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Abstract

Background: Glucocorticoids are among the most commonly prescribed drugs, but there is no

biomarker that can quantify their action. The aim of the study was to identify and validate

circulating biomarkers of glucocorticoid action.
Methods: In a randomized, crossover, single-blind, discovery study, 10 subjects with primary

adrenal insufficiency (and no other endocrinopathies) were admitted at the in-patient clinic and

studied during physiological glucocorticoid exposure and withdrawal. A randomization plan before

the first intervention was used. Besides mild physical and/or mental fatigue and salt craving, no

serious adverse events were observed. The transcriptome in peripheral blood mononuclear cells

and adipose tissue, plasma miRNAomic, and serum metabolomics were compared between the

interventions using integrated multi-omic analysis.
Results: We identified a transcriptomic profile derived from two tissues and a multi-omic cluster,

both predictive of glucocorticoid exposure. A microRNA (miR-122-5p) that was correlated with
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genes and metabolites regulated by glucocorticoid exposure was identified (p=0.009) and

replicated in independent studies with varying glucocorticoid exposure (0.01 � p�0.05).
Conclusions: We have generated results that construct the basis for successful discovery of

biomarker(s) to measure effects of glucocorticoids, allowing strategies to individualize and optimize

glucocorticoid therapy, and shedding light on disease etiology related to unphysiological

glucocorticoid exposure, such as in cardiovascular disease and obesity.
Funding: The Swedish Research Council (Grant 2015-02561 and 2019-01112); The Swedish federal

government under the LUA/ALF agreement (Grant ALFGBG-719531); The Swedish Endocrinology

Association; The Gothenburg Medical Society; Wellcome Trust; The Medical Research Council, UK;

The Chief Scientist Office, UK; The Eva Madura’s Foundation; The Research Foundation of

Copenhagen University Hospital; and The Danish Rheumatism Association.
Clinical trial number: NCT02152553.

Introduction
Glucocorticoids (GCs) have a key role in the metabolic, vascular, and immunological response to

stress (Cain and Cidlowski, 2017; Oster et al., 2017). GC secretion from the adrenal gland is under

tight dynamic control by the hypothalamic–pituitary–adrenal axis and is regulated in a classic circa-

dian pattern (Cain and Cidlowski, 2017; Oster et al., 2017). Most actions of GCs are mediated by

the ubiquitously expressed GC receptor (Cain and Cidlowski, 2017; Oster et al., 2017). The tissue-

specific effects of GCs are regulated by many local factors, including pre-receptor metabolism of

GCs and the interaction of the GC receptor with tissue-specific transcription factors, or through non-

genomic mechanisms (Cain and Cidlowski, 2017; Oster et al., 2017). As a result of this complexity,

circulating levels of cortisol relate poorly to tissue action of cortisol, and serum cortisol therefore has

limited value as a biomarker for GC action (Karssen et al., 2001).

GCs are among the most commonly prescribed drugs, and GC treatment remains a cornerstone

in the management of many rheumatic and inflammatory diseases despite the introduction of mod-

ern disease-modifying antirheumatic drugs and biological immunomodulatory treatment

(Smolen et al., 2017). GC replacement is essential for survival in patients with various forms of adre-

nal insufficiency (Johannsson et al., 2015). However, metabolic and other side effects of GC treat-

ment or replacement are common (Björnsdottir et al., 2011; Fardet et al., 2012), indicating that

current methods to monitor their action and tailor their treatment are inadequate. Unphysiological

GC exposure has been implicated in the etiology of several common diseases such as type 2 diabe-

tes mellitus, hypertension, abdominal obesity, and cardiovascular disease (Ragnarsson et al., 2019).

Against this background, it is highly desirable to be able to measure and quantify GC action as

this might be useful to refine current GC therapy. Biomarkers of GC action will also provide potential

mechanistic understanding for the role of GCs in the etiology of many common diseases. Previous

attempts to identify biomarkers using metabolomics have identified circulating metabolites associ-

ated with GC exposure (Alwashih et al., 2017a; Alwashih et al., 2017b). Integrated multi-omic

analysis provides increased robustness over analysis of individual ‘omic data sets (Ideker et al.,

2011). In particular, the identification of groups within one ‘omic ‘layer’ with shared co-regulation

within another ‘omic layer implies a functional relationship that can be used both to assess the mech-

anistical relevance and to support the identification of biomarkers (Karczewski and Snyder, 2018;

Misra et al., 2018).

The aim of this exploratory study was to define multi-omic patterns derived from independent tis-

sues related to GC action and to use these patterns to search for clinically applicable circulating bio-

markers of GC action. Subjects with primary adrenal insufficiency, Addison’s disease, lack GC

production from the adrenal cortex and can therefore be considered a human GC ‘knock-down’

model (Figure 1A). An experimental study design including subjects with Addison’s disease, stan-

dardizing for diurnal variation and food intake, allowed a within-individual comparison between

physiological GC exposure and GC withdrawal (Figure 1B). A multi-omic analysis strategy combining

data from gene expression in circulation (peripheral blood mononuclear cells [PBMCs]) and an

important metabolic tissue, adipose tissue, integrated with circulating microRNAs (miRNAs) and

metabolites was used to identify putative biomarkers. The strongest putative biomarkers were then

replicated in independent study groups with different GC exposure.
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Results

Clinical experimental study
Patient characteristics
Eleven subjects with well-defined Addison’s disease and no other endocrinopathies were recruited

and included in the study between September 2013 and September 2015. One subject discontinued

the study after randomization and before the first intervention because of persistent orthostatic

hypotension. Ten subjects (four women with three of them post-menopausal) with a median age of

50 years (range, 25–57) and a median disease duration of 23.5 years (range, 1–33) completed all

aspects of the study between May 2014 and October 2015. The median daily replacement dose of

hydrocortisone (HC) prior to the study was 30 mg (range, 20–30), and 9 out of 10 subjects had treat-

ment with fludrocortisone (mineralocorticoid) at a median daily dose of 0.1 mg (range, 0.1–0.2).

Clinical and biochemical outcomes
The main time points for sample collection in each intervention were at 9 AM on the first interven-

tion day (‘before start’) and at 7 AM on the second intervention day (‘morning’) (Figure 1B). The

subjects’ last ordinary oral HC dose was administered the day before admission to the study unit.

Infusion of HC mixed with isotonic saline (‘GC exposure’) had no effect on systolic and diastolic

blood pressure, body weight, serum sodium and potassium, or plasma glucose concentrations com-

pared to the same amount of isotonic saline infusion alone (‘GC withdrawal’) (Table 1). HC and saline

infusion achieved the intended differences in GC exposure. Both median morning serum cortisol and

cortisone during the HC infusion were within the physiological range (298 and 81.2 nmol/L,

eLife digest Several diseases, including asthma, arthritis, some skin conditions, and cancer, are

treated with medications called glucocorticoids, which are synthetic versions of human hormones.

These drugs are also used to treat people with a condition call adrenal insufficiency who do not

produce enough of an important hormone called cortisol. Use of glucocorticoids is very common,

the proportion of people in a given country taking them can range from 0.5% to 21% of the

population depending on the duration of the treatment. But, like any medication, glucocorticoids

have both benefits and risks: people who take glucocorticoids for a long time have an increased risk

of diabetes, obesity, cardiovascular disease, and death.

Because of the risks associated with taking glucocorticoids, it is very important for physicians to

tailor the dose to each patient’s needs. Doing this can be tricky, because the levels of

glucocorticoids in a patient’s blood are not a good indicator of the medication’s activity in the body.

A test that can accurately measure the glucocorticoid activity could help physicians personalize

treatment and reduce harmful side effects.

As a first step towards developing such a test, Chantzichristos et al. identified a potential way to

measure glucocorticoid activity in patient’s blood. In the experiments, blood samples were collected

from ten patients with adrenal insufficiency both when they were on no medication, and when they

were taking a glucocorticoid to replace their missing hormones. Next, the blood samples were

analyzed to determine which genes were turned on and off in each patient with and without the

medication. They also compared small molecules in the blood called metabolites and tiny pieces of

genetic material called microRNAs that turn genes on and off.

The experiments revealed networks of genes, metabolites, and microRNAs that are associated

with glucocorticoid activity, and one microRNA called miR-122-5p stood out as a potential way to

measure glucocorticoid activity. To verify this microRNA’s usefulness, Chantzichristos et al. looked at

levels of miR-122-5p in people participating in three other studies and confirmed that it was a good

indicator of the glucocorticoid activity.

More research is needed to confirm Chantzichristos et al.’s findings and to develop a test that

can be used by physicians to measure glucocorticoid activity. The microRNA identified, miR-122-5p,

has been previously linked to diabetes, so studying it further may also help scientists understand

how taking glucocorticoids may increase the risk of developing diabetes and related diseases.
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Figure 1. Clinical and analytical part of the exploratory study and the replication step. (A) Subjects with Addison’s disease (primary adrenal

insufficiency, step 1) were studied in a random order during both physiological glucocorticoid (GC) exposure and GC withdrawal (step 2).

Transcriptomics (whole-genome expression) in peripheral blood mononuclear cells (PBMCs) and adipose tissue (n = 28,869,869 genes), plasma

miRNAomics (n = 252), and serum metabolomics in morning samples were analyzed (n = 164) (step 3). Integration of the multi-omic data derived a

Figure 1 continued on next page
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respectively) and markedly lower during the saline infusion (44.4 and 42 nmol/L, respectively, both

p<0.001) (Figure 2). Serum cortisol and cortisone were detected in all subjects’ morning samples

during the saline infusion, but both overnight (between 12 AM and 7 AM) urinary cortisol and corti-

sone excretion were below the limit of detection. Both HC and saline infusions were well-tolerated,

and no serious adverse events were observed. Three subjects reported mild physical and/or mental

fatigue, and one subject reported mild salt craving during the GC withdrawal period.

Figure 1 continued

network including gene expression (derived from two independent tissues), microRNAs (miRNAs), and metabolites that were statistically differentiated

between the two interventions (step 4). The miRNA findings, because of their centrality in the network, were replicated in subjects with different GC

exposures (within the physiological range) from three independent studies (step 5). (B) Subjects with Addison’s disease (primary adrenal insufficiency)

received in a random order intravenous (i.v.) hydrocortisone (HC) infusion mixed in 0.9% saline in a circadian pattern (physiological GC exposure) or the

same volume of 0.9% saline alone (GC withdrawal) during 22 hr starting at 9 AM more than 2 weeks apart. During the GC exposure, HC(Solu-Cortef)

was administered at a dose of 0.024 mg/kg/hr between 9 AM and 12 PM (first day), 0.012 mg/kg/hr between 12 PM and 8 PM (first day), 0.008 mg/kg/hr

between 8 PM and 12 AM (first day), and 0.030 mg/kg/hr between 12 AM and 7 AM (second day). Samples for the ‘omics analyses were collected at 7

AM on day 2 of the intervention (morning samples). p.o.: oral.

Table 1. Clinical and biochemical tests assessed or collected immediately before each intervention and at 7 AM on the second

intervention day during both interventions (n = 10).

9 AM before start of intervention
(first intervention day)

7 AM
(second intervention day)

Median (IQR) p-Value Median (IQR) p-Value

S-cortisol (nmol/L) HC 43.2 (38.0–55.1) 0.36 298 (228–359) <0.001

Saline 46.7 (43.1–61.7) 44.4 (36.8–52.5)

Overnight U-free cortisol (mg/7 hr)*,† HC – 678 (459–814) <0.001

Saline – <0.01‡

S-cortisone (nmol/L) HC 40.7 (29.5–49.2) 0.76 81.2 (60.5–94.9) <0.001

Saline 42.1 (29.7–50.4) 42.0 (28.9–47.3)

Overnight U-free cortisone (mg/7 hr)*,† HC – 136 (106–151) <0.001

Saline – <0.01‡

SBP (mmHg) HC 122 (111–134) 0.88 123 (107–139) 0.65

Saline 127 (112–131) 124 (101–137)

DBP (mmHg) HC 76 (63–83) 0.88 69 (59–76) 0.55

Saline 72 (67–80) 65 (60–70)

S-sodium (mmol/L) HC 141 (139–142) 0.85 140 (138–141) 0.97

Saline 141 (138–142) 140 (138–141)

S-potassium (mmol/L) HC 4.4 (4.3–4.7) 0.27 4.4 (4.3–4.8) 0.26

Saline 4.2 (4.0–4.5) 4.4 (4.3–4.5)

P-glucose (mmol/L) HC 5.0 (4.5–5.3) 0.79 5.6 (5.2–5.8) 0.08

Saline 5.0 (4.6–5.1) 5.2 (5.2–5.4)

Body weight (kg) HC 72.2 (69.6–77.3) 0.53 72.8 (69.3–77.7) 0.63

Saline 73.5 (70.5–79.5) 74.0 (70.5–79.2)

*Overnight U-free cortisol and cortisone were collected from midnight to morning (12 AM to 7 AM) during physiological GC exposure (HC infusion) and

GC withdrawal (saline infusion).
†One of the 10 subjects was not included in the analysis because of a problem during sample collection.
‡Below the limit of detection.

