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Abstract Aging is associated with complex molecular and cellular processes that are poorly

understood. Here we leveraged the Tabula Muris Senis single-cell RNA-seq data set to

systematically characterize gene expression changes during aging across diverse cell types in the

mouse. We identified aging-dependent genes in 76 tissue-cell types from 23 tissues and

characterized both shared and tissue-cell-specific aging behaviors. We found that the aging-related

genes shared by multiple tissue-cell types also change their expression congruently in the same

direction during aging in most tissue-cell types, suggesting a coordinated global aging behavior at

the organismal level. Scoring cells based on these shared aging genes allowed us to contrast the

aging status of different tissues and cell types from a transcriptomic perspective. In addition, we

identified genes that exhibit age-related expression changes specific to each functional category of

tissue-cell types. Altogether, our analyses provide one of the most comprehensive and systematic

characterizations of the molecular signatures of aging across diverse tissue-cell types in a

mammalian system.

Introduction
Aging leads to the functional decline of major organs across the organism and is the main risk factor

for many diseases, including cancer, cardiovascular disease, and neurodegeneration (Niccoli and

Partridge, 2012; López-Otı́n et al., 2013). Past studies have highlighted different hallmarks of the

aging process, including genomic instability, telomere attrition, epigenetic alterations, loss of pro-

teostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell

exhaustion, and altered intercellular communication (López-Otı́n et al., 2013; Campisi, 2013;

Vijg and Suh, 2013; Nikolich-Žugich, 2018). However, the primary root of aging remains unclear,

and the underlying molecular mechanisms are yet to be fully understood.

To gain a better insight into the mammalian aging process at the organismal level, the Tabula

Muris Consortium, which we are members of, created the single-cell transcriptomic data set Tabula

Muris Senis (TMS) (Tabula Muris Consortium, 2020). TMS is one of the largest expert-curated sin-

gle-cell RNA sequencing (scRNA-seq) data sets, containing over 300,000 annotated cells from 23 tis-

sues and organs of male and female mice (Mus musculus). The cells were collected from mice of

diverse ages, making this data a tremendous opportunity to study the genetic basis of aging across

different tissues and cell types. The TMS data is organized into scRNA-seq expression of different

tissue-cell type combinations (e.g., B cells in spleen) via expert annotation and clustering.
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The original TMS paper explored primarily the cell-centric effects of aging, aiming to characterize

changes in cell type composition within different tissues. Here we provide a systematic gene-centric

study of gene expression changes occurring during aging across different cell types. The cell-centric

and gene-centric perspectives are complementary, as the gene expression can change within the

same cell type during aging, even if the cell type composition in the tissue does not vary over time.

Our analysis focused on the TMS FACS data (acquired by cell sorting in microtiter well plates fol-

lowed by Smart-seq2 library preparation Picelli et al., 2014) because it has more comprehensive

coverage of tissues and cell types (Supplementary file 1) and is more sensitive at quantifying gene

expression levels as compared to the TMS droplet data. As shown in Figure 1A, the FACS data was

collected from 16 C57BL/6JN mice (10 males, 6 females) with ages ranging from 3 months (20-year-

old human equivalent) to 24 months (70-year-old human equivalent). It contains 120 cell types from

23 tissues, totaling 110,096 cells. We also used the TMS droplet data (derived from microfluidic

droplets) for those tissues where the data is available, to further validate our findings on an addi-

tional data set generated by a different method.

We investigated the comprehensive expression signatures of aging across tissues and cell types

in the mouse. We performed systematic differential gene expression (DGE) analysis to identify

aging-related genes in 76 tissue-cell type combinations across 23 tissues (Figure 1B,

Supplementary file 1). Furthermore, we characterized both shared and tissue-cell-specific aging sig-

natures. Our study identified global aging genes (GAGs), namely genes whose expression varies

substantially with age in most (>50%) of the tissue-cell types. Interestingly, the changes in expression

of these genes are highly concordant across tissue-cell types and exhibit strong bimodality. That is,

these genes tend to be either downregulated during aging in most of the tissue-cell types or upre-

gulated across the board. We leveraged this coordinated dynamic to construct an aging score based

on the GAGs. We found that the aging score is significantly positively correlated with the chronolog-

ical age, both in the FACS data and in multiple independent data sets. Moreover, the aging score

contrasts the aging status of tissue-cell types with different functionalities and turnover rates, shed-

ding light on the heterogeneous aging process across the 76 tissue-cell types. The score distin-

guished itself by its single-cell resolution and large data scale, as previous works either studied the

biological age at an individual-level (Harries et al., 2011; Holly et al., 2013; Peters et al., 2015;

Fleischer et al., 2018; Horvath, 2013; Jylhävä et al., 2017; Petkovich et al., 2017) or focused on

a small number of organs (Ori et al., 2015; Arrojo E Drigo et al., 2019). Overall, our analysis high-

lights the power of scRNA-seq in studying aging and provides a comprehensive catalog of aging-

related gene signatures across diverse tissue-cell types.

