coordinate and the (0,0)

coordinate reflects the ’extent’ of regulation along the gradient: the higher the distance, the stron-

ger the upregulation and downregulation along the gradient. The two scores equal zero (or nearly

zero) for individuals that lack any global gradient (e.g., individuals #19 and #20 in Figure 2—figure

supplement 1A).

Overall, the two scores define the ‘whole-body state’ of each individual. If one or two of the

scores differ from zero, there is an observed global gradient of relative measured levels over the

map, as if there is an imbalance between two opposing sides of the map. In contrast, if both the

IM1-state and IM2-state scores are zero (or nearly zero), there is a lack of global gradient, that is,

there is a balance between opposing sides of the map (see indication of imbalanced and balanced

states in Figure 2C and Figure 2—figure supplement 1E). Of note, the calculation of states in dis-

ease subjects should also consider potential artifacts due to disease-specific alterations, as detailed

in the ‘Application of the framework in disease research’ section.

For the analysis of SLE, where clinical parameters were not available, the IM1/IM2-state scores

were calculated using transcriptome data, relying on an extended map of gene transcripts. Particu-

larly, we used the extended map that was constructed based on data from the normal-BMI cohort (i.

e., the map from Figure 3—figure supplement 2B). Out of 11,810 genes in this extended map,

7443 were also expressed in the SLE data sets (see ‘Disease cohorts’ section). To calculate the

states, we used only 596 of the 7443 genes, which were selected based on their relations with lipo-

proteins in two steps. First, for each gene, we calculated its Pearson correlation with all lipoprotein

parameters based on gene expression and lipoprotein data from the normal-BMI cohort (correla-

tions were calculated using transformed profiles). Second, genes with maximal absolute-correlation

values that are higher than 0.85 were selected.

We present the calculated IM1/IM2-state scores across a cohort of individuals using a ‘landscape

of state’ – a scatter plot in which each individual is described as a point whose coordinates are its

IM1-state and IM2-state scores. In this presentation, the gradient of each individual over the map of

parameters is specified by its particular position within this landscape: the direction of a coordinate

(relative to the center of the landscape) equals the direction of the gradient along the map of param-

eters, and the distance of a coordinate from the center of the landscape reflects an increasing extent

of imbalance between the two sides of the map. Specifically, individuals located at the center of the

landscape lack any gradient (i.e., in a balanced state). Figure 2A,C and Figure 2—figure supple-

ment 1A,E provide several examples. For instance, individual #1, whose gradient is directed toward

the top-right side of the parameter map, attained IM1-positive and IM2-positive scores; in accor-

dance, it is embedded at the top-right side of the landscape of states. Individuals #17 and #18 that

have a moderate imbalance are located closer to the center compared to individuals #1–16 that

have stronger imbalance. Individuals #19 and #20, which lack any global gradient, reside at the cen-

ter of the landscape.

Analysis of variation in the whole-body state
For each individual, the ‘total inter-parameter variation’ is defined as the variation in the relative

measured values across all parameters. For each parameter, the ‘total inter-individual variation’ is

defined as the variation in the (relative) measured levels across individuals (here, this total variation is

always one due to the scaling of measurements, as detailed above). For both the inter-parameter

variation and inter-individual variation, we calculated the percentages of variation that are explained

the IM1-state and IM2-state scores in two steps: First, for each parameter, we regressed out the two

scores from the parameter’s relative measured levels across individuals. Second, the ‘unexplained

variation’ is the variation calculated when using the resulting residual values (rather than using the

relative measured levels). The ‘percentage of unexplained variation’ is the percentage of unex-

plained from the total variation, and the ’percentage of explained variation’ (either inter-individual

or inter-parameter) is the remaining percentage of variation – that is, 100 minus the percentage of

unexplained variation. This analysis is reported in Figure 2B, Figure 2—figure supplement 1B–

D, and Figure 5—figure supplement 1B.
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Biomarkers and functional annotation of states
Biomarkers for the states were identified based on Pearson’s correlation (r) between state scores

and measurements. The top biomarkers were selected in three steps. First, correlations of lipopro-

tein content and percentage (for the same lipid and subfraction) were averaged. Second, we aver-

aged the correlations calculated in the obesity and normal-BMI cohorts. Third, we identified the top

markers. For example, for the identification of IM1-specific markers, we filtered out all markers with

high (>0.3) averaged correlation to IM2 and then selected the top parameters based on their aver-

aged correlation with IM1 (six best positively correlated and six best negatively correlated with the

IM1 state). The same cutoffs were used for the identification of IM2-specific markers.