DBP: diastolic blood pressure; GC: glucocorticoid; HC: hydrocortisone; IQR: interquartile range; P: plasma; S: serum; SBP: systolic blood pressure; U:

urinary.
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Differentially regulated ‘omic elements associated with response to
GCs
Similarity network fusion (SNF) was used to demonstrate overall similarity between subjects across

and between ‘omic layers, prior to analysis (Appendix 1 and Appendix 1—figure 1). Differential

gene expression was associated with GC response in both PBMC and adipose tissue (Appendix 1).

Differential expression of metabolites and miRNA was identified in blood in relation to GC response

(Appendix 1). Differentially expressed ‘omic elements (DEOEs) are presented in Table 2 and

Supplementary file 1a–d. All DEOEs were used for integrated analysis, and false discovery rate

(FDR)-corrected DEOEs were used for all other analyses (Table 2). DEOEs from the PBMC and adi-

pose tissue transcriptomes were shown to have limited overlap in response to GC but were enriched

for shared pathways, revealing an overlap that indicated shared mechanism in relation to GC expo-

sure (Appendix 2 and Appendix 2—figure 3).

!!"#""$

!!"#""$!!"#""$

!!"#""$

!"

#"

$"

%"

Figure 2. Violin plots of serum and urinary glucocorticoids (GCs) during GC exposure and withdrawal. Individual

data and changes for morning (7 AM) serum cortisol and cortisone (A, B), and overnight (12 AM to 7 AM) urinary-

free (U-free) cortisol and cortisone (C, D) from both interventions. Boxes represent interquartile range (IQR);

whiskers mark spread of points within 1.5 times IQR; violins demonstrate distribution of results with the maximum

width representing the highest density within each violin. Difference of median values between interventions is

presented with p-values. HC: hydrocortisone.
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We assessed the impact of differential expression on the entire interactome to aid in the identifi-

cation of similar GC-related function. Interactome network models were generated using differen-

tially expressed genes (DEGs) from both the PBMC transcriptome and the adipose tissue

transcriptome. These were shown to be consistent with one another (Appendix 2 and Appendix 2—

figures 1 and 2) despite the limited overlap of DEGs. GC-responsive genes were shown to have

higher connectivity in the human interactome than expected by chance, demonstrated using 10,000

permutations of this network model (Appendix 2).

Integration of PBMC and adipose tissue transcriptomes with plasma
miRNAomic and serum metabolomic data
Hypernetworks are network structures where edges are not restricted to defining a relationship

between two nodes but may be shared between many nodes. As such, these structures can be used

to describe complex relationships that link multiple elements. Hypernetworks also allow for the

same pair of nodes to be connected by multiple edges. This means that relationships between

nodes can be ranked by the number of edges shared between them. Hypernetworks allow for the

summary of correlation matrices, compressing the high-dimensional relationships between data

points (transcripts/miRNA/metabolites) into a single metric of similarity. Hypernetworks facilitate

integration of ‘omic data and can be used to define strongly associated elements. Elements with

large numbers of shared edges are more similar and likely to be of functional relevance; clustering

allows refinement of large ‘omic data sets to highly associated elements (Figure 3A, B). Hypernet-

works are robust to random error and act to filter out false-positive correlations as these will not

have a uniform pattern of correlation across all ‘omic elements.

To assess similarity, we defined the correlation coefficient between each differentially expressed

‘omic measurement and assessed as ’present’ in the network model those correlations with an r-

value >j1:5j standard deviations (sd). Edges were defined as PBMC transcripts with shared correla-

tions, for example, two PBMC transcripts that are both correlated with the same three metabolites

are connected by three edges. We summarized the shared correlations as a measure of similarity

between each pair of GC-responsive PBMC transcripts, counting correlations across the other ‘omic

data sets (Figure 3—figure supplement 1). The greatest number of correlations shared was

between PBMC and adipose tissue transcriptome (525 genes, Figure 3C), reinforcing the observa-

tion that, while the gene-level overlap of differential expression was limited, common pathways are

active in both tissues related to GC action, which involve similar networks of co-expressed genes.

The rank order of the number of correlations shared with the GC-responsive PBMC transcriptome

was adipose tissue transcriptome > plasma miRNAome > serum metabolome, and this was con-

firmed both by comparison of the heat maps (Figure 3—figure supplement 1) and by a Venn dia-

gram (Figure 3D). The Venn diagram also reveals a strong correspondence between the serum

metabolome and both PBMC and adipose tissue transcriptomes.

Identification and validation of a shared transcriptomic profile in both
PBMCs and adipose tissue predicting GC response
Robustness testing was performed in which hypernetworks were generated to model dissimilarity

based on the absence of correlations with PBMC transcripts. Any genes that were highlighted by

these hypernetworks were removed from the downstream predictive analysis. Using this approach,

we defined 271 of 965 PBMC transcripts with maximum predictive potential. This set of genes

Table 2. Summary of differentially expressed ‘omic elements in association with response to glucocorticoids.

‘Omic data set
Total number of ‘omic
elements

Number of significant elements
(p<0.05)

Number of significant elements
(FDR < 0.05)

PBMC transcriptome 28,869 4426 3997

Adipose tissue
transcriptome

28,869 3520 3115

Plasma miRNAome 252 9 9

Serum metabolome 164 38 14

FDR: false discovery rate; miRNA: microRNA; PBMC: peripheral blood mononuclear cell.
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Figure 3. Hypernetwork analyses of integrated ‘omic data. (A) Hypernetworks differ from traditional networks in that edges can connect more than two

nodes. Nodes are represented by black circles, edges by colored lines and surfaces. This demonstration shows how one edge can connect (i) two

nodes as a one-dimensional line, (ii) three nodes as a two-dimensional surface, and (iii) four nodes as a three-dimensional structure. Hypernetworks of

‘omic data can have edges shared between hundreds of nodes. (B) Hypernetwork diagram illustrating how a pair of nodes (a–h) can be connected by

more than one edge. In this example, nodes e and d share two edges, as do b and d. (C) A hypernetwork plotted as a heat map can be used to

investigate clustering of blood peripheral blood mononuclear cell (PBMC) transcripts, based on correlation to, for example, adipose tissue

transcriptome. A central cluster, defined using hierarchical clustering, groups PBMC transcripts based on high numbers of shared edges (red square,

n = 965). This approach was applied to define groups of PBMC transcripts with similar profiles when correlated against each other ‘omic layer. (D) Gene

probe level overlaps between PBMC transcriptome clusters identified by hypernetwork shared with the other ‘omic data sets. PBMC transcriptomic

changes are correlated with changes in miRNAome, adipose tissue transcriptome, and metabolome (gas chromatography-mass spectrometry and

liquid chromatography-mass spectrometry overlaps combined); overlaps are common PBMC transcripts with correlation to the ‘omic data sets. Values

in brackets represent the size of PBMC transcriptomic clusters drawn from all differentially expressed PBMC transcripts (n = 4426, p<0.05). Data

demonstrates a fundamental relationship in glucocorticoid response between PBMC and adipose tissue (965 genes) and reinforces the presence of

common pathways in these two independent tissues.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Hypernetwork heat maps of integrated ‘omic data.

Figure supplement 2. Transcriptome quality control measures.

Figure supplement 3. Metabolome quality control measures.

Figure supplement 4. Chi-squared distance distribution from a range of dichotomization thresholds.
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perfectly classified the HC- and saline-treated groups using partial least squares discriminant analysis

(PLS-DA) (Figure 4A). We identified variables of importance using Random Forest and modeled the

background experimental noise using permutation analysis (BORUTA) (Figure 4B). This identified a

set of 59 genes as variables of importance with fold changes in the same directions in both transcrip-

tomic data sets that perfectly classified HC from saline treatment (Supplementary file 1e). Nine of

these genes were significantly differentially expressed in both PBMC and adipose tissue transcrip-

tomes (Figure 4C), and, of these nine genes, six were associated with GC response via gene ontol-

ogy (IL18RAP, JAK2, MTSS1, RIN2, KIF1B, and BCL9L) (Figure 4D). The gene set (n = 59) that we

identified, which classified both PBMC and adipose tissue transcriptomes in relation to GC exposure,

was validated (area under the curve [AUC] 0.70–0.96) by further testing in five other previous studies

of GC action by other research groups in cellular models (Table 3). Further robustness of the random

forest observations was provided by demonstrating that the minimal depth at which the variables of

importance became active in prediction was small (Figure 4—figure supplement 1).

Integration of circulating ‘omic data sets leads to miRNA and
metabolite markers of GC action
We further examined interactions between the circulating ‘omics data associated with GC exposure

(Figure 3D). All of the circulating ‘omics data was combined to form a correlation matrix and hierar-

chical clustering used to identify ‘omic data points with similar correlation (Figure 5—figure supple-

ment 1). Eleven clusters including transcriptomic, miRNAomic, and metabolomic data were

identified, and these clusters were shown to have enrichment within the interactome network model

(Supplementary file 1f and Appendix 2).

We then quantified the number of correlations between all the circulating ‘omic data associated

with GC exposure (n = 336) using a hypernetwork. This approach was used to define a group of

highly connected multi-omic elements with a relationship to GC exposure (Figure 5A).

A hypernetwork model of the core group of 139 highly connected elements was generated

(Figure 5B). DCK was the only gene shared with the GC-dependent adipose tissue transcriptome

that also had predictive value (highlighted with a red square in Figure 5B). Deletion of the DCK

gene region has been shown to be associated with increased sensitivity to GCs (Malani et al.,

2017), an observation in alignment with the reduction in expression we found in both PBMC and

adipose tissue transcriptomes in association with GC exposure (Figure 4C).

The hypernetwork model (Figure 5B) also highlighted a range of related miRNAs and metabo-

lites. A hierarchical model of modules within the network was assessed using the measure of network

centrality (Figure 5C). These modules revealed multi-omic relationships and demonstrated that miR-

122-5p was the only miRNA present in higher order modules as measured by network centrality.

miR-122-5p was correlated with cortisol exposure and the expression of FKBP5, a regulator of GC

sensitivity (cluster 11 in Figure 5—figure supplement 1 and Supplementary file 1f).

Targeted replication of the plasma miR-122-5p fold change from the experimental study in sub-

jects with Addison’s disease using an independent RNA separation procedure showed a marked

down-regulation of miR-122-5p by increased GC exposure (p=0.009) (Figure 6). Two subjects did

not show this miR-122-5p response, one man (disease duration 2 years, body mass index [BMI] 23.8

kg/m2; hydrocortisone 20 mg daily, fludrocortisone 0.1 mg daily) and one woman (disease duration

23 years; BMI 28.1 kg/m2; hydrocortisone 30 mg daily, fludrocortisone 0.2 mg daily) who both expe-

rienced mild mental fatigue during GC withdrawal.