Results

Identification of aging-related genes
We considered 76 tissue-cell types in the TMS FACS data, 26 tissue-cell types in the TMS droplet

data, and 17 tissues in an accompanying bulk RNA-Seq mouse aging study (Schaum et al., 2020)

(referred to as the bulk data) with sufficient sample size. We performed DGE analysis for each tissue-

cell type separately, treating all cells from the tissue-cell type as samples. We tested if the expres-

sion of each gene is significantly related to aging using a linear model treating age as a numerical

variable while controlling for sex. We applied an FDR threshold of 0.01 (the number of comparisons

corresponds to the number of genes in the tissue-cell type) and an age coefficient threshold of

0.005 (in the unit of log fold change per month, corresponding to 10% fold change from 3 m to 24

m). For details, please refer to the DGE analysis subsection in Materials and methods.

As shown in Figure 1B, the number of significantly age-dependent genes per tissue-cell type

ranges from hundreds to thousands. Interestingly, most tissue-cell types have more downregulated

aging-related genes than upregulated aging-related genes, suggesting a general decrease in gene

expression over aging. This downregulation pattern is unlikely to be confounded by technical factors

such as sequencing depth because the 18 m/24 m mice were sequenced at a higher depth (Fig-

ure 1—figure supplement 1C–E). By doing separate DGE analyses using mice from one sex or mice

from a subset of age groups (3 m/18 m), we further found that such a downregulation pattern was

mostly driven by 24 m mice and was not specific to one sex (Figure 1—figure supplement 2). We

also observed a similar pattern in the droplet data (Figure 1—figure supplement 3).
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Figure 1. Analysis overview. (A) Sample description. The TMS FACS data was collected from 16 C57BL/6JN mice

(10 males, 6 females) with ages ranging from 3 months (20-year-old human equivalent) to 24 months (70-year-old

human equivalent). (B) Significantly aging-dependent genes in all 76 tissue-cell types in the FACS data. The left

panels show the number of aging-related genes (discoveries) for each tissue-cell type, broken down into the

Figure 1 continued on next page
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In addition, we found that most aging-related genes identified in the analysis have monotonic

aging trajectories, meaning that their expressions either increased or decreased monotonically dur-

ing aging (Figure 1—figure supplements 4,5). However, a subset of genes in the FACS data (13%),

while being upregulated during aging overall, increased from 3 m to 18 m and slightly decreased

from 18 m to 24 m; those genes are enriched in brown adipose tissue (BAT) B cells, large intestine

epithelial cells, and mesenchymal adipose tissue (MAT) mesenchymal stem cells of adipose (Fig-

ure 1—figure supplement 4C).

Bimodal effects of aging and global aging genes
We found that most genes are significantly related to aging in at least one tissue-cell type (13,376 in

the TMS FACS data and 6233 in the TMS droplet data), consistent with the intuition that aging is a

highly complex trait involving many biological processes. The aging-related genes discovered in the

FACS data significantly overlap with other important gene sets, including both known human and

mouse aging markers as recorded in the GenAge database (Tacutu et al., 2018), senescence genes

(Campisi, 2013), transcription factors, eukaryotic initiation factors, and ribosomal protein genes (Fig-

ure 2—figure supplement 1). Some of the top overlapping genes, significantly related to aging in

most tissue-cell types, include known mouse aging markers Jund, Apoe, and Gpx4 and known

human aging markers Jund, Apoe, Fos, and Cdc42 from the GenAge database (Tacutu et al.,

2018), and senescence genes Jund, Junb, Ctnnb1, App, and Mapk1. In addition, we found that each

tissue-cell type has around 5% aging-related genes that are shared by the GenAge human aging

markers. However, we did not find any tissue-cell types that are specifically enriched with these

known human aging markers, suggesting that the conservation between mouse aging and human

aging is relatively uniform across tissue-cell types (Figure 2—figure supplement 2).

We visualized all aging-related genes (significant in �1 tissue-cell type) in Figure 2A, where the

color indicates the number of genes. The x-axis shows the weighted proportion of tissue-cell types

(out of 76 tissue-cell types) where the gene is significantly related to aging, while the y-axis shows

the weighted proportion of tissue-cell types where the gene is upregulated. The tissue-cell type

weights used here are inversely proportional to the number of cell types in the tissue, in order to

ensure equal representation of the tissues. The visualization makes it clear that there are more down-

regulated aging genes than upregulated ones, consistent with Figure 1B. Perhaps more strikingly, a

bimodal pattern is apparent, in the sense that the aging-related genes tend to have a consistent

direction of change during aging across most tissue-cell types. Interestingly, it was also recently

reported in other studies that many shared aging-related genes exhibit consistent direction of

change during aging across mouse tissues and cell types, including the brain (Ximerakis et al.,

2019), kidney, lung, and spleen (Kimmel et al., 2019).

