The Natural History of Model Organisms: Neurogenomic insights into the behavioral and vocal development of the zebra finch

  1. Mark E Hauber  Is a corresponding author
  2. Matthew IM Louder
  3. Simon C Griffith
  1. Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, United States
  2. International Research Center for Neurointelligence, University of Tokyo, Japan
  3. Department of Biology, Texas A&M University, United States
  4. Department of Biological Sciences, Macquarie University, Australia
3 figures

Figures

Adult zebra finches in the wild.

Four female and nine male adult zebra finches in the wild in Australia. As the species experiences increasingly extreme climatic fluctuations, future field studies of the zebra finch should also advance our understanding how opportunistically breeding species are able to adapt to accelerating climate change (photo credit: Simon C Griffith).

Timeline and brain pathways of auditory and vocal learning in the zebra finch.

(A) Timeline of sensory (auditory learning) and sensory-motor (vocal self-assessment and song-production) critical periods in zebra finch song development. (B) Brain nuclei of male zebra finches for auditory learning (CN: cochlear nucleus; MLd: mesencephalicus lateralis pars dorsalis; OV: nucleus ovoidalis; field L: primary auditory forebrain input area; NCM: caudomedial nidopallium; CMM: caudomedial mesopallium; VTA: ventral tegmental area; and AIV: ventral portion of the intermediate arcopallium), vocal learning (HVC, Area X: basal ganglia; LMAN: lateral magnocellular nucleus of the anterior nidopallium; DLM: nucleus dorsolateralis anterior thalami, pars medialis), and vocal production (HVC, and RA: robust nucleus of the arcopallium).

Spectrograms of zebra finch songs and calls.

Spectrogram of tutor and tutee adult male zebra finch songs, and undirected contact calls of adult females and males. Spectrograms represent time (x-axes) and pitch (y-axes) with greater amplitude as increasing brightness. Note the similarity of the tutor (typically social father) and tutee (son) song pair of male zebra finches and the distinct sexual differences of the calls.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mark E Hauber
  2. Matthew IM Louder
  3. Simon C Griffith
(2021)
The Natural History of Model Organisms: Neurogenomic insights into the behavioral and vocal development of the zebra finch
eLife 10:e61849.
https://doi.org/10.7554/eLife.61849