Replication of miRNA findings in independent study groups
Based on (i) the functional association of a circulating miRNA with gene expression and metabolo-

mics, and (ii) the correlation between the PBMC transcriptome and plasma miRNAome (Figure 3D),

a targeted replication of the plasma miRNA findings was conducted using an independent RNA sep-

aration procedure. Twelve miRNAs were re-analyzed in the current study and in three other indepen-

dent studies including subjects with different GC exposures: (i) in 60 subjects with rheumatoid

arthritis with and without tertiary adrenal insufficiency after a short-term stop in their GC treatment

(low vs. physiological GC exposure, respectively) (Borresen et al., 2017); (ii) in 20 subjects with

Addison’s disease receiving HC replacement therapy and in 20 matched healthy control subjects

Chantzichristos et al. eLife 2021;10:e62236. DOI: https://doi.org/10.7554/eLife.62236 9 of 39

Research article Computational and Systems Biology Medicine

https://doi.org/10.7554/eLife.62236


 

D) PBMC and Adipose Tissue Transcriptome

IDA = Inferred from Direct Assay

IEA = Inferred from Electronic Annotation

Figure 4. An overlapping gene set in peripheral blood mononuclear cell (PBMC) and adipose tissue transcriptome

can be used to classify glucocorticoid (GC) response. These analyses were performed to depict the common

predictive genes in PBMCs and adipose tissue. (A) Partial least squares discriminant analysis (PLSDA) showing

complete separation of hydrocortisone (HC) infusion (GC exposure, blue points) from saline infusion (GC

Figure 4 continued on next page
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(low vs. physiological GC exposure, respectively) (Bergthorsdottir et al., 2017); and (iii) acute low,

medium, and excessive GC exposure in 20 healthy subjects (Stimson et al., 2017).

From this analysis, miR-122-5p was significantly associated with different GC exposure in all stud-

ies (Figure 7A– D). The expression of miR-122-5p was higher in subjects with rheumatoid arthritis

and reduced GC exposure due to tertiary adrenal insufficiency (Figure 7A), and subjects with Addi-

son’s disease had higher expression of miR-122-5p than healthy matched controls (Figure 7B). In the

experimental study in healthy subjects, the expression of miR-122-5p was increased both after low

and excessive high GC exposure compared to medium GC exposure at both high and low insulin

levels (Figure 7C, D, respectively). The other 11 miRNAs (including miR-425-3p) did not show a rela-

tionship with GC exposure in the three replication studies.

Figure 4 continued

withdrawal, orange points) using 271 of 965 PBMC transcripts confirmed as robust in the hypernetwork by analysis

of dissimilarity. X-variates 1 and 2: PLSDA components; expl. var: explained variance. (B) BORUTA feature selection

identifies variables (genes) of importance in classification using a Random Forest approach to model experimental

background noise (green: confirmed classification; yellow: tentative classification: red: rejected classification; blue:

‘shadow’ variable modeling experimental noise). Of 271 transcripts initially used, 59 were identified as important

(confirmed [green] or tentative [yellow]) in separating GC exposure from GC withdrawal, as well as having the

same direction fold change in both PBMC and adipose tissue transcriptomic data sets. (C) Predictive genes that

are significantly differentially expressed between GC exposure and GC withdrawal in both PBMC and adipose

tissue transcriptomes and display fold change in the same direction in both tissues (n = 9). (D) Association of

predictive genes (six out of nine) with GC response through gene ontology. Data demonstrates the presence of a

robust transcriptomic profile predicting GC response in two independent tissues.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Random forest distribution of minimal depth.

Table 3. Validation of the predictive genes from the current exploratory study against previous studies examining GC response in

cellular systems.

Study title GEO # PMID N

AUC
(95%
CI)

OOB*
AUC†

OOB* error
rate‡ (%)

Dexamethasone effect on epidermal keratinocytes in vitro GSE26487 17095510
(Stojadinovic et al., 2007)

20 0.70
(0.51–
0.89)

0.80 30

Dexamethasone effect on GC-resistant and -sensitive lymphoblastic
leukemia cell lines

GSE22152 21092265 (Carlet et al.,
2010)

24 0.71
(0.52–
0.90)

0.78 29

In vivo GC effect on non-leukemic peripheral blood lymphocytes GSE22779 21092265 (Carlet et al.,
2010)

16 0.88
(0.63–
1.0)

0.96 6

Osteosarcoma cell line response to activation of specific GC receptor
alpha isoforms

GSE6711 17682054 (Lu et al., 2007)
22174376 (Jewell et al.,
2012)

60 0.96
(0.89–
1.0)

0.99 3

GC effect on lens epithelial cells GSE3040 16319822 (Gupta et al.,
2005)

12 0.83
(0.63–
1.0)

0.72 17

*OOB data, the bootstrapping approach of Random Forest, ensures that every tree is built using ~63% of the available data, leaving ~ 37% that can be

used for a validation test.
†AUC up to 0.96 demonstrates a high probability of correctly classifying a randomly selected sample from each study.
‡OOB error rate = prediction error using the OOB validation data.

The gene set that classified both PBMC and adipose tissue transcriptomes in relation to GC exposure with fold change in the same direction

(see Figure 4B – 59 genes) was validated by further testing in five other publicly available studies of GC action in cellular systems.

AUC: area under the curve of the receiver operating characteristic; CI: confidence interval; GC: glucocorticoid; GEO: Gene Expression Omnibus; GEO #:

study number deposited with GEO; N: study number size; OOB: out-of-bag; PBMC: peripheral blood mononuclear cell; PMID: PubMed ID number of the

manuscript describing the data.
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Figure 5. Integration of all circulating ‘omic data sets associated with glucocorticoid (GC) response. These analyses were performed to lead to

putative biomarkers of GC action. (A) Hypernetwork summary heat map of shared correlations between all circulating ‘omic elements (peripheral blood

mononuclear cell transcriptome, plasma microRNA [miRNA], serum metabolome; n = 336) with differential expression between GC exposure and GC

withdrawal. (B) Network representation of central cluster (red square in A [n = 139], of which 120 map to genes/miRNA/metabolites). Blue circles: genes

with differential expression; red circle: differentially expressed metabolites; green: differentially expressed miRNA. Red box highlights DCK, one of the

nine genes identified as a classifier of GC response (see Figure 4C). (C) Module decomposition of the hypernetwork. Genes modules (hexagons

representing multiple highly connected genes) named by the most central gene in each module. miR-122-5p is present in the core of two modules

(shown); color of modules represents centrality hierarchy: red: most central in the network; green: least central in the network.

Figure 5 continued on next page
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Discussion
In a clinical experimental study designed to identify biomarkers of GC action, we succeeded in gen-

erating two profoundly different states of GC exposure within the physiological range in the same

individual. The novelty of this study is the identification of pathways related to GC response and

putative biomarkers of GC action in gene expression, metabolome, and miRNAs derived from inte-

grated multi-omic analysis in two independent tissues. We identified a transcriptomic profile that

was under similar GC regulation in both PBMC and adipose tissue transcriptomes, which was then

validated by comparison to a range of previously published data by other research groups from cel-

lular assays. We also identified a circulating miRNA, miR-122-5p, which was correlated with the circu-

lating transcriptome and metabolome findings, suggesting for the first time a functional role in GC

action. Moreover, the association between the expression of miR-122-5p and GC exposure was rep-

licated in three independent study groups.

In order to identify putative biomarkers of GC action in humans, a clinical study was considered

to be the most appropriate experimental setting. Addison’s disease or primary adrenal insufficiency

is a rare disorder, but a unique clinical model for GC biomarker discovery due to absent or very low

endogenous GC production (Gan et al., 2014; Sævik et al., 2020). Subjects with Addison’s disease

were studied in a random order during physiological GC exposure and GC withdrawal. During GC

exposure, infusion of HC delivered in isotonic saline via an infusion pump using a circadian pattern

and saline alone (using the same volume and infusion pattern as during HC infusion) was

Figure 5 continued

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Heat map with clusters of circulating ‘omic data associated with glucocorticoid exposure identified using a correlation matrix.
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Figure 6. Replication of miR-122-5p as a putative biomarker of glucocorticoid (GC) action in the current biomarker

discovery study. Targeted replication of plasma miR-122-5p fold change from the current study population

between subjects with Addison’s disease during GC exposure and GC withdrawal showed a significant down-

regulation of miR-122-5p expression with increased GC exposure (p=0.009) conducted using an independent RNA

separation procedure in the same samples.
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Figure 7. Replication of miR-122-5p as a putative biomarker of glucocorticoid (GC) action in independent patient groups with different GC exposure.

(A) The expression of miR-122-5p was higher in subjects with rheumatoid arthritis and reduced GC exposure due to tertiary adrenal insufficiency after a

short-term stop of the GC treatment (AI) than in those without tertiary adrenal insufficiency (Normal). (B) Subjects with Addison’s disease (AD) had

higher expression of miR-122-5p than healthy matched controls (Control). In an experimental study in healthy subjects, the expression of miR-122-5p

Figure 7 continued on next page
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administered during the GC withdrawal in order to prevent a state of sodium and fluid deficiency.

This study design therefore allowed a within-individual comparison accounting for circadian rhythm

and food intake. The marked difference in serum and urinary cortisol and cortisone, and the similar

serum electrolytes, glucose, body weight, and blood pressure between the two interventions sup-

port the experimental success of the study design and strongly indicate that confounders related to

metabolic changes or other secondary events related to the GC exposure or GC withdrawal were

not influencing the output of the study. The measurable but very low concentrations of serum corti-

sol and cortisone throughout the GC withdrawal may be explained by a residual adrenal steroid

secretion in some subjects (Gan et al., 2014; Sævik et al., 2020) and/or due to conversion of corti-

sone to cortisol in the liver and adipose tissue (Stimson et al., 2014).

Network models of ‘omic data can be used as a framework to assess the potential utility of bio-

markers (Stevens et al., 2014). In this study, we have used a hypernetwork model of GC action

based on differential gene expression in PBMCs as a basis to integrate adipose tissue transcriptome,

plasma miRNA, and serum metabolomic data. Hypernetwork analysis leverages the power inherent

in large data sets to assess interactions between ‘omic elements in a manner that is robust to false

positives (Battiston et al., 2020). The associated interactome network derived from the PBMC tran-

scriptome was shown to contain a number of genes with previously known GC-dependent binding

of NR3C1 (the GC receptor) to regulatory elements, evidence that supports the specificity of the

study design (Davis et al., 2018; Casper et al., 2018). Gene ontology analysis of the differential

gene expression identified a range of pathways classically associated with GC action including GC-

receptor signaling, immunoregulatory pathways such as those involving NF-kB, metabolic pathways,

and cell cycle pathways. The plasma miRNA and serum metabolomic data was shown to map to the

interactome network model of GC action, and this was taken as support for this data being putative

circulating biomarkers functionally related to GC action.

Differential expression induced by GC treatment in both PBMCs and adipose tissue was indirectly

associated with similar downstream elements by gene ontology analysis. These genes were not

directly implicated with GC response, so, while the exact mechanisms may be different in each tis-

sue, effects are coordinated through the same elements. Integration of the multi-omic data including

both PBMC and adipose tissue transcriptomes was performed in order to increase the robustness of

putative markers that could reflect action in other tissues such as adipose tissue, which is an impor-

tant target organ for the metabolic actions of GCs. The 59 genes that behaved similarly in PBMC

and adipose tissue were then validated in a range of studies examining GC response in different cel-

lular systems. These included primary cell culture on keratinocytes (Stojadinovic et al., 2007) and

lens epithelial cells (Gupta et al., 2005), along with PBMCs (Carlet et al., 2010) and cancer cells

[both lymphoblastic leukemia (Carlet et al., 2010) and osteosarcoma (Lu et al., 2007; Jewell et al.,

2012)]. The set of nine genes co-regulated in relation to GC exposure and GC withdrawal in both

PBMC and adipose tissue transcriptomes can therefore be considered as putative markers of GC

response. These could be used as a gene set to interrogate GC action in other experimental

settings.

