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Abstract To capture the functional diversity of microbiota, one must identify metabolic

functions and species of interest within hundreds or thousands of microorganisms. We present

Metage2Metabo (M2M) a resource that meets the need for de novo functional screening of

genome-scale metabolic networks (GSMNs) at the scale of a metagenome, and the identification of

critical species with respect to metabolic cooperation. M2M comprises a flexible pipeline for the

characterisation of individual metabolisms and collective metabolic complementarity. In addition,

M2M identifies key species, that are meaningful members of the community for functions of

interest. We demonstrate that M2M is applicable to collections of genomes as well as

metagenome-assembled genomes, permits an efficient GSMN reconstruction with Pathway Tools,

and assesses the cooperation potential between species. M2M identifies key organisms by

reducing the complexity of a large-scale microbiota into minimal communities with equivalent

properties, suitable for further analyses.

Introduction
Understanding the interactions between organisms within microbiomes is crucial for ecological

(Tara Oceans coordinators et al., 2015) and health (Integrative HMP (iHMP) Research Network

Consortium, 2014) applications. Improvements in metagenomics, and in particular the development

of methods to assemble individual genomes from metagenomes, have given rise to unprecedented

amounts of data which can be used to elucidate the functioning of microbiomes. Hundreds or thou-

sands of genomes can now be reconstructed from various environments (Pasolli et al., 2019;

Forster et al., 2019; Zou et al., 2019; Stewart et al., 2018; Almeida et al., 2020), either with the

help of reference genomes or through metagenome-assembled genomes (MAGs), paving the way

for numerous downstream analyses. Some major interactions between species occur at the meta-

bolic level. This is the case for negative interactions such as exploitative competition (e.g. for nutri-

ent resources), or for positive interactions such as cross-feeding or syntrophy (Coyte and Rakoff-

Nahoum, 2019) that we will refer to with the generic term of cooperation. In order to unravel such

interactions between species, it is necessary to go beyond functional annotation of individual

genomes and connect metagenomic data to metabolic modelling. The main challenges impeding

mathematical and computational analysis and simulation of metabolism in microbiomes are the scale

of metagenomic datasets and the incompleteness of their data.

Genome-scale metabolic networks (GSMNs) integrate all the expected metabolic reactions of an

organism. Thiele and Palsson, 2010 defined a precise protocol for their reconstruction, associating
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the use of automatic methods and thorough curation based on expertise, literature, and mathemati-

cal analyses. There now exists a variety of GSMN reconstruction implementations: all-in-one plat-

forms such as Pathway Tools (Karp et al., 2016), CarveMe (Machado et al., 2018) or KBase that

provides narratives from metagenomic datasets analysis up to GSMN reconstruction with Model-

SEED (Henry et al., 2010; Seaver et al., 2020). In addition, a variety of toolboxes (Aite et al.,

2018; Wang et al., 2018; Schellenberger et al., 2011), or individual tools perform targeted refine-

ments and analyses on GSMNs (Prigent et al., 2017; Thiele et al., 2014; Vitkin and Shlomi, 2012).

Reconstructed GSMNs are a resource to analyse the metabolic complementarity between species,

which can be seen as a representation of the putative cooperation within communities

(Opatovsky et al., 2018). SMETANA (Zelezniak et al., 2015) estimates the cooperation potential

and simulates flux exchanges within communities. MiSCoTo (Frioux et al., 2018) computes the met-

abolic potential of interacting species and performs community reduction. NetCooperate

(Levy et al., 2015) predicts the metabolic complementarity between species.

In addition, a variety of toolboxes have been proposed to study communities of organisms using

GSMNs (Kumar et al., 2019; Sen and Orešič, 2019), most of them relying on constraint-based

modelling (Chan et al., 2017; Zomorrodi and Maranas, 2012; Khandelwal et al., 2013). However,

these tools can only be applied to communities with few members, as the computational cost scales

exponentially with the number of included members (Kumar et al., 2019). Only recently has the

computational bottleneck started to be addressed (Diener et al., 2020). In addition, current meth-

ods require GSMNs of high quality in order to produce accurate mathematical predictions and quan-

titative simulations. Reaching this level of quality entails manual modifications to the models using

human expertise, which is not feasible at a large scale in metagenomics. Automatic reconstruction of

GSMNs scales to metagenomic datasets, but it comes with the cost of possible missing reactions

and inaccurate stoichiometry that impede the use of constraint-based modelling (Bernstein et al.,

2019). Therefore, development of tools tailored to the analysis of large communities is needed.

eLife digest All the microbes that live in a specific environment, for example an organ, are

collectively called the microbiota. In humans, the microbiota of the gut has been extensively studied

by sequencing the DNA of the different microbes to identify them and determine the roles they play

in health and disease. The DNA sequences of all the members of the microbiota is called the

metagenome.

The chemical reactions that the gut microbiota perform to produce energy and make the

biomolecules they need to survive are collectively referred to as the metabolism of these microbes.

Studying the metabolism of the gut microbiota can help researchers understand the roles of the

different microbes. However, the large variety of species in the gut microbiota and gaps in the

information about them render these studies difficult, despite technology improving quickly.

To tackle this issue, Belcour, Frioux et al developed a new piece of software called

Metage2Metabo (M2M) that simulates the metabolism of the gut microbiota and describes the

metabolic relationships between the different microbes. Metage2Metabo analyses the roles of the

metabolic genes of a large number of microbe species to establish how they complement each

other metabolically. Then, it can calculate the minimum number of species needed to perform a

metabolic role of interest within that microbiota, and which key species are associated with that role.

To test the new software, Belcour, Frioux et al. used Metage2Metabo to analyse genomes from

the human gut microbiota and from the cow rumen (one of the cow’s stomachs). They showed that

even if the metagenome was incomplete, the software was able to make stable predictions of key

species involved in metabolic complementarity. Additionally, they also illustrated how the method

can be used to study the gut microbiota of individuals.

This work presents a new method for determining the metabolic relationships between species

within a microbiota. The software is highly flexible and could be adapted to identify key members

within different communities. In the context of the gut microbiota, the predictions of

Metage2Metabo could shed lights on the interactions between the host and the microbes and

contribute to a better understanding of microbe environments.
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Here, we describe Metage2Metabo (M2M), a software system for the characterisation of meta-

bolic complementarity starting from annotated individual genomes. M2M capitalises on the parallel

reconstruction of GSMNs and a relevant metabolic modelling formalism to scale to large microbio-

tas. It comprises a pipeline for the individual and collective analysis of GSMNs and the identification

of communities and key species ensuring the producibility of metabolic compounds of interest.

M2M automates the systematic reconstruction of GSMNs using Pathway Tools or relies on GSMNs

provided by the user. The software system uses the algorithm of network expansion

(Ebenhöh et al., 2004) to capture the set of producible metabolites in a GSMN. This choice answers

the needs for stoichiometry inaccuracy handling, and the robustness of the algorithm was demon-

strated by the stability of the set of reachable metabolites despite missing reactions (Handorf et al.,

2005; Kruse and Ebenhöh, 2008). Consequently, M2M scales metabolic modelling to metagenom-

ics and large collections of (metagenome-assembled) genomes.

We applied M2M on a collection of 1520 draft bacterial reference genomes from the gut micro-

biota (Zou et al., 2019) in order to illustrate the range of analyses the tool can produce. This demon-

strates that M2M efficiently reconstructs metabolic networks for all genomes, identifies potential

metabolites produced by cooperating bacteria, and suggests minimal communities and key species

associated to their production. We then compared metabolic network reconstruction applied to the

gut reference genomes to the results obtained with a collection of 913 cow rumen MAGs

(Stewart et al., 2018). In addition, we tested the robustness of metabolic prediction with respect to

genome incompleteness by degrading the rumen MAGs. The comparison of outputs from the pipe-

line indicates stability of the results with moderately degraded genomes, and the overall suitability

of M2M to MAGs. Finally, we demonstrated the applicability of M2M in practice to metagenomic

data of individuals. To that purpose, we reconstructed communities for 170 samples of healthy and

diabetic individuals (Forslund et al., 2015; Diener et al., 2020). We show how M2M can help con-

nect sequence analyses to metabolic screening in metagenomic datasets.

Results

M2M pipeline and key species
M2M is a flexible software solution that performs automatic GSMN reconstruction and systematic

screening of metabolic capabilities for up to thousands of species for which an annotated genome is

available. The tool computes both the individual and collective metabolic capabilities to estimate

the complementarity between the metabolisms of the species. Then based on a determined meta-

bolic objective which can be ensuring the producibility of metabolites that need cooperation, that

we call cooperation potential, M2M performs a community reduction step that aims at identifying a

minimal community fulfilling the metabolic objective, as well as the set of associated key species.

M2M’s main pipeline (Figure 1a) consists in five main steps that can be performed sequentially or

independently: (i) reconstruction of metabolic networks for all annotated genomes, (ii) computation

of individual and (iii) collective metabolic capabilities, (iv) calculation of the cooperation potential,

and (v) identification of minimal communities and key species for a targeted set of compounds.

Sets of producible metabolites for individual or communities of species are computed using the

network expansion algorithm (Ebenhöh et al., 2004) that is implemented in Answer Set Program-

ming in dependencies of M2M. Network expansion enables the calculation of the scope of one or

several metabolic networks in given nutritional conditions, described as seed compounds. The scope

therefore represents the metabolic potential or reachable metabolites in these conditions (see Mate-

rials and methods). M2M calculates individual scopes for all metabolic networks, and the community

scope comprising all reachable metabolites for the interacting species. Network expansion is also

used in the community reduction optimisation implemented in MiSCoTo (Frioux et al., 2018), the

dependency of M2M, as reduced communities are expected to produce the metabolites of interest.

The inputs to the whole workflow are a set of annotated genomes, a list of nutrients representing

a growth medium, and optionally a list of targeted compounds to be produced by selected commu-

nities that will bypass the default objective of ensuring the producibility of the cooperation potential.

Users can use the annotation pipeline of their choice prior running M2M. The whole pipeline is called

with the command m2mXworkflow but each step can also be run individually as described in

Table 1.
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A main characteristic of M2M is to provide at the end of the pipeline a set of key species associ-

ated to a metabolic function together with one minimal community predicted to satisfy this function.

We define as key species organisms whose GSMNs are selected in at least one of the minimal com-

munities predicted to fulfill the metabolic objective. Among key species, we distinguish those that
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Figure 1. Overview of the Metage2Metabo (M2M) pipeline. (a) Main steps of the M2M pipeline and associated tools. The software’s main pipeline

(m2m workflow) takes as inputs a collection of annotated genomes that can be reference genomes or metagenomic-assembled genomes. The first step

of M2M consists in reconstructing metabolic networks with Pathway Tools (step 0). This first step can be bypassed and genome-scale metabolic

networks (GSMNs) can be directly loaded in M2M. The resulting metabolic networks are analysed to identify individual (step 1) and collective (step 2)

metabolic capabilities. The added-value of cooperation is calculated (step 3) and used as a metabolic objective to compute a minimal community and

key species (step 4). Optionally, one can customise the metabolic targets for community reduction. The pipeline without GSMN reconstruction can be

called with m2m metacom, and each step can also be called independently (m2m iscope, m2m cscope, m2m addedvalue, m2m mincom). (b)

Description of key species. Community reduction performed at step 4 can lead to multiple equivalent communities. M2M provides one minimal

community and efficiently computes the full set of species that occur in all minimal communities, without the need for a full enumeration, thanks to

projection modes. It is possible to distinguish the species occurring in every minimal community (essential symbionts), from those occurring in some

(alternative symbionts). Altogether, these two groups form the key species.

Table 1. List and description of Metage2Metabo (M2M) commands.