Genes that exhibit age-related expression changes across many cell types have particularly strong

bimodal behavior. This motivated us to define global aging genes (GAGs), namely the genes that

are significantly related to aging in more than 50% of weighted tissue-cell types (i.e., cell types after

normalizing by cell type frequencies using the tissue-cell type weights as described above). We

Figure 1 continued

number of upregulated genes (orange) and the number of downregulated genes (blue), with the numbers on the

left showing the ratio (up/down). Tissue-cell types with significantly more up/downregulated genes (ratio >1.5) are

highlighted in solid color. Most tissue-cell types have significantly more downregulated aging genes. The right

panel shows the number of cells sequenced for each tissue-cell type.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Source data for Figure 1.

Figure supplement 1. Covariates for the TMS FACS data and the TMS droplet data.

Figure supplement 2. Number of significantly age-dependent genes for each tissue-cell type, from DGE analyses
performed using subsets of mice in the TMS FACS data.

Figure supplement 3. Number of significantly age-dependent genes for each tissue-cell type, from DGE analyses
performed using subsets of mice in the TMS droplet data.

Figure supplement 4. Aging trajectory of aging-related genes in the TMS FACS data.

Figure supplement 5. Aging trajectory of aging-related genes in the TMS droplet data.

Figure supplement 6. Correlations between the age coefficients estimated with and without CDR correction.
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Figure 2. Tissue-cell level global aging genes (GAGs). (A) Tissue-cell level aging-related genes with color indicating the number of the genes. The

x-axis shows the weighted proportion of tissue-cell types (out of all 76 tissue-cell types) where the gene is significantly related to aging, while the y-axis

shows the weighted proportion of tissue-cell types where the gene is upregulated. (B and C) Heatmap of age coefficients of the GAGs (panel B) and

the top 20 GAGs (panel C). The age coefficients are in the unit of log fold change per month and blue/red represent down/upregulation. (D) Top GO

biological pathways for the GAGs.

Figure 2 continued on next page
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identified 330 GAGs in total, among which 93 are consistently upregulated and 190 consistently

downregulated (>80% of weighted tissue-cell types); only 47 have an inconsistent directionality

(upregulated in 20–80% of weighted tissue-cell types). We found that the GAGs significantly overlap

with genes known in aging-related diseases, including strong overlap with genes related to Alz-

heimer’s disease (p=2.4e-11), neuroblastoma (p=1.4e-7), fibrosarcoma (p=3.3e-5), and osteoporosis

(p=1.5e-4), and relatively weaker overlap with genes related to Huntington’s disease (p=2.5e-3), skin

carcinoma (p=3.6e-3), kidney cancer (p=1.2e-3), acute promyelocytic leukemia (p=3.2e-3), acute

myeloid leukemia (p=3e-3), endometrial cancer (p=1.6e-3), and hypertension (p=1.9e-3) (please see

the Global aging genes subsection in Materials and methods for details). Our results are not sensi-

tive to the specific choice of the 50% threshold for selecting GAGs; using different thresholds pro-

duced similar gene ontology (GO) enrichment analysis results (Figure 2—figure supplement 3C) or

GAG scores (Figure 3—figure supplement 1A–D) as detailed below.

We visualized the age coefficients for 10 top up/downregulated GAGs (a consistent direction in

>80% of weighted tissue-cell types) that are related to aging in the most number of tissue-cell types,

as shown in Figure 2C. Many of these genes have been previously shown to be highly relevant to

aging. For example, the downregulation of Lars2 has been shown to result in decreased mitochon-

drial activity and increase the lifespan for C. elegans (Lee et al., 2003). On the other hand, Jund is a

proto-oncogene known to protect cells against oxidative stress and its knockout may cause a short-

ened lifespan in mice (Laurent et al., 2008). Moreover, Rpl13a was observed to be upregulated in

almost all tissue-cell types. As a negative regulator of inflammatory proteins, Rpl13a contributes to

the resolution phase of the inflammatory response, ensuring that the inflamed tissues are completely

restored back to normal tissues. It also contributes to preventing cancerous growth of the injured

cells caused by prolonged expression of the inflammatory genes (Zhou et al., 2015;

Mazumder et al., 2003). Therefore, it is interesting to observe the upregulation of Rpl13a given

that most old mice have severe inflammatory symptoms.

As shown in Figure 2D, Gene Ontology (GO) biological pathway enrichment analysis revealed

that the 330 GAGs are associated with apoptosis, translation, biosynthesis, metabolism, and cellular

organization. These biological processes are highly relevant to aging (Tower, 2015;

Anisimova et al., 2018; Barzilai et al., 2012) and are shared across most cell types, consistent with

the intuition that GAGs represent the global aging process across tissue-cell types. In addition, the

KEGG pathways associated with the GAGs are consistent with the GO terms and additionally

highlighted immune-related pathways and multiple aging-related diseases (Figure 2—figure supple-

ment 4A). Moreover, the findings were supported by similar analyses on the set of 59 GAGs discov-

ered in the droplet data (Figure 2—figure supplement 3A B). We also performed pathway

enrichment analysis using the Ingenuity Pathway Analysis (IPA) software (Krämer et al., 2014), which

confirmed our findings for the biological processes associated with the GAGs (Figure 2—figure sup-

plement 4B). Of note is the finding that the mTOR pathway, a known aging-associated pathway, is

predicted to be inhibited given the expression of the GAGs (Weichhart, 2018; Papadopoli et al.,

2019; Johnson et al., 2013; Figure 2—figure supplement 4C). Interestingly, mTOR downregulation

has been shown to promote longevity (Stallone et al., 2019; Laplante and Sabatini, 2012), a further

indication that the GAGs are related to the aging process.