All the miRNA findings in this study are novel. While emerging experimental evidence indicates

impact on regulation of GC action at several points by miRNAs (Clayton et al., 2018), this is the first

time that miRNAs are shown to be globally correlated to GC action in humans. Both the hypernet-

work analysis and the interactome network model implied the functional significance of some miR-

NAs, particularly miR-122-5p. In our hypernetwork model, the expression of miR-122-5p was

correlated with clusters of genes that were centrally coordinated by expression of both RNF157 and

TBXAS1, the former suggested to be a key regulator of both PI3K and MAPK signaling pathways,

commonly perturbated in cancer and metabolic disorders (Dogan et al., 2017). Expression of

TBXAS1 is pharmacogenomic linked to inhaled GC exposure in asthma (Dahlin et al., 2020). miR-

122 is precursor transcript of mature miRNAs, including miR-122-5p (Carthew and Sontheimer,

2009; Bartel, 2004). miR-122 is expressed in the liver in humans (Tsai et al., 2009;

Figure 7 continued

was increased both after low and excessive high GC exposure (LowGC and ExcessGC, respectively) compared to medium GC exposure (MedGC) at

both (C) high and (D) low serum insulin levels. Diamond: mean. Box = median ± interquartile range. Whiskers = upper and lower quartiles. miR-122-5p

axis is presented as normalized expression.
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GTEx Consortium, 2015; GTEx Consortium, 2013) and mice (Tsai et al., 2009). Hepatocyte nuclear

factor HNF4A (Li et al., 2011; Xu et al., 2010), along with HNF3A (FOXOA1), HNF3B (FOXOA2),

and HNF1A (Xu et al., 2010; Coulouarn et al., 2009), has been shown to be a key regulator of miR-

122 expression in human cells. Down-regulation of miR-122 in murine models has been associated

with non-alcoholic fatty liver disease (Alisi et al., 2011) and diabetes mellitus (Guay et al., 2011),

and in humans, miR-122-5p has also been associated with fatty liver disease (Raitoharju et al.,

2016).

miR-122-5p may be a functional link between unphysiological GC exposure and metabolic and

cardiovascular disease. Increased exposure to GCs impairs glucose tolerance and may induce type 2

diabetes (Hackett et al., 2014). Indeed, reduced miR-122-5p expression has been seen in animal

models of diabetes, and the reduction of this miRNA in response to increased GC exposure may

suggest that miR-122-5p is a functional link between GC action and metabolism. In support of these

findings are observations showing that miR-122-5p regulate insulin sensitivity in murine hepatic cells

by targeting the insulin-like growth factor (IGF) 1 receptor (Dong et al., 2019). Recent human stud-

ies have also suggested that miR-122-5p is an indicator of the metabolic syndrome, with reduced

expression in response to weight loss in overweight/obese subjects (Hess et al., 2020). miR-122-5p

has also been suggested as a biomarker of coronary artery stenosis and plaque instability

(Wang et al., 2019; Singh et al., 2020; Ling et al., 2020). As unphysiological GC exposure has

been associated with obesity, diabetes, and cardiovascular disease (Walker, 2007), it is possible

that miR-122-5p is reflecting different GC exposure in these disorders. The subjects with Addison’s

disease in our clinical experimental study had no other comorbidities previously known to be associ-

ated with miR-122-5p expression, and therefore the presence of such confounders in our miR-122-

5p finding seems to be unlike.

Specific miRNAs circulating in a stable, cell-free form in plasma or serum may serve as biomarkers

in some diseases (Kroh et al., 2010), and, in our integrated analysis, they seem to be a realistic and

clinically useful marker of GC action. We therefore focused on the replication of the miRNA findings

from the discovery study. For this purpose, we performed a targeted analysis of 12 putative miRNAs

and analyzed them in 120 subjects from independent study groups with different GC exposure in

terms of dose, duration of exposure, and route of administration. The rationale for selecting these

groups was that their GC exposure mostly remained within the normal physiological range. Despite

the experimental differences between these studies, and the fact that these studies were not

designed to study miRNA biomarkers of GC action, miR-122-5p was down-regulated by increased

GC exposure in all of them. One exception was when short-term excessively high GC exposure was

studied in afternoon samples in 20 subjects. There is no clear explanation for this, except the possi-

bility that high non-physiological GC exposure has other secondary effects that may affect the levels

of miR-122-5p.

The network analysis also identified putative metabolomic markers of GC action. GCs have a key

role in metabolic regulation of stress by mobilizing energy through glucose, protein, and lipid

metabolism. Previous studies have found an association between different GC doses and levels of

branched-chain amino acids, fatty acids, some acyl carnitines, and tryptophan and its metabolites

(Alwashih et al., 2017a; Sorgdrager et al., 2018). In our study, the amino acid tyrosine and the

pyrimidine base uracil had a central position in the hypernetwork, which defined a group of highly

connected multi-omic relationships within physiological GC exposure. Some of the other metabolo-

mic data from our study was also in line with previous metabolomic studies in patients with adrenal

insufficiency (Alwashih et al., 2017b; Sorgdrager et al., 2018). Excessive exposure to GCs in

healthy subjects has, on the other hand, shown a strong, immediately and long-lasting impact on

numerous biological pathways in the metabolome that may be either direct or indirect through the

metabolic and cardiovascular action of pharmacological doses of GCs (Bordag et al., 2015).

There are some study limitations that need to be acknowledged. The low number of subjects

included in the clinical experimental study could have reduced the power to detect a putative

marker in individual ‘omic data sets, but this limitation was compensated for by the crossover study

design and the integration of multi-omic layers. Another limitation is that we have only studied

markers collected in the morning during physiologically peak cortisol exposure. However, the

strengths of our study are the experimental study design, consideration of diurnal variation in GC

action and impact of food intake, and the within-individual comparison, which minimizes confound-

ers, as well as the fact that the putative markers that we have replicated are associated with known
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GC-responsive genes in two different tissues, suggesting their functional importance in GC action.

Moreover, the integration of multi-omic layers allows for the reduction of background noise

(Huang et al., 2017) and forms the basis for a detailed model of GC action. Hypernetwork summa-

ries of correlation networks are recognized as providing signatures of mechanism (Pearcy et al.,

2016; Johnson, 2011; Butte et al., 2000; Oldham et al., 2006) and, as such, are useful to assess

both function and define markers of direct action.

In this clinical biomarker discovery study, we identified genes, miRNA, and metabolites that are

differently expressed during GC exposure and GC withdrawal in subjects with Addison’s disease.

The multi-omic data showed a high degree of coherence, and network analysis identified transcrip-

tomics and metabolites that were closely correlated. The final outcome of the study is identification

of a miRNA that is regulated by GC exposure and correlated with genes and metabolites that are

also regulated by GCs in this study, indicating its functional relevance. The replication of this miRNA

in three independent study groups increases the likelihood that the discovered miRNA, miR-122-5p,

could become a biomarker of GC action to be used in clinical settings.

Materials and methods

Key resources table

Reagent type (species) or
resource Designation Source or reference Identifiers Additional information

Recombinant DNA reagent GeneChip WT PLUS
Reagent Kit

Affymetrix Inc Other P/N 703174 Rev. 1

Commercial assay or kit Human Gene 1.0 ST array Affymetrix Inc – –

Commercial assay or kit Human Gene 1.1 ST array Affymetrix Inc – –

Commercial assay or kit Human Gene 2.0 ST array Affymetrix Inc – –

Commercial assay or kit miRCURY LNA Universal
RT microRNA PCR,
Polyadenylation, and
cDNA Synthesis Kit

Exiqon – –

Commercial assay or kit miRCURY RNA Isolation
Kit-Biofluids

Exiqon – –

Chemical compound, drug Solu-Cortef Pfizer Inc – –

Software, algorithm Agilent Masshunter
Profinder

Agilent Technologies, Inc Other Version B.08.00

Software, algorithm SPSS SPSS RRID:SCR_002865 –

Software, algorithm R R Project for Statistical
Computing

RRID:SCR_001905 –

Software, algorithm Rstudio Rstudio RRID:SCR_000432 –

Software, algorithm MetaboAnalystR – RRID:SCR_016723 –

Software, algorithm Moduland algorithm – https://www.linkgroup.hu/
docs/ModuLand-ESM1-v5.
pdf

–

Software, algorithm Cytoscape Cytoscape RRID:SCR_003032 –

Software, algorithm Qlucore Qlucore Omics Explorer https://www.qlucore.com/
bioinformatics

–

Software, algorithm Robust Multi-Array
Average algorithm

– http://www.molmine.com –

Software, algorithm ChromaTOF LECO https://www.leco.com –

Software, algorithm MATLAB R2016a Mathworks https://www.mathworks.
com

–

Software, algorithm Roche LC software Roche Molecular Systems,
Inc

– –

Software, algorithm NormFinder Aarhus University Hospital,
Denmark

RRID:SCR_003387 –

Continued on next page
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Continued

Reagent type (species) or
resource Designation Source or reference Identifiers Additional information

Software, algorithm NIST MS 2.0 software NIST https://chemdata.nist.gov –

Other LightCycler 480 Real-Time
PCR System

Roche Molecular Systems,
Inc

RRID:SCR_020502 –

Other Agilent 1290 Infinity
UHPLC-system

Agilent Technologies, Inc https://www.agilent.com –

Other Agilent 2100 Bioanalyzer
system

Agilent Technologies, Inc RRID:SCR_018043 –

Other Agilent 6550 iFunnel
Q-TOF LC/MS

Agilent Technologies, Inc RRID:SCR_019433 –

Other ENCODE Stanford University RRID:SCR_015482 –

Other UCSC Genome Browser UCSC RRID:SCR_005780 –

Other TarBase DIANA Tools RRID:SCR_010841 –

Other miRecords Biolead.org RRID:SCR_013021 –

Other TargetScan Whitehead Institute for
Biomedical Research

RRID:SCR_010845 –

Other BioGRID TyersLab.com RRID:SCR_007393 –

Other Ingenuity Pathway Analysis Qiagen RRID:SCR_008653 –

Experimental study design
Study design
The study was a prospective, single-center, single-blind, randomized, two-period/crossover clinical

trial.

Study subjects
Men and women with Addison’s disease for >12 months on stable cortisol replacement (with HC

15–30 mg/day) for �3 months followed at the Center for Adrenal diseases in the Out-patient Clinic

at the Department of Endocrinology-Diabetes-Metabolism, Sahlgrenska University Hospital (tertiary

referral hospital), Gothenburg, Sweden, were eligible for inclusion. Other inclusion criteria were age

20–60 years, body mass index 20–30 kg/m2, and ability to comply with the protocol procedures.

Exclusion criteria were GC replacement therapy for indication other than Addison’s disease, any

treatment with sex hormones including contraceptive drugs, treatment with levothyroxine, renal or

hepatic failure, significant and symptomatic cardiovascular disease, diabetes mellitus, current infec-

tious disease with fever, and pregnancy or breastfeeding. Recruitment was stopped when all eligible

subjects had been asked to participate.

Power calculation was not performed because of the exploratory nature of the study. Power cal-

culations were also difficult in the context of ‘omic analysis as there may be variable effect sizes over

different ‘omic elements.

The study was approved by the Ethics Review Board of the University of Gothenburg, Sweden

(permit no. 374-13, 8 August 2013) and conducted in accordance with the Declaration of Helsinki.

Written informed consent was obtained from all subjects before participation. The study was regis-

tered at ClinicalTrials.gov with identifier NCT02152553.

Study treatment
HC infusion was prepared by adding 0.4 mL of Solu-Cortef 50 mg/mL to 999.6 mL 0.9% saline, which

resulted in 1 mg HC per 50 mL intravenous infusion. HC infusion was adjusted in accordance with

previous observations in healthy males (Kerrigan et al., 1993) and interventions in both sexes

(Løvås and Husebye, 2007; Figure 1B). The aim was to achieve a near-physiological circadian corti-

sol curve with early morning rise in serum cortisol that would peak at 7 AM and trough concentra-

tions at midnight. In the GC-withdrawal intervention, 0.9% saline infusion alone was administered
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using the same volume as during the HC infusion. Thus, a person weighing 75 kg received 2 L of

intravenous infusion over 22 hr during each intervention.

Interventions
All subjects were admitted after an overnight fast to the in-patient Endocrinology Department at the

Sahlgrenska University Hospital at 8 AM (first intervention day) and were discharged at 12 PM the

following day (second day). Subjects were randomized using a free randomization plan (generated

at http://www.randomization.com/ on 27 April 2014) before the first intervention to receive either

HC infusion or only saline infusion in a single-blind, crossover manner at least 2 weeks apart

(Figure 1B). The researcher responsible for the clinical study generated the randomization plan,

enrolled the study subjects, and assigned participants to interventions. Female subjects (when fertile)

were studied during the early follicular phase (days 5–10) of their regular cycle under both interven-

tions. Subjects were told not to take their ordinary mineralocorticoid dose on the day before each

intervention but to take their ordinary HC dose. Subjects received standard meals at fixed times dur-

ing both interventions. Their consumption of coffee or tea was recorded during the first intervention

in order to consume the same amount and at the same time points during the second intervention.