Command Action

m2mXworkflow Runs the whole m2m workflow

m2mXmetacom Runs the workflow with already-reconstructed metabolic networks

m2mXrecon Reconstructs metabolic networks using Pathway Tools

m2mXiscope Computes scopes for individual metabolic networks

m2mXcscope Computes the community scope

m2mXaddedvalue Computes the cooperation potential

m2mXmincom Selects a minimal community and computes key species

m2mXseeds Creates a SBML file for nutrients

m2mXtest Runs m2m workflow on a sample dataset

m2m_analysis Runs additional analyses on community selection
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occur in every minimal community, suggesting that they possess key functions associated to the

objective, from those that occur only in some communities. We call the former essential symbionts,

and the latter alternative symbionts. These terms were inspired by the terminology used in flux vari-

ability analysis (Orth et al., 2010) for the description of reactions in all optimal flux distributions. If

interested, one can compute the enumeration of all minimal communities with m2m_analysis, which

will provide the total number of minimal communities as well as the composition of each. Figure 1b

illustrates these concepts with an initial community formed of eight species. There are four minimal

communities satisfying the metabolic objective. Each includes three species, and in particular, the

yellow one is systematically a member. Therefore, the yellow species is an essential symbiont

whereas the four other species involved in minimal communities constitute the set of alternative sym-

biont. As key species represent the diversity associated to all minimal communities, it is likely that

their number is greater than the size of a minimal community, as this is the case in Figure 1b.

M2M connects metagenomics to metabolism with GSMN
reconstruction, metabolic complementarity screening and community
reduction
In order to illustrate its applicability to real data, M2M was applied to a collection of 1520 bacterial

high-quality draft reference genomes from the gut microbiota presented in Zou et al., 2019. The

genomes were derived from cultured bacteria, isolated from faecal samples covering typical gut

phyla (Costea et al., 2018): 796 Firmicutes, 447 Bacteroidetes, 235 Actinobacteria, 36 Proteobacte-

ria, and 6 Fusobacteria. The dereplicated genomes represent 338 species. The genomes were

already annotated and could therefore directly enter M2M pipeline. The full workflow (from GSMN

reconstruction to key species computation) took 155 min on a cluster with 72 CPUs and 144 Gb of

memory. We illustrate in the next paragraphs the scalability of M2M and the range of analyses it pro-

poses by applying the pipeline to this collection of genomes.

GSMN reconstruction
GSMNs were automatically reconstructed for the 1520 isolate-based genomes using their published

annotation. A total of 3932 unique reactions and 4001 metabolites were included in the recon-

structed GSMNs (Table 2). The reconstructed gut metabolic networks contained on average 1144

(±255) reactions and 1366 (±262) metabolites per genome. Of the reactions, 74.6% were associated

to genes, the remaining being spontaneous reactions or reactions added by the PathoLogic algo-

rithm (they can be removed in M2M using the –noorphan option).

Table 2. Results of the genome-scale metabolic network (GSMN) reconstruction step and metabolic potential analysis for the three

datasets presented in the article (Avg = Average, ’±’ precedes standard deviation).

Gut dataset Rumen dataset Diabetes dataset

Initial data Draft reference genomes MAGs MAGs

Number of genomes 1520 913 778

GSMN reconstruction

All reactions 3932 4418 5554

All metabolites 4001 4466 5386

Avg reactions per GSMN 1144 (±255) 1155 (±199) 1640 (±368)

Avg metabolites per GSMN 1366 (±262) 1422 (±212) 1925 (±361)

Avg genes per mn 596 (±150) 543 (±107) 1658 (±469)

% reactions associated to genes 74.6 (±2.17) 73.8 (±2.61) 79.57 (±1.60)

Avg pathways per mn 163 (±49) 146 (±32) 220 (±58)

Metabolic potential

Number of seeds 93 26 175

Avg scope per mn 286 (±70) 101 (±44) 508 (±83)

Union of individual scopes 828 368 1326
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The metabolic potential, or scope, was computed for each individual GSMN (Table 2). Nutrients

in this experiment were components of a classical diet (see Materials and methods). The union of all

individual scopes is of size 828 (21% of all compounds included in the GSMNs), indicating a small

part of the metabolism reachable in the chosen nutritional environment (Supplementary file 1 -

Table 1). Appendix 1—figure 1h,i displays the distributions of the scopes. Across all GSMNs, indi-

vidual scopes are overall stable in size. The core set of producible metabolites is small and a variety

of metabolites are only reachable by a small number of organisms (Appendix 1—figure 1i). The

overall small size of metabolic potentials can be explained by the restricted amount of seeds used

for computation. Among metabolites that are reachable by all or almost all metabolic networks, the

primary metabolism is highly represented, as expected, with metabolites derived from common sug-

ars (glucose, fructose), pyruvate, 2-oxoglutaric acid, amino acids. . . On the other hand but not sur-

prisingly, metabolites that predicted to be reached by a limited number of individual producers

include compounds from secondary metabolism: (fatty) acids (e.g. oxalate, maleate, allantoate,

hydroxybutanoate, methylthiopropionate), derivatives of amino acids, amines (spermidine

derivatives).

Cooperation potential
Metabolic cooperation enables the activation of more reactions in GSMNs than what can be

expected when networks are considered in isolation. By taking into account the complementarity

between GSMNs in each dataset, it is possible to capture the putative benefit of metabolic coopera-

tion on the diversity of producible metabolites. Running m2m cscope predicted 156 new metabolites

as producible by the gut collection of GSMNs if cooperation is allowed.

We analysed the composition of the 156 newly producible metabolites for the gut dataset using

the ontology provided for metabolic compounds in the MetaCyc database. 80.1% of them could be

grouped into six categories: amino acids and derivatives (5 metabolites), aromatic compounds (11),

carboxy acids (14), coenzyme A (CoA) derivatives (10), lipids (28), sugar derivatives (58). The groups

were used in the subsequent analyses. The remaining 30 compounds were highly heterogeneous,

we therefore restrained our subsequent analyses to subcategories of biochemically homogeneous

targets.

We paid a particular attention to the predicted producibility of short-chain fatty acids (SCFAs)

among genomes of the gut collection. We analysed formate, acetate, propionate, and butyrate in

individual and collective metabolic potentials (Supplementary file 1 - Table 25). A total of 543 meta-

bolic networks are predicted to be able to produce all four molecules in a cooperative context, 74%

of them belonging the Firmicutes, as expected. Surprisingly, predicted individual producers of the

four SCFAs (n = 128) are mostly Bacteroidetes (70%) suggesting the dependency of Firmicutes to

interactions in order to permit the producibility of SCFAs in this experimental setting. The same

observations are made when focusing on butyrate alone, that has the particularity of belonging to

the seeds. As Bacteroidetes are not the main butyrate producers in the gut, the predictions of such

producibility is likely an artefact relying on alternative pathways, and further emphasises the fact that

owning the genetic material for a function does not entail its expression.

Key species associated to groups of metabolites
M2M proposes by default one community composition for an objective defined by enabling the pro-

ducibility of metabolic end-products. Given the functional redundancy of gut bacteria (Moya and

Ferrer, 2016), there could be thousands of bacterial composition combinations, and it is computa-

tionally costly to enumerate them. To circumvent this restriction, M2M identifies key species without

the need for all possible combinations of species to be enumerated, consequentially reducing

computational time. Key species include all species occurring in at least one minimal community for

the production of chosen end-products. They can be distinguished in two categories: essential sym-

bionts occurring in all minimal communities, and alternative symbionts occurring in some minimal

communities.

To explore the spectrum of possible key species, we ran M2M community reduction step

(m2mXmincom command) with the above six metabolic target groups. This allowed us to compute

predicted key species for each of them (Table 3). The contents of key species for each of the six

groups of targets as well as for the complete set of targets is displayed in Supplementary file 1
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(Tables 6 to 12). To our surprise, the size of the minimal community is relatively small for each group

of metabolites (between 4 and 11), compared to the initial community of 1520 GSMNs. The number

of identified key species varies between 59 and 227, which might be closer to the total taxonomic

diversity found in the human gut microbiome. This strong reduction compared to the initial number

of 1520 GSMNs used for the analysis illustrates the existence of groups of bacteria with specific met-

abolic capabilities. In particular, essential symbionts are likely of high importance for the functions as

they are found in each solution. More generally, compositions vary across the target categories: a

high proportion of key species for the production of lipids targets are Bacteroidetes, whereas Firmi-

cutes were more often key species for aminoacids and derivatives production. The propensity of

Bacteroidetes to metabolise lipids has been proposed previously, it has for example been observed

in the Bacteroides enterotype for functions related to lipolysis (Vieira-Silva et al., 2016).

Analysis of minimal communities identifies groups of organisms with
equivalent roles
To go further, we enumerated all minimal communities for each individual group of targets using

m2m_analysis. The number of optimal solutions is large, reaching more than 7 million equivalent

minimal communities for the sugar-derived metabolites (Table 3). Our analysis of key species indi-

cates that the large number of optimal communities is due to combinatorial choices among a rather

small number of bacteria (Table 3).

In order to visualise the association of GSMNs in minimal communities, we created for each target

set a graph whose nodes are the key species (Supplementary file 1 - Tables 6 to 12), and whose

edges represent the association between two species if they co-occur in at least one of the enumer-

ated communities. Graphs were very dense: 185 nodes, 6888 edges for the lipids, 142 nodes, and

6602 edges for the sugar derivatives. This density is expected given the large number of optimal

communities and the comparatively small number of key species. The graphs were compressed into

power graphs to capture the combinatorics of association within minimal communities. Power

Table 3. Community reduction analysis of the target categories in the gut.

All minimal communities were enumerated, starting from the set of 1520 genome-scale metabolic networks (GSMNs). KS: key species,

ES: essential symbionts, AS: alternative symbionts, Firm.: Firmicutes, Bact.: Bacteroidetes, Acti.: Actinobacteria, Prot.: Proteobacteria,

Fuso.: Fusobacteria.

Firm. Bact. Acti. Prot. Fuso. Total

Aminoacids and derivatives (5 targets)
4 bact. per community
120,329 communities

KS 142 52 0 27 6 227

ES 0 0 0 0 0 0

AS 142 52 0 27 6 227

Aromatic compounds (11 targets)
5 bact. per community
950 communities

KS 52 0 0 20 0 72

ES 2 0 0 1 0 3

AS 50 0 0 19 0 69

Carboxyacids (14 targets)
9 bact. per community
48,412 communities

KS 16 13 0 28 2 59

ES 2 0 0 2 0 4

AS 14 13 0 26 2 55

CoA derivatives (10 targets)
5 bact. per community
95,256 communities

KS 106 0 50 17 1 174

ES 0 0 0 0 1 1

AS 106 0 50 17 0 173

Lipids (28 targets)
7 bact. per community
58,520 communities

KS 3 140 22 20 0 185

ES 3 0 0 1 0 4

AS 0 140 22 19 0 181

Sugar derivatives (58 targets)
11 bact. per community
7,860,528 communities

KS 11 30 78 23 0 142

ES 5 0 0 0 0 5

AS 6 30 78 23 0 137
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graphs enable a lossless compression of re-occurring motifs within a graph: cliques, bicliques, and

star patterns (Royer et al., 2008). The increased readability of power graphs permits pinpointing

metabolic equivalency between members of the key species with respect to the target compound

families.

Figure 2 presents the compressed graphs for each set of targets. Graph nodes are the key spe-

cies, coloured by their phylum. Nodes are included into power nodes that are connected by power

edges, illustrating the redundant metabolic function(s) that species provide to the community when

considering specific end-products. GSMNs belonging to a power node play the same role in the

construction of the minimal communities. In this visualisation, essential symbionts are easily
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Figure 2. Power graph analysis of predicted microbial associations within communities for the human gut dataset. Each category of metabolites

predicted as newly producible in the gut was defined as a target set for community selection among the 1520 genome-scale metabolic

networks (GSMNs) from the gut microbiota reference genomes dataset. For each metabolic group, key species and the full enumeration of all minimal

communities were computed. Association graphs were built to associate members that are found together in at least one minimal community among

the enumeration. These graphs were compressed as power graphs to identify patterns of associations and groups of equivalence within key species.

