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Abstract The intrinsic dynamics of neuronal populations are shaped by both microscale

attributes and macroscale connectome architecture. Here we comprehensively characterize the rich

temporal patterns of neural activity throughout the human brain. Applying massive temporal

feature extraction to regional haemodynamic activity, we systematically estimate over 6000

statistical properties of individual brain regions’ time-series across the neocortex. We identify two

robust spatial gradients of intrinsic dynamics, one spanning a ventromedial-dorsolateral axis and

dominated by measures of signal autocorrelation, and the other spanning a unimodal-transmodal

axis and dominated by measures of dynamic range. These gradients reflect spatial patterns of gene

expression, intracortical myelin and cortical thickness, as well as structural and functional network

embedding. Importantly, these gradients are correlated with patterns of meta-analytic functional

activation, differentiating cognitive versus affective processing and sensory versus higher-order

cognitive processing. Altogether, these findings demonstrate a link between microscale and

macroscale architecture, intrinsic dynamics, and cognition.

Introduction
The brain is a complex network of anatomically connected and perpetually interacting neuronal pop-

ulations (Sporns et al., 2005). Inter-regional connectivity promotes signaling via electrical impulses,

generating patterned electrophysiological and haemodynamic activity (Avena-Koenigsberger et al.,

2017; Suárez et al., 2020). Neuronal populations are organized into a hierarchy of increasingly poly-

functional neural circuits (Jones and Powell, 1970; Mesulam, 1998; Hilgetag and Goulas, 2020;

Bazinet et al., 2020), manifesting as topographic gradients of molecular and cellular properties that

smoothly vary between unimodal and transmodal cortices (Huntenburg et al., 2018). Recent studies

have demonstrated cortical gradients of gene transcription (Fulcher et al., 2019; Burt et al., 2018),

intracortical myelin (Huntenburg et al., 2017), cortical thickness (Wagstyl et al., 2015) and laminar

profiles (Paquola et al., 2019).

The topological and physical embedding of neural circuits in macroscale networks and microscale

gradients influence their dynamics (Kiebel et al., 2008; Gollo et al., 2015; Wang, 2020). For a neu-

ronal population, the confluence of local micro-architectural properties and global connectivity

shapes both the generation of local rhythms, as well as its propensity to communicate with other

populations. Specifically, cell type composition, their morphology and their configuration in local cir-

cuits determine how signals are generated, transmitted and integrated (Payeur et al., 2019). These

micro-architectural properties – increasingly measured directly from histology or inferred from other

measurements, such as microarray gene expression – provide a unique opportunity to relate circuit

architecture to temporal dynamics and computation. Indeed, multiple studies have focused on how

intrinsic timescales vary in relation to microscale and macroscale attributes (Murray et al., 2014;

Mahjoory et al., 2019; Shine et al., 2019; Gao et al., 2020; Ito et al., 2020; Raut et al., 2020).
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The primary functional consequence of this hierarchy of timescales is thought to be a hierarchy of

temporal receptive windows: time windows in which a newly arriving stimulus will modify processing

of previously presented (i.e. contextual) information (Hasson et al., 2008; Honey et al., 2012;

Baldassano et al., 2017; Huntenburg et al., 2018; Chaudhuri et al., 2015; Chien and Honey,

2020). Thus, areas at the bottom of the hierarchy preferentially respond to immediate changes in

the sensory environment, while responses in areas at the top of the hierarchy are modulated by prior

context. Altogether, previous work highlights a hierarchy of a small number of manually selected

time-series features, but it is possible that different types of local computations manifest as different

organizational gradients.

The relationship between structure and dynamics is also observed at the network level

(Suárez et al., 2020). Intrinsic or ‘resting state’ networks possess unique spectral fingerprints

(Keitel and Gross, 2016). The signal variability of brain areas, measured in terms of standard devia-

tions or temporal entropy, is closely related to their structural and functional connectivity profiles

(i.e. network embedding) (Mišić et al., 2011; Burzynska et al., 2013; Garrett et al., 2017;

Shafiei et al., 2019). More generally, the autocorrelation of blood oxygenation level-dependent

(BOLD) signal is correlated with topological characteristics of structural brain networks, such that

areas with greater connectivity generate signals with greater autocorrelation (Sethi et al., 2017;

Fallon et al., 2020). Finally, in computational models of structurally coupled neuronal populations

(neural mass and neural field models [Breakspear, 2017]), highly interconnected hubs exhibit slower

dynamic fluctuations, while sensory areas exhibit fast fluctuating neural activity (Gollo et al., 2015).

Indeed, these models offer better fits to empirical functional connectivity if they assume heteroge-

neous local dynamics (Cocchi et al., 2016; Demirtaş et al., 2019; Wang et al., 2019; Deco et al.,

2020).

Altogether, multiple lines of evidence suggest that local computations may reflect systematic vari-

ation in microscale properties and macroscale network embedding, manifesting as diverse time-

series features of regional neural activity. How molecular, cellular and connectomic architecture pre-

cisely shapes temporal dynamics, and ultimately, cortical patterns of functional specialization, is

poorly understood. A significant limitation is that conventional computational analysis is based on

specific, manually selected time-series features, such as the decay of the autocorrelation function,

bands of the Fourier power spectrum, or signal variance. Yet the time-series analysis literature is vast

and interdisciplinary; how do other metrics of temporal structure vary across the brain and what can

they tell us about cortical organization?

Here we comprehensively chart summary features of spontaneous BOLD signals across the cere-

bral cortex (hereafter referred to as ‘intrinsic dynamics’), mapping temporal organization to struc-

tural organization. We apply massive temporal feature extraction to resting state BOLD signals to

derive a near-exhaustive time-series profile for each brain region. We then systematically investigate

the relationship between local time-series features and gene expression, microstructure, morphol-

ogy, structural connectivity and functional connectivity. Finally, we map time-series features to a

meta-analytic atlas of cognitive ontologies to investigate how temporal dynamics shape regional

functional specialization. We show that intrinsic dynamics reflect molecular and cytoarchitectonic

gradients, as well as patterns of structural and functional connectivity. These spatial variations in

intrinsic dynamics ultimately manifest as patterns of distinct psychological functions.

Results
All analyses were performed on four resting state fMRI runs from the Human Connectome Project

(Van Essen et al., 2013). The data were pseudorandomly divided into two samples of unrelated par-

ticipants to form Discovery and Validation samples with n ¼ 201 and n ¼ 127, respectively (Vos de

Wael et al., 2018). External replication was then performed using data from the Midnight Scan Club

(Gordon et al., 2017). Massive temporal feature extraction was performed using highly comparative

time-series analysis, hctsa (Fulcher et al., 2013; Fulcher and Jones, 2017), yielding 6441 features

per regional time-series, including measures of frequency composition, variance, autocorrelation,

fractal scaling and entropy (Figure 1). The results are organized as follows. We first investigate

whether regions that are structurally and functionally connected display similar intrinsic dynamics.