Figure 2 continued

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Source data for Figure 2.

Figure supplement 1. Comparison between aging-related genes discovered in the TMS FACS data and other gene sets, including the mouse aging
genes and human aging genes in the GenAge database (Tacutu et al., 2018), senescence genes as provided by the IPA software (Krämer et al.,
2014), transcription factors, eukaryotic initiation factors, and ribosomal protein genes (Rpl/Rps genes).

Figure supplement 2. Overlap between the TMS FACS aging-related genes and the GenAge aging markers.

Figure supplement 3. Additional pathway enrichment analysis results.

Figure supplement 4. KEGG pathways and IPA pathways for the 330 TMS FACS GAGs.
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Figure 3. GAG score. (A) Tissue-cell GAG score effects with 95% confidence intervals. The color represents the functional category of the tissue-cell

type. (B and C) Effects of cell functional categories (panel B) and binary cell lifespan (panel C) on the GAG score, meta-analyzed over all tissue-cell

types within the group. A positive y-value means that the cells in the group (functional category group for panel B and binary cell lifespan group for

panel C) have higher GAG score values than other cells of the same age and sex. 95% confidence intervals and nominal p-values are provided to

quantify the differences between categories. In panel C, the average lifespan annotation is also provided for a subset of tissue-cell types where such

information is available. (D) Comparison between the tissue-cell GAG score effects estimated from the FACS data (x-axis) and the droplet data (y-axis).

Each dot corresponds to a tissue-cell type, and a linear fit is provided showing that the estimates are consistent.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Source data for Figure 3.

Figure supplement 1. Additional validations of the GAG score.

Figure supplement 2. Additional validations of the GAG score.

Figure supplement 3. Distribution of GAG scores across cells; stratified by tissue-cell types and grouped by mice’s chronological age.

Figure supplement 4. Tissue-cell GAG score effects for the four validation data sets.

Figure supplement 5. Tissue-level analysis as validation.

Figure supplement 6. Number of discoveries for each tissue.

Figure supplement 7. Tissue-cell validations.

Figure supplement 8. Tissue-level GAG score effects.
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GAG score contrasts the heterogeneous aging status of tissue-cell
types
Following the analysis of GAGs, we next leveraged these marker genes to characterize the holistic

aging status of different tissue-cell types. We aggregated the expression of global aging markers

into a single score for each cell, referred to as the GAG score (please see the GAG score subsection

in Materials and methods for details). We used the FACS data to identify the GAGs because it has

more comprehensive coverage of different tissue-cell types. Intuitively, the GAG score tags the

global aging process, and it reflects both the chronological age of the organism and the tissue-cell

type-specific aging effects. To formally dissect these components, we defined a fixed-effect model

with the GAG score being the response variable and various other factors, including the chronologi-

cal age, sex, and binary-coded tissue-cell types, being explanatory variables. As a sanity check, the

chronological age effect on the GAG score is significantly positive (p<1e-100). The model explains

60.2% of the GAG score variance in the TMS FACS data while adding extra interaction terms

between age and each tissue-cell type only slightly increased the model fit (explained variance

62.6%), indicating a reasonable fit for the current model (Figure 3—figure supplement 2C). Inter-

estingly, while most young cells have smaller GAG scores and old cells have larger GAG scores, we

also found four tissue-cell types whose GAG scores are similar between age groups and eight tissue-

cell types that have a subpopulation of cells whose GAG scores are more similar to that of cells from

a different age group (Figure 3—figure supplement 3), highlighting the heterogeneity of the aging

process across tissue-cell types.

We next considered the tissue-cell type effects on the GAG score. Intuitively, a larger GAG score

effect suggests that the corresponding cell type could be molecularly more sensitive to aging com-

pared to other cells in the same animal. As shown in Figure 3A, immune cells and stem cells have

higher GAG score effects, while most parenchymal cell types have lower GAG score effects; such a

contrast is also statistically significant, as shown in Figure 3B. Indeed, immune cells and stem cells

are known to undergo the most substantial changes with aging. Specifically, the aging of the

immune system is commonly linked to the impaired capacity of elderly individuals to respond to new

infections (Montecino-Rodriguez et al., 2013). Also, adult stem cells are critical for tissue mainte-

nance and regeneration, and the increased incidence of aging-related diseases has been associated

with a decline in the stem cell function (Ermolaeva et al., 2018). On the other hand, parenchymal

cells like pancreatic cells, neurons, heart myocytes, and hepatocytes have lower aging scores. This

could be an indication that these tissue-specialized cell types are more resilient to aging and are

able to maintain their functions despite the changes in the animal.