Power graphs a., b., c., d., e., f. were generated for the sets of lipids, aminoacids and derivatives, carboxy-acids, sugar derivatives, aromatic

compounds, and coenzyme A derivative compounds, respectively. Node colour describes the phylum associated to the GSMN. Figure (a) has an

additional description to ease readability. Edges symbolise conjunctions (’AND’) and the co-occurrences of nodes in regular power nodes (as in power

node 1, 2, 4) symbolise disjunctions (’OR’) related to alternative symbionts. Power nodes with a loop (e.g. power node 5) indicate conjunctions.

Therefore, each enumerated minimal community for lipid production is composed of the two Firmicutes and the Proteobacteria from power node 5,

the Firmicutes node 3 (the four of them being the essential symbionts), and one Proteobacteria from power node 4, one Actinobacteria from power

node 2 and 1 Bacteroidetes from power node 1. Members from an inner power node are interchangeable with respect to the metabolic objective. A

version of the figures with species identification is available in Figure 2—figure supplement 1, Figure 2—figure supplement 2, Figure 2—figure

supplement 3, Figure 2—figure supplement 4, Figure 2—figure supplement 5, Figure 2—figure supplement 6 (see Supplementary file 1 - Table

4 for a mapping between identifiers and taxonomy). Power graphs can be generated with m2m_analysis. The figures display one visual representation

for each power graph although such representations are not unique. The number of power edges is minimal, which leads to nesting of (power) nodes.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Sugars derivatives power graph.

Figure supplement 2. Lipids derivatives power graph.

Figure supplement 3. Amino acids and derivatives power graph.

Figure supplement 4. Aromatic compounds power graph.

Figure supplement 5. Carboxy-acids compounds power graph.

Figure supplement 6. Coenzyme A derivatives power graph.
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identifiable, either into power nodes with loops (Figure 2a,e) or as individual nodes connected to

power nodes (Figure 2a,c,d,f).

We observe that power nodes often contain GSMNs from the same phylum, indicating that phylo-

genetic groups encode redundant functions. Figure 3a has additional comments to guide the reader

into analysing the community composition on one example. Each minimal community suitable for

the production of the targeted lipids is composed of one Bacteroidetes from power node (PN) 1,

one Actinobacteria from PN 2, the Firmicutes member 3, one Proteobacteria from PN 4 and finally

the two Firmicutes and the Proteobacteria from PN 5. For all the target groups of this study, the
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Figure 3. Robustness analysis of Metage2Metabo (M2M) results on datasets of altered metagenome-assembled genomes (MAGs). A proportion of

genes were randomly removed from all or a random subset of the 913 rumen MAGs: 2% from all genomes (2pc100), 5% from 80% of the genomes

(5pc80), 5% from all genomes (5pc100) and 10% from 70% of the genomes (10pc70). M2M pipeline was ran on these four datasets and comparison was

made with respect to the initial non-altered dataset of MAGs (original). Subfigures a to e each represent one piece of information computed by M2M

and compared between the five experiments. (a) Set of producible compounds by all metabolic networks in a cooperative system (community scope);

supervenn representation. Each dataset of metabolic networks obtained from the original or degraded genomes is represented horizontally, with a

unique colour. The right panel of the supervenn diagram indicates the number of metabolites in the community scope of the corresponding dataset.

Vertical overlaps between sets represent intersections (e.g groups of metabolites retrieved in several datasets) whose size is indicated on the X axis. For

example, there is a set of 37 metabolites that are producible in the original dataset only, and a set of 5 metabolites predicted as producible in all

datasets but the one where 70% of genomes were 10%-degraded. A full superimposition of all the coloured bars would indicate a complete stability of

the community scope between datasets. (b) Comparison of the cooperation potential between the five experiments. (c) Comparison of key species that

gather essential symbionts (d) and alternative symbionts (e).
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large enumerations can be summarised with a boolean formula derived from the graph compres-

sions. For instance, for the lipids of Figure 3a, the community composition as described above is the

following:

ð_PN1Þ ^ ð_PN2Þ ^ ðPN3Þ^ ð_PN4Þ ^ ð^PN5Þ:

We further investigated the essential symbionts associated to carbohydrate-derived metabolites

in our study: Paenibacillus polymyxa, Lactobacillus lactis, Bacillus licheniformis, Lactobacillus planta-

rum, and Dorea longicatena. Interestingly, out of these five species, the first four have already been

studied in the context of probiotics, for animals or humans (Cutting, 2011; Monteagudo-

Mera et al., 2012). In particular, the study of P. polymyxa CAZymes demonstrated its ability to assist

in digesting complex carbohydrates (Soni et al., 2020). L. plantarum is also known for its role in car-

bohydrate acquisition (de Vries et al., 2006; Marco et al., 2010). The present analysis illustrates

that within the full genome collection, these species are likely to exhibit functions related to carbohy-

drate synthesis and degradation that are not found in other species. Bacillus licheniformis is also an

essential symbiont for the lipid metabolites. Among essential symbionts for other groups of metabo-

lites, Burkholderiales bacterium (Proteobacteria) and Hungatella hathewayi (Firmicutes) have the par-

ticularity of occurring in predictions for the lipids, carboxy acids, and aromatic metabolites. This

suggest a metabolism for these two species that differs from the other species, with non-redundant

contributions to some metabolites of these categories. While Hungatella hathewayi is a relatively fre-

quent gut commensal, little is known about this species (Manzoor et al., 2017). The Burkholderiales

order is also poorly known, but its ability to degrade a variety of aromatic compounds has been

established (Pérez-Pantoja et al., 2012). Finally, the only essential symbiont predicted for the coA-

related metabolites is Fusobacterium varium, a butyrate producer known for its ability to ferment

both sugars and amino acids (Potrykus et al., 2008).

Altogether, computation of key species coupled to the visualisation of community compositions

enables a better understanding of the associations of organisms into the minimal communities. In

this genome collection, groups of equivalent GSMNs allow us to identify genomes that are providing

specialised functions to the community, enabling metabolic pathways leading to specific end-

products.

M2M is suited to the metabolic analysis of MAGs
Comparison of M2M applications to MAGs and draft reference genomes
In order to compare the effect of genome quality on M2M predictions, we performed analyses on a

collection of 913 MAGs binned from cow rumen metagenomes (Stewart et al., 2018). These MAGs

were predicted to be >80% complete and <10% contaminated. The complete M2M workflow ran in

81 min on a cluster with 72 CPUs and 144 Gb of memory.

Results of the GSMN reconstruction are presented in Table 2. GSMNs of the cow rumen MAGs

dataset consisted in average of 1155 (±199) reactions and 1422 (±212) metabolites. 73.8% of the

reactions could be associated to genes. We compared these numbers with those obtained for the

collection of draft reference genomes from the human gut microbiota of the previous subsection.

Appendix 1 displays the distributions of the numbers of reactions, pathways, metabolites and genes

for both datasets. Altogether, these distributions are very similar for both datasets although the ini-

tial number of genes in the whole genomes varies a lot (Appendix 1 g), a difference that is expected

between MAGs and reference genomes. Interestingly, the average number of reactions per GSMN

is slightly higher for the MAGs of the rumen than for the reference genomes of the gut. This could

be explained by the higher phylogenetic diversity observed in MAGs compared to culturable bacte-

ria, or a higher potential for contaminated genomes, or a difference in average genome size. How-

ever, the smallest GSMN size is observed in the rumen (340 reactions vs 617 for the smallest GSMN

of the gut dataset). The similarity in the characteristics displayed by both datasets suggests a level

of quality of the rumen MAGs close to the one of the gut reference genomes regarding the genes

associated to metabolism. This is consistent with the high-quality scores of the MAGs described in

the original publication: the 913 MAGs exhibited a CheckM (Parks et al., 2015) completeness score

between 80% and 100% (average: 90.61%, standard deviation: 5.26%, median: 91.03%)

(Stewart et al., 2018).
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M2M modelling analyses were run on the reconstructed GSMNs. Appendix 1 (Figure 1; Appen-

dix 1—figure 1) displays the distributions of the individual scopes for each GSMN. We identified a

cooperation potential of 296 metabolic end-products only reachable through the community. The

minimal community consisted of 44 GSMNs, sufficient to produce all metabolites reachable through

cooperation in the initial community composition. These could be described through 127 key spe-

cies, consisting of 20 essential symbionts and 107 alternative ones. This indicates that each equiva-

lent minimal community for these compounds would consist in the same 20 GSMNs, associated to

24 others selected within the 107 alternative species, thereby reaching a total of 44 GSMNs. Results

are displayed in Supplementary file 1 (Table 4), together with those of an equivalent analysis

(default settings of M2M with cooperation potential as targets) for the gut reference genomes.

M2M robustly identifies key species, even with degraded genomes
A recurring concern in metagenomics is the completeness of reconstructed MAGs due to the possi-

ble loss of functions during the genome assembly process (Parks et al., 2015). Misidentified genes

can impede GSMN reconstruction and consequently the contents of the scopes and cooperation

potential. To assess the impact of MAG completeness, we altered the rumen MAGs dataset by ran-

domly removing genes. We created four altered datasets by removing: (i) 2% of genes in all

genomes, (ii) 5% of genes in 80% of the genomes, (iii) 5% of genes in all genomes and (iv) 10% of

genes in 70% of the genomes. We analysed these degraded datasets with the same M2M workflow,

using a community selection with the metabolic cooperation potential as a community objective.

The metabolic cooperation potential, the global set of reachable metabolites in the community

and the key species (essential and alternative symbionts) were computed and compared between

the four altered datasets and the original one. Results are depicted in Figure 3. The global set of

producible metabolites in the community and the contents of the metabolic cooperation potential

remain stable between datasets. In both we observe a single subset of 36 metabolites that is only

reachable by the original dataset. It consists in a variety of metabolites mostly from secondary

metabolism. Discrepancies appear between datasets when studying key species with respect to the

original dataset, with an overall stability of the datasets to 2% degradation and to 5% degradation

in 80% of genomes. The main discrepancies are observed for alternative symbionts with an addi-

tional small set of symbionts that are selected in altered datasets but not in the original one. For the

most degraded genomes (10% degradation in 70% of MAGs), key species composition is altered

compared to original genomes: a set of 31 key species is no longer identified. However, producibil-

ity analyses and community selections performed by M2M are stable to small genome degradations

of up to 2% of random gene loss in all genomes or 5% in 80% of the genomes. Altogether, Figure 3

illustrates relative stability of the information computed by M2M to missing genes. The criteria typi-

cally used for MAG quality (>80% completeness, <10% degradation) are likely sufficient to get a

coarse-grained, yet valuable first picture of the metabolism. This robustness in our algorithms could

be explained by the fact that (i) missing genes in degraded MAGs may not be related to metabo-

lism, (ii) by the reported stability of the network expansion algorithm to missing reactions

(Handorf et al., 2005), and (iii) by the fact that multiple genes can be associated to the same meta-

bolic reaction (redundancy in pathway representation). Additional analyses (Appendix 1) enable the

refutation of the first hypothesis as the average gene loss in metabolic networks is similar to the

genomic loss. Yet, the percentage of reactions associated to genes is similar in every experiments,

which goes in the direction of the redundancy loss hypothesis. Likewise, we observed that the loss in

reactions for degraded genomes is lower than the loss of genes.