We then characterize the topographic organization of time-series features in relation to microstruc-

tural attributes and cognitive ontologies.
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Inter-regional temporal profile similarity reflects network geometry and
topology
We first assessed the extent to which intrinsic dynamics depend on inter-regional physical distance,

anatomical connectivity and functional connectivity. We estimated similarity between inter-regional

dynamics by computing Pearson correlation coefficients between regional time-series feature vec-

tors (Figure 1). Two regional time-series are judged to be similar if they have similar temporal pro-

files, estimated across a comprehensive and diverse set of time-series features (e.g. similar entropy,

stationarity, linear correlation properties) (Fulcher, 2018). This measure of similarity identifies pairs

of regions that have similar dynamical features, but not necessarily coherent or synchronous dynam-

ics (Figure 2a). We refer to correlations between regional time-series feature profiles as ‘temporal

profile similarity’.

Figure 2b shows a negative exponential relationship between spatial proximity and temporal pro-

file similarity, meaning that regions that are spatially close exhibit similar intrinsic dynamics. Interest-

ingly, regions that share an anatomical projection have greater temporal profile similarity than those

that do not (Figure 2c; two-tailed t-test; tð79; 798Þ ¼ 40:234, p» 0). To test whether this anatomically-

mediated similarity of time-series features is not due to spatial proximity, we performed two addi-

tional comparisons. First, we regressed out the exponential trend identified above from the tempo-

ral profile similarity matrix, and repeated the analysis on the residuals, yielding a significant

difference in temporal profile similarity between connected and non-connected regions (two-tailed

t-test; tð79; 798Þ ¼ 9:916, p » 0). Second, we generated an ensemble of 10,000 degree- and edge

length-preserving surrogate networks (Betzel and Bassett, 2018), and compared the difference of

the means between connected and non-connected pairs in the empirical and surrogate networks.

Again, we observe a significant difference in temporal profile similarity between connected and non-

connected regions (two-tailed; prewired ¼ 0:0001; Figure 2c).

Likewise, regions belonging to the same intrinsic functional network have greater temporal profile

similarity compared to regions in different networks (Figure 2d; two-tailed t-test; tð79; 798Þ ¼ 61:093,

p» 0). To confirm this finding is not driven by spatial proximity, we repeated the analysis with dis-

tance-residualized values (Mišić et al., 2014), finding a significant difference (two-tailed t-test;

time series

feature-based representation of time series

feature

hctsa

temporal profile similarity

PCA scores
re

g
io

n

re
g
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n
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Figure 1. Temporal phenotyping of regional dynamics. The highly comparative time-series analysis toolbox, hctsa (Fulcher et al., 2013; Fulcher and

Jones, 2017), was used to extract 6441 time-series features of the parcellated time-series for each brain region and participant, including measures of

autocorrelation, variance, spectral power, entropy, etc. Regional time-series profiles were then entered into two types of analyses. In the first analysis,

pairs of regional time-series feature vectors were correlated to generate a region � region temporal profile similarity network. In the second analysis,

principal component analysis (PCA) was performed to identify orthogonal linear combinations of time-series features that vary maximally across the

cortex.
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tð79; 798Þ ¼ 47:112, p » 0). We also repeated the analysis using a nonparametric label-permutation

null model with preserved spatial autocorrelation (10,000 repetitions) (Alexander-Bloch et al., 2018;

Markello and Misic, 2020), again finding significantly greater within- compared to between-network

temporal profile similarity (two-tailed; pspin ¼ 0:006; Figure 2d). These results are consistent when

applying the 17 network partition of intrinsic networks (Yeo et al., 2011; Schaefer et al., 2018; Fig-

ure 2—figure supplement 1).

More generally, we find a weak positive correlation between temporal profile similarity and func-

tional connectivity (original: Spearman rank rs ¼ 0:23, p » 0; distance-corrected: rs ¼ 0:18, p » 0;

Figure 2e), suggesting that areas with similar time-series features exhibit coherent spontaneous fluc-

tuations, but that the two are only weakly correlated. Figure 2e shows the correlation between tem-

poral profile similarity and functional connectivity; points represent node pairs and are colored by

their membership in intrinsic networks (Yeo et al., 2011; Schaefer et al., 2018). The results are

rs = 0.23, p < 0.05
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Figure 2. Inter-regional temporal profile similarity reflects network geometry and topology. (a) Temporal profile similarity networks are constructed by

correlating pairs of regional time-series feature vectors. Brain regions are ordered based on their intrinsic functional network assignments (Yeo et al.,

2011; Schaefer et al., 2018). (b) Temporal profile similarity between regions significantly decreases as a function of Euclidean distance between them.

The black line represents an exponential fit as y ¼ 0:37e�0:03x þ 0:01, where y is temporal profile similarity and x is Euclidean distance. (c, d) Regional

time-series features are compared between pairs of cortical areas using their structural and functional connectivity profiles. Pairwise temporal profile

similarity is significantly higher among structurally-connected areas (c), and among regions that belong to the same intrinsic functional networks (d).

Asterisks denote a statistically significant difference of the means (two-tailed t-test; p» 0). For structural networks, statistical significance of the

difference of the mean temporal profile similarity of connected and unconnected node pairs is also assessed against a null distribution of differences

generated from a population degree- and edge length-preserving rewired networks (Betzel and Bassett, 2018) (c, right-most panel). For functional

networks, statistical significance of the difference of the mean temporal profile similarity of within and between intrinsic networks is also assessed

against a null distribution of differences generated by spatial autocorrelation-preserving label permutation (‘spin tests’; Alexander-Bloch et al., 2018)

(d, right-most panel). (e) Temporal profile similarity is positively correlated with functional connectivity. This relationship remains after partialling out

Euclidean distance between regions from both measures using exponential trends. rs denotes the Spearman rank correlation coefficient; linear

regression lines are added to the scatter plots for visualization purposes only. Connections are color-coded based on the intrinsic network assignments

(Yeo et al., 2011; Schaefer et al., 2018). VIS = visual, SM = somatomotor, DA = dorsal attention, VA = ventral attention, LIM = limbic, FP = fronto

parietal, DMN = default mode.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Intrinsic networks: 17 network partition.

Figure supplement 2. Functional connectivity measured by partial correlations.
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consistent when functional connectivity is estimated using partial correlations (Figure 2—figure sup-

plement 2). In other words, two regions could display similar time-series features, but they do not

necessarily fluctuate coherently. Thus, representing time-series using sets of features provides a fun-

damentally different perspective compared to representing them as the raw set of ordered BOLD

measurements.

As a final step, we sought to assess the distinct contributions of Euclidean distance, structural

connectivity and functional connectivity to temporal profile similarity. Dominance analysis revealed

the relative importance of each predictor (collective R2 = 0.28; distance = 56%, structural connectiv-

ity = 20.4%, functional connectivity = 23.6%; Supplementary file 1), suggesting that distance con-

tributes the most to temporal profile similarity, while structural and functional connectivity make

distinct but approximately even contributions (Budescu, 1993; Azen and Budescu, 2003) (https://

github.com/dominance-analysis/dominance-analysis). Altogether, we find that the organization of

intrinsic dynamics is closely related to both the geometric and topological embedding of brain

regions in macroscale networks.