We also found that the tissue-cell GAG score effects are in general positively correlated with the

cell turnover rate. For example, short-lived cells like skin epidermal cells, monocytes, and T cells

(Koster, 2009; Guilliams et al., 2018; Westera et al., 2013) have higher GAG score effects while

long-lived cells like neurons, oligodendrocytes, pancreatic b-cells, liver hepatocytes, and heart atrial

myocytes (Arrojo E Drigo et al., 2019; Teta et al., 2005; Magami et al., 2002; Bergmann et al.,

2015) have very low GAG score effects. To quantify this observation, we assigned a binary cell life-

span label to a subset of cell types where such data is available from literature (Milo et al., 2010;

Hobson and Denekamp, 1984; Stewart et al., 1980; Lawson et al., 1992; Arrojo E Drigo et al.,

2019; Darwich et al., 2014; Lowry and Zehring, 2017; Geering et al., 2013; Cheshier et al.,

1999; Fulcher and Basten, 1997; Scollay et al., 1980) (long for >180 days and short for <90 days,

Supplementary file 1); using binary labels instead of the actual values allows us to incorporate more

cell types whose exact lifespan information is not available but are known to be long-/short-lived.

We found that short-lived cells have significantly higher GAG score effects than long-lived cells

(p=1.68e-3, Figure 3C). One possible explanation is that the GAG score is associated with the bio-

logical processes related to cell proliferation, development, and death, which are more active in cell

types that have a higher turnover rate. This striking difference is also consistent with the intuition

that cells that have undergone more divisions (also with higher turnover rates) are ‘‘older’ and could

have molecular memories.

Validating the GAG score on external data
We performed several analyses to validate the robustness of the GAG score. First, the GAG score is

not sensitive to perturbations of the current scoring method, including using different criterion to
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select GAGs or not performing cell-wise background correction (Figure 3—figure supplement 1A–

D). We also found that estimating tissue-cell GAG score effects using only old cells gave an almost

identical result (Figure 3—figure supplement 1H).

Next, we performed a parallel analysis to identify GAGs on the TMS droplet data and found 59

such genes (due to smaller sample size and detection power). We found that 34 genes were shared

between the droplet GAGs and the 330 FACS GAGs as described above (p=9e-48). Similar to the

FACS GAGs, we also found that the droplet GAGs significantly overlap with genes known in many

aging-related diseases, including Alzheimer’s disease (p=2.8e-4), neuroblastoma (p=1.2e-3), and

fibrosarcoma (p=1.4e-3). In addition, we considered a set of 261 shared aging genes reported in

Kimmel et al., 2019. This scRNA-seq study contains cells from the kidney, lung, and spleen in both

young and old mice, and the 261 shared aging genes were defined as genes significantly related to

aging in more than five cell types in the paper (Kimmel et al., 2019). We found that 90 genes were

shared between Kimmel et al. genes and the FACS GAGs (p=2e-105) and 42 genes were shared

between Kimmel et al. genes and the droplet GAGs (p=7e-69). All p-values reported here were com-

puted via Fisher’s exact tests.

Using the GAGs identified from the TMS FACS data, we computed the GAG score and further

estimated the GAG score effects for cells in the TMS droplet data, the bulk data (treating each

mouse sample as a ‘‘cell’’), the Kimmel et al. data, and the data set from Kowalczyk et al., 2015.

This last data set has only three subtypes of hematopoietic stem cells (HSCs) and was therefore omit-

ted in other analyses. We found that the chronological age effect on the GAG score is significantly

positive in all four validation data sets (p=7e-10 for the bulk data due to smaller sample size and

detection power, and p<1e-100 for the other three data sets). Since the GAGs were selected based

on the FACS data, the GAG score is agnostic of the age labels in the four validation data sets, con-

firming that the GAG score is truly indicative of the aging process.

The tissue-cell GAG score effects estimated from the other four data sets are also in line with

those estimated from the FACS data (Figure 3—figure supplements 1,4E F). Specifically, in the

droplet data and the Kimmel et al. data, immune cell types have higher GAG score effects while epi-

thelial, endothelial, and parenchymal cell types have lower GAG score effects. In particular for the

droplet data, short-lived cell types also have higher but non-significant GAG score effects, due to a

smaller number of annotated cell types. While looking at the bulk data, we found that immune-

related tissues and organs such as whole blood, spleen, and marrow have the highest GAG score

effects. It is interesting to observe that in the Kowalczyk et al. data, the GAG score effects of MPPs

(multipotent progenitors) is less than that of ST-HSCs (short-term HSCs) which is less than that of LT-

HSCs (long-term HSCs). This is exactly aligned with the differentiation potentials of these three cell

types, consistent with the hypothesis that more stem-like cells have higher GAG score effects as

observed in the FACS data.