Application of M2M to human shotgun metagenomic data from
diabetic and healthy individuals
Protocols and cohort effect
In order to illustrate the applicability of M2M to metagenomic samples and cohorts of individuals,

we reused the work presented in Diener et al., 2020 and analysed the gut metagenomes of 170

individuals from a Danish (MHD) cohort and a Swedish (SWE) cohort (Forslund et al., 2015) in the

context of Type-1 (T1D) and Type-2 (T2D) diabetes. Based on species-level dereplicated MAGs,

metagenomic species (MGS), we built GSMNs and bacterial communities for each individual. We

relied only on the available metagenomic data to perform analyses, and used qualitative information
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(presence/absence of MGS or species in the sample) to build the communities as M2M works with

qualitative information. Two experiments were performed: firstly, M2M was run on each sample

using communities of newly reconstructed GSMN from MGS, and secondly using communities con-

sisting of curated GSMNs of the AGORA resources (Magnúsdóttir et al., 2017) mapped to OTUs at

the species level as described in Diener et al., 2020. A total of 778 MGS were retrieved from the

dataset and used to build GSMNs (Table 2), whereas when using the mapping of OTUs to existing

curated GSMNs, only 289 GSMNs were used. The distribution of phyla in the two cases is illustrated

in Appendix 2—figure 2. We first focus on the results obtained with the MGS-based protocol.

In average, communities were composed of 108 (±29) GSMNs. The median community size was

111 (Supplementary file 1 - Table 20). Diversity and richness analyses are available in Appendix 2

The effect of the cohort (MHD, SWE) was strong in the analyses performed with MGS, impacting

community sizes, size and composition (in families of metabolites) of the set of metabolites produc-

ible by the community, as well as the cooperation potential. Results are depicted in Appendix 2—

figure 3. A classification experiment using the composition of the community scope or the composi-

tion of the cooperation potential can efficiently determine the cohort of the samples (Appendix 2—

figure 3 panels c and g). Similar differences between cohorts were also observed in Diener et al.,

2020 and in Forslund et al., 2015 based on functional or taxonomic annotations, likely driven by

the different sampling protocols used in the two datasets (Forslund et al., 2015). This indicates that

the commonly observed cohort effect in metagenomics is also reflected at the metabolic modelling

scale, which could be explained by the observed GSMN redundancies shared within phyla.

Impact of the disease status
We studied the impact of the disease status on the community metabolism for the 115 samples of

the MHD cohort. The community diversity varied between disease statuses, with a significantly

higher number of MGS observed in T1D individuals forming the initial communities (anova F(2,112)

= 8.346, p<0.01, eta-squared = 0.13, Tukey HSD test p<0.01 vs control). We observe that the distri-

bution of the community sizes is broader for control individuals. The higher diversity for diseased

individuals is reflected at the metabolic level through the putative producibility of a wider set of

metabolites for T1D (anova F(2,112) = 6.606, p<0.01, eta-squared = 0.11, Tukey HSD p<0.01 vs con-

trol) and to a lesser extent for T2D communities (Tukey HSD p=0.05 vs control). The putative pro-

ducibility of some families of metabolites (alcohols, esters, carbohydrates, amino acids, acids) in the

community scopes also differed between metabolic communities derived from diseased and healthy

individuals (anova p<0.05), whereas other metabolic families like lipids remained stable between

cohorts. This can be at least partly explained by the number of metabolites matching these catego-

ries according to the Metacyc database (e.g. 191 metabolites tagged as ’All-carbohydrates’ in aver-

age in community scopes, and only 10 tagged as ’Lipids’ as the remaining of them are scattered in

other categories). No clear difference appears between the three statuses (Figure 4e) in terms of

community scope composition. Regarding the cooperation potential, two groups tend to appear,

separated due to diverse secondary metabolites, but they are not driven by the disease status of the

individual (Figure 4f). A classification experiment on the composition of the community scope can,

to some extent (AUC = 0.75 ± 0.15), decipher between healthy or diabetes statuses (Figure 4d) but

classification between T1D and T2D was not achievable (Appendix 2—figure 4). Although metage-

nomic data would more precisely perform such a separation, it is informative to observe that despite

metabolic redundancy in the gut microbiota, there are differences at the metabolic modelling level.

Qualitative differences are noticeable between healthy and diabetic individuals: it is possible to dis-

tinguish them to some extent using the set of metabolites predicted to be producible by the micro-

organisms found in their faeces.

We then computed for each sample the key species (essential and alternative symbionts) associ-

ated to the cooperation potential. The ratio of key species (KS), essential symbionts (ES) and alterna-

tive symbionts (AS) with respect to the initial community size did not vary altogether between

statuses. The exception was the ratio of AS (and of KS, which include AS) when comparing diabetes

individuals and controls, differences that were not significant when distinguishing the two types of

diabetes. Comparing the phylum-level taxonomy of these putative key species, in the initial commu-

nities, we noted that the occurrence of Firmicutes was broader compared to other phyla (Bacteroi-

dota, Proteobacteria, Actinobacteria). Firmicutes are known to be phylogenetically diverse

Belcour, Frioux, et al. eLife 2020;9:e61968. DOI: https://doi.org/10.7554/eLife.61968 12 of 33

Tools and resources Computational and Systems Biology

https://doi.org/10.7554/eLife.61968


control

T2D

T1D

metabolic compounds

s
a
m

p
le

s

reachable by community

non-reachable

0 20 40 60

control

T2D

T1D

families of metabolic compounds

s
a
m

p
le

s

occurrence of compounds family

40

80

120

160

control T1D T2D

disease status

in
it
ia

l 
c
o

m
m

u
n

it
y
 s

iz
e

a b

c

e

f g

d

MH0373
MH0381
MH0335
MH0376
MH0377
MH0349
MH0408
MH0260
MH0359
MH0388
MH0129
MH0132
MH0222
MH0252
MH0396
MH0170
MH0259
MH0086
MH0087
MH0311
MH0393
MH0183
MH0238
MH0414
MH0383
MH0372
MH0368
MH0161
MH0416
MH0361
MH0289
MH0298
MH0229
MH0365
MH0197
MH0371
MH0101
MH0016
MH0049
MH0444
MH0358
MH0120
MH0177
MH0169
MH0261
MH0155
MH0167
MH0114
MH0109
MH0096
MH0128
MH0283
MH0375
MH0135
MH0119
MH0418
MH0227
MH0387
MH0410
MH0327
MH0266
MH0364
MH0355
MH0253
MH0369
MH0402
MH0308
MH0339
MH0314
MH0391
MH0347
MH0382
MH0271
MH0386
MH0288
MH0346
MH0374
MH0276
MH0389
MH0329
MH0421
MH0366
MH0451
MH0430
MH0309
MH0399
MH0206
MH0328
MH0390
MH0362
MH0302
MH0212
MH0385
MH0343
MH0395
MH0384
MH0334
MH0436
MH0429
MH0442
MH0286
MH0323
MH0281
MH0378
MH0397
MH0234
MH0191
MH0088
MH0354
MH0433
MH0310
MH0264
MH0149
MH0299
MH0404

O
th

er
s

Li
pi
ds

N
itr

og
en

M
ol
ec

ul
ar

Ent
iti
es

O
rg

an
ic

he
te

ro
cy

cl
ic

co
m

po
un

d

Sec
on

da
ry

M
et

ab
ol
ite

s

H
or

m
on

es

C
of

ac
to

rs

Ant
ib
io
tic

s

All
N
uc

le
os

id
es

All
Am

in
es

Ald
eh

yd
es

O
r

Ket
on

es

All
Am

in
o

Aci
ds

O
R
G
AN

O
SU

LF
U
R

Alc
oh

ol
s

All
C
ar

bo
hy

dr
at

es

Aro
m

at
ic
s

Est
er

s

Aci
ds

MH0349
MH0368
MH0298
MH0229
MH0376
MH0377
MH0183
MH0381
MH0373
MH0197
MH0383
MH0361
MH0087
MH0311
MH0289
MH0238
MH0414
MH0393
MH0086
MH0335
MH0365
MH0371
MH0372
MH0161
MH0416
MH0101
MH0088
MH0283
MH0167
MH0016
MH0135
MH0129
MH0155
MH0128
MH0049
MH0149
MH0109
MH0177
MH0375
MH0227
MH0433
MH0271
MH0191
MH0386
MH0286
MH0310
MH0436
MH0119
MH0395
MH0384
MH0404
MH0264
MH0120
MH0169
MH0261
MH0288
MH0358
MH0346
MH0387
MH0234
MH0410
MH0114
MH0281
MH0299
MH0444
MH0302
MH0212
MH0327
MH0402
MH0366
MH0339
MH0382
MH0308
MH0096
MH0276
MH0390
MH0362
MH0354
MH0369
MH0355
MH0323
MH0132
MH0309
MH0374
MH0408
MH0399
MH0430
MH0396
MH0388
MH0260
MH0418
MH0206
MH0328
MH0451
MH0385
MH0266
MH0343
MH0378
MH0359
MH0391
MH0364
MH0170
MH0314
MH0252
MH0421
MH0259
MH0442
MH0429
MH0253
MH0222
MH0389
MH0329
MH0397
MH0334
MH0347

100

150

200

250

control T1D T2D

disease status

c
o
o
p
e
ra

ti
o
n
 p

o
te

n
ti
a
l 
s
iz

e

1300

1400

1500

1600

1700

control T1D T2D

disease status

c
o

m
m

u
n

it
y
 s

c
o

p
e

 s
iz

e

control diabetes

in
it

KS AS ES in
it

KS AS ES

0.0

0.2

0.4

0.6

0.8

category

c
o
m

p
o
s
it
io

n
a
l 
ra

ti
o

Phylum

Actinobacteriota

Bacteroidota

Firmicutes

Proteobacteria

Other

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
T
ru

e
 P

o
s
it
iv

e
 R

a
te

Receiver operating characteristic

ROC fold 0 (AUC = 1.00)

ROC fold 1 (AUC = 0.94)

ROC fold 2 (AUC = 0.57)

ROC fold 3 (AUC = 0.80)

ROC fold 4 (AUC = 0.77)

ROC fold 5 (AUC = 0.60)

ROC fold 6 (AUC = 0.67)

ROC fold 7 (AUC = 0.47)

ROC fold 8 (AUC = 0.77)

ROC fold 9 (AUC = 0.89)

Chance

Mean ROC (AUC = 0.75 ± 0.16)

± 1 std. dev.

Figure 4. Effect of the disease status on the metabolism of communities in MHD samples. M2M was run on collections of genome-scale metabolic

networks (GSMNs) associated to metagenome-assembled genomes (MAGs) identified in metagenomic samples from a cohort of healthy and diabetic

individuals. Panel (a) describes the distributions of community sizes for all metagenomic samples according to the disease status: T1D: Type-1 Diabetes,

T2D: Type-2 Diabetes. Panels (b) and (c) show the distribution of the community scope sizes and cooperation potential sizes respectively, according to

the disease status. Panel (d) is the receiver operating curve (ROC) of an SVM classification experiment aiming at predicting the disease status for the

MHD cohort (control n = 49 or diabetes n = 66) based on the community scope composition. Panel (e) illustrates the community scope composition in

terms of metabolites for all samples. Disease status is indicated by the colour at the left side of each row. Panel (f) illustrates the composition of the

cooperation potential according to the belonging of metabolites to Metacyc families of compounds. Disease status is indicated by the colour at the left

side of each row. Panel (g) describes the taxonomic distribution at the phylum level of groups of species before and after community reduction,

according to the disease status. Selection of communities was performed with the objective of making producible by the reduced communities the set

of metabolites in the cooperation potential. init: initial composition of communities, KS: key species, AS: alternative symbionts, ES: essential symbionts.

T1D: Type-1 Diabetes, T2D: Type-2 Diabetes.
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(Costea et al., 2018), and therefore their combined metabolism could also be more diverse. A nota-

ble change is the narrower distribution of Bacteroidota in the initial communities as well as in

selected symbionts in diseased individuals compared to control (Figure 4g). Altogether, no clear

trend was observable from metabolic modelling analyses between disease states, but we observed

some difference for the taxonomic composition of minimal communities, which could be explained

by the diversity discrepancies in microbiome compositions (Forslund et al., 2015).

Focus on short-chain fatty acids production
Given the importance of SCFAs in human health (Baxter et al., 2019), we focused on the production

of butyrate, propionate and acetate in communities for each sample of the dataset. A small number

of MGS (N = 11) GSMNs were predicted to be able to individually produce butyrate from the

nutrients. All 778 MGS were capable to ferment acetate and most of them propionate (N = 515).