Supplementary file 2C provides the list of the identified markers.

We predicted the state using a small set of parameters. Specifically, we predicted the two scores

as two independent tasks, allowing reduced costs when only one score is needed. For the assess-

ment of a given score (IM1 state or IM2 state), we chose arbitrarily two negative parameters and

two positive parameters (four parameters in total per score) from the set of 12 top markers

(Supplementary file 2C). We fitted a linear regression model that used the score as the dependent

variable and the four selected parameters as the explanatory variables. Prediction accuracy (Pear-

son’s r) was evaluated using leave-one-out cross validation.

To explore the relations of biological functions with the state, we correlated the expression levels

of each gene with each state across individuals (Pearson’s r score). Next, for each state (IM1 or IM2

states), gene set enrichment analysis (GSEA) was applied (using the ’fgsea’ R package) to test the

similarity between the expected and observed distribution of Pearson’s r values (comparing between

the gene set to all remaining genes). p-values were assessed using permutations. Significant p-values

indicate state-function associations. Candidate gene sets of biological functions were downloaded

from the following sources: GO, MSigDB Hallmark gene sets, Reactom, and KEGG. Significant func-

tion-state associations (q-value <0.05) are reported in Supplementary file 2D and Figure 3—figure

supplement 2A.

Disease cohorts
Each analysis relies on three input types: a group of disease patients, the group of matching controls

from the same cohort data, and a reference map of parameters.

Systemic lupus erythematosus
Three comparisons of diseased to healthy groups were performed: (1) 26 healthy and 719 SLE

female children from Banchereau et al. (GSE65391), (2) 6 healthy and 87 SLE male children from Ban-

chereau et al. (GSE65391), and (3) 17 healthy and 131 SLE female adults from Chiche et al.

(GSE49454). Since SLE cohort no. 1 is the largest, we used it as our primary analysis (Figure 5), and

the remaining cohorts are used as additional support (Figure 5—figure supplement 1D and Fig-

ure 5—figure supplement 2A). These three data sets consist of gene expression profiles, and in

accordance, the analysis was performed in the context of the extended map of genes from Fig-

ure 3—figure supplement 2B.

Diabetes
Three comparisons of diseased to healthy groups were performed: (1) 139 non-diabetic and 23 dia-

betic obese adults with carotid atherosclerosis from the 300-OB cohort, (2) 126 non-diabetic and 14

diabetic obese adults without atherosclerosis from the 300-OB cohort, and (3) 130 non-diabetic and

140 diabetic obese adults with coronary atherosclerosis from the ‘coronary-atherosclerosis cohort’.

The coronary-atherosclerosis cohort was collected as part of the HORIZON 2020 European Research

Program – ‘REPROGRAM: Targeting epigenetic REPROGRamming of innate immune cells in Athero-

sclerosis Management and other chronic inflammatory diseases’. The coronary-atherosclerosis cohort

consisted of 229 Romanian patients with symptomatic stable coronary artery disease. All patients

had angiographically documented coronary atherosclerosis and inducible ischemia at the treadmill

or imaging stress testing. The distribution of age, gender, and BMI in this cohort is similar to the

300-OB cohort. We used diabetes cohort no. 1 as our primary analysis (Figure 5), whereas the two

other cohorts were used as additional support (Figure 5—figure supplement 1C and Figure 5—
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figure supplement 2B). For all three comparisons, we used the map of parameters that was origi-

nally constructed using healthy obese individuals, as demonstrated in Figure 1A.

Atherosclerosis
Two cohorts were tested. (1) An atherosclerosis male cohort, consisting of 95 men with diagnosed

carotid atherosclerosis (with ultrasound) and 72 healthy men as controls. All individuals are obese

older adults without cerebrovascular events from the 300-OB cohort. As a reference map of parame-

ters, we used the map of parameters that was originally constructed using obese healthy males from

Figure 1C. (2) An atherosclerosis female cohort, consisting of 67 women with diagnosed carotid ath-

erosclerosis (with ultrasound) and 68 healthy women as controls. All individuals are obese older

adults without cerebrovascular events from the 300-OB cohort. As a reference map of parameters,

we used the map of parameters that was originally constructed using obese healthy females from

Figure 1C. The two cohorts refer to asymptomatic atherosclerosis.