Finally, we found that the tissue-cell GAG score effects are highly consistent between data sets

(correlation 0.76 with p=2e-19 between the FACS data and the droplet data in Figure 3D, correla-

tion 0.75 with p=1e-3 between the FACS data and the Kimmel et al. data in Figure 3—figure sup-

plement 1G). In summary, we showed that the GAG score is capable of describing the chronological

age as well as the transcriptional changes during the aging process. Furthermore, we could use the

tissue-cell GAG score effects to contrast the aging status of cell types with different biological prop-

erties, including functional categories and turnover rates. This provides a comprehensive analysis

demonstrating how the GAG score captures the heterogeneous molecular effects of aging. Addi-

tionally, we repeated both the DGE analysis and the GAG score analysis at the tissue-level by com-

bining all cell types from the same tissue. We observed qualitatively similar findings, supporting the

robustness of the analyses. Please see Figure 3—figure supplements 5–8 for more details.

Category-specific aging genes
We next consider genes specific to a subset of tissue-cell types, including functional-category-spe-

cific genes, cell type-specific genes, tissue-specific-genes, and tissue-cell type-specific genes. Given

a set of tissue-cell types, in order to have an overall meta age coefficient for cells in this tissue-cell

type set, we first combined the age coefficients of all tissue-cel types within the set by meta-analy-

sis; similarly, we also computed the outside-set meta age coefficient by meta-analyzing all outside-

set tissue-cell types. Then we selected the genes that have significantly different within-set and out-

side-set meta age coefficients as the set-specific genes (please see the Category-specific aging
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genes subsection in Materials and methods for more details). Of note, almost no genes identified

here are shared by GAGs.

In the original TMS paper (Tabula Muris Consortium, 2020), each tissue-cell type was assigned

one of the six functional category labels, namely endothelial, epithelial, immune, stem/progenitor,

stromal, and parenchymal cells. When examining the data by functional category, we found that the

endothelial, immune, stem, and stromal cells exhibit highly category-specific aging behavior. Indeed,

we found a higher number of specific aging genes for these categories (Figure 4B). Moreover, their

age coefficients are specific to the respective functional category, as we can see from the clear block

structure across tissue-cell types (Figure 4A). In addition, when performing GO biological pathway

enrichment analysis on these six sets of genes separately, we only found significant pathways for

A B

C

Figure 4. Functional-category-specific genes. (A) Age coefficients, in the unit of log fold change per month, for functional-category-specific genes.

Both genes in the x-axis and tissue-cell types in the y-axis are ordered by functional categories. For example, the upper-left block corresponds to

endothelial-specific genes. (B) Number of functional-category-specific genes for each category. (C) GO biological pathways for functional-category-

specific genes, with color representing the negative log10 FDR.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Source data for Figure 4.

Figure supplement 1. Age coefficients of top functional-category-specific genes.

Figure supplement 2. Two examples of functional-category-specific genes.

Figure supplement 3. Cell type-specific genes.
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these four categories (Figure 4C). Among them, endothelial-specific genes were associated with var-

ious processes related to angiogenesis and negative regulation of cell migration; the latter suggests

decreased endothelial cell functionality during aging because endothelial cell migration is essential

to angiogenesis (Lamalice et al., 2007). Also, immune-specific genes were associated with activation

of various immune responses, in line with a strong link between the aging process and the immune

system (Tabula Muris Consortium, 2020; Nikolich-Žugich, 2018). In addition, stem-specific genes

were associated with ossification and diverse angiogenesis processes, and both stem-specific and

stromal-specific genes were associated with extracellular matrix and structure organization.

Such an analysis also facilitates the discovery of interesting specific genes related to aging. For

example, C2cd4b (Figure 4—figure supplements 1 and 2A), a parenchymal-specific gene, has large

age coefficients in several pancreatic, mammary gland, large intestine cell types, and almost zero

age coefficients in other cell types. The increased expression of C2cd4b has been associated with an

increased risk of type 2 diabetes (Kycia et al., 2018) and increased expression of C2cd4b in old

mice pancreatic cell types may suggest the increased risk of type 2 diabetes for these mice. In addi-

tion, C2cd4b has been shown to lead to sexually dimorphic changes in body weight and glucose

homeostasis (Mousavy Gharavy et al., 2021), in line with the fact that the mammary gland is a well-

known sexually dimorphic tissue. A second example is Gsn (Figure 4—figure supplements 1 and

2B), which is downregulated in stromal and stem cell types and upregulated in other cell types dur-

ing aging. This can be explained by its function for making gelsolin, an important protein for cell

movement. Not only is cell movement important to immune and endothelial cells, but Gsn has also

been shown to be a potential biomarker to aging-related neurodegeneration (Manavalan et al.,

2013).

Beyond functional-category-specific genes, we also identified genes specific to several cell types,

including B cells, basal cells of epidermis, endothelial cells, macrophages, mesenchymal stem cells,

mesenchymal stem cells of adipose, myeloid cells, and skeletal muscle satellite cells, corroborated

by their association with related biological processes (Figure 4—figure supplement 3). The method

also allowed us to identify genes specific to each tissue. However, we did not find any genes specific

to a single tissue-cell type. All the gene sets are available in Supplementary file 3.