The putative production of butyrate in the 170 communities when allowing cooperation between

GSMNs was systematic. As expected (Rivière et al., 2016), a majority (54.1%) of the unique MGS

predicted as possible butyrate producers in communities (GSMNs comprising a reaction producing

butyrate that could be activated in a community) belonged to the Firmicutes phylum. Altogether, in

62.6% of cases, the putative butyrate producers observed in the communities were Firmicutes. We

compared the number of putative butyrate producers in communities from MHD samples according

to the disease status of the individuals. Their number was significantly higher in the communities of

T1D individuals compared to control and T2D (anova F(2,111) = 9.27, p<0.01, eta-squared = 0.14,

and Tukey HSD test p<0.01 vs control and p=0.02 vs T2D) which could be explained by the higher

MGS diversity observed in T1D communities compared to the others. We then analysed the differ-

ence between using GSMNs of MGS reconstructed from metagenomic data and using curated

GSMNs mapped at the species level to OTUs as performed in Diener et al., 2020. The same

increase in butyrate producers was observed when running M2M on MHD communities consisting of

the mapped AGORA GSMNs (anova F(2,112) = 5.368, p<0.01, eta-squared = 0.11, and Tukey HSD

test p<0.01 vs control). To conclude, similar to the analyses of Diener et al., 2020, we observe that

the producibility of SCFAs, particularly butyrate, is highly driven by cooperation in the microbial

communities of individuals and can be performed by heterogenous sets of commensal species. The

MGS-driven approach and the systematic GSMN reconstruction permit taking advantage of the

whole metagenomic information and capturing the metabolic complementarity in each sample.

Discussion
M2M is a new software system for the functional analysis of metagenomic datasets at the metabolic

level. M2M can be used as an all-in-one pipeline or as independent steps in order to depict an initial

picture of metabolic complementarity within a community. It connects directly to metagenomics

through the automation of GSMN reconstruction, and integrates in this collective analysis community

reduction with respect to targeted functions. M2M was applied to a large collection of gut micro-

biota reference genomes, demonstrating the scalability of the methods and how it can help identify-

ing equivalence classes among species for the producibility of metabolite families. We showed that

metabolic networks reconstructed from reference genomes and MAGs display similar characteristics

and that M2M modelling predictions are robust to missing genes in the original genomes. Finally,

application to real metagenomic samples of individuals demonstrated that qualitative modelling of

metabolism retrieves known features from metagenomics and quantitative modelling analyses. M2M

provides a first order analysis with a minimal cost in terms of required data and computational

effort.

The identification of cornerstone taxa in microbiota is a challenge with many applications, for

instance restoring balance in dysbiotic environments. Keystone species, a concept introduced in

ecology, are particularly looked for as they are key drivers of communities with respect to functions

of interest (Banerjee et al., 2018). There is a variety of techniques to identify them

(Carlström et al., 2019; Floc’h et al., 2020), and computational biology has a major role in it

(Fisher and Mehta, 2014; Berry and Widder, 2014). The identification of alternative and essential

symbionts by M2M is an additional solution to help identify these critical species. In particular, essen-

tial symbionts are close to the concept of keystone species as they are predicted to have a role in

every minimal community associated to a function. Additionally, alternative species and the study of
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their combinations in minimal communities, for example with power graphs, are also informative as

they reveal equivalence groups among species.

M2M functionally analyses large collections of genomes in order to obtain metabolic insights into

the metabolic complementarity between them. While the functionality of metagenomic sequences is

commonly analysed at higher levels by directly computing functional profiles from reads

(Franzosa et al., 2018; Silva et al., 2016; Sharma et al., 2015; Petrenko et al., 2015), the meta-

bolic modelling oriented approach provides more in-depth predictions on reactions and pathways

organisms could catalyse in given environmental conditions. M2M answers to the upscaling limitation

of individual GSMN reconstruction with Pathway Tools by automating this task using the Mpwt wrap-

per. GSMNs in SBML format obtained from other platforms such as Kbase (Arkin et al., 2018), Mod-

elSEED (Henry et al., 2010; Seaver et al., 2020), or CarveMe (Machado et al., 2018), can also be

used as inputs to M2M for all metabolic analyses. For instance, we used highly curated models from

AGORA in the application of M2M to metagenomic datasets. The above reconstruction platforms

already implement solutions to facilitate the treatment of large genomic collections. There is no uni-

versal implementation for GSMN reconstruction (Mendoza et al., 2019); depending on their needs

(local run, external platform, curated, or non-curated GSMNs. . .), users can choose either method

and connect it to M2M.

Most metabolic modelling methods rely on flux analyses (Orth et al., 2010) solved with linear

programming, which may turn out to be challenging to implement for simulations of large communi-

ties (Basile et al., 2020), although recent efforts in that direction are encouraging (Popp and Cen-

tler, 2020). M2M uses the network expansion algorithm and solves combinatorial optimisation

problems with Answer Set Programming, thereby ensuring fast simulations and community predic-

tions, suitable when performing systematic screening and multiple experiments. Network expansion

has been widely used to analyse and refine metabolic networks (Matthäus et al., 2008;

Laniau et al., 2017; Christian et al., 2009; Prigent et al., 2017), including for microbiota analysis

(Christian et al., 2007; Ofaim et al., 2017; Opatovsky et al., 2018; Frioux et al., 2018). Network

expansion is a complementary alternative to quantitative constraint-based methods (Ebenhöh et al.,

2004; Handorf et al., 2005) such as flux balance analysis as it does not require biomass reactions

nor accurate stoichiometry. This algorithm offers a good trade-off between the accuracy of meta-

bolic predictions and the precision required for the input data, adapted to the challenges in studying

non-model organisms and their likely incomplete models of metabolism (Bernstein et al., 2019).

Answer Set Programming can easily scale the analysis of minimal communities among thousands

of networks considered in interaction and ensures with efficient solving heuristics that the whole

space of solutions is parsed to retrieve key species for chosen end-products. M2M therefore sug-

gests (metagenomic) species for further analyses such as targeted curation of metabolic networks

and deeper analysis of the genomes or quantitative flux predictions. The relevance of MiSCoTo

(Frioux et al., 2018), the algorithm for minimal community selection used in M2M, has been recently

experimentally demonstrated. It was applied to design bacterial communities to support the growth

of a brown alga in nearly axenic conditions (Burgunter-Delamare et al., 2019). Despite the difficulty

inherent to controlling the communities for a complex alga, the inoculated algae exhibited a signifi-

cant increase in growth and metabolic profiles that at least partially aligned with the predictions,

demonstrating the versatility in application fields of our methods.

There are limitations associated to the software solution described in this paper. One challenge

in applying our tool is to accurately estimate the nutrients available in a given environment (seeds),

on which the computation of network expansion relies. The algorithm provides a snapshot of pro-

ducible metabolites, representing the sub-network that can be activated under given nutritional con-

ditions. However, network expansion has been shown to be sensitive to cycles in GSMNs and it is

therefore relevant to include some cofactors (or currency metabolites e.g. ADP) in the seeds to acti-

vate such cycles, the way many studies proceed (Cottret et al., 2010; Greenblum et al., 2012;

Eng and Borenstein, 2016; Julien-Laferrière et al., 2016). In addition, it has to be noted that the

cost of exchanges or their number are not taken into account in M2M. Transport reactions are hardly

recovered by automatic methods (Bernstein et al., 2019) and validation of cross-feedings implies an

additional work on transporters identification. The standalone MiSCoTo package used in M2M has a

solving mode taking into account exchanges: it can compute communities while minimising and sug-

gesting metabolic exchanges, although this comes with additional computational costs and a need

for validation. Another limitation of our approach for studying communities of individuals from
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metagenomic experiments is that we do not take the microbial load or abundance of MGS into

account in the pipeline. Considering the presence/absence of MGS might lead to overestimate the

production of some metabolites. In addition, we infer phenotypes directly from genotypes, thereby

ignoring the possible non-expression of metabolic-related genes in specific conditions and the regu-

lation of those genes. Metaproteomic and metatranscriptomic data could partly overcome these

shortcomings but such experiments are not yet routinely performed. Finally, another aspect to be

considered in the future is the competition between species, especially for nutrients, as we only

focus here on metabolic complementarity and positive interactions.

Despite the above mentioned limitations, M2M has multiple applications for the de novo screen-

ing of metabolism in microbial communities. The number of curated GSMNs for species found in

microbiotas increases (Magnúsdóttir et al., 2017), constituting a highly valuable resource for the

study of interactions by mapping metagenomic data or OTUs to the taxonomy of genomes associ-

ated to these GSMNs. Yet, the variety of (reference) genomes obtained from shotgun metagenomic

experiments is such than species and strains may not belong to the ones for which a curated GSMN

is available. In that case, the proportion of reads that are not mapped to a genome with an associ-

ated GSMN can be very high (Diener et al., 2020). In addition, predictions from GSMN mapping

can be misleading as it is known that genomes vary a lot between genera, species, and even strains,

(Ansorge et al., 2019) and so can the metabolism. Recent methods for assembling genomes directly

from metagenomes lead to nearly complete genomes for possibly unknown species on which one

may still want to get metabolic insights (Almeida et al., 2019). Long-reads sequencing associated

with short-reads sequencing can also give access to complete microbial genomes (Moss et al.,

2020). Finally, single-cell methods can be useful for the acquisition of genomes and metagenomes

(Treitli et al., 2019). M2M answers to the need for de novo metabolic inference and screening,

which is likely to become a routine in the rapidly evolving context of microbiota genome sequencing.

While studying the metabolic potential of large communities is an iterative process that still requires

biological expertise, we provide with this work means to facilitate the screening of metagenomes

and reduce these large communities to key members.

Conclusion
M2M allows metabolic modelling of large-scale communities, based on reference genomes or de

novo constructed MAGs, inferring metabolic complementarity found within communities. M2M is a

flexible framework that automates GSMN reconstruction, individually and collectively analyse

GSMNs, and performs community selection for targeted functions. The large combinatorics of mini-

mal communities due to functional redundancy in microbiotas is addressed by providing key species

associated to metabolic end-products. This could allow targeting specific members of the commu-

nity through pro- or prebiotics, to model the metabolites the human host will be exposed to.

We validated the flexibility of the software and the range of analyses it can offer with several

datasets, corresponding to multiple use-cases in the microbiome field. This allowed us to character-

ise metabolic complementarity in a large collection of draft reference genomes. We further assessed

the robustness of M2M to data incompleteness by performing analyses on collections of MAGs.

Finally, we applied M2M to a common use-case in metagenomics: the study of communities associ-

ated to individuals, in a disease context.

Our method is robust against the uncertainty inherent to metagenomics data. It scales to typical

microbial communities found in the gut and predicts key species for functions of interest at the met-

abolic level. Future developments will broaden the range of interactions to be modelled and facili-

tate the incorporation of abundance data. This software is an answer to the need for scalable

predictive methods in the context of metagenomics where the number of available genomes contin-

ues to rise.

Materials and methods
M2M is a Python package. It can be used on a workstation or on a cluster using Docker or Singular-

ity. M2M’s source code is available on github.com/AuReMe/metage2metabo, (Belcour and Frioux,

2020; copy archived at swh:1:rev:2cab4c79acd814eb177a370602c07599a93bc947) and the package

is available though the Python Package Index at pypi.org/project/Metage2Metabo/. A detailed doc-

umentation is available on metage2metabo.readthedocs.io.
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We detail below the characteristics of M2M through a description of its main steps.

Parallel and large-scale metabolic network reconstruction
M2M can process existing metabolic networks in SBML format or proposes the automatic recon-

struction of non-curated metabolic networks (m2mXrecon). As a multi-processing solution, it facili-

tates the treatment of hundreds or thousands of genomes that can be retrieved from metagenomic

experiments. The underlying GSMN reconstruction software is Pathway Tools (Karp et al., 2016), a

graphical user interface (GUI) based software suite for the generation of individual GSMNs, called

Pathway/Genome Databases (PGDBs). Typically, a PGDB is obtained from an annotated genome

using PathoLogic, the software prediction component of Pathway Tools, and curated afterwards.