During each intervention, the subjects’ blood pressure, body temperature, and weight were mon-

itored. Because of the study design and the variations in circadian rhythm, blood sampling was col-

lected at exactly the same time before the start of intervention, at midnight (12 AM), and in the

morning of the second intervention day (7 AM). Urine was collected between midnight and morning

(overnight), and abdominal subcutaneous fat was collected in the morning of the second intervention

day immediately after blood and urine sampling. Adipose tissue was collected after local injection

with lidocaine under the umbilicus on the right side of the abdomen during saline infusion and on

the left side during HC infusion. The study was unblinded for each study subject after the completion

of all aspects of the study (the second intervention).

Replication studies
Baseline samples in subjects treated with prednisolone for rheumatoid
arthritis
This was a cross-sectional clinical study of prednisolone-induced adrenal insufficiency undertaken at

the Department of Medical Endocrinology and Metabolism, at University Hospital, Rigshospitalet,

Copenhagen, Denmark, between 2012 and 2018 (Borresen et al., 2017). In the current replication

analysis, 60 subjects were included. All subjects had rheumatoid arthritis, received long-term pred-

nisolone treatment (minimum 6 months), and treated with a current prednisolone dose of 5 mg/day.

Of the 60 subjects, 23 had an insufficient response to the Synacthen test (GC-induced adrenal insuffi-

ciency, AI group) and 37 had a normal response (normal group). The samples included in the replica-

tion analysis were collected in the morning after an approximately 48 hr pause of prednisolone

dosing (before the Synacthen test) and after overnight fasting. Plasma miRNA analysis of frozen sam-

ples was performed at Exiqon Services, Denmark.

Case–control study in subjects with or without Addison’s disease
This was an observational, cross-sectional, single-center, case–control study undertaken in our unit in

Gothenburg, Sweden, between 2005 and 2009 (Bergthorsdottir et al., 2017). In the current replica-

tion analysis, the subgroup of 20 subjects with Addison’s disease under daily replacement therapy

with oral HC � 30 mg (AD group) and their 20 healthy control subjects with no GC therapy matched

for age and gender (control group) were included. The samples included in the replication analysis

were collected in the morning between 8 AM and 10 AM after an overnight fast, and for the cases

after morning administration of their oral HC, which means a very low cortisol exposure during the

night before sample collection. Plasma miRNA analysis of frozen samples was performed at Exiqon

Services, Denmark.

Randomized, crossover study in healthy subjects
This was a randomized, double-blind study in 20 lean healthy male volunteers undertaken at the

Edinburgh Clinical Research Facility between July 2010 and April 2012. The full protocol has been

published previously (Stimson et al., 2017). Volunteers were randomized to receive either a low- or
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medium-dose insulin infusion (10 subjects in each group) and attended on three occasions after

overnight fasting. Subjects received metyrapone (to inhibit adrenal cortisol secretion) with and with-

out HC infusion (over 6.5 hr) in order to produce low, medium, or excessive GC levels (Low/Med/

ExcessGC during high insulin and low insulin cohorts, respectively). The samples included in the rep-

lication analysis were collected in the afternoon at the end of each intervention (approximately 6.5

hr after start) on three occasions (low, moderate, or excessive high GC levels). Plasma miRNA analy-

sis of frozen samples was performed at Exiqon Services, Denmark.

Generation and preparation of ‘omic data
Plasma cortisol and cortisone were analyzed using liquid chromatography-mass spectrometry (LC-

MS), and urinary-free cortisol and cortisone were analyzed using gas chromatography-mass spec-

trometry (GC-MS) at the Mass Spectrometry Core Laboratory, Centre for Cardiovascular Science,

University of Edinburgh, Edinburgh, UK. PBMCs were isolated on-site from whole blood using a gra-

dient-based separation procedure and Ficoll-Paque PREMIUM (GE Healthcare).

A microarray gene expression analysis using Affymetrix Human Gene 2.0 ST arrays in both PBMC

and adipose tissue was performed at the Array and Analysis Facility, Science for Life Laboratory at

Uppsala Biomedical Center (BMC), Sweden.

The untargeted miRNA analysis in plasma was performed at Exiqon Services, Denmark. The tar-

geted miRNA analyses in plasma (including the replication samples) were performed at Exiqon Serv-

ices, Denmark, at a later date than the untargeted analysis. The 14 miRNAs included in the analysis

based on the findings from the untargeted analysis were miR-425-3p, miR-186-5p, miR-15b-5p, miR-

95-3p, miR-16-1-3p, miR-576-5p, miR-122-5p, miR-200a-3p, miR-193b-3p, miR-424-5p, miR-574-3p,

miR-148a-3p, miR-18a-5p, and let-7g-5p.

Metabolic profiling of serum by GC-MS and LC-MS was performed at the Swedish Metabolomics

Center in Umeå, Sweden.

Preprocessing of ‘omics data sets was carried out in the following ways. PBMC and adipose tissue

transcriptomes were normalized using robust multichip average (RMA) via the R package oligo

(Carvalho and Irizarry, 2010), which corrects for background variation, quantile normalizes, and

summarizes features to gene-probe set level (Figure 3—figure supplement 2). GC-MS and LC-MS

metabolomic data sets were analyzed using the R package MetaboanalystR (Chong and Xia, 2018),

which filters variables based on ranked interquartile range, normalizes metabolites to sample

median, and log transforms the resultant intensities (Figure 3—figure supplement 3). Qlucore

Omics Explorer (version 3.3, Lund, Sweden) was used to scale and mean center miRome data. How

all these analyses were performed is described in detail in Appendix 3.

Data analysis of differential gene expression
Principal component analysis (PCA) was performed to provide further quality control and define the

relationship of variance between samples, allowing structure within the data set to be defined (Qlu-

core Omics Explorer 3.3). Quality control of transcriptomic data was performed using PCA with

cross-validation and data consistency was confirmed. No outliers were identified. Differential gene

expression was determined by a paired t-test comparing the two interventions. Network analysis of

DEGs was performed using Advaita Bio’s iPathwayGuide (https://www.advaitabio.com/ipathway-

guide); gene ontology performed using this software analysis tool implements the ‘Impact Analysis’

approach that takes into consideration the direction and type of all signals on a pathway, and the

position, role, and type of every gene (Ahsan and Drăghici, 2017).

Gene ontology, gene expression regulated by miRNA, and causal
network analysis
Gene ontologies were associated with differentially regulated gene lists (Ingenuity Pathway Analysis

[IPA], Qiagen, Redwood City, CA). miRNAs were paired with genes that were theoretically regulated

by specific miRNAs using IPA. The databases used for this mapping were TarBase (Vlachos et al.,

2015), miRecords (Xiao et al., 2009), and peer-reviewed biomedical literature, as well as predicted

miR–mRNA interactions from TargetScan (Agarwal et al., 2015).
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The Encyclopedia of DNA Elements (ENCODE) data (Rosenbloom et al., 2013) was used to map

genes in the interactome network model of GC action that had been previously shown to have dexa-

methasone dose-dependent DNA binding of NR3C1, the GC receptor gene.

Causal network analysis (CNA) allows the identification and prioritization of regulatory system ele-

ments within transcriptomic models. CNA was performed within IPA (Krämer et al., 2014). CNA

identifies upstream molecules, up to three steps distant, that potentially control the expression of

the genes in the data set (Krämer et al., 2014). A prediction of the activation state for each regula-

tory factor (master regulator), based on the direction of change, was calculated (Z-score) using the

gene expression patterns of the transcription factor and its downstream genes. An absolute Z-score

of �|1.4| and a corrected p-value<0.05 (Fisher’s exact test) were used to compare the regulators

identified.

Network model construction and comparison
Lists of DEGs were used to generate network models of protein interactions in Cytoscape 2.8.3

(Smoot et al., 2011) by inference using the BioGRID (3.4.137) database (Chatr-Aryamontri et al.,

2015).

The Cytoscape plug-in Moduland (Kovács et al., 2010; Szalay-Beko et al., 2012) was applied to

identify overlapping modules, an approach that models complex modular architecture within the

human interactome (Chang et al., 2013) by accounting for the non-discrete nature of network mod-

ules (Kovács et al., 2010). Modular hierarchy was determined using a centrality score and further

assessed using hierarchical network layouts (summarizing the underlying network topology). The

central module cores (metanode of the 10 most central elements) was determined and used as a

basis to integrate the miRNA and metabolomic data. Transcriptomic and metabolomic data were

combined to form a single network model using the Metscape (Karnovsky et al., 2012) plug-in for

Cytoscape. Differential ‘omic data was compared and clustered in a correlation matrix using the

corrplot plug-in (Murdoch and Chow, 1996) for R (R Development Core Team, 2020).

Similarity network fusion
Subject-level similarity network fusion (SNF) (Wang et al., 2014) was performed on ‘omic data as a

test for similarity. To perform SNF, the SNFTool R-package was used (Wang et al., 2014). First,

Euclidean distances were calculated between gene probe sets, and these were then combined using

a nonlinear nearest neighbor method over 20 iterations. The fused data was subjected to spectral

clustering and presented as a heat map.

Hypernetworks
We modeled the dynamics of potentially relevant PBMC and adipose tissue transcripts, miRNAs,

and metabolites by assessing their activity as measured by the number of shared correlations against

the background of all ‘omic elements called present after data processing.

A matrix (m rows and n columns) was generated of correlation distances (r-values) between the

significantly differentially expressed multi-omic data (forming m rows) and all ‘omic data called pres-

ent (forming n columns). The r-values were normally distributed.

A similarity matrix was defined by dichotomizing the correlation distance based on an r-value

threshold of � j1:5jsd (if sd of jrj � 1:5 , then value = 1; if sd of jrj<1:5, then value = 0); the new

matrix was termed M and represents the incidence matrix of the hypernetwork. An element of M,

mij, where i and j are elements of m and n respectively, is defined as follows:

mij ¼
1; &jrj � 1:5 sd

0; &jrj<1:5 sd

�

To generate the hypernetwork, we multiplied M by the transpose of M, MT (Johnson, 2011;

Ha et al., 2020), the elements of the resulting square matrix (sM, an m�m matrix) are the number of

correlations shared by each pair of interacting ‘omic elements; this is also the number of edges con-

necting each pair of nodes. sM was clustered using hierarchical clustering to identify the group of

highly connected ‘omic elements.
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The dichotomization parameters were shown to correspond to maximum signal window in the

data using chi-squared distance metric (Figure 3—figure supplement 4). The chi-squared distance

(X2) was defined as

X
2 ¼

X

N

i¼1

mi�með Þ2

me

where N is the order of the matrix sM, i is the i0th element, mi, of sM, and me is the expected value of

an element of sM. The expected value of an element of sM was calculated at any chosen dichotomi-

zation threshold by dividing the total number of correlations by the order of the matrix.

Differential expression analysis was performed to refine genes for hypernetwork analysis. This

approach serves to identify potentially relevant ‘omic elements. FDR-corrected p-values for all ele-

ments selected for hypernetwork integration are presented in Supplementary file 1g. We identified

4426 DEGs in PBMCs, 3520 adipose tissue DEGs, 38 metabolites (17 LC-MS, 21 GC-MS), and 12

miRNAs below an uncorrected p-value of 0.05. Data was analyzed across nine matching samples

(normalized log2 score was inverted between GC exposure and GC withdrawal, i.e., +1 and –1,

respectively).

A hypernetwork is inherently robust as individual correlations are not considered significant;

rather hypernetworks model higher order interactions between nodes (‘omic elements) based on

large numbers of shared edges (correlations). This approach only highlights ‘omic elements that are

supported by the majority of the data and, as such, is robust to a wide range of r-value thresholds as

well as small sample sizes.

Further, robustness of the hypernetwork observations was determined using a dissimilarity matrix

derived from the original similarity matrix (i.e., the complement of the similarity matrix). The ele-

ments assessed as dissimilar were subtracted from those defined as similar. Elements within the

M �MT output of the dissimilarity analysis that were also similar were eliminated from further pre-

dictive analysis.