Discussion
This study provides a systematic and comprehensive analysis of aging-related transcriptomic signa-

tures by analyzing 76 tissue-cell types in the TMS FACS data. Together with the analysis in the first

publication of Tabula Muris Senis (Tabula Muris Consortium, 2020), it forms one of the largest anal-

ysis to date of the mammalian aging process at the single-cell resolution. Of particular interest are

the 330 global aging genes (GAGs) identified in the study. These genes exhibit aging-dependent

expressions in a majority of tissue-cell types in the mouse. The GAGs are enriched with many inter-

esting genes, including known human and mouse aging markers, aging-related disease genes,

senescence genes, transcription factors, eukaryotic initiation factors, and ribosomal protein genes.

Interestingly, most of the GAGs are strongly bimodal as their expressions either decrease or increase

during aging across almost all tissue-cell types, suggesting that these genes have a uniform response

to aging, which is robust to the specific tissue or cellular context. Moreover, we find a systematic

decrease in expression for most genes as well as a decrease in the number of actively expressed

genes, suggesting a turning off of transcription activity as the animal ages. A recent study has

observed that the number of expressed genes decreases during cellular differentiation in mouse

(Gulati et al., 2020). It is interesting that we quantify a similar phenomenon for aging, despite the

substantial longer time-scale of aging compared to differentiation.

While we focused on detecting genes whose changes with age are linear and non-sex-specific, it

is also interesting to study aging-related changes that are non-linear or sex-specific. For example, as

shown in Figure 1—figure supplement 1, the number of expressed genes changes with age in a

non-linear and sex-specific manner, suggesting the existence of such genes. We have validated our

findings using the TMS droplet data, the bulk RNA-seq data, and external data sets, and it is impor-

tant to have further validations in future studies. In particular, the bimodal expression pattern is less

apparent in the TMS droplet data, perhaps due to its limited tissue-cell type coverage and relatively

shallower sequencing depth.
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The remarkable bimodal consistency of the GAGs makes them useful as biomarkers to character-

ize the aging status of individual cells. We proposed a new aging score, namely the GAG score,

based on the GAGs. The tissue-cell type-specific GAG score effects quantify how sensitive each tis-

sue-cell type is to aging and are positively correlated with the cell division rate. For example,

immune cells tend to have higher GAG scores than other cells of the same age and sex, which

reflects the phenomenon that they undergo many cycles of cell division and also change substantially

during the animal’s lifespan. One hypothesis is that the GAG score captures some aspects of the

true biological age of the cells, which could be different from the birth age of the animal. An inter-

esting direction of future work is to further investigate this model with functional experiments. In line

with this, it would be important to study how some of the transcriptomic changes we quantify here,

for example the downregulation of mTOR, point toward healthy aging or how can they inform

experiments that can uncover the mechanism to ameliorate the aging effects. In addition, while the

GAG score was proposed to capture the global aging status, there also exist cell type-specific aging

programs; a combination of both would better characterize the overall aging status of a cell. The

construction of cell type-specific aging scores would require a more comprehensive longitudinal cat-

alog of diverse subtypes and states of cells within different cell types. While this is beyond the scope

of the current work, it is an exciting direction to pursue when such data becomes available.

The GAG score is also related to the transcriptome age predictors developed in previous works

(Harries et al., 2011; Holly et al., 2013; Peters et al., 2015; Fleischer et al., 2018), in the sense

that they all use the gene expression information and are predictive of the animals’ chronological

age. The commonly used approach in previous works is to train a model (e.g., linear/logistic regres-

sion model) to predict the individuals’ chronological age from their gene expression. Instead of a

model-fitting algorithm, our GAG score uses the GAGs that were selected from a broad range of tis-

sue-cell types in an unbiased manner, by meta-analyzing the DGE results of 76 tissue-cell types and

putting each tissue-cell type on the same footing. This ensures that the genes used by the GAG

score capture the shared aging process and are not biased toward certain tissue-cell types. Indeed,

the GAGs were shown to be associated with biological processes that are highly relevant to aging

(Figure 2), providing better interpretability of the score. In comparison, previous studies focused on

only one specific tissue, such as the blood (Harries et al., 2011; Holly et al., 2013; Peters et al.,

2015) or dermal fibroblasts (Fleischer et al., 2018), and hence may have selected genes that were

biased toward that particular tissue.

Overall, our study provides a comprehensive characterization of aging genes across a wide range

of tissue-cell types in mice. In addition to the biological insights, it also serves as a comprehensive

reference for researchers working on related topics.

Materials and methods

Data preprocessing
We considered five data sets, namely the TMS FACS data, the TMS droplet data, the data in

Schaum et al., 2020 (referred to as the bulk data), the data in Kimmel et al., 2019, and the data in

Kowalczyk et al., 2015. For the TMS FACS data and the TMS droplet data, we filtered out genes

expressed in fewer than 3 cells, filtered out cells expressing fewer than 250 genes, and discarded

cells with a total number of counts fewer than 5000 for the FACS data and a total number of unique

molecular identifiers (UMIs) fewer than 2500 for the droplet data. For the bulk data, we filtered out

genes expressed in fewer than five samples, and filtered out samples expressing fewer than 500

genes. We did not filter cells for the other two data sets. For all five data sets, we normalized each

sample to have 10,000 reads/UMIs per sample, followed by a log transformation (log(x + 1) where x

is the read count). We note that such a procedure is the same as that in the original paper

(Tabula Muris Consortium, 2020). We did not correct for batch effects as no substantial batch

effects were identified in the original TMS paper (Tabula Muris Consortium, 2020).