We developed Mpwt (Multiprocessing Pathway Tools), a command-line Python wrapper (also

available as a standalone tool) for Pathway Tools. Mpwt and M2M (i) format the genomic inputs, (ii)

automate the reconstruction step by initialising a PathoLogic environment for each genome, and (iii)

extract and convert the resulting GSMNs in PGDB and SBML (Hucka et al., 2003; Hucka et al.,

2018) formats using the PADMet library (Aite et al., 2018). Mpwt handles three types of genomic

inputs (Genbank, Generic Feature Format (GFF) or PathoLogic format) that must contain GO-terms

and EC-numbers annotations necessary for Pathway Tools. These annotations are for example found

in the Genbank files generated by Prokka (Seemann, 2014). In addition, we specifically developed

Emapper2gbk, a Python package dedicated to the connection between the Eggnog-mapper annota-

tion tool (Huerta-Cepas et al., 2017) and Mpwt in order to generate these inputs.

Analysis of metabolic producibility and calculation of the cooperation
potential
This part of the workflow encompasses three steps: computation of the (i) individual (m2mXiscope)

and (ii) collective (m2mXcscope) metabolic potentials, and (iii) the characterisation of the cooperation

potential of the GSMN collection (m2mXaddedvalue). The former two rely on the network expansion

algorithm (Ebenhöh et al., 2004), the latter being a set difference between the results of the first

two steps.

The network expansion algorithm computes the scope of a metabolic network from a description

of the growth medium called seeds. The scope consists in the set of metabolic compounds which

are reachable, or producible, according to a boolean abstraction of the network dynamics assuming

that cycles cannot be self-activated. More precisely, the algorithm recursively considers products of

reactions to be producible if all reactants of the reactions are producible, provided an initiation with

a set of seed nutrients. The underlying implementation of the network expansion algorithm used in

M2M relies on Answer Set Programming (ASP) (Schaub and Thiele, 2009).

We define a metabolic network as a bipartite graph G ¼ ðR [M;EÞ, where R and M stand for

reaction and metabolite nodes. When ðm; rÞ 2 E (respectively ðr;mÞ 2 E), with m 2 M and r 2 R, the

metabolite is called a reactant (respectively product) of the reaction r. The scope of a set of seed

compounds S according to a metabolic network G, denoted by ðG; SÞ, is iteratively computed until it

reaches a fixed point (Handorf et al., 2005). It is formally defined by

ScopeðG;SÞ ¼
[

i

Mi; whereM0 ¼ S andMiþ1 ¼Mi [ productsðfr 2 R j reactantsðrÞ �MigÞ:

Individual metabolic capabilities
The m2mXiscope command predicts the set of reachable metabolites for each GSMN using the net-

work expansion algorithm and the given nutrients as seeds. The content of each scope is exported

to a json file. A summary is also provided to the user comprising the intersection (metabolites reach-

able by all GSMNs) and the union of all scopes, as well as the average size of the scopes, the mini-

mal size and the maximal size of all. This command extends core functions implemented in

Menetools for individual GSMNs, a Python package (also available as a standalone tool) that was

previously used in Aite et al., 2018.

Collective metabolic capabilities
The m2mXcscope command computes the metabolic capabilities of the whole microbiota by taking

into account the metabolic complementarity between GSMNs. This step simulates the sharing of

Belcour, Frioux, et al. eLife 2020;9:e61968. DOI: https://doi.org/10.7554/eLife.61968 17 of 33

Tools and resources Computational and Systems Biology

https://github.com/AuReMe/mpwt
https://github.com/AuReMe/emapper_to_gbk
https://github.com/cfrioux/MeneTools
https://doi.org/10.7554/eLife.61968


metabolic biosynthesis through a meta-organism composed of all GSMNs, and assesses the meta-

bolic compounds that can be reached using network expansion. This calculation is an extension of

the features of MiSCoTo (also available as a standalone tool) (Frioux et al., 2018) in which the col-

lective scope of a collection of metabolic networks fG1; . . .GNg is introduced. We define

collectiveScope ðG1:::GN ;SÞ ¼ Scope
[

i2f1:::ng

Ri;

[

i2f1:::ng

Mi;

[

i2f1:::ng

Ei

0

@

1

A

;S

0

@

1

A

:

Target producers
If metabolic compounds of interest or targets are provided by the user, a summary of the producers

for each target is generated by m2mXworkflow, m2mXmetacom, and m2mXcscope: it identifies the

GSMNs that are predicted to produce the targets, either intrinsically, or through cooperation with

other members of the community.

A metabolic network Gi is an individual target producer of t 2 T if t 2 ðGi; SÞ. The metabolic net-

work Gi is a community target producer if (a) Gi is not an individual target producer of t (i.e.

t 62 ðGi; SÞ), but (b) Gi contains a reaction r 2 Ri which produces t (i.e. t 2 productsðrÞ) such that (c) all

reactants are producible by the community (Gi and the other metabolic networks):

reactantsðrÞ � collectiveScope ðG1:::GN ; SÞ. This means that the metabolic network Gi has the capability

of producing t through the reaction r in a cooperation context.

This information can be retrieved in practice in the file ’producibility_targets.json’ under the keys

’individual_producers’ and ’com_only_producers’.

Cooperation potential
Given individual and community metabolic potentials, the cooperation potential consists in the set

of metabolites whose producibility can only occur if several organisms participate in the biosynthesis.

m2mXaddedvalue computes the cooperation potential by performing a set difference between the

community scope and the union of individual scopes, and produces an SBML file with the resulting

metabolites. This list of compounds is inclusive and could comprise false positives not necessitating

cooperation for production, but selected due to missing annotations in the initial genomes. One can

modify the SBML file accordingly, prior to the following M2M community reduction step.

The cooperation potential ðG1; :::;Gn; SÞ of a collection of metabolic networks fG1:::Gng is defined

by

cooperationPotentialðG1; :::;Gn;SÞ ¼ collectiveScopeðG1; :::;Gn;SÞ n
[

i2f1:::ng

scopeðGi;SÞ:

Computation of minimal communities and identification of key species
A minimal community C enabling the producibility of a set of targets T from the seeds S is a sub-fam-

ily of the community G1; . . . ;Gn which is solution of the following optimisation problem:

fGi1
:::GiL

g �fG1 :::GNg
minimize sizeðfGi1 :::GiLgÞ

subject to T � collectiveScope ðGi1 :::GiL ;SÞ:

Solutions to this optimisation problem are communities C ¼ ðGi1 . . . ;GiLÞ of minimal size. We

define minimalCommunities ðG1:::Gn;S;TÞ to be the set of all such minimal communities. A first output

of the m2mXmincom command is the (minimal) size L of communities solution of the optimisation

problem. The composition of one optimal community is also provided. The targets are by default

the components of the cooperation potential, T ¼ cooperationPotential ðG1; :::;Gn;SÞ, but can also be

a group of target metabolites defined by the user.

Many minimal communities are expected to be equivalent for a given metabolic objective but

their enumeration can be computationally costly. We define key species which are organisms occur-

ring in at least one community among all the optimal ones. Key species can be further distinguished

into essential symbionts and alternative symbionts. The former occur in every minimal community

whereas the latter occur only in some minimal communities. More precisely, the key species

keySpecies ðG1:::Gn; S; TÞ, the essential symbionts essentialSymbionts ðG1:::Gn; S; TÞ, and the alternative
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symbionts alternativeSymbionts ðG1:::Gn; S; TÞ associated to a set of metabolic networks, seeds S and

a set of target metabolites T are defined by

keySpecies ðG1:::Gn;S;TÞ ¼ fG j 9C 2minimalCommunities ðG1:::Gn;S;TÞ; G2 Cg:

essentialSymbionts ðG1:::Gn;S;TÞ ¼ fG j 8C 2minimalCommunities ðG1:::Gn;S;TÞ; G2 Cg:

alternativeSymbionts ðG1::Gn;S;TÞ ¼ keySpecies ðG1:::Gn;S;TÞ n essentialSymbionts ðG1:::Gn;S;TÞ:

As a strategy layer over MiSCoTo, M2M relies on the Clasp solver (Gebser et al., 2012) for effi-

cient resolution of the underlying grounded ASP instances. Although this type of decision problem is

NP-hard (Julien-Laferrière et al., 2016), as with many real-world optimisation problems worst-case

asymptomatic complexity is less informative for applications than practical performance using heuris-

tic methods. The Clasp solver implements a robust collection of heuristics (Gebser et al., 2007;

Andres et al., 2012) for core-guided weighted MaxSAT (Manquinho et al., 2009; Morgado et al.,

2012) that provide rapid set-based solutions to combinatorial optimisation problems, much in the

same way that heuristic solvers like CPlex provide rapid numerical solutions to mixed integer pro-

gramming optimisation problems. The kinds of ASP instances constructed by MiSCoTo for M2M are

solved in a matter of minutes for the identification of key species and essential/alternative symbionts.

Indeed the space of solutions is efficiently sampled using adequate projection modes in ASP, which

enables the computation of these groups of species without the need for a full enumeration.

Analysis of enumerated communities
The m2m_analysis command permits the enumeration of minimal communities. If the taxonomy of

species associated to the metabolic networks is provided, descriptive statistics are performed. In

addition, minimal communities can be visualised as an association graph connecting GSMNs that co-

occur in at least one minimal community. The association graph can itself be compressed in a power

graph that enables visualising motifs such as cliques, bicliques and stars. Power graphs are gener-

ated using PowerGrASP (Bourneuf and Nicolas, 2017). In this paper, they were visualised with Cyto-

scape (v.2.8.3) (Shannon et al., 2003) and the CyOog plugin (v.2.8.2) developed by Royer et al.,

2008.

Application to datasets
Analysis of human gut and cow rumen published collections of genomes
In order to evaluate the influence of genome collections based on sequencing cultured isolates or

metagenomic genome reconstructions, we used 1,520 high-quality draft reference genomes of bac-

teria from the human gut microbiota retrieved from Zou et al., 2019 and 913 MAGs from the cow

rumen published in Stewart et al., 2018. The genomes from the former set were already annotated.

We designed a set of seed metabolites representing a nutritional environment which is required

for the metabolic modelling analyses. Seeds (93 metabolites) consist in components of a classical

diet for the gut microbiota, EU average from the VMH resource (Noronha et al., 2019), and a small

number of currency metabolites (Schilling et al., 2000; Supplementary file 1 - Table 1 and Github

repository of M2M). M2M was run using version 23.0 of Pathway Tools.

The cow rumen dataset of MAGs was not functionally annotated. Therefore, as a preliminary step

of analysis, we annotated the genomic contigs using Prokka (v.1.13.4) (Seemann, 2014). M2M was

run using version 23.0 of Pathway Tools. The nutritional environment for modelling experiments con-

sisted in basic nutrients: 26 metabolites including inorganic compounds, carbon dioxide, glucose,

and cellobiose and a small number of currency metabolites (Supplementary file 1 - Table 2).