The BORUTA R package (Kursa, 2014; Kursa and Rudnicki, 2010) was used for feature selection

of transcriptomic data with predictive value. Random Forest (Breiman, 2001) was implemented in R

using 5000 trees to determine the predictive value expressed as the area under the curve of the

receiver operating characteristic.

Statistical analyses
Unsupervised analysis of metabolomic and transcriptomic data to assess how GC exposure grouped

the study subjects was performed using Orthogonal Projections to Latent Structures Discriminant

Analysis in SIMCA 13.0 (Sartorius) or PLS-DA MixOmics plug-in (Rohart et al., 2017) for R.

For quantitative variables with normal distribution, we performed independent samples t-test.

Mann–Whitney U-test was performed for non-normally distributed variables. Chi-squared test or

Fisher’s exact test, as appropriate, was used for categorical variables. Wilcoxon rank test was used

for detecting differences between the two interventions in quantitative non-normally distributed vari-

ables. All statistical tests were two-sided, and p<0.05 was considered to be statistically significant.

Further robustness for ‘omic data analysis was provided by considering the findings as clusters of co-

expressed findings (Cleary et al., 2017). Statistical analyses were performed using SPSS (Statistical

Package for Social Science) program, version 24 software for Mac.

Unless otherwise stated, all other statistical analyses were performed in R version 4.0.2 for Win-

dows. Figures were plotted using ggplot2 (Wickham, 2016), gplots (Warnes et al., 2020), ggpubr

(Kassambara, 2020), and reshape2 (Wickham, 2007).
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Carlet M, Janjetovic K, Rainer J, Schmidt S, Panzer-Grümayer R, Mann G, Prelog M, Meister B, Ploner C, Kofler
R. 2010. Expression, regulation and function of phosphofructo-kinase/fructose-biphosphatases (PFKFBs) in
glucocorticoid-induced apoptosis of acute lymphoblastic leukemia cells. BMC Cancer 10:638. DOI: https://doi.
org/10.1186/1471-2407-10-638, PMID: 21092265

Carthew RW, Sontheimer EJ. 2009. Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655.
DOI: https://doi.org/10.1016/j.cell.2009.01.035, PMID: 19239886

Carvalho BS, Irizarry RA. 2010. A framework for oligonucleotide microarray preprocessing. Bioinformatics 26:
2363–2367. DOI: https://doi.org/10.1093/bioinformatics/btq431, PMID: 20688976

Casper J, Zweig AS, Villarreal C, Tyner C, Speir ML, Rosenbloom KR, Raney BJ, Lee CM, Lee BT, Karolchik D,
Hinrichs AS, Haeussler M, Guruvadoo L, Navarro Gonzalez J, Gibson D, Fiddes IT, Eisenhart C, Diekhans M,
Clawson H, Barber GP, et al. 2018. The UCSC genome browser database: 2018 update. Nucleic Acids Research
46:D762–D769. DOI: https://doi.org/10.1093/nar/gkx1020, PMID: 29106570

Chang X, Xu T, Li Y, Wang K. 2013. Dynamic modular architecture of protein-protein interaction networks
beyond the dichotomy of ’date’ and ’party’ hubs. Scientific Reports 3:1691. DOI: https://doi.org/10.1038/
srep01691, PMID: 23603706

Chatr-Aryamontri A, Breitkreutz BJ, Oughtred R, Boucher L, Heinicke S, Chen D, Stark C, Breitkreutz A, Kolas N,
O’Donnell L, Reguly T, Nixon J, Ramage L, Winter A, Sellam A, Chang C, Hirschman J, Theesfeld C, Rust J,
Livstone MS, et al. 2015. The BioGRID interaction database: 2015 update. Nucleic Acids Research 43:D470–
D478. DOI: https://doi.org/10.1093/nar/gku1204, PMID: 25428363

Cheng C, Andrews E, Yan KK, Ung M, Wang D, Gerstein M. 2015. An approach for determining and measuring
network hierarchy applied to comparing the phosphorylome and the regulome. Genome Biology 16:63.
DOI: https://doi.org/10.1186/s13059-015-0624-2, PMID: 25880651

Chong J, Xia J. 2018. MetaboAnalystR: an R package for flexible and reproducible analysis of metabolomics
data. Bioinformatics 34:4313–4314. DOI: https://doi.org/10.1093/bioinformatics/bty528, PMID: 29955821

Clayton SA, Jones SW, Kurowska-Stolarska M, Clark AR. 2018. The role of microRNAs in glucocorticoid action.
Journal of Biological Chemistry 293:1865–1874. DOI: https://doi.org/10.1074/jbc.R117.000366, PMID: 29301
941

Cleary B, Cong L, Cheung A, Lander ES, Regev A. 2017. Efficient generation of transcriptomic profiles by
random composite measurements. Cell 171:1424–1436. DOI: https://doi.org/10.1016/j.cell.2017.10.023,
PMID: 29153835

Coulouarn C, Factor VM, Andersen JB, Durkin ME, Thorgeirsson SS. 2009. Loss of miR-122 expression in liver
Cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene 28:
3526–3536. DOI: https://doi.org/10.1038/onc.2009.211, PMID: 19617899

Dahlin A, Sordillo JE, McGeachie M, Kelly RS, Tantisira KG, Lutz SM, Lasky-Su J, Wu AC. 2020. Genome-wide
interaction study reveals age-dependent determinants of responsiveness to inhaled corticosteroids in
individuals with asthma. PLOS ONE 15:e0229241. DOI: https://doi.org/10.1371/journal.pone.0229241,
PMID: 32119686

Davis CA, Hitz BC, Sloan CA, Chan ET, Davidson JM, Gabdank I, Hilton JA, Jain K, Baymuradov UK, Narayanan
AK, Onate KC, Graham K, Miyasato SR, Dreszer TR, Strattan JS, Jolanki O, Tanaka FY, Cherry JM. 2018. The
encyclopedia of DNA elements (ENCODE): data portal update. Nucleic Acids Research 46:D794–D801.
DOI: https://doi.org/10.1093/nar/gkx1081, PMID: 29126249

Dogan T, Gnad F, Chan J, Phu L, Young A, Chen MJ, Doll S, Stokes MP, Belvin M, Friedman LS, Kirkpatrick DS,
Hoeflich KP, Hatzivassiliou G. 2017. Role of the E3 ubiquitin ligase RNF157 as a novel downstream effector
linking PI3K and MAPK signaling pathways to the cell cycle. Journal of Biological Chemistry 292:14311–14324.
DOI: https://doi.org/10.1074/jbc.M117.792754, PMID: 28655764

Dong L, Hou X, Liu F, Tao H, Zhang Y, Zhao H, Song G. 2019. Regulation of insulin resistance by targeting the
insulin-like growth factor 1 receptor with microRNA-122-5p in hepatic cells. Cell Biology International 43:553–
564. DOI: https://doi.org/10.1002/cbin.11129, PMID: 30958584

Fardet L, Petersen I, Nazareth I. 2012. Risk of cardiovascular events in people prescribed glucocorticoids with
iatrogenic Cushing’s syndrome: cohort study. BMJ 345:e4928. DOI: https://doi.org/10.1136/bmj.e4928,
PMID: 22846415

Gan EH, MacArthur K, Mitchell AL, Hughes BA, Perros P, Ball SG, James RA, Quinton R, Chen S, Furmaniak J,
Arlt W, Pearce SH. 2014. Residual adrenal function in autoimmune Addison’s disease: improvement after
tetracosactide (ACTH1-24) treatment. The Journal of Clinical Endocrinology & Metabolism 99:111–118.
DOI: https://doi.org/10.1210/jc.2013-2449, PMID: 24170102

GTEx Consortium. 2013. The Genotype-Tissue expression (GTEx) project. Nature Genetics 45:580–585.
DOI: https://doi.org/10.1038/ng.2653, PMID: 23715323

GTEx Consortium. 2015. Human genomics. the Genotype-Tissue expression (GTEx) pilot analysis: multitissue
gene regulation in humans. Science 348:648–660. DOI: https://doi.org/10.1126/science.1262110, PMID: 25
954001

Chantzichristos et al. eLife 2021;10:e62236. DOI: https://doi.org/10.7554/eLife.62236 26 of 39

Research article Computational and Systems Biology Medicine

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1073/pnas.220392197
https://doi.org/10.1073/pnas.220392197
http://www.ncbi.nlm.nih.gov/pubmed/11027309
https://doi.org/10.1038/nri.2017.1
http://www.ncbi.nlm.nih.gov/pubmed/28192415
https://doi.org/10.1186/1471-2407-10-638
https://doi.org/10.1186/1471-2407-10-638
http://www.ncbi.nlm.nih.gov/pubmed/21092265
https://doi.org/10.1016/j.cell.2009.01.035
http://www.ncbi.nlm.nih.gov/pubmed/19239886
https://doi.org/10.1093/bioinformatics/btq431
http://www.ncbi.nlm.nih.gov/pubmed/20688976
https://doi.org/10.1093/nar/gkx1020
http://www.ncbi.nlm.nih.gov/pubmed/29106570
https://doi.org/10.1038/srep01691
https://doi.org/10.1038/srep01691
http://www.ncbi.nlm.nih.gov/pubmed/23603706
https://doi.org/10.1093/nar/gku1204
http://www.ncbi.nlm.nih.gov/pubmed/25428363
https://doi.org/10.1186/s13059-015-0624-2
http://www.ncbi.nlm.nih.gov/pubmed/25880651
https://doi.org/10.1093/bioinformatics/bty528
http://www.ncbi.nlm.nih.gov/pubmed/29955821
https://doi.org/10.1074/jbc.R117.000366
http://www.ncbi.nlm.nih.gov/pubmed/29301941
http://www.ncbi.nlm.nih.gov/pubmed/29301941
https://doi.org/10.1016/j.cell.2017.10.023
http://www.ncbi.nlm.nih.gov/pubmed/29153835
https://doi.org/10.1038/onc.2009.211
http://www.ncbi.nlm.nih.gov/pubmed/19617899
https://doi.org/10.1371/journal.pone.0229241
http://www.ncbi.nlm.nih.gov/pubmed/32119686
https://doi.org/10.1093/nar/gkx1081
http://www.ncbi.nlm.nih.gov/pubmed/29126249
https://doi.org/10.1074/jbc.M117.792754
http://www.ncbi.nlm.nih.gov/pubmed/28655764
https://doi.org/10.1002/cbin.11129
http://www.ncbi.nlm.nih.gov/pubmed/30958584
https://doi.org/10.1136/bmj.e4928
http://www.ncbi.nlm.nih.gov/pubmed/22846415
https://doi.org/10.1210/jc.2013-2449
http://www.ncbi.nlm.nih.gov/pubmed/24170102
https://doi.org/10.1038/ng.2653
http://www.ncbi.nlm.nih.gov/pubmed/23715323
https://doi.org/10.1126/science.1262110
http://www.ncbi.nlm.nih.gov/pubmed/25954001
http://www.ncbi.nlm.nih.gov/pubmed/25954001
https://doi.org/10.7554/eLife.62236


Guay C, Roggli E, Nesca V, Jacovetti C, Regazzi R. 2011. Diabetes mellitus, a microRNA-related disease?
Translational Research 157:253–264. DOI: https://doi.org/10.1016/j.trsl.2011.01.009

Gupta V, Galante A, Soteropoulos P, Guo S, Wagner BJ. 2005. Global gene profiling reveals novel
glucocorticoid induced changes in gene expression of human Lens epithelial cells. Molecular Vision 11:1018–
1040. PMID: 16319822

Ha D, Dai A, Lee QV. 2020. Hyper networks. arXiv. https://arxiv.org/abs/1609.09106.
Hackett RA, Steptoe A, Kumari M. 2014. Association of diurnal patterns in salivary cortisol with type 2 diabetes
in the whitehall II study. The Journal of Clinical Endocrinology & Metabolism 99:4625–4631. DOI: https://doi.
org/10.1210/jc.2014-2459, PMID: 25215558