DGE analysis
As shown in Supplementary file 1, we considered 76 tissue-cell types in 23 tissues with more than

100 cells in both young (3 m) and old (18 m, 24 m) age groups for the TMS FACS data; 26 tissue-cell

types in 11 tissues with more than 500 cells in both young (1 m, 3 m) and old (18 m, 21 m, 24 m, 30
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m) age groups for the TMS droplet data; and all 17 tissues for the bulk data (Schaum et al., 2020).

We required more cells for the TMS droplet data than the TMS FACS data because the droplet data

has a much lower sequencing depth (6000 UMIs per cell, as compared to 0.85 million reads per cell

for the FACS data). Also, we did not focus on the TMS droplet data in the main results due to its lim-

ited tissue and cell type coverage.

We performed a DGE analysis for cells in each tissue-cell type separately. In the DGE analysis for

a tissue-cell type, all cells in the tissue-cell type were treated as samples, and a separate test was

performed for each gene with the observations being the expressions of the gene across the cells.

We identified genes significantly related to aging using a linear model treating age as a continuous

variable while controlling for sex, namely,

geneexpression~ageþ sex: (1)

Since the tests were performed at a cell level for each tissue-cell type, the cell numbers will only

affect the detection power but will not bias the result. Therefore, it is not a confounding factor and

was not controlled for. We used the MAST package (Finak et al., 2015) (version 1.12.0) in R to per-

form the DGE analysis. The zero counts in the scRNA-seq data were handled by the MAST package

and we do not observe other types of missing data. We did not control for the cellular detection

rate (Finak et al., 2015) (CDR, corresponding to the number of expressed genes in a cell) because

we found that in our data, CDR is positively correlated with age and negatively correlated with tech-

nical covariates such as sequencing depth and the number of detected ERCC spike-ins, both when

considering all the cells or when stratified by sex (Figure 1—figure supplement 1). As a result, con-

trolling for CDR may remove genuine aging effects. We note that CDR is defined as the number of

expressed genes in a cell, which is a fundamental quantity of the data set and is not specific to the

MAST package. Therefore, such an observation does not imply a potential issue of MAST. Nonethe-

less, we found that the age coefficients, estimated with and without CDR correction, were highly cor-

related (0.89 for the FACS data and 0.93 for the droplet data, Figure 1—figure supplement 6),

ruling out the possibility that CDR correction would significantly alter the result.

We used the Benjamini–Hochberg (FDR) procedure (Benjamini and Hochberg, 1995) to control

for multiple comparisons, where the number of comparisons corresponds to the number of genes in

the tissue-cell type. We applied an FDR threshold of 0.01 and an age coefficient threshold of 0.005

(in the unit of log fold change per month, corresponding to around 10% fold change from 3 m to 24

m) for detecting genes significantly related to aging.

Global aging genes
We selected a gene as a GAG if it is significantly related to aging in more than 50% of weighted tis-

sue-cell types. Here, the tissue-cell type weights are inversely proportional to the number of cell

types in the tissue, in order to ensure equal representation of tissues.

For the overlap between GAGs and the genes known in aging-related diseases, we considered

the top 25 aging-related diseases and obtained their related genes from the Human Disease Data-

base (MalaCards) (Rappaport et al., 2013; Rappaport et al., 2014; Rappaport et al., 2017). We

then converted the human genes to the corresponding mouse orthologs using g:Profiler

(Raudvere et al., 2019) (version 1.2.2). The p-values quantifying the significance of the overlap were

computed using Fisher’s exact tests.

Pathway enrichment analysis
We used g:Profiler (Raudvere et al., 2019) to perform GO biological pathway enrichment analysis.

We considered biological pathways with FDR smaller than 0.01. We used Gene Set Enrichment Anal-

ysis (GSEA MGSig Database) (Subramanian et al., 2005; Liberzon et al., 2011) to perform the

KEGG pathway analysis. We filtered for mouse genes and considered biological pathways with FDR

smaller than 0.05. We also used the IPA software (Krämer et al., 2014) to perform canonical path-

way analysis (Figure 2—figure supplement 4). For Figure 2—figure supplement 4A, we used an

FDR threshold of 1e-5 and a z-score threshold of 0.5.

GAG score
Given a set of GAGs (e.g., the FACS GAGs), the cell-wise GAG score for cell i is computed as:
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1. Compute the raw GAG score as the average expression of the upregulated GAGs (significantly
related to aging in >50% of weighted tissue-cell types and upregulated in >80% of weighted
tissue-cell types) minus the average expression of