The rumen MAGs were artificially degraded to assess the robustness of M2M with respect to

incomplete MAGs. This was done by randomly removing genes in all or a fraction of genomes. Four

degradation scenarios were tested: removal of 2% of genes in all MAGs, removal of 5% of genes in

80% of the genomes, removal of 5% of genes in all genomes and removal of 10% of genes in 70% of

the genomes. The subsequent parts of the analysis (annotation with Prokka, M2M runs) were done

as described above. Supervenn diagrams presented in Figure 2 to compare the results were

obtained using the Supervenn Python package (Fedor, 2021).
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Shotgun metagenomic analysis of individuals
Metagenomic shotgun data from samples previously studied in Diener et al., 2020 from 186

Danish and Swedish individuals (Forslund et al., 2015) were used in this paper. Genomes were

de novo reconstructed from the dataset using the MATAFILER pipeline described in

Hildebrand et al., 2019. Briefly, metagenomic samples were quality-filtered using sdm

(Hildebrand et al., 2014), assembled using MEGAHIT (Li et al., 2015), genes were predicted

using Prodigal (Hyatt et al., 2010), and a non-redundant gene catalogue was constructed across

all samples using MMseqs2 (Steinegger and Söding, 2017). MAGs were predicted from meta-

genomic assemblies using MetaBAT2 (Kang et al., 2019) and dereplicated into species level

metagenomic species (MGS), using a combination of shared genes among MetaBAT2 bins, can-

opy clustering (Nielsen et al., 2014) and custom R scripts (Hildebrand et al., 2019). Abundance

of MGS was estimated across samples by using the average coverage of 40 conserved, single

copy marker genes associated to each MGS (Mende et al., 2013). This abundance matrix was

further populated with specI species from the proGenomes database (Mende et al., 2020), that

were not represented by MGS and are high-quality genomes from cultured bacteria. This pipe-

line is described in further detail in Hildebrand et al., 2019.

Samples for which the global estimated abundance of MGS was lower than 1000 in accumu-

lated coverage of all species were removed. This corresponds to a low number of reads passing

the upstream quality checks for these samples (<9.10e6). 170 samples were kept for analysis.

The initial bacterial community of each sample was determined using the estimated abundance

matrix provided by the MATAFILER pipeline, following a boolean rule of presence/absence of

MGS and specI species in samples. Genomes consisted in MGS obtained with MATAFILER as

well as SpecI genomes from the Progenomes database (Mende et al., 2020) that were identi-

fied in the samples. For the latter case, we downloaded the genes and proteins of the corre-

sponding representative genome from the database (SpecI v3). Functional annotation of genes

from both specI genomes and MGS core genomes was performed using EggNOG-mapper

v2.0.0 (Huerta-Cepas et al., 2017) based on eggNOG orthology data (Huerta-Cepas et al.,

2019). Sequence searches were performed using Diamond v0.9.24.125 (Buchfink et al., 2015).

Treatment of EggNOG-mapper annotation and creation of M2M Genbank inputs was done with

the package Emapper2gbk that we developed for the project. Seeds describing the nutritional

environment were compounds of the western diet as presented in the study by Diener et al.,

2020. These metabolites were translated into identifiers from the Metacyc database

(Caspi et al., 2020), to which were added a small number of currency metabolites. The seeds

are available on the Github repository of M2M.

M2M was run for each sample and community selection was performed with different sets of tar-

gets (SCFAs, cooperation potential in each community). The cohort and disease status of each sam-

ple was known, enabling the comparison of scopes and cooperation potentials contents between

statuses. M2M was also run using the approach presented in MICOM (Diener et al., 2020) building

sample communities, as presented in the paper and associated data repository, through the attribu-

tion of curated GSMN (Magnúsdóttir et al., 2017) to operational taxonomic units (OTUs) identified

in samples. We reused the mapping at species-level provided in the MICOM paper to build the

communities.

Downstream analyses were performed in R (R Development Core Team, 2017) and Python. Fig-

ures were produced using the package ggplot2 (Wickham, 2009) and diversity measures were com-

puted with the vegan R package (v2.5–6). Classifications of disease statuses or cohorts using sets of

predicted producible metabolites were made using the Python package Scikit-learn (v0.23.1)

(Pedregosa et al., 2011). Briefly, redundancy between features were removed with a Multidimen-

sional scaling (MDS), Support Vector Machine (SVM) classifications with Stratified K-Folds cross-vali-

dations were performed using the MDS results. Finally, receiver operating characteristic curve (ROC-

AUC) were computed and visualised with tools from the package.
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Springer. p. 89–105. DOI: https://doi.org/10.1007/978-3-319-59271-8_6

Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND. Nature Methods 12:
59–60. DOI: https://doi.org/10.1038/nmeth.3176, PMID: 25402007

Burgunter-Delamare B, KleinJan H, Frioux C, Fremy E, Wagner M, Corre E, Salver AL, Leroux C, Leblanc C,
Boyen C, Siegel A, Dittami SM. 2019. Metabolic complementarity between a Brown alga and associated
cultivable Bacteria provide indications of beneficial interactions. bioRxiv. DOI: https://doi.org/10.1101/813683

Carlström CI, Field CM, Bortfeld-Miller M, Müller B, Sunagawa S, Vorholt JA. 2019. Synthetic microbiota reveal
priority effects and keystone strains in the Arabidopsis phyllosphere. Nature Ecology & Evolution 3:1445–1454.
DOI: https://doi.org/10.1038/s41559-019-0994-z, PMID: 31558832

Caspi R, Billington R, Keseler IM, Kothari A, Krummenacker M, Midford PE, Ong WK, Paley S, Subhraveti P, Karp
PD. 2020. The MetaCyc database of metabolic pathways and enzymes - a 2019 update. Nucleic Acids Research
48:D445–D453. DOI: https://doi.org/10.1093/nar/gkz862, PMID: 31586394

Chan SHJ, Simons MN, Maranas CD. 2017. SteadyCom: predicting microbial abundances while ensuring
community stability. PLOS Computational Biology 13:e1005539. DOI: https://doi.org/10.1371/journal.pcbi.
1005539, PMID: 28505184
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the potential for aromatic compounds biodegradation in burkholderiales. Environmental Microbiology 14:
1091–1117. DOI: https://doi.org/10.1111/j.1462-2920.2011.02613.x, PMID: 22026719

Petrenko P, Lobb B, Kurtz DA, Neufeld JD, Doxey AC. 2015. MetAnnotate: function-specific taxonomic profiling
and comparison of metagenomes. BMC Biology 13:92. DOI: https://doi.org/10.1186/s12915-015-0195-4,
PMID: 26541816

Popp D, Centler F. 2020. mbialsim: constraint-based dynamic simulation of complex microbiomes. Frontiers in
Bioengineering and Biotechnology 8:574. DOI: https://doi.org/10.3389/fbioe.2020.00574, PMID: 32656192

Potrykus J, White RL, Bearne SL. 2008. Proteomic investigation of amino acid catabolism in the indigenous gut
anaerobe Fusobacterium varium. Proteomics 8:2691–2703. DOI: https://doi.org/10.1002/pmic.200700437,
PMID: 18546150

Prigent S, Frioux C, Dittami SM, Thiele S, Larhlimi A, Collet G, Gutknecht F, Got J, Eveillard D, Bourdon J,
Plewniak F, Tonon T, Siegel A. 2017. Meneco, a Topology-Based Gap-Filling tool applicable to degraded
Genome-Wide metabolic networks. PLOS Computational Biology 13:e1005276. DOI: https://doi.org/10.1371/
journal.pcbi.1005276, PMID: 28129330

R Development Core Team. 2017. R: A Language and Environment for Statistical Computing. 3.3.3. Vienna,
Austria: R Foundation for Statistical Computing. http://www.R-project.org

Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L. 2016. Bifidobacteria and Butyrate-Producing Colon bacteria:
importance and strategies for their stimulation in the human gut. Frontiers in Microbiology 7:979. DOI: https://
doi.org/10.3389/fmicb.2016.00979, PMID: 27446020

Royer L, Reimann M, Andreopoulos B, Schroeder M. 2008. Unraveling protein networks with power graph
analysis. PLOS Computational Biology 4:e1000108. DOI: https://doi.org/10.1371/journal.pcbi.1000108,
PMID: 18617988

Schaub T, Thiele S. 2009. Metabolic network expansion with answer set programming. In: Hill P. M, Warren D. S
(Eds). Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), Volume 5649 LNCS. Springer Berlin Heidelberg. p. 312–326. DOI: https://doi.
org/10.1007/978-3-642-02846-5_27

Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE,
Rahmanian S, Kang J, Hyduke DR, Palsson BØ. 2011. Quantitative prediction of cellular metabolism with
constraint-based models: the COBRA toolbox v2.0. Nature Protocols 6:1290–1307. DOI: https://doi.org/10.
1038/nprot.2011.308, PMID: 21886097

Schilling CH, Letscher D, Palsson BO. 2000. Theory for the systemic definition of metabolic pathways and their
use in interpreting metabolic function from a pathway-oriented perspective. Journal of Theoretical Biology 203:
229–248. DOI: https://doi.org/10.1006/jtbi.2000.1073, PMID: 10716907

Seaver SMD, Liu F, Zhang Q, Jeffryes J, Faria JP, Edirisinghe JN, Mundy M, Chia N, Noor E, Beber ME, Best AA,
DeJongh M, Kimbrel JA, D’haeseleer P, McCorkle SR, Bolton JR, Pearson E, Canon S, Wood-Charlson EM,
Cottingham RW, et al. 2020. The ModelSEED biochemistry database for the integration of metabolic
annotations and the reconstruction, comparison and analysis of metabolic models for plants, fungi and
microbes. Nucleic Acids Research 49:gkaa746. DOI: https://doi.org/10.1093/nar/gkaa746

Belcour, Frioux, et al. eLife 2020;9:e61968. DOI: https://doi.org/10.7554/eLife.61968 26 of 33

Tools and resources Computational and Systems Biology

https://doi.org/10.1038/nbt.2939
https://doi.org/10.1093/nar/gky992
https://doi.org/10.1093/nar/gky992
http://www.ncbi.nlm.nih.gov/pubmed/30371894
https://doi.org/10.3389/fmicb.2017.01606
http://www.ncbi.nlm.nih.gov/pubmed/28878756
https://doi.org/10.1186/s12864-018-4786-7
http://www.ncbi.nlm.nih.gov/pubmed/29801436
https://doi.org/10.1038/nbt.1614
http://www.ncbi.nlm.nih.gov/pubmed/20212490
https://doi.org/10.1101/gr.186072.114
http://www.ncbi.nlm.nih.gov/pubmed/25977477
https://doi.org/10.1016/j.cell.2019.01.001
http://www.ncbi.nlm.nih.gov/pubmed/30661755
https://doi.org/10.1111/j.1462-2920.2011.02613.x
http://www.ncbi.nlm.nih.gov/pubmed/22026719
https://doi.org/10.1186/s12915-015-0195-4
http://www.ncbi.nlm.nih.gov/pubmed/26541816
https://doi.org/10.3389/fbioe.2020.00574
http://www.ncbi.nlm.nih.gov/pubmed/32656192
https://doi.org/10.1002/pmic.200700437
http://www.ncbi.nlm.nih.gov/pubmed/18546150
https://doi.org/10.1371/journal.pcbi.1005276
https://doi.org/10.1371/journal.pcbi.1005276
http://www.ncbi.nlm.nih.gov/pubmed/28129330
http://www.R-project.org
https://doi.org/10.3389/fmicb.2016.00979
https://doi.org/10.3389/fmicb.2016.00979
http://www.ncbi.nlm.nih.gov/pubmed/27446020
https://doi.org/10.1371/journal.pcbi.1000108
http://www.ncbi.nlm.nih.gov/pubmed/18617988
https://doi.org/10.1007/978-3-642-02846-5_27
https://doi.org/10.1007/978-3-642-02846-5_27
https://doi.org/10.1038/nprot.2011.308
https://doi.org/10.1038/nprot.2011.308
http://www.ncbi.nlm.nih.gov/pubmed/21886097
https://doi.org/10.1006/jtbi.2000.1073
http://www.ncbi.nlm.nih.gov/pubmed/10716907
https://doi.org/10.1093/nar/gkaa746
https://doi.org/10.7554/eLife.61968


Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. DOI: https://doi.
org/10.1093/bioinformatics/btu153, PMID: 24642063
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Appendix 1

Analysis of GSMNs from the human gut reference genomes and rumen
MAGs collections
Comparison of GSMNs reconstructed from MAGs and from reference
genomes

Main characteristics of GSMNs reconstructed from the human gut microbiota reference genomes

and the rumen MAGs are compared in Appendix 1—figure 1.
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Appendix 1—figure 1. Characteristics of the metabolic networks built for the gut and the rumen

datasets. (a) Distribution of the number of metabolic compounds in genome-scale metabolic

networks (GSMNs) reconstructed for the gut dataset (purple) and the rumen dataset (green). (b)

Distribution of the number of metabolic reactions. (c) Distribution of the number of complete

pathways according to the MetaCyc database. (d) Distribution of the number of genes included into

the GSMNs. (e) Distribution of the number of reactions associated to genes. (f) Principal component

analysis of the GSMNs reconstructions based on the previous characteristics (a. to e.). (g)

Distribution of the number of genes (not necessarily related to metabolism) in the initial genomes/

MAGs. (h) Individual metabolic potentials (scopes) for the gut bacteria, dotted line represents the

number of seeds (nutrients) used in the algorithm. (i) Reachability of metabolites by gut bacteria. (j)

Individual metabolic potentials (scopes) for the rumen bacteria, dotted line represents the number

of seeds (nutrients) used in the algorithm. (k) Reachability of metabolites by rumen bacteria.