Two distinct spatial gradients of intrinsic dynamics
We next investigate the topographic organization of time-series features. The hctsa library generates

6 441 time-series features, with the aim of being comprehensive in coverage across scientific time-

series analysis algorithms and, as a result, contains groups of features with correlated outputs

(Fulcher et al., 2013). We therefore sought to identify groups of correlated features that explain

maximal variance and that span different conceptual types of time-series properties. Applying princi-

pal component analysis (PCA; Scikit-learn [Pedregosa et al., 2011]) to the region � feature matrix

yielded mutually orthogonal patterns of intrinsic dynamics (Figure 1), with the top two components

collectively accounting for more than 70% of the variance in time-series features (Figure 3a).

Figure 3a shows the spatial distribution of the top two components. The first component (PC1)

mainly captures differential intrinsic dynamics along a ventromedial-dorsolateral gradient, separating

occipital-parietal cortex and anterior temporal cortex. The second component (PC2) captures a

unimodal-transmodal gradient, reminiscent of recently reported miscrostructural and functional gra-

dients (Huntenburg et al., 2018). Both components show considerable hemispheric symmetry. In

the following sections, we focus on these two components because of their (a) effect size (percent

variance accounted for), (b) close resemblance to previously reported topographic gradients, and (c)

reproducibility (only the first two components were reproducible in both the HCP and MSC datasets;

see Sensitivity and replication analyses below). Note that neither spatial maps were significantly cor-

related with temporal signal-to-noise ratio map, computed as the ratio of the time-series mean to

standard deviation (tSNR; PC1: rs ¼ 0:28, pspin ¼ 0:19; PC2: rs ¼ 0:21, pspin ¼ 0:16).

Which time-series features contribute most to these topographic gradients of intrinsic dynamics?

To address this question, we systematically assess the feature composition of PC1 and PC2. We

compute univariate correlations (i.e. loadings) between individual time-series feature vectors and PC

scores (Figure 3b). Each loading is assessed against 10 000 spin tests and the results are corrected

for multiple comparisons by controlling the false discovery rate (FDR [Benjamini and Hochberg,

1995]; a ¼ 0:001). The top 5% positively and negatively correlated features are shown in word

clouds. The complete list of features (ranked by loading), their definitions, loadings and p-values for

both components is presented in machine-readable format in Supplementary files 3 and 4. Alto-

gether, we find that PC1 is sensitive to temporal dependencies in BOLD signals, while PC2 is sensi-

tive to the distribution shape of time-series amplitudes. For PC1, in line with previous reports, we

observe strong contributions from multiple measures of autocorrelation (e.g. linear autocorrelation;

nonlinear autocorrelation; automutual information). Short-lag autocorrelation measures load posi-

tively, while long-lag autocorrelation measures load negatively, consistent with the notion that auto-

correlation decays with increasing time lag (Murray et al., 2014; Gao et al., 2020; Raut et al.,

2020; Figure 3—figure supplement 1). For PC2, we observe strong contributions from measures of

distribution shape, captured by measures of distributional entropy (e.g. entropy of kernel-smoothed

distribution; kurtosis; distribution balance about the mean). In other words, PC2 captures the spread

of time-series amplitudes away from the mean. Interestingly, none of the odd moments (distribution

asymmetry) are high in the PC2 loading list, just even moments, suggesting that PC2 captures the

shape of the deviations of time-series data points in both directions from the mean. Thus, PC2
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Figure 3. Topographic gradients of intrinsic dynamics. (a) PCA analysis identified linear combinations of hctsa time-series features with maximum

variance across the cortex. Collectively, the first two components (PC1 and PC2) account for 75% of the total variance in time-series features of BOLD

dynamics. To estimate the extent to which cortical regions display the patterns of intrinsic dynamics captured by each component, hctsa matrices were

projected back onto the PC weights (eigenvectors), yielding spatial maps of brain scores for each component. Spatial maps are depicted based on the

Figure 3 continued on next page
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indexes the range or diversity of values that a regional time-series can realize. Hereafter, we refer to

the time-series profile of PC1 as ‘autocorrelation’ and PC2 as ‘dynamic range’.

To illustrate the spatial organization and time-series attributes of these components, Figure 3c

shows the spatial distributions of two high-loading representative time-series features for each com-

ponent. Ventromedial areas (lower in the PC1 gradient) have lower linear and nonlinear autocorrela-

tion, while doroslateral areas (higher in the PC1 gradient) have greater autocorrelation. Sensory

areas (lower in the PC2 gradient) have greater distributional entropy and kurtosis, while transmodal

areas (higher in the PC2 gradient) have lower distributional entropy and kurtosis. Finally, to build

intuition about what each component reflects about regional signals, we select three regional time-

series from one participant based on their lag-1 autocorrelation and kurtosis (Figure 3c; pink = 5th

percentile, green = 50th percentile, purple = 95th percentile). For the former, going from low-

ranked to high-ranked regions results in a slowing down of BOLD fluctuations. For the latter, going

from low-ranked to high-ranked regions results in increasingly heavier symmetric tails of the signal

amplitude distributions.

Intrinsic dynamics reflect microscale and macroscale hierarchies
To assess whether the dominant variation in time-series features of BOLD dynamics varies spatially

with structural and functional gradients, we next quantify the concordance between PC1/PC2 and

multiple microstructural and functional attributes (Figure 4). Specifically, we compare PC1 and PC2

with the following microscale and macroscale features: (1) the first component of microarray gene

expression computed from the Allen Institute Human Brain Atlas (Hawrylycz et al., 2012;

Burt et al., 2018) using PCA analysis, (2) the principal gradient of functional connectivity estimated

using diffusion map embedding (Margulies et al., 2016; Coifman et al., 2005; Langs et al., 2015)

(https://github.com/satra/mapalign), (3) T1w/T2w ratio, a putative proxy for intracortical myelin

(Huntenburg et al., 2017), (4) cortical thickness (Wagstyl et al., 2015). We use Spearman rank cor-

relations (rs) throughout, as they do not assume a linear relationship among variables. Given the spa-

tially autocorrelated nature of both hctsa features and other imaging features, we assess statistical

significance with respect to nonparametric spatial autocorrelation-preserving null models (Alexan-

der-Bloch et al., 2018; Markello and Misic, 2020).