Supplementary file 2E provides details about the groups of disease and control subjects and

about particular map of parameters that was used in each analysis.

Application of the framework in disease research
We used the framework to compare healthy and diseased groups that have matching characteristics

of age, gender, and BMI. All comparisons relied on a standard score of association between disease

and a certain parameter. The ‘conventional association’ score was a –log p-value resulting from a lin-

ear mixed model that accounted for relevant covariates of gender, age, and BMI. We used the same

formulation to test the association between each of the IM-state scores and disease. In addition, we

also calculated associations between a given clinical parameter (or a gene parameter) and disease

while controlling for the whole-body state – that is, we used both the IM1-state and IM2-state scores

as additional covariates. The –log p-value resulting from this test is referred to as a ‘state-indepen-

dent association’ score. Reported association p-values were adjusted for false discovery rate that

accounts for multiple testing (q-values).

For comparison of subjects with disease to healthy subjects, the map of parameters should be

constructed using matching healthy individuals from an independent cohort. For instance, we

applied this strategy in the case of SLE, where the map of parameter was constructed using one

cohort (the normal-BMI cohort) and the compared healthy/disease groups were derived from

another cohort (Supplementary file 2E). Given that a matching healthy cohort is not always available

for the construction of a map (e.g., the available independent cohorts do not have a similar list of

parameters), the same healthy controls could be used for the map construction and for the healthy/

disease comparison. In such case, to avoid overfitting and biases, the IM-state scores of healthy indi-

viduals are inferred in a leave-one-out manner – namely, constructing the map multiple times, each

time omitting data from one particular individual for which the scores are inferred. We applied this

strategy in the case of atherosclerosis and diabetes, where both the reference map and the control

groups relied on the same cohort (Supplementary file 2E).

We reasoned that clinical parameters could be altered in disease independently of the state and

that these parameters could have an effect on the calculation of the state in disease patients. To

decouple between the state and disease-specific alterations, we refined the calculated IM1/IM2-

state scores of disease patients in an iterative manner. In each iteration, the procedure removed

parameters that were significantly associated independently of the two state scores and then recal-

culated the states. These two steps were iterated until convergence. To ensure comparability, the

final set of parameters that were used to infer the two state scores in disease patients were also

used to infer the two scores in the group of healthy individuals. None of the parameters were omit-

ted in analysis of atherosclerosis. The set of significant state-independent SLE associations

(Supplementary file 2G) was omitted in SLE. Glucose and Hb1ac were omitted in diabetes.
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Supplementary files
. Supplementary file 1. Individuals and clinical parameters. (A) Individuals in the 300-OB cohort. For

each individual (column 1), the table reports the gender, age, and body mass index (BMI) (columns

2–4), the presence of diabetes mellitus (column 5), and carotid atherosclerosis (column 6). Indications

for atherosclerosis (maximum plaque thickness, maximum stenosis, and number of plaques) are in

columns 7–9, respectively. The healthy controls (no atherosclerosis and no diabetes) are referred to

as the healthy ‘obesity cohort’. (B) Individuals in the normal BMI cohort. The table reports the index

of individuals included in the normal BMI cohort (column 1). Gender, age, and BMI of each individual

are reported in columns 2–4, respectively. (C) Clinical parameters. The table reports the list of

parameters measured in the 300-OB cohort and/or the normal-BMI cohort that were included in this

study (the obesity cohort is part of the 300-OB cohort). For each parameter (column 1), indicated is

the physiological system (column 2) and whether the parameter was measured in the 300-OB cohort

(column 3) and normal-BMI cohort (column 4). (D) Immune capacity and lipoprotein parameters used

in this study. The table provides a summary for the immune capacity and lipoprotein parameters in

the 300-OB cohort and/or the normal-BMI cohort. Each of these parameters is listed with more

details in (C).

