Neurovascular coupling and bilateral connectivity during NREM and REM sleep

  1. Kevin L Turner
  2. Kyle W Gheres
  3. Elizabeth A Proctor
  4. Patrick J Drew  Is a corresponding author
  1. Pennsylvania State University, United States

Abstract

To understand how arousal state impacts cerebral hemodynamics and neurovascular coupling, we monitored neural activity, behavior, and hemodynamic signals in un-anesthetized, head-fixed mice. Mice frequently fell asleep during imaging, and these sleep events were interspersed with periods of wake. During both NREM and REM sleep, mice showed large increases in cerebral blood volume ([HbT]) and arteriole diameter relative to the awake state, two to five times larger than those evoked by sensory stimulation. During NREM, the amplitude of bilateral low-frequency oscillations in [HbT] increased markedly, and coherency between neural activity and hemodynamic signals was higher than the awake resting and REM states. Bilateral correlations in neural activity and [HbT] were highest during NREM, and lowest in the awake state. Hemodynamic signals in the cortex are strongly modulated by arousal state, and changes during sleep are substantially larger than sensory-evoked responses.

Data availability

Source data and code for generation of all figures can be found here:Code repository location: https://github.com/DrewLab/Turner_Gheres_Proctor_Drew_eLife2020Data repository location: https://doi.org/10.5061/dryad.6hdr7sqz5

The following data sets were generated

Article and author information

Author details

  1. Kevin L Turner

    Biomedical Engineering, Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3044-7079
  2. Kyle W Gheres

    Molecular Cellular and Integrative Biosciences program, Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7568-9023
  3. Elizabeth A Proctor

    Pharmacology, Biomedical Engineering, and Engineering Science & Mechanics, Pennsylvania State University, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Patrick J Drew

    Engineering Science and Mechanics, Biomedical Engineering, and Neurosurgery, Pennsylvania State University, University Park, United States
    For correspondence
    PJD17@PSU.EDU
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7483-7378

Funding

National Institutes of Health (R01NS078168)

  • Patrick J Drew

National Institutes of Health (R01NS079737)

  • Patrick J Drew

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All procedures were performed in accordance with protocols approved by the Institutional Animal Care and Use Committee (IACUC) of Pennsylvania State University (protocol # 201042827).

Copyright

© 2020, Turner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,864
    views
  • 800
    downloads
  • 79
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kevin L Turner
  2. Kyle W Gheres
  3. Elizabeth A Proctor
  4. Patrick J Drew
(2020)
Neurovascular coupling and bilateral connectivity during NREM and REM sleep
eLife 9:e62071.
https://doi.org/10.7554/eLife.62071

Share this article

https://doi.org/10.7554/eLife.62071

Further reading

    1. Neuroscience
    Bharath Krishnan, Noah Cowan
    Insight

    Mice can generate a cognitive map of an environment based on self-motion signals when there is a fixed association between their starting point and the location of their goal.

    1. Neuroscience
    Elena Massai, Marco Bonizzato ... Marina Martinez
    Research Article

    Control of voluntary limb movement is predominantly attributed to the contralateral motor cortex. However, increasing evidence suggests the involvement of ipsilateral cortical networks in this process, especially in motor tasks requiring bilateral coordination, such as locomotion. In this study, we combined a unilateral thoracic spinal cord injury (SCI) with a cortical neuroprosthetic approach to investigate the functional role of the ipsilateral motor cortex in rat movement through spared contralesional pathways. Our findings reveal that in all SCI rats, stimulation of the ipsilesional motor cortex promoted a bilateral synergy. This synergy involved the elevation of the contralateral foot along with ipsilateral hindlimb extension. Additionally, in two out of seven animals, stimulation of a sub-region of the hindlimb motor cortex modulated ipsilateral hindlimb flexion. Importantly, ipsilateral cortical stimulation delivered after SCI immediately alleviated multiple locomotor and postural deficits, and this effect persisted after ablation of the homologous motor cortex. These results provide strong evidence of a causal link between cortical activation and precise ipsilateral control of hindlimb movement. This study has significant implications for the development of future neuroprosthetic technology and our understanding of motor control in the context of SCI.