PC1 topography is correlated with the first principal component of gene expression (rs ¼ 0:57,

pspin ¼ 0:03), but no other attributes. PC2 topography is significantly correlated with the first principal

component of gene expression (rs ¼ �0:45, pspin ¼ 0:0008), with the principal gradient of functional

connectivity (rs ¼ 0:77, pspin ¼ 0:0001), with T1w/T2w ratio (rs ¼ �0:57, pspin ¼ 0:0001), and with corti-

cal thickness (rs ¼ 0:43, pspin ¼ 0:008). Altogether, the two topographic gradients of intrinsic dynamics

closely mirror molecular and microstructural gradients, suggesting a link between regional structural

properties and regional dynamical properties. Figure 4—figure supplement 1 further confirms this

Figure 3 continued

standard deviation s of their respective brain score distributions. (b) To understand the feature composition of the intrinsic dynamic patterns captured

by PC1 and PC2, feature loadings were computed by correlating individual hctsa feature vectors with the PC score maps. PC loadings thus estimate the

shared spatial variance between an individual time-series feature and the composite intrinsic dynamic map captured by a PC. time-series features are

ordered by their individual loadings. Grey indicates non-significance based on 10,000 spatial permutation tests (FDR correction, a ¼ 0:001). Features

corresponding to the top and bottom 5% of PC1 and PC2 are visualized using word clouds. The complete list of features (ranked by loading), their

definitions, correlations and p-values for both components is presented in machine-readable format in Supplementary files 3 and 4. Feature

nomenclature in hctsa is organized such that the term prefix indicates the broad class of measures (e.g. AC = autocorrelation, DN = distribution) and

the term suffix indicates the specific measure (for a complete list, see https://hctsa-users.gitbook.io/hctsa-manual/list-of-included-code-files). (c) The

spatial distributions of two high-loading representative time-series features are depicted for each component, including lag-1 linear autocorrelation

(AC_1) and lag-[0,2,3] nonlinear autocorrelation (AC_nl_023, estimated as average <xt
2xt�2xt�3> across time-series x) for PC1; and kurtosis

(DN_Moments_4) and entropy (EN_DistributionEntropy_ks__02) of the time-series points distribution for PC2. To build intuition about what each

component reflects about regional signals, three regional time-series from one participant are selected based on their lag-1 autocorrelation and

kurtosis (circles on the brain surface: pink = 5th percentile, green = 50th percentile, purple = 95th percentile). Going from low-ranked to high-ranked

regions results in a slowing down of BOLD fluctuations for the former and increasingly heavier symmetric tails of the signal amplitude distributions for

the latter. Note that normalized feature values are shown in the first row, whereas the raw feature values are shown in the second row.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Linear autocorrelation function.
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intuition, showing the mean score of each component for three well-known cortical partitions, includ-

ing intrinsic functional networks (Yeo et al., 2011; Schaefer et al., 2018), cytoarchitectonic classes

(von Economo and Koskinas, 1925; von Economo et al., 2008; Vértes et al., 2016) and laminar

differentiation levels (Mesulam, 2000).

For completeness, we also tested associations with two maps that were previously related to cor-

tical hierarchies: evolutionary expansion (indexing enlargement of cortical areas in the human relative
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Figure 4. Hierarchical organization of intrinsic dynamics. PC1 and PC2 brain score patterns are compared with four molecular, microstructural and

functional maps. These maps include the first principal component of microarray gene expression data from the Allen Human Brain Atlas

(Hawrylycz et al., 2012; Burt et al., 2018), the first (principal) gradient of functional connectivity estimated using diffusion map embedding

(Margulies et al., 2016; Coifman et al., 2005; Langs et al., 2015), group-average T1w/T2w ratio, and group-average cortical thickness. The three

latter indices were computed from the HCP dataset (Van Essen et al., 2013). Statistical significance of the reported Spearman rank correlation rs is

assessed using 10,000 spatial permutations tests, preserving the spatial autocorrelation in the data (‘spin tests’; Alexander-Bloch et al., 2018). Linear

regression lines are added to the scatter plots for visualization purposes only.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Intrinsic dynamics across intrinsic networks, cytoarchitectonic classes and laminar differentiation levels.

Figure supplement 2. Topographic organization of intrinsic dynamics compared to evolutionary expansion and participation coefficient.
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to the macaque) (Hill et al., 2010; Baum et al., 2020) and node-wise functional participation coeffi-

cient (indexing the diversity of a node’s links) (Bertolero et al., 2017; Baum et al., 2020). PC2 is sig-

nificantly correlated with evolutionary expansion (rs ¼ 0:52, pspin ¼ 0:0002), but neither component is

correlated with participation coefficient (Figure 4—figure supplement 2).

Spatial gradients of intrinsic dynamics support distinct functional
activations
Given that topographic patterns of intrinsic dynamics run parallel to microstructural and functional

gradients, and are marked by specific time-series features, we next asked whether these topo-

graphic patterns of intrinsic dynamics are related to patterns of functional activation and psychologi-

cal processes. To address this question, we used Neurosynth to derive probability maps for multiple

psychological terms (Yarkoni et al., 2011). The term set was restricted to those in the intersection

of terms reported in Neurosynth and in the Cognitive Atlas (Poldrack et al., 2011), yielding a total

of 123 terms (Supplementary file 2). Each term map was correlated with the PC1 and PC2 score

maps to identify topographic distributions of psychological terms that most closely correspond to

patterns of intrinsic dynamics (Bonferroni corrected, a ¼ 0:05; Figure 5). Consistent with the intuition

developed from comparisons with intrinsic networks, PC1 intrinsic dynamics mainly defined a cogni-

tive-affective axis (e.g. ‘attention’ versus ‘stress’, ‘fear’, ‘loss’, ‘emotion’; Figure 5a), while PC2

dynamics defined a sensory-cognitive axis (e.g. ‘perception’, ‘multisensory’, ‘facial expression’ versus

‘cognitive control’, ‘memory retrieval’, ‘reasoning’; Figure 5b).

Sensitivity and replication analyses
As a final step, we sought to assess the extent to which the present findings are replicable under

alternative processing choices and in other samples (Figure 6). For all comparisons, we correlated

PC1 and PC2 scores and weights obtained in the original analysis and in each new analysis. Signifi-

cance was assessed using spatial autocorrelation preserving nulls as before. We first replicated the

results in individual subjects in the Discovery sample by applying PCA to individual region � feature

matrices and aligning PCA results through an iterative process using Procrustes rotations (https://

github.com/satra/mapalign [Langs et al., 2015]). The mean individual-level PC scores and weights

were then compared to the original findings (Figure 6a). We next replicated the results by repeating

the analysis after grey-matter signal regression (similar to global signal regression as the global sig-

nal is shown to be a grey-matter specific signal following sICA+FIX) (Glasser et al., 2018;

Glasser et al., 2016), with near identical results (Figure 6b). To assess the extent to which results

are influenced by choice of parcellation, we repeated the analysis using the 68-region Desikan-Kill-

iany anatomical atlas (Desikan et al., 2006), which were then further divided into 200 approximately

equally-sized cortical areas. Again, we find near-identical results (Figure 6c).

In the last two analyses, we focused on out-of-sample validation. We first repeated the analysis

on the held-out Validation sample of n ¼ 127 unrelated HCP subjects, with similar results

(Figure 6d). Finally, we repeated the analysis using data from the independently collected Midnight

Scan Club (MSC) dataset, again finding highly consistent results (Figure 6e).