Robustness analysis of GSMN reconstruction with MAGs

MAGs from the rumen dataset were degraded by randomly removing contigs. The following degra-

dations were tested: removal of 2% of genes in all MAGs, removal of 5% of genes in 80% of MAGs,

removal of 5% of genes in all MAGs, removal of 10% of genes in 70% of MAGs.
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Appendix 1—table 1 summarises the characteristics of the genomes and GSMNs for all experi-

ments. The average gene loss in genomes is similar to the average gene loss in metabolic networks.

However, the average loss of metabolites and reactions is lower than the genetic loss: it increases

more slowly than the loss of genes. For instance, the 2% degradation of MAGs leads to a nearly 2%

decrease in reaction numbers in GSMNs. However, the 10% degradation in 70% of genomes (aver-

age gene loss of 7% in the initial community) only leads to a 5% decrease in reaction numbers. One

notable observation is the stability in the percentage of reactions associated to genes, suggesting

that the loss of reactions in degraded genomes mainly occurs among reactions that are not associ-

ated to genes. It is also possible that the loss of genes in GSMNs is due to the redundancy loss:

some reactions associated to several genes before degradation lose some of these gene associa-

tions after degradation. Data for each genome and GSMN is available in Supplementary file 1 -

Tables 16, 21-24.

Appendix 1—table 1. Effect of MAG degradation on genome-scale metabolic network (GSMN)

reconstructions.

Numbers are averages. ’±’ precedes standard deviation values. ’original’: initial MAGs prior degrada-

tion, ’2pc100’: 2% gene removal in all MAGs, ’5pc80’: 5% gene removal in 80% of MAGs, ’5pc100’: 5%

gene removal in all MAGs, ’10pc70’: 10% gene removal in 70% of MAGs.

Original 2pc100 5pc80 5pc100 10pc70

Genes in MAGs 2100 (±501) 2058 (±491) 2016 (±484) 1994 (±478) 1954 (±480)

Reactions in GSMNs 1155 (±199) 1131 (±192) 1116 (±192) 1108 (±190) 1094 (±192)

Metabolites in GSMNs 1422 (±212) 1402 (±207) 1388 (±208) 1381 (±206) 1366 (±208)

Genes in GSMNs 543 (±108) 532 (±106) 521 (±105) 515 (±103) 505 (±105)

% reactions with genes 73.84% 74.05% 73.82% 73.72% 73.61%

Gene loss in MAGs — 1.98% 4.01% 5.03% 6.94%

Reaction loss in GSMNs — 1.96% 3.30% 3.89% 5.17%

Metabolite loss in GSMNs — 1.37% 2.41% 2.91% 3.92%

Gene loss in GSMNs — 2.09% 4.17% 5.11% 7.02%
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Appendix 2

Supplementary information to the Diabetes experiment
Diversity and richness of the samples

The Shannon diversity index and richness of the 170 samples are illustrated in Appendix 2—figure

1 a and b. We relied on species present in the abundance matrix to define communities for the met-

abolic analysis. The phylum-level composition of the matrix is illustrated in Appendix 2—figure 2.

The average size of the community was 108 GSMNs. Their median size was 111. In order to compute

a metabolic distance between samples, we retrieved for each genome its KO annotations obtained

with Eggnog-Mapper. Using the abundance (normalised by sample) of the genomes in each sample,

we were able to retrieve the KO content of samples. We then calculated the Bray-Curtis distance

between samples before computing a PCoA (Appendix 2—figure 1). The PCoA shows a clear dis-

tinction between the two datasets, thus motivating their distinct analysis, as performed in the main

results of the article. However, there are no distinction between the control and diabetes status of

the samples.
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Appendix 2—figure 1. Shannon diversity index, richness, and metabolic distance of the samples.

(a) Histogram depicting the Shannon diversity index of the samples. (b) Histogram depicting the

richness of the samples. (c and d) Principal coordinate analysis (PCoA) of the Bray-Curtis distance

calculated on the KO composition of samples coloured by dataset (c) or disease status (d).

Belcour, Frioux, et al. eLife 2020;9:e61968. DOI: https://doi.org/10.7554/eLife.61968 30 of 33

Tools and resources Computational and Systems Biology

https://doi.org/10.7554/eLife.61968


Firmicutes

141

Actinobacteria

49

Proteobacteria

45

Bacteroidetes

29

Fusobacteria

15
Tenericutes

3
Euryarchaeota

2
Melainabacteria

1

Spirochaetes

1

Thaumarchaeota

1

Verrucomicrobia

1

Firmicutes

141

Actinobacteria

49

Proteobacteria

45

Bacteroidetes

29

Fusobacteria

15
Tenericutes

3
Euryarchaeota

2
Melainabacteria

1

Spirochaetes

1

Thaumarchaeota

1

Verrucomicrobia

1

Firmicutes

477

Bacteroidota

131

Proteobacteria

41

Actinobacteriota

37

Cyanobacteria

13
Desulfobacterota_A

6
Verrucomicrobiota

6
Euryarchaeota

3
Synergistota

2
Spirochaetota

1
Thermoplasmatota

1

Firmicutes

477

Bacteroidota

131

Proteobacteria

41

Actinobacteriota

37

Cyanobacteria

13
Desulfobacterota_A

6
Verrucomicrobiota

6
Euryarchaeota

3
Synergistota

2
Spirochaetota

1
Thermoplasmatota

1

a b

Appendix 2—figure 2. Taxonomic diversity of the genomes used for genome-scale metabolic

networks (GSMNs) reconstruction using OTU mapping (at species level) to curated metabolic models

(a), or reconstructed metagenomic species (MGS) (b). Phyla composition of the genomes, and

number of distinct representatives for each phylum.

Cohort effect at the metabolic level

The cohort effect is illustrated in Appendix 2—figure 3.
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Appendix 2—figure 3. Impact of the cohort when studying the metabolisms of individuals from the

metagenomic dataset. Panels (a) to (d) focus on the community scope, that is the set of metabolites

reachable by the community associated to a sample. Panel (d) shows the representation of a

multidimensional scaling (MDS) on the community scope composition between cohorts. Panels (e) to

(g) focus on the cooperation potential, that is the set of metabolites that are not expected to be

produced by individual members of communities and instead require cooperation. Panels (a) and (e)

describe families of metabolites whose occurrences significantly differ between cohorts in the

corresponding group (community scope or cooperation potential). Panels (b) and (f) illustrate the

size of the community scope and cooperation potential respectively in samples from the two

cohorts. Panels c (resp. g) are receiving operating curves (ROC) of a classification experiment aiming

Appendix 2—figure 3 continued on next page
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Appendix 2—figure 3 continued

at separating the cohort (MHD n = 115, SWE n = 55) based on the occurrences of metabolites in the

community scope (resp. cooperation potential). Panel (h) describes the size of the initial community

associated to samples of both cohorts according to abundance data of MGS.

Status effect at the metabolic level

The effect of the disease status is illustrated in Appendix 2—figure 4.

control

T2D

T1D

metabolic compounds

s
a
m

p
le

s

reachable by community

non-reachablea b

c control T1D T2D

in
it

KS AS ES in
it

KS AS ES in
it

KS AS ES

0.0

0.2

0.4

0.6

0.8

category

c
o
m

p
o
s
it
io

n
a
l 
ra

ti
o

Phylum

Actinobacteriota

Bacteroidota

Firmicutes

Proteobacteria

Other

MH0381
MH0373
MH0376
MH0377
MH0349
MH0372
MH0335
MH0087
MH0086
MH0393
MH0238
MH0414
MH0383
MH0183
MH0197
MH0368
MH0365
MH0229
MH0416
MH0361
MH0298
MH0311
MH0161
MH0289
MH0371
MH0129
MH0222
MH0132
MH0260
MH0408
MH0388
MH0359
MH0252
MH0396
MH0170
MH0259
MH0402
MH0366
MH0399
MH0374
MH0430
MH0421
MH0389
MH0329
MH0451
MH0328
MH0286
MH0429
MH0442
MH0276
MH0088
MH0354
MH0382
MH0308
MH0309
MH0390
MH0362
MH0283
MH0299
MH0404
MH0355
MH0323
MH0253
MH0369
MH0101
MH0339
MH0096
MH0016
MH0120
MH0264
MH0347
MH0302
MH0358
MH0212
MH0049
MH0169
MH0167
MH0149
MH0135
MH0114
MH0109
MH0177
MH0261
MH0155
MH0128
MH0364
MH0436
MH0119
MH0386
MH0191
MH0271
MH0397
MH0395
MH0384
MH0314
MH0334
MH0391
MH0385
MH0206
MH0418
MH0378
MH0433
MH0343
MH0346
MH0288
MH0234
MH0387
MH0266
MH0444
MH0375
MH0327
MH0227
MH0310
MH0410
MH0281

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
s
it
iv

e
 R

a
te

Receiver operating characteristic example

ROC fold 0 (AUC = 0.89)

ROC fold 1 (AUC = 0.71)

ROC fold 2 (AUC = 0.62)

ROC fold 3 (AUC = 0.65)

ROC fold 4 (AUC = 0.62)

ROC fold 5 (AUC = 0.42)

ND vs T1D (AUC = 0.65 ± 0.14)

ROC fold 0 (AUC = 0.51)

ROC fold 1 (AUC = 0.62)

ROC fold 2 (AUC = 0.67)

ROC fold 3 (AUC = 0.52)

ROC fold 4 (AUC = 0.73)

ROC fold 5 (AUC = 0.48)

ND vs T2D (AUC = 0.59 ± 0.09)

ROC fold 0 (AUC = 0.33)

ROC fold 1 (AUC = 0.67)

ROC fold 2 (AUC = 0.47)

ROC fold 3 (AUC = 0.37)

ROC fold 4 (AUC = 0.43)

ROC fold 5 (AUC = 0.73)

T1D vs T2D (AUC = 0.50 ± 0.15)

Chance

± 1 std. dev.

Appendix 2—figure 4. Impact of the status when studying the metabolisms of individuals from the

MHD metagenomic dataset. Panel (a) is the receiver operating curve (ROC) of the classification

experiment aiming at deciphering the disease status for the MHD cohort (control n = 49, Type-1

Diabetes n = 31 or Type-2 Diabetes n = 35) based on the cooperation potential composition. Panel

(b) illustrates the cooperation potential composition in terms of metabolites for all samples. Disease

status is indicated by the colour at the left side of each row. Panel (c) describes the taxonomic

distribution at the phylum level of groups of species before and after community reduction,

according to the disease status. Selection of communities was performed with the objective of

making producible by the reduced communities the set of metabolites in the cooperation potential.

init: initial composition of communities, KS: key species, AS: alternative symbionts, ES: essential

symbionts. T1D: Type-1 Diabetes, T2D: Type-2 Diabetes.
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