Neurovascular coupling and bilateral connectivity during NREM and REM sleep

  1. Kevin L Turner
  2. Kyle W Gheres
  3. Elizabeth A Proctor
  4. Patrick J Drew  Is a corresponding author
  1. Pennsylvania State University, United States

Abstract

To understand how arousal state impacts cerebral hemodynamics and neurovascular coupling, we monitored neural activity, behavior, and hemodynamic signals in un-anesthetized, head-fixed mice. Mice frequently fell asleep during imaging, and these sleep events were interspersed with periods of wake. During both NREM and REM sleep, mice showed large increases in cerebral blood volume ([HbT]) and arteriole diameter relative to the awake state, two to five times larger than those evoked by sensory stimulation. During NREM, the amplitude of bilateral low-frequency oscillations in [HbT] increased markedly, and coherency between neural activity and hemodynamic signals was higher than the awake resting and REM states. Bilateral correlations in neural activity and [HbT] were highest during NREM, and lowest in the awake state. Hemodynamic signals in the cortex are strongly modulated by arousal state, and changes during sleep are substantially larger than sensory-evoked responses.

Data availability

Source data and code for generation of all figures can be found here:Code repository location: https://github.com/DrewLab/Turner_Gheres_Proctor_Drew_eLife2020Data repository location: https://doi.org/10.5061/dryad.6hdr7sqz5

The following data sets were generated

Article and author information

Author details

  1. Kevin L Turner

    Biomedical Engineering, Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3044-7079
  2. Kyle W Gheres

    Molecular Cellular and Integrative Biosciences program, Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7568-9023
  3. Elizabeth A Proctor

    Pharmacology, Biomedical Engineering, and Engineering Science & Mechanics, Pennsylvania State University, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Patrick J Drew

    Engineering Science and Mechanics, Biomedical Engineering, and Neurosurgery, Pennsylvania State University, University Park, United States
    For correspondence
    PJD17@PSU.EDU
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7483-7378

Funding

National Institutes of Health (R01NS078168)

  • Patrick J Drew

National Institutes of Health (R01NS079737)

  • Patrick J Drew

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All procedures were performed in accordance with protocols approved by the Institutional Animal Care and Use Committee (IACUC) of Pennsylvania State University (protocol # 201042827).

Copyright

© 2020, Turner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,747
    views
  • 786
    downloads
  • 76
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kevin L Turner
  2. Kyle W Gheres
  3. Elizabeth A Proctor
  4. Patrick J Drew
(2020)
Neurovascular coupling and bilateral connectivity during NREM and REM sleep
eLife 9:e62071.
https://doi.org/10.7554/eLife.62071

Share this article

https://doi.org/10.7554/eLife.62071

Further reading

    1. Neuroscience
    Francesco Longo
    Insight

    The neurotransmitter dopamine helps form long-term memories by increasing the production of proteins through a unique signaling pathway.

    1. Neuroscience
    John P Veillette, Fan Gao, Howard C Nusbaum
    Research Article

    Sensory signals from the body’s visceral organs (e.g. the heart) can robustly influence the perception of exteroceptive sensations. This interoceptive–exteroceptive interaction has been argued to underlie self-awareness by situating one’s perceptual awareness of exteroceptive stimuli in the context of one’s internal state, but studies probing cardiac influences on visual awareness have yielded conflicting findings. In this study, we presented separate grating stimuli to each of subjects’ eyes as in a classic binocular rivalry paradigm – measuring the duration for which each stimulus dominates in perception. However, we caused the gratings to ‘pulse’ at specific times relative to subjects’ real-time electrocardiogram, manipulating whether pulses occurred during cardiac systole, when baroreceptors signal to the brain that the heart has contracted, or in diastole when baroreceptors are silent. The influential ‘Baroreceptor Hypothesis’ predicts the effect of baroreceptive input on visual perception should be uniformly suppressive. In contrast, we observed that dominance durations increased for systole-entrained stimuli, inconsistent with the Baroreceptor Hypothesis. Furthermore, we show that this cardiac-dependent rivalry effect is preserved in subjects who are at-chance discriminating between systole-entrained and diastole-presented stimuli in a separate interoceptive awareness task, suggesting that our results are not dependent on conscious access to heartbeat sensations.