Discussion
In the present report, we comprehensively characterize intrinsic dynamics across the cortex, identify-

ing two robust spatial patterns of time-series features. The patterns, capturing spatial variation in

signal autocorrelation and dynamic range, follow microscale gradients and macroscale network

architecture. Importantly, the two patterns underlie distinct psychological axes, demonstrating a link

between brain architecture, intrinsic dynamics, and cognition. These findings are robust against a

wide range of methodological choices and were validated in two held-out samples.

Our results demonstrate that regional haemodynamic activity, often overlooked in favour of

electrophysiological measurements with greater temporal resolution, possesses a rich dynamic sig-

nature (Garrett et al., 2013; Uddin, 2020; Preti et al., 2017; Lurie et al., 2020; Li et al., 2019;

Bolt et al., 2018). While multiple reports have suggested the existence of a timescale or temporal

receptive window hierarchy (Kiebel et al., 2008; Murray et al., 2014; Honey et al., 2012;

Hasson et al., 2008; Watanabe et al., 2019; Golesorkhi et al., 2020; Ito et al., 2020), these inves-

tigations typically involved (a) incomplete spatial coverage, making it difficult to quantitatively assess
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correspondence with other microscale and macroscale maps, and (b) a priori measures of interest,

such as spectral power or temporal autocorrelation, potentially obscuring other important dynamical

features. Here we comprehensively benchmark the entire dynamic profile of the brain, by near-

exhaustively estimating 6000+ features from the wider time-series literature. We identify a much

broader spectrum of time-series features that relate to microstructure, connectivity and behavior. As

we discuss below, feature-based time-series phenotyping offers a powerful, fundamentally new and

entirely data-driven method to quantify and articulate neural dynamics.

Applying a data-driven feature extraction method to high-resolution BOLD fMRI, we decompose

regional signals into two intrinsic modes, with distinct topographic organization and time-series fea-

tures. One pattern, characterized by variation in signal autocorrelation, follows a ventromedial-dor-

solateral gradient, separating the limbic and paralimibic systems from posterior parietal cortex.

a

0.4

0.2

0.0

0.2

0.4

0.6

st
re

ss
fe

a
r

lo
ss

a
n
x
ie

ty

m
o
rp

h
o
lo

g
y

a
d
d
ic
ti
o
n

e
m

o
ti
o
n

a
ro

u
sa

l
e
a
ti
n
g

p
a
in

a
ss

o
ci
a
ti
o
n

sl
e
e
p

a
n
ti
ci
p
a
ti
o
n

sp
a
ti
a
l 
a
tt
e
n
ti
o
n

d
e
te

ct
io

n
a
tt
e
n
ti
o
n

v
is
u
a
l 
a
tt
e
n
ti
o
nc

o
rr

e
la

ti
o
n
 w

it
h
 P

C
1
 s

c
o
re 0.6 pspin < 0.05

0.4

0.2

0.0

0.2

0.4

0.6

c
o
rr

e
la

ti
o
n
 w

it
h
 P

C
1
 s

c
o
re

Neurosynth terms
0 20 40 60 80 100 120

pspin > 0.05

p
e
rc

e
p
ti
o
n

m
u
lt
is
e
n
so

ry

fa
ci
a
l 
e
x
p
re

ss
io

n

u
n
ce

rt
a
in

ty

ta
sk

 d
if
fi
cu

lt
y

k
n
o
w

le
d
g
e

e
x
p
e
ct

a
n
cy

re
sp

o
n
se

 i
n
h
ib

it
io

n
m

o
n
it
o
ri
n
g

in
te

n
ti
o
n

w
o
rk

in
g
 m

e
m

o
ry

b
e
lie

f
st

ra
te

g
y

ju
d
g
m

e
n
t

re
a
so

n
in

g
re

tr
ie

v
a
l

m
e
m

o
ry

m
e
m

o
ry

 r
e
tr

ie
v
a
l

co
g
n
it
iv

e
 c

o
n
tr

o
l

0.4

0.2

0.0

0.2

0.4

0.6c
o
rr

e
la

ti
o
n
 w

it
h
 P

C
2
 s

c
o
re 0.6 pspin < 0.05

c
o
rr

e
la

ti
o
n
 w

it
h
 P

C
2
 s

c
o
re

0.4

0.2

0.0

0.2

0.4

Neurosynth terms
0 20 40 60 80 100 120

pspin > 0.05b

-2

2

PC1 score

-2

2

PC2 score

Figure 5. Spatial gradients of intrinsic dynamics support distinct functional activations. We used Neurosynth to derive probability maps for multiple

psychological terms (Yarkoni et al., 2011). The term set was restricted to those in the intersection of terms reported in Neurosynth and in the

Cognitive Atlas (Poldrack et al., 2011), yielding a total of 123 terms (Supplementary file 2). Each term map was correlated with the PC1 (a) and PC2

(b) score maps to identify topographic distributions of psychological terms that most closely correspond to patterns of intrinsic dynamics. Grey

indicates non-significance based on 10,000 spatial permutation tests (Bonferroni correction, a ¼ 0:05). Statistically significant terms are shown on the

right.
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a | subject-level analysis

b | grey-matter signal regression

c | anatomical parcellation (200 nodes)

d | HCP validation dataset

e | Midnight Scan Club (MSC) dataset
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Figure 6. Sensitivity and replication analyses. For all comparisons, we correlated PC1 and PC2 scores and weights obtained in the original analysis and

in each new analysis. Significance was assessed using spatial autocorrelation preserving nulls. Specific analyses include: (a) comparing group-level and

individual subject-level results, (b) comparing data with and without grey-matter signal regression, (c) comparing functional (Schaefer) and anatomical

parcellations (Desikan-Killiany), (d) comparing HCP Discovery and Validation datasets, (e) comparing HCP Discovery and Midnight Scan Club datasets.
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Another pattern, characterized by dynamic range, follows a unimodal-transmodal gradient, separat-

ing primary sensory-motor cortices from association cortex. The first is closely associated with gene

expression PC1 (itself closely related to cell type composition, synaptic physiology and cortical

cytoarchitecture [Burt et al., 2018]), suggesting a molecular and cellular basis for regional differen-

ces in temporal autocorrelation. The second is closely associated with the principal functional gradi-

ent, as well as with intracortical myelin and cortical thickness, suggesting that the dynamic range of

BOLD signals is related to regional variation in macroscale circuit organization. Taken together, we

find evidence that molecular and cellular properties (gene expression PC1) relate to regional auto-

correlation, while micro-circuit properties (T1w/T2w, cortical thickness) and macroscale network

embedding (principal functional gradient) relate to regional dynamic range.

An emerging literature emphasizes the hierarchical organization of neural systems, whereby sys-

tematic variation in laminar architecture across the cortical sheet is mirrored by multiple cytological

properties, including neuron density, spine count, branching and neurotransmitter receptor profiles

(Mesulam, 1998; Margulies et al., 2016; Hilgetag and Goulas, 2020). These variations manifest as

spatially ordered gradients of structural and functional attributes (Huntenburg et al., 2018), includ-

ing gene expression (Burt et al., 2018; Fulcher et al., 2019; Hansen et al., 2020), cortical thickness

(Wagstyl et al., 2015), intracortical myelin (Huntenburg et al., 2017), laminar differentiation

(Paquola et al., 2019; Wagstyl et al., 2020) and excitability (Demirtaş et al., 2019; Wang, 2020;

Markicevic et al., 2020; Straub et al., 2020). Indeed, we find that the two patterns of intrinsic

dynamics are closely related to gene expression, intracortical myelin and cortical thickness. Our

results build on this literature, demonstrating that microscale and connectional hierarchies leave an

indelible mark on intrinsic dynamics (Lurie and D’Esposito, 2020), perhaps through variation in local

excitability (Demirtaş et al., 2019; Wang et al., 2019; Wang, 2020; Deco et al., 2020). How these

patterns are related to underlying cell types and subcortical afferent input – in particular, thalamo-

cortical feedback – is an important ongoing question (Abeysuriya et al., 2015; Garrett et al., 2018;

Shine et al., 2019; Wang et al., 2019; Muller et al., 2020; Paquola et al., 2020).

Importantly, the two patterns are related to two dominant axes of meta-analytic functional activa-

tion. We show that topographic variations in microcircuitry and connectomic embedding yield varia-

tions in intrinsic dynamics and may explain regional differences in functional specialization. The

ventromedial-dorsolateral autocorrelation pattern differentiates affective versus cognitive activation

(mainly visual cognition and visuo-spatial attention), whereas the unimodal-transmodal dynamic

range pattern differentiates primary sensory versus higher-order cognitive processing. Collectively,

these results provide evidence that local computations reflect systematic variation in multiple ana-

tomical circuit properties, and can be measured as unique temporal signatures in regional activity

and patterns of functional specialization.

More generally, the present findings are part of a larger trend in the field to understand struc-

ture-function relationships by considering molecular (Richiardi et al., 2015; Fulcher and Fornito,

2016; Anderson et al., 2018; Zheng et al., 2019), cellular (Scholtens et al., 2014; Anderson et al.,

2020; Shafiei et al., 2020; Muller et al., 2020) and physiological (Sethi et al., 2017; Fallon et al.,

2020) attributes of network nodes, thereby conceptually linking local and global brain organization

(Khambhati et al., 2018; Suárez et al., 2020). In such ‘annotated networks’, macroscale network

architecture is thought to reflect similarity in local properties, and vice versa, such that areas with

similar properties are more likely to be anatomically connected and to functionally interact with one

another (Beul et al., 2017; Goulas et al., 2019; Wei et al., 2019; Hilgetag et al., 2019). Indeed, we

find that two regions are more likely to display similar intrinsic dynamics if they are anatomically con-

nected and if they are part of the same functional community, suggesting that network organization

and local intrinsic dynamics are intertwined (Gollo et al., 2015; Cocchi et al., 2016). A significant

corollary of the present work is that functional connectivity – presently conceptualized as coherent

fluctuations in neural activity and operationalized as correlated BOLD values over time – misses out

on an important set of inter-regional relationships. Namely, two regions may display identical time-

series profiles, suggesting common circuit dynamics and function, but unless they also display time-

locked activity, current methods would miss out on this potentially biologically meaningful inter-

regional relationship.

The present results are consistent with contemporary theories linking brain structure and function,

but they must be interpreted with respect to several methodological caveats. First, all analyses were

performed on BOLD time-series with lower sampling rate compared to electromagnetic recordings,
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potentially obscuring more subtle dynamics occurring on faster timescales. To mitigate this concern,

all analyses were performed in high-resolution multiband HCP data with multiple runs, and repli-

cated in MSC data, but in principle, these analyses could be repeated and validated in magnetoen-

cephalographic recordings (Watanabe et al., 2019). Second, all analyses were performed on

haemodynamic time courses that may not completely reflect the underlying neuronal population

dynamics. Despite this caveat, we observe a close correspondence between the isolated patterns of

intrinsic dynamics and molecular, structural, functional, and psychological gradients. Third, the pat-

tern of temporal signal-to-noise ratio in the BOLD is known to be non-uniform, but it is not corre-

lated with the intrinsic dynamics patterns observed in the present report. Fourth, the analysis

included all features from hctsa, potentially biasing results towards specific properties of BOLD sig-

nals. We attempted to mitigate this challenge by applying PCA to directly examine correlation pat-

terns among features, but PCA components may still lend greater weight to over-represented

feature classes (Fulcher et al., 2013). This may obscure the contribution of under-represented fea-

ture classes, and should be investigated further in future work.

Altogether, the present results point towards highly patterned intrinsic dynamics across the neo-

cortex. These patterns reflect prominent molecular and microstructural gradients, as well as macro-

scale structural and functional organization. Importantly, spatial variation of intrinsic dynamics

parallels spatial variation of meta-analytic cognitive functional activation. These findings demonstrate

that structural organization of the brain shapes patterns of intrinsic dynamics, ultimately manifesting

as distinct axes of psychological processes.

Materials and methods

Dataset: human connectome project (HCP)
Following the procedure described in Vos de Wael et al., 2018, we obtained structural and func-

tional magnetic resonance imaging (MRI) data of two sets of healthy young adults (age range 22–35

years) with no familial relationships (neither within nor between sets) as Discovery (n ¼ 201) and Vali-

dation (n ¼ 127) sets from Human Connectome Project (HCP; S900 release [Van Essen et al., 2013]).

All four resting state fMRI scans (two scans (R/L and L/R phase encoding directions) on day 1 and

two scans (R/L and L/R phase encoding directions) on day 2, each about 15 min long; TR ¼ 720 ms),

as well as structural MRI and diffusion weighted imaging (DWI) data were available for all

participants.

HCP data processing
All the structural and functional MRI data were pre-processed using HCP minimal pre-processing

pipelines (Van Essen et al., 2013; Glasser et al., 2013). We provide a brief description of data pre-

processing below, while detailed information regarding data acquisition and pre-processing is avail-

able elsewhere (Van Essen et al., 2013; Glasser et al., 2013). The procedure was separately

repeated for Discovery and Validation sets.

Structural MRI
T1- and T2- weighted MR images were corrected for gradient nonlinearity, and when available, the

images were co-registered and averaged across repeated scans for each individual. The corrected

T1w and T2w images were co-registered and cortical surfaces were extracted using FreeSurfer 5.3.0-

HCP (Vos de Wael et al., 2018; Dale et al., 1999; Fischl et al., 1999). For each individual, cortical

thickness was estimated as the difference between pial and white matter surfaces and T1w/T2w ratio

was calculated as a putative proxy for intracortical myelin content. The pre-processed data were par-

cellated into 400 cortical areas using Schaefer parcellation (Schaefer et al., 2018).

