Enhancing mitochondrial activity in neurons protects against neurodegeneration in a mouse model of multiple sclerosis

  1. Sina C Rosenkranz
  2. Artem A Shaposhnykov
  3. Simone Träger
  4. Jan Broder Engler
  5. Maarten E Witte
  6. Vanessa Roth
  7. Vanessa Vieira
  8. Nanne Paauw
  9. Simone Bauer
  10. Celina Schwencke-Westphal
  11. Charlotte Schubert
  12. Lukas Can Bal
  13. Benjamin Schattling
  14. Ole Pless
  15. Jack van Horssen
  16. Marc Freichel
  17. Manuel A Friese  Is a corresponding author
  1. University Medical Centre Hamburg-Eppendorf, Germany
  2. University Medical Centre Hamburg-Eppendorf Institute of Neuroimmunology and Multiple Sclerosis (INIMS), Germany
  3. Amsterdam UMC, Netherlands
  4. Fraunhofer IME, Germany
  5. University of Heidelberg, Germany

Abstract

While transcripts of neuronal mitochondrial genes are strongly suppressed in central nervous system inflammation, it is unknown whether this results in mitochondrial dysfunction and whether an increase of mitochondrial function can rescue neurodegeneration. Here we show that predominantly genes of the electron transport chain are suppressed in inflamed mouse neurons resulting in impaired mitochondrial complex IV activity. This was associated with posttranslational inactivation of the transcriptional co-regulator PGC-1α. In mice, neuronal overexpression of Ppargc1a, which encodes for PGC-1α, led to increased numbers of mitochondria, complex IV activity and maximum respiratory capacity. Moreover, Ppargc1a overexpressing neurons showed a higher mitochondrial membrane potential that related to an improved calcium buffering capacity. Accordingly, neuronal deletion of Ppargc1a aggravated neurodegeneration during experimental autoimmune encephalomyelitis (EAE), while neuronal overexpression of Ppargc1a ameliorated it. Our study provides systemic insights into mitochondrial dysfunction in neurons during inflammation and commends elevation of mitochondrial activity as a promising neuroprotective strategy.

Data availability

All current data have been provided. Supplemental figures are included in the article file. All individual data are reported within the figure graphs as scatter plots. Numerical data for Figure 3E, 5A and 5C can be found as Source Data.Enrichment analysis was performed using the function 'gseGO' of the R package clusterProfiler; plotting was performed with the R packages ggplot2, clusterProfiler and tidyheatmap.Normalization, calcium spikes, base line detection, and analysis of the calcium clearance rate were performed with the custom-made script written on Python 3.6 (https://github.com/scriptcalcium/PGC1alpha).

The following previously published data sets were used

Article and author information

Author details

  1. Sina C Rosenkranz

    Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Artem A Shaposhnykov

    Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Centre Hamburg-Eppendorf Institute of Neuroimmunology and Multiple Sclerosis (INIMS), Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Simone Träger

    Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Jan Broder Engler

    Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Maarten E Witte

    Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Vanessa Roth

    Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Vanessa Vieira

    Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Nanne Paauw

    Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  9. Simone Bauer

    Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Celina Schwencke-Westphal

    Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Charlotte Schubert

    Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Lukas Can Bal

    Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Benjamin Schattling

    Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8809-9073
  14. Ole Pless

    ScreeningPort, Fraunhofer IME, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1468-316X
  15. Jack van Horssen

    Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  16. Marc Freichel

    Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1387-2636
  17. Manuel A Friese

    Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
    For correspondence
    manuel.friese@zmnh.uni-hamburg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6380-2420

Funding

Stifterverband (Clinician-Scientist Fellowship)

  • Sina C Rosenkranz

Gemeinnützige Hertie-Stiftung (Hertie Network of Excellence in Clinical Neuroscience)

  • Sina C Rosenkranz

Deutsche Forschungsgemeinschaft (FR1720/9-1,FR1720/9-2)

  • Manuel A Friese

Deutsche Forschungsgemeinschaft (FR1638/3-1,FR1638/3-2)

  • Marc Freichel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal care and experimental procedures were performed according to institutional guidelines and conformed to requirements of the German Animal Welfare Act. All animal experiments were approved by the local ethics committee (Behörde für Soziales, Familie, Gesundheit und Verbraucherschutz in Hamburg; G22/13 and 122/17). We conducted all procedures in accordance with the ARRIVE guidelines (Kilkenny et al., 2010).