. Supplementary file 2. Analysis of biological functions and disease, performed in the context of the

map and the whole-body state. (A) The parameters. For each parameter (column 1), columns

2 and 3 report the position of parameter in the map, as calculated using the obesity cohort data

(IM1 and IM2 axes, respectively), and columns 4 and 5 report the position of parameter in the map

as calculated using the normal BMI cohort data (IM1 and IM2 axes, respectively). Columns 6 and 7

report the Pearson’s correlations (r) between each parameter and the state, as calculated using the

obesity cohort data (IM1 and IM2 states, respectively), and columns 8 and 9 provide the correlation

(r) between each parameter and the state, as calculated using the normal-BMI cohort data (IM1 and

IM2 states, respectively). (B) Pearson correlations between each pair of parameters. Parameters are

ordered as in Figure 1—figure supplement 3D. Correlations were calculated using the covariate-

corrected transformed data of the obesity cohort. (C) Top state-specific markers. Reported are top

identified markers (columns 1 and 2) together with their correlation with the IM1 state (columns

3 and 5) and IM2 state (columns 4 and 6) in the obesity cohort (columns 3 and 4) and normal-BMI

cohort (columns 5 and 6). Column 7 reports the association with metabolic syndrome (MetS). (D)

Associations of functional categories with the whole-body state. For each functional annotation (col-

umns 1 and 2), the table reports the significance of association with the IM1 and IM2 states (columns

3 and 4, respectively). Reported are (signed) q-values of a function-state association test. Positive/

negative values are indicative of up/downregulation of IM1-positive (or IM2-positive) individuals.

Included are significant functional annotations based on the extended map from Figure 3—figure

supplement 2B. (E) Comparisons between health and disease groups in this study. For each compar-

ison (column 1), reported is the parameter map used as a reference (columns 2 and 3), and the com-

pared healthy and disease groups (columns 4–8). (F) The parameter map and associations with
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atherosclerosis and CVD. For each parameter (column 1), column 2 reports the conventional scores

of association with atherosclerosis, and column 3 reports the state-independent association with ath-

erosclerosis (–log p-values, with positive values indicative of higher values in atherosclerosis subjects

compared to those without and negative values indicative of lower values in the atherosclerosis sub-

jects). Previous findings about CVD risk factors are reported in columns 4 and 5. Reported are CVD

risk factors in at least one age/BMI/gender/ethnicity group and excluding controversial factors. (G)

State-independent associations with systemic lupus erythematosus (SLE). Reported are genes that

are significantly associated with SLE independently of the state and their state-independent associa-

tion scores (–log q-value). Association scores are signed according to the direction of associations;

for instance, 76 genes are positively associated and 12 genes are negatively associated with SLE in

female children. Results are reported for the analysis of three data sets (E). Known interferon signal-

ing genes are highlighted in bold. *For SLE in males, due to the small number of individuals in this

cohort, reported are –log p-values.

. Transparent reporting form

Data availability

Both the obesity cohort and the normal BMI cohort were part of the Human Functional Genomics

Project (http://www.humanfunctionalgenomics.org/site/) and have been previously published. The

coronary-atherosclerosis cohort was collected as part of the HORIZON 2020 European Research Pro-

gram - "REPROGRAM: Targeting epigenetic REPROGRamming of innate immune cells in Athero-

sclerosis Management and other chronic inflammatory diseases". SLE sequencing public datasets

used in our analysis: GSE65391, GSE49454.

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL
Database and Identifier

Banchereau R,
Hong S, Cantarel B,
Baldwin N, Baisch
J, Edens M, Cepika
A, Acs P, Turner J,
Anguiano E, Vinod
P, Kahn S,
Obermoser G,
Blankenship D,
Wakeland E, Nassi
L, Gotte A, Punaro
M, Liu Y,
Banchereau J,
Rossello-Urgell J,
Wright T, Pascual V

2016 Longitudinal transcriptional
pediatric SLE study with
clinical parameters

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE65391

NCBI Gene Expression
Omnibus, GSE65391

Chiche L, Jourde-
Chiche N

2014 Modular repertoire analyses
identify dynamic type I and
type II interferon
transcriptional signatures in
adult SLE patients

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE49454

NCBI Gene Expression
Omnibus, GSE49454
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