Resting state functional MRI
All 3T functional MRI time-series were corrected for gradient nonlinearity, head motion using a rigid

body transformation, and geometric distortions using scan pairs with opposite phase encoding

directions (R/L, L/R) (Vos de Wael et al., 2018). Further pre-processing steps include co-registration

of the corrected images to the T1w structural MR images, brain extraction, normalization of whole

brain intensity, high-pass filtering (>2000s FWHM; to correct for scanner drifts), and removing
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additional noise using the ICA-FIX process (Vos de Wael et al., 2018; Salimi-Khorshidi et al.,

2014). The pre-processed time-series were then parcellated into 400 areas as described above. The

parcellated time-series were used to construct functional connectivity matrices as a Pearson correla-

tion coefficient between pairs of regional time-series for each of the four scans of each participant.

A group-average functional connectivity matrix was constructed as the mean functional connectivity

across all individuals and scans.

Diffusion weighted imaging (DWI)
DWI data was pre-processed using the MRtrix3 package (Tournier et al., 2019) (https://www.mrtrix.

org/). More specifically, fiber orientation distributions were generated using the multi-shell multi-tis-

sue constrained spherical deconvolution algorithm from MRtrix (Dhollander et al., 2016;

Jeurissen et al., 2014). White matter edges were then reconstructed using probabilistic streamline

tractography based on the generated fiber orientation distributions (Tournier et al., 2010). The tract

weights were then optimized by estimating an appropriate cross-section multiplier for each stream-

line following the procedure proposed by Smith and colleagues (Smith et al., 2015) and a connectiv-

ity matrix was built for each participant using the same parcellation as described above. Finally, we

used a consensus approach to construct a binary group-level structural connectivity matrix, preserv-

ing the edge length distribution in individual participants (Mišić et al., 2015; Betzel et al., 2019;

Shafiei et al., 2020; Mišic et al., 2018).

Replication dataset: Midnight Scan Club (MSC)
We used resting state fMRI data of n ¼ 10 healthy young adults, each with 10 scan sessions of about

30 min long, from Midnight Scan Club (MSC Gordon et al., 2017) dataset as an independent repli-

cation dataset. Details about the participants, MRI acquisition, and data pre-processing are provided

by Gordon and colleagues elsewhere (Gordon et al., 2017). We obtained the surface-based, pre-

processed resting state fMRI time courses in CIFTI format through OpenNeuro (https://openneuro.

org/datasets/ds000224/versions/1.0.0). The pre-processing steps include motion correction and

global signal regression (Gordon et al., 2017). Following the pre-processing methods suggested by

Gordon et al., 2017, we smoothed the surface-level time-series data with geodesic 2D Gaussian

kernels (s ¼ 2:55 mm) using the Connectome Workbench (Marcus et al., 2011). Finally, we censored

the motion-contaminated frames of time-series for each participant separately, using the temporal

masks provided with the dataset. The pre-processed data were parcellated into 400 cortical regions

using Schaefer parcellation (Schaefer et al., 2018). One participant (MSC08) was excluded from sub-

sequent analysis due to low data reliability and self-reported sleep as described in Gordon et al.,

2017. The parcellated time-series were then subjected to the same analyses that were performed on

the HCP Discovery and Validation datasets.

Microarray expression data: Allen Human Brain Atlas (AHBA)
Regional microarray expression data were obtained from six post-mortem brains provided by the

Allen Human Brain Atlas (AHBA; http://human.brain-map.org/) (Hawrylycz et al., 2012). We used

the abagen (https://github.com/netneurolab/abagen; Markello et al., 2020) toolbox to process and

map the data to 400 parcellated brain regions from Schaefer parcellation (Schaefer et al., 2018).

Briefly, genetic probes were reannotated using information provided by Arnatkeviciute et al.,

2019 instead of the default probe information from the AHBA dataset. Using reannotated informa-

tion discards probes that cannot be reliably matched to genes. The reannotated probes were fil-

tered based on their intensity relative to background noise levels (Quackenbush, 2002); probes with

intensity less than background in � 50% of samples were discarded. A single probe with the highest

differential stability, DSðpÞ, was selected to represent each gene (Hawrylycz et al., 2015), where dif-

ferential stability was calculated as:

DSðpÞ ¼
1

N

2

� �

X

N�1

i¼1

X

N

j¼iþ1

�½BiðpÞ;BjðpÞ� (1)

Here, � is Spearman’s rank correlation of the expression of a single probe p across regions in two

Shafiei et al. eLife 2020;9:e62116. DOI: https://doi.org/10.7554/eLife.62116 14 of 24

Research article Neuroscience

https://www.mrtrix.org/
https://www.mrtrix.org/
https://openneuro.org/datasets/ds000224/versions/1.0.0
https://openneuro.org/datasets/ds000224/versions/1.0.0
http://human.brain-map.org/
https://github.com/netneurolab/abagen
https://doi.org/10.7554/eLife.62116


donor brains, Bi and Bj, and N is the total number of donor brains. This procedure retained 15,656

probes, each representing a unique gene.

Next, tissue samples were mirrored across left and right hemispheres (Romero-Garcia et al.,

2018) and then assigned to brain regions using their corrected MNI coordinates (https://github.

com/chrisfilo/alleninf) by finding the nearest region, up to 2 mm away. To reduce the potential for

misassignment, sample-to-region matching was constrained by hemisphere and cortical/subcortical

divisions (Arnatkeviciute et al., 2019). If a brain region was not assigned any sample based on the

above procedure, the sample closest to the centroid of that region was selected in order to ensure

that all brain regions were assigned a value. Samples assigned to the same brain region were aver-

aged separately for each donor. Gene expression values were then normalized separately for each

donor across regions using a robust sigmoid function and rescaled to the unit interval (Fulcher and

Fornito, 2016). Scaled expression profiles were finally averaged across donors, resulting in a single

matrix with rows corresponding to brain regions and columns corresponding to the retained 15,656

genes. The expression values of 1906 brain-specific genes were used for further analysis (Burt et al.,

2018).

Massive temporal feature extraction using hctsa
We used the highly comparative time-series analysis toolbox, hctsa (Fulcher et al., 2013;

Fulcher and Jones, 2017), to perform a massive feature extraction of the time-series of each brain

area for each participant. The hctsa package extracted over 7000 local time-series features using a

wide range of operations based on time-series analysis (Fulcher et al., 2013; Fulcher and Jones,

2017). The extracted features include, but are not limited to, distributional properties, entropy and

variability, autocorrelation, time-delay embeddings, and nonlinear properties of a given time-series

(Fulcher et al., 2013; Fulcher, 2018).

The hctsa feature extraction analysis was performed on the parcellated fMRI time-series of each

run and each participant separately (Figure 1). Following the feature extraction procedure, the out-

puts of the operations that produced errors were removed and the remaining features (6441 fea-

tures) were normalized across nodes using an outlier-robust sigmoidal transform. We used Pearson

correlation coefficients to measure the pairwise similarity between the time-series features of all pos-

sible combinations of brain areas. As a result, a temporal profile similarity network was constructed

for each individual and each run, representing the strength of the similarity of the local temporal fin-

gerprints of brain areas (Figure 1). The resulting similarity matrices were then compared to the

underlying functional and structural brain networks.

Neurosynth
Functional activation probability maps were obtained for multiple psychological terms using Neuro-

synth (Yarkoni et al., 2011) (https://github.com/neurosynth/neurosynth). Probability maps were

restricted to those for terms present in both Neurosynth and the Cognitive Atlas (Poldrack et al.,

2011), yielding a total of 123 maps (Supplementary file 2). We used the volumetric ‘association

test’ (i.e. reverse inference) maps, which were projected to the FreeSurfer fsaverage5 mid-grey sur-

face with nearest neighbor interpolation using Freesurfer’s mri_vol2surf function (v6.0.0; http://

surfer.nmr.mgh.harvard.edu/). The resulting surface maps were then parcellated to 400 cortical

regions using the Schaefer parcellation (Schaefer et al., 2018).

Null model
A consistent question in the present work is the topographic correlation between time-series fea-

tures and other features of interest. To make inferences about these links, we implement a null

model that systematically disrupts the relationship between two topographic maps but preserves

their spatial autocorrelation (Alexander-Bloch et al., 2018; Markello and Misic, 2020) (see also

Burt et al., 2018; Burt et al., 2020 for an alternative approach). We first created a surface-based

representation of the Cammoun atlas on the FreeSurfer fsaverage surface using the Connectome

Mapper toolkit (https://github.com/LTS5/cmp; Daducci et al., 2012). We used the spherical projec-

tion of the fsaverage surface to define spatial coordinates for each parcel by selecting the vertex

closest to the center-of-mass of each parcel (Vázquez-Rodrı́guez et al., 2019; Shafiei et al., 2020;

Vézquez-Rodrı́guez et al., 2020). The resulting spatial coordinates were used to generate null
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models by applying randomly-sampled rotations and reassigning node values based on the closest

resulting parcel (10,000 repetitions). The rotation was applied to one hemisphere and then mirrored

to the other hemisphere.
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Additional files
Supplementary files
. Supplementary file 1. Dominance analysis. Dominance Analysis was used to quantify the distinct

contributions of inter-regional Euclidean distance, structural connectivity, and functional connectivity

to temporal profile similarity (Budescu, 1993; Azen and Budescu, 2003) (https://github.com/domi-

nance-analysis/dominance-analysis). Dominance analysis is a method for assessing the relative impor-

tance of predictors in regression or classification models. The technique estimates the relative

importance of predictors by constructing all possible combinations of predictors and quantifying the

relative contribution of each predictor as additional variance explained (i.e. gain in R2) by adding

that predictor to the models. Specifically, for p predictors we have 2
p � 1 models that include all

possible combinations of predictors. The incremental R2 contribution of each predictor to a given

subset model of all the other predictors is then calculated as the increase in R2 due to the addition

of that predictor to the regression model. Here we first constructed a multiple linear regression

model with distance, structural connectivity and functional connectivity as independent variables and

temporal profile similarity as the dependent variable to quantify the distinct contribution of each fac-

tor using dominance analysis. The total R2 is 0.28 for the complete model that includes all variables.

The relative importance of each factor is summarized in the table, where each column corresponds

to: Interactional Dominance is the incremental R2 contribution of the predictor to the complete

model. For each variable, interactional dominance is measured as the difference between the R2 of

the complete model and the R2 of the model with all other variables except that variable; Individual

Dominance of a predictor is the R2 of the model when only that predictor is included as the indepen-

dent variable in the regression; Average Partial Dominance is the average incremental R2 contribu-

tions of a given predictor to all possible subset of models except the complete model and the

model that only includes that variable; Total Dominance is a summary measure that quantifies the

additional contribution of each predictor to all subset models by averaging all the above measures

for that predictor; Percentage Relative Importance is the percent value of the Total Dominance.

. Supplementary file 2. List of terms used in Neurosynth analyses. The overlapping terms between

Neurosynth (Yarkoni et al., 2011) and Cognitive Atlas (Poldrack et al., 2011) corpuses used in the

reported analyses are listed below.

. Supplementary file 3. List of time-series features corresponding to PC1. The complete list of fea-

tures (ranked by loading), their definitions, correlations and p-values for PC1 is presented in

machine-readable format.

. Supplementary file 4. List of time-series features corresponding to PC2. The complete list of fea-

tures (ranked by loading), their definitions, correlations and p-values for PC2 is presented in

machine-readable format.

. Transparent reporting form

Data availability

All data used in this study is publicly available. Detailed information about the datasets is available in

the manuscript.

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Van Essen DC,
Smith SM, Barch
DM, Behrens TE,
Yacoub E, Ugurbil
K, WU-Minn HCP
Consortium

2013 Human Connectome Project (HCP) https://www.humancon-
nectome.org/study/hcp-
young-adult

ConnectomeDB, 10.
1016/j.neuroimage.20
13.05.041

Gordon EM,
Laumann TO,
Gilmore AW,
Newbold DJ,

2017 Midnight Scan Club (MSC) https://openneuro.org/
datasets/ds000224/ver-
sions/1.0.0

OpenfMRI database,
ds000224
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Coalson RS,
Nguyen AL,
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Shimony JS, Snyder
AZ, Schlaggar BL,
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Nelson SM,
Dosenbach NUF
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Bongaarts AL, Shen
EH, Ng L, Miller
JA,
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LN, Smith KA,
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Beckmann CF,
Bernard A,
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Y, Morris JA,
Overly CC, Parker
PD, Parry SE,
Reding M, Royall
JJ, Schulkin J,
Sequeira PA,
Slaughterbeck CR,
Smith SC, Sodt AJ,
Sunkin SM,
Swanson BE,
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Demirtaş M, Burt JB, Helmer M, Ji JL, Adkinson BD, Glasser MF, Van Essen DC, Sotiropoulos SN, Anticevic A,
Murray JD. 2019. Hierarchical heterogeneity across human cortex shapes Large-Scale neural dynamics. Neuron
101:1181–1194. DOI: https://doi.org/10.1016/j.neuron.2019.01.017, PMID: 30744986

Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman
BT, Albert MS, Killiany RJ. 2006. An automated labeling system for subdividing the human cerebral cortex on
MRI scans into gyral based regions of interest. NeuroImage 31:968–980. DOI: https://doi.org/10.1016/j.
neuroimage.2006.01.021, PMID: 16530430

Dhollander T, Raffelt D, Connelly A. 2016. Unsupervised 3-tissue response function estimation from single-shell
or multi-shell diffusion mr data without a co-registered t1 image. ISMRM Workshop on Breaking the Barriers of
Diffusion MRI.

Fallon J, Ward PGD, Parkes L, Oldham S, Arnatkevičiūtė A, Fornito A, Fulcher BD. 2020. Timescales of
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