Copyright

© 2021, Rosenkranz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,487
    views
  • 562
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sina C Rosenkranz
  2. Artem A Shaposhnykov
  3. Simone Träger
  4. Jan Broder Engler
  5. Maarten E Witte
  6. Vanessa Roth
  7. Vanessa Vieira
  8. Nanne Paauw
  9. Simone Bauer
  10. Celina Schwencke-Westphal
  11. Charlotte Schubert
  12. Lukas Can Bal
  13. Benjamin Schattling
  14. Ole Pless
  15. Jack van Horssen
  16. Marc Freichel
  17. Manuel A Friese
(2021)
Enhancing mitochondrial activity in neurons protects against neurodegeneration in a mouse model of multiple sclerosis
eLife 10:e61798.
https://doi.org/10.7554/eLife.61798

Share this article

https://doi.org/10.7554/eLife.61798

Further reading

    1. Immunology and Inflammation
    Fani Roumelioti, Christos Tzaferis ... George Kollias
    Research Article

    miRNAs constitute fine-tuners of gene expression and are implicated in a variety of diseases spanning from inflammation to cancer. miRNA expression is deregulated in rheumatoid arthritis (RA); however, their specific role in key arthritogenic cells such as the synovial fibroblast (SF) remains elusive. Previous studies have shown that Mir221/222 expression is upregulated in RA SFs. Here, we demonstrate that TNF and IL-1β but not IFN-γ activated Mir221/222 gene expression in murine SFs. SF-specific overexpression of Mir221/222 in huTNFtg mice led to further expansion of SFs and disease exacerbation, while its total ablation led to reduced SF expansion and attenuated disease. Mir221/222 overexpression altered the SF transcriptional profile igniting pathways involved in cell cycle and ECM (extracellular matrix) regulation. Validation of targets of Mir221/222 revealed cell cycle inhibitors Cdkn1b and Cdkn1c, as well as the epigenetic regulator Smarca1. Single-cell ATAC-seq data analysis revealed increased Mir221/222 gene activity in pathogenic SF subclusters and transcriptional regulation by Rela, Relb, Junb, Bach1, and Nfe2l2. Our results establish an SF-specific pathogenic role of Mir221/222 in arthritis and suggest that its therapeutic targeting in specific subpopulations could lead to novel fibroblast-targeted therapies.

    1. Immunology and Inflammation
    Youxi Liu, Meimei Yin ... Ling-juan Zhang
    Research Article

    Allergic contact dermatitis (ACD), a prevalent inflammatory skin disease, is elicited upon repeated skin contact with protein-reactive chemicals through a complex and poorly characterized cellular network between immune cells and skin resident cells. Here, single-cell transcriptomic analysis of the murine hapten-elicited model of ACD reveals that upon elicitation of ACD, infiltrated CD4+ or CD8+ lymphocytes were primarily the IFNγ-producing type 1 central memory phenotype. In contrast, type 2 cytokines (IL4 and IL13) were dominantly expressed by basophils, IL17A was primarily expressed by δγ T cells, and IL1β was identified as the primary cytokine expressed by activated neutrophils/monocytes and macrophages. Furthermore, analysis of skin resident cells identified a sub-cluster of dermal fibroblasts with preadipocyte signature as a prominent target for IFNγ+ lymphocytes and dermal source for key T cell chemokines CXCL9/10. IFNγ treatment shifted dermal fibroblasts from collagen-producing to CXCL9/10-producing, which promoted T cell polarization toward the type-1 phenotype through a CXCR3-dependent mechanism. Furthermore, targeted deletion of Ifngr1 in dermal fibroblasts in mice reduced Cxcl9/10 expression, dermal infiltration of CD8+ T cell, and alleviated ACD inflammation in mice. Finally, we showed that IFNγ+ CD8+ T cells and CXCL10-producing dermal fibroblasts co-enriched in the dermis of human ACD skin. Together, our results define the cell type-specific immune responses in ACD, and recognize an indispensable role of dermal fibroblasts in shaping the development of type-1 skin inflammation through the IFNGR-CXCR3 signaling circuit during ACD pathogenesis.