Hess AL, Larsen LH, Udesen PB, Sanz Y, Larsen TM, Dalgaard LT. 2020. Levels of circulating miR-122 are
associated with weight loss and metabolic syndrome. Obesity 28:493–501. DOI: https://doi.org/10.1002/oby.
22704, PMID: 32090516

Huang S, Chaudhary K, Garmire LX. 2017. More is better: recent progress in Multi-Omics data integration
methods. Frontiers in Genetics 8:84. DOI: https://doi.org/10.3389/fgene.2017.00084, PMID: 28670325

Ideker T, Dutkowski J, Hood L. 2011. Boosting signal-to-noise in complex biology: prior knowledge is power.
Cell 144:860–863. DOI: https://doi.org/10.1016/j.cell.2011.03.007, PMID: 21414478

Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP. 2003. Exploration,
normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264.
DOI: https://doi.org/10.1093/biostatistics/4.2.249, PMID: 12925520

Jewell CM, Scoltock AB, Hamel BL, Yudt MR, Cidlowski JA. 2012. Complex human glucocorticoid receptor dim
mutations define glucocorticoid induced apoptotic resistance in bone cells. Molecular Endocrinology 26:244–
256. DOI: https://doi.org/10.1210/me.2011-1116, PMID: 22174376

Jiya A, Trygg J, Gullberg J, Johansson AI, Jonsson P, Antti H, Marklund SL, Moritz T. 2005. Extraction and GC/
MS analysis of the human blood plasma metabolome. Analytical Chemistry 77:8086–8094. DOI: https://doi.org/
10.1021/ac051211v, PMID: 16351159

Johannsson G, Falorni A, Skrtic S, Lennernäs H, Quinkler M, Monson JP, Stewart PM. 2015. Adrenal insufficiency:
review of clinical outcomes with current glucocorticoid replacement therapy. Clinical Endocrinology 82:2–11.
DOI: https://doi.org/10.1111/cen.12603, PMID: 25187037

Johnson J. 2011. Hypernetworks in the Science of Complex Systems. Imperial College Press. DOI: https://doi.
org/10.1142/9781860949739_0006

Jonsson P, Johansson AI, Gullberg J, Trygg J, Jiya A, Grung B, Marklund S, Sjöström M, Antti H, Moritz T. 2005.
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Appendix 1

Differentially regulated genes, miRNAs, and metabolites
A whole-genome transcriptomics analysis was performed separately from mRNA extracted from (a)

PBMCs and (b) abdominal subcutaneous fat both collected at 7 AM. The RMA algorithm was used

for background correction and quantile normalization (Irizarry et al., 2003). Gene-level summariza-

tion of exon-level data was conducted using the Affymetrix Human Gene 2.0 ST annotation. Process-

ing was conducted using the R-packages ‘oligo’ and ‘Limma’. Data homogeneity was assessed using

PCA (Qlucore Omics Explorer and limma) with cross-validation. No outliers were identified. Differen-

tial gene expression was determined by linear models using the lmFit function in limma and by

group analysis of variance (ANOVA). Both p-values for group ANOVA and FDR-modified p-values

for linear models (Benjamini–Hochberg method [Benjamini and Hochberg, 1995]) were reported.

By comparing GC exposure to GC withdrawal, 289 DEG probe sets were identified in PBMCs and

141 in adipose tissue (each FDR-modified p<0.05), consisting of 234 and 111 unique known genes,

respectively (Supplementary file 1a). Five of the DEGs occurred in both PBMC and adipose tissue

transcriptomes (FOXO1, KLF9, PER1, TXNIP, and ZBTB16), of which four had the same direction of

expression (Supplementary file 1a).

In total, 9 out of 252 analyzed plasma miRNAs were differentially expressed at 7 AM between the

two interventions (p<0.05, paired t-test and Wilcoxon signed-rank test) (Supplementary file 1b). By

mapping to databases of predicted interactions between miRNA and gene transcripts (Ingenuity

Pathway Analysis), these nine miRNAs were identified as possible regulators of 46 of the 234 unique

DEGs from the PBMC transcriptome analysis (all known to be GC responsive) (Supplementary file

1b).

For all metabolomic data, Metaboanalyst (via R package MetaboanalystR) was used to filter varia-

bles based on ranked interquartile range, normalize metabolites to sample median, and log trans-

form the resultant intensities. Comparison of 164 metabolite fragments (82 from GC-MS and 82

from LC-MS) between the two interventions at 7 AM revealed a distinction between GC exposure

and GC withdrawal. A paired t-test analysis identified 21 metabolite fragments from the GC-MS and

17 metabolite fragments from the LC-MS analysis that were significantly different (p<0.05)

(Supplementary file 1c, d).

The ‘omic data sets from PBMCs, plasma miRNA, and serum metabolomics were examined for

inter-subject variability. SNF was used to show that the integrated unsupervised ‘omic data sets

were fundamentally homogenous across the study subjects (Appendix 1—figure 1A). Some evi-

dence of grouping between study subjects related to specific pair-wise comparison of ‘omic data

sets was observed (Appendix 1—figure 1B).
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Appendix 1—figure 1. Integration of unsupervised peripheral blood mononuclear cell (PBMC) tran-

scriptomic, metabolomic, and miRNAomic data in subjects between glucocorticoid (GC) exposure

and GC withdrawal at 7 AM using similarity network fusion. Integration of all circulating ‘omic data

(A) simultaneously and (B) stepwise. Each matrix represents a subject-by-subject comparison using

similarity network fusion of change in signal of ‘omic data between GC exposure and GC

withdrawal. The Euclidean distances between subjects based on their relative positions as

determined by isomap dimensional scaling were used as a basis to determine similarity. Colors

denote normalized continuous similarity score; red: dissimilar; yellow: similar. The complete data set

for each specific ‘omic layer of data was used, transcriptome n = 53,617, GC-MS n = 82, LC-MS

Appendix 1—figure 1 continued on next page

Chantzichristos et al. eLife 2021;10:e62236. DOI: https://doi.org/10.7554/eLife.62236 31 of 39

Research article Computational and Systems Biology Medicine

https://doi.org/10.7554/eLife.62236


Appendix 1—figure 1 continued

n = 82, miRNA n = 251. GC-MS, gas chromatography-mass spectrometry; LC-MS: liquid

chromatography-mass spectrometry; miRNA, microRNA; S, serum.
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Appendix 2

Gene ontology and interactome network modelling
Biological pathways associated with the differential gene expression observed between the two

interventions in PBMCs collected at 7 AM were assessed by gene ontology (Appendix 2—figure 1A

and Supplementary file 1h). A range of classically GC-responsive pathways were over-represented

during GC exposure (–log p-value range, 1.3–3.6), including GC receptor signaling and NF-kB sig-

naling, along with a range of metabolism-linked pathways such as sphingosine-1-phosphate signal-

ing, insulin growth factor-1 signaling, and 3-phosphoinositide biosynthesis.

We generated an interactome network model (with 2467 nodes [proteins/genes]) inferred from

the 234 unique known genes with differential expression between GC exposure and GC withdrawal

and all known protein:protein interactions (BioGRID database; Rosenbloom et al., 2013; (Appen-

dix 2—figure 1B)). Using this method, the connectivity between proteins with differential gene

expression was maximized by the addition of connecting elements, and the model reflects all possi-

ble known interactions influenced by the observed differential gene expression. Hierarchy of network

modules is known to be related to functional importance (Szalay-Beko et al., 2012; Žitnik et al.,

2013; Cheng et al., 2015). The related overlapping modules of interacting proteins (n = 64) were

then defined within the network model and ranked by their network centrality score (Appendix 2—

figure 1C). The differential gene expression within the central core (10 genes/proteins) of each of

the top 25 network modules was visualized as a transcriptome grid diagram (Appendix 2—figure

1D) and used as the basis for further analysis. The central genes of each network module were all

shown to have relatively increased connectivity compared to the whole human interactome

(Supplementary file 1i), suggesting functional relevance and confirming network robustness.

The regulation of gene expression within the transcriptome network model was assessed by

defining causal relationships in the known literature up to three links away from each network ele-

ment with differential expression (Supplementary file 1j). The regulatory action of the GC receptor

gene, NR3C1, was confirmed in relation to the DEGs (p=6.98 � 10–4) (Supplementary file 1j). Genes

identified in this way were mapped to the transcriptome grid diagram and shown to cluster within

particular network modules (Appendix 2—figure 1D). In addition, a range of DEGs (FKBP5,

ZBTB16, IGF1R, PER1, TSC22D3, and NCOR2) were shown to have evidence of NR3C1 binding to

associated regulatory DNA elements. This data was derived from the ENCODE database using a

range of cell lines in response to a dexamethasone dose–response (Davis et al., 2018;

Casper et al., 2018).

Within the human interactome model (BioGrid 3.5.178, n = 23,273), the GC-regulated genes

were identified in both tissues (3.9 � 10–8 < p<0.05) and had greater network connectivity than all

genes that were not differentially expressed (4.4-fold increase for PBMCs [n = 4,426,426] and 3.7-

fold increase for adipose tissue [n = 3,520,520], both p<1 � 10–15; Wilcoxon rank-sum test). The

enrichment of the connectivity of DEGs demonstrates their functional significance. We interpreted

the association between the network properties of these genes and GC action as being indicative of

a functional biological relationship. There was very limited overlap of the GC-responsive transcrip-

tome between PBMC and adipose tissue samples (five genes highlighted in Appendix 1).

The gene sets identified as being differentially expressed in response to GC treatment in PBMCs

and adipose tissue were shown to be still enriched for connectivity in the human interactome (Bio-

Grid 3.5.178) when compared to 10,000 permutations of the same number of randomly selected

genes (3.3-fold increase for PBMCs and 3.2-fold increase for adipose tissue, both comparisons

p<1 � 10–15, Wilcoxon rank-sum test). This observation showed that these genes have a higher con-

nectivity in the human interactome than expected by chance.

Differential expression in both tissues was indirectly associated with TRIM63-, CALCR-, RHOA-,

APOA2-, and ALPL-mediated response to GCs (shared gray circles in Appendix 2—figure 2A, B). In

this way, DEGs in both tissues were associated with a coherent network related to the gene ontol-

ogy term ‘response to GCs’ (Appendix 2—figure 1A, B), indicating that different genes are affect-

ing similar pathways in response to GCs. These observations highlight that, while different genes

may be involved in the transcriptomic response to GCs in different tissues, there are common path-

ways through which GC action is manifested. Further evidence for this point was obtained from the

overlap of biological pathways associated with GC exposure in PBMCs and adipose tissue
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transcriptomes (Appendix 2—figure 3A, B). An enriched overlap of 32 biological pathways was

identified (2.1-fold enrichment, hypergeometric p<1 � 10–5).
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Appendix 2—figure 1. Gene ontology and interactome network model of differential gene expres-

sion in peripheral blood mononuclear cells (PBMCs) between glucocorticoid (GC) exposure and GC

withdrawal. Differentially expressed transcriptomic data in PBMCs was used to determine (A) the

canonical pathways involved and (B) infer an interactome network model using BioGRID database,

consisting of 2467 nodes and 64 modules. (C) Modules of genes (octagons) within the interactome

network model were determined using the Moduland algorithm and ranked by a hierarchy based on

network centrality; central modules are functionally relevant as they can influence the activity of a

wider proportion of the network. The modules are arranged (left to right) in columns of the top 10

genes in each ranked by network centrality (top to bottom). (D) Gene expression marked within the

network model (red: up; green: down in hydrocortisone treatment). Causal elements (known

literature associations implying regulatory function) are marked in blue.
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Appendix 2—figure 2. Correlated networks related to glucocorticoid (GC) action in the peripheral

blood mononuclear cell (PBMC) and adipose tissue transcriptome. The analyses were performed to

identify similarities and differences in transcriptome (gene expression) associated to GC exposure in

two different tissues. Network associations of GC response to genes with differential expression

between GC exposure and GC withdrawal in (A) PBMC transcriptome and (B) adipose tissue

transcriptome. Gray circles represent genes involved in response to GCs that are not differentially

expressed. Sixteen genes up-regulated and four down-regulated in PBMCs. Thirteen genes up-

regulated and eight down-regulated in adipose tissue.
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Appendix 2—figure 3. Gene Ontology related to glucocorticoid (GC) action in the peripheral blood

mononuclear cell (PBMC) and adipose tissue transcriptome. (A) Numeric summary of biological

pathways (Gene Ontology) associated with differential gene expression between GC exposure and

GC withdrawal in the PBMC and adipose tissue transcriptomes. (B) Biological pathways (Gene

Ontology) associated with differential gene expression in both PBMCs and adipose tissue. Data

demonstrate that while different genes may be involved in the transcriptomic response to GCs in

the two independent tissues, there are common pathways through which GC action is manifested.
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Appendix 3

Supplementary materials and methods
Plasma cortisol and cortisone

Plasma cortisol and cortisone were analyzed using LC-MS (ABSciex Qtrap 5500 with Waters Acquity

UPLC with ACE Excel C18-AR 2.1 � 150 mm column), and urinary-free cortisol and cortisone were

analyzed using GC-MS (Thermo TSQ Quantum LC with Trace GC Ultra with Agilent DB17MS 30

m � 0.25 mm � 0.25 mm column) at the Mass Spectrometry Core Laboratory, Centre for Cardiovas-

cular Science, University of Edinburgh, Edinburgh, UK.

Isolation of PBMCs

PBMCs were isolated on-site from whole blood using a gradient-based separation procedure and

Ficoll-Paque PREMIUM (GE Healthcare). Purified PBMCs were lysed using QIAzol Lysis Buffer (Qia-

gen, Hilden, Germany) on a QIAshredder column (Qiagen). The lysate was subsequently frozen and

stored at –70˚C. Samples were eluted in RNAse-free water. RNA concentration was measured spec-

trophotometrically, and the A260/A280 ratio was 1.97–2.05.

Gene expression in PBMCs and adipose tissue

Microarray gene expression analysis in both PBMCs and adipose tissue was performed at the Array

and Analysis Facility, Science for Life Laboratory at Uppsala Biomedical Center (BMC), Sweden. The

platforms used for molecular profiling were Affymetrix Human Exon 1.0 ST array for PBMCs and 1.1

ST array for adipose tissue. RNA quality was evaluated using the Agilent 2100 Bioanalyzer system

(Agilent Technologies, Inc, Palo Alto, CA). Total RNA (150 ng from each PBMC sample and 10 ng

from each adipose tissue sample) were used to generate amplified and biotinylated sense-strand

cDNA from the entire expressed genome according to the GeneChip WT PLUS Reagent Kit User

Manual (P/N 703174 Rev. 1, Affymetrix Inc, Santa Clara, CA). GeneChip ST Arrays (GeneChip Human

Gene 2.0 ST Array) were hybridized for 16 hr in a 45˚C incubator and rotated at 60 rpm. According

to the GeneChip Expression Wash, Stain and Scan Manual (P/N 702731 Rev. 3, Affymetrix Inc), the

arrays were then washed and stained using the GeneChip Fluidics Station 450 and finally scanned

using the GeneChip Scanner 3000 7G.

miRNA analyses

The untargeted miRNA analyses in plasma were performed at Exiqon Services, Denmark. Total RNA

was extracted from serum using the miRCURY RNA Isolation Kit-Biofluids (Exiqon, Vedbaek, Den-

mark). RNA (10 mL) was reverse transcribed in 50 mL reactions using the miRCURY LNA Universal RT

microRNA PCR, Polyadenylation, and cDNA Synthesis Kit (Exiqon). cDNA was diluted 50� and

assayed in 10 mL PCR reactions according to the protocol for miRCURY LNA Universal RT microRNA

PCR; each miRNA was assayed once by qPCR on the microRNA Ready-to-Use PCR, Human Panel I

using ExiLENT SYBR Green master mix. Negative controls excluding template from the reverse tran-

scription reaction were treated and profiled like the samples. The amplification was performed in a

LightCycler 480 Real-Time PCR System (Roche) in 384-well plates. The amplification curves were ana-

lyzed using the Roche LC software, both for determination of Cq (by the second derivative method)

and melting-curve analysis.

The targeted miRNA analyses in plasma (including the replication samples) were performed at

Exiqon Services, Denmark, at a later date than the untargeted analysis. Total RNA was extracted

from the samples using miRCURY RNA Isolation Kit-Biofluids; high-throughput bead-based protocol

v.1 (Exiqon, Vedbaek, Denmark) in an automated 96-well format. RNA 2 mL was reverse transcribed

in 10 mL reactions using the miRCURY LNA Universal RT miRNA PCR Polyadenylation and cDNA Syn-

thesis Kit (Exiqon). cDNA was diluted 50� and assayed in 10 mL PCR reactions according to the pro-

tocol for miRCURY LNA Universal RT miRNA PCR; each miRNA was assayed once by qPCR on the

mRNA Ready-to-Use PCR Pick and Mix using ExiLENT SYBR Green master mix. The rest of this anal-

ysis was identical with that described above for the untargeted plasma miRNA analysis.
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For the miRNA analysis in plasma, the amplification efficiency was calculated using algorithms

similar to the LinReg software. All assays were inspected for distinct melting curves and the melting

temperature (Tm) was checked to be within known specifications for the assay. Furthermore, assays

must be detected with 5 Cq less than the negative control, and with Cq < 37 to be included in the

data analysis. Data that did not pass these criteria was omitted from any further analysis. Cq was cal-

culated as the second derivative. Using NormFinder, the best normalizer was found to be the aver-

age of assays detected in all samples. All data was normalized to the average of assays detected in

all samples (average-assay Cq).

Metabolic profiling of serum by GC-MS and LC-MS

Metabolic profiling of serum by GC-MS and LC-MS was performed at the Swedish Metabolomics

Center in Umeå, Sweden.

Solvents: Methanol HPLC grade was obtained from Fischer Scientific (Waltham, MA), chloroform

Suprasolv for GC from Merck (Darmstadt, Germany), acetonitrile HPLC grade from Fischer Scientific,

2-propanol HPLC grade from VWR (Radnor, PA), and H2O from Milli-Q (Merck).

Reference and tuning standards: Purine 4 mmol/L, HP-0921 [hexakis (1H,1H,3H-tetrafluoropro-

poxy)phosphazene] 1 mmol/L, Calibrant, ESI-TOF, ESI-L Low Concentration Tuning Mix, and HP-0321

(hexamethoxyphosphazene) 0.1 mmol/L were obtained from Agilent Technologies (Santa Clara, CA).

Stable isotope internal standards: LC-MS internal standards: 13C9-phenylalanine, 13C3-caffeine,

D4-cholic acid, D8-arachidonic acid, and 13C9-caffeic acid were obtained from Sigma (St. Louis,

MO). GC-MS internal standards: L-proline-13C5, alpha-ketoglutarate-13C4, myristic acid-13C3, and

cholesterol-D7 were obtained from Cil (Andover, MA); and succinic acid-D4, salicylic acid-D6, L-glu-

tamic acid-13C5,15N, putrescine-D4, hexadecanoic acid-13C4, D-glucose-13C6, and D-sucrose-13C12

were obtained from Sigma.

Sample preparation was performed as previously described (Alwashih et al., 2017a). A designed

randomized run order was made in order to minimize systematic variations within individuals and

between time points and treatments. The samples were analyzed according to the designed run

order on both GC-MS and LC-MS; GC-MS analysis, derivatization, and GC-MS analysis were per-

formed as described previously (Jiya et al., 2005).

For the GC-MS data in serum, all non-processed MS-files from the metabolic analysis were

exported from the ChromaTOF software in NetCDF format to MATLAB R2016a (Mathworks, Natick,

MA), where all data pre-treatment procedures, such as baseline correction, chromatogram align-

ment, data compression, and Multivariate Curve Resolution, were performed (Jonsson et al., 2005).

The extracted mass spectra were identified by comparisons of their retention index and mass spec-

tra with libraries of retention time indices and mass spectra (Schauer et al., 2005). Mass spectra and

retention index comparison was performed using NIST MS 2.0 software. Annotation of mass spectra

was based on reverse and forward searches in the library. Masses and ratio between masses indica-

tive for a derivatized metabolite were especially notified. If the mass spectrum according to SMC’s

experience was with highest probability indicative of a metabolite and the retention index between

the sample and library for the suggested metabolite was ±5 (usually < 3), the deconvoluted ‘peak’

was annotated as an identification of a metabolite.

For the metabolic profiling of serum by LC-MS, the sample was resuspended in 10 + 10 mL meth-

anol and water. The set of samples was first analyzed in positive mode. After all samples had been

analyzed, the instrument was switched to negative mode and a second injection of each sample was

performed.

The chromatographic separation was performed on an Agilent 1290 Infinity UHPLC-system (Agi-

lent Technologies, Waldbronn, Germany). A sample (2 mL) was injected onto an Acquity UPLC HSS

T3, 2.1 � 50 mm, 1.8 mm C18 column in combination with a 2.1 mm � 5 mm, 1.8 mm VanGuard pre-

column (Waters Corporation, Milford, MA) held at 40˚C. The gradient elution buffers were (i) H2O,

0.1% formic acid and (ii) 75/25 acetonitrile:2-propanol, 0.1% formic acid with flow rate set at 0.5 mL/

min. The compounds were eluted with a linear gradient consisting of 0.1–10% B over 2 min, B was

increased to 99% over 5 min and held at 99% for 2 min; B was decreased to 0.1% for 0.3 min and

the flow rate was increased to 0.8 mL/min for 0.5 min; and these conditions were held for 0.9 min,

after which the flow rate was reduced to 0.5 mL/min for 0.1 min before the next injection.

Chantzichristos et al. eLife 2021;10:e62236. DOI: https://doi.org/10.7554/eLife.62236 38 of 39

Research article Computational and Systems Biology Medicine

https://doi.org/10.7554/eLife.62236


The compounds were detected with an Agilent 6550 Q-TOF mass spectrometer equipped with a

jet stream electrospray ion source operating in positive or negative ion mode. The settings were

kept identical between the modes with the exception of the capillary voltage. A reference interface

was connected for accurate mass measurements: the reference ions purine (4 mmol/L) and HP-0921

(hexakis(1H,1H,3H-tetrafluoropropoxy)phosphazene) (1 mmol/L) were infused directly into the MS at

a flow rate of 0.05 mL/min for internal calibration, and the monitored ions were purine m/z 121.05

and m/z 119.03632; HP-0921 m/z 922.0098 and m/z 966.000725 for positive and negative mode,

respectively. The gas temperature was set to 150˚C, the drying gas flow to 16 L/min, and the neb-

ulizer pressure to 35 psig. The sheath gas temperature was set to 350˚C and the sheath gas flow to

11 L/min. The capillary voltage was set to 4000 V in positive ion mode and 4000 V in negative ion

mode. The nozzle voltage was 300 V. The fragmentor voltage was 380 V, the skimmer 45 V, and the

OCT 1 RF Vpp 750 V. The collision energy was set to 0 V. The m/z range was 70–1700, and data was

collected in centroid mode with an acquisition rate of 4 scans s-1 (1977 transients/spectrum).

For the LC-MS data in serum, all data processing was performed using the Agilent Masshunter

Profinder version B.08.00 (Agilent Technologies, Inc). The processing was performed both in a target

and an untargeted fashion. For target processing, a predefined list of metabolites commonly found

in plasma and serum was searched for using the Batch Targeted feature extraction in Masshunter

Profinder. An in-house LC-MS library built up by authentic standards run on the same system with

the same chromatographic and mass-spectrometry settings was used for the targeted processing.

The identification of the metabolites was based on MS, MS-MS, and retention-time information. For

the untargeted data, the pooled quality control samples were processed using Batch Recursive Fea-

ture Extraction algorithm within Masshunter Profinder. After exporting cef-files of all processed qual-

ity control samples, the Extracted features were matched using Mass Profiler Professional 13.0

(Agilent Technologies, Inc), resulting in a combined recursion file. The recursion file was imported

back into Masshunter Profinder and used for Batch Targeted Feature Extraction on all samples.

Chantzichristos et al. eLife 2021;10:e62236. DOI: https://doi.org/10.7554/eLife.62236 39 of 39

Research article Computational and Systems Biology Medicine

https://doi.org/10.7554/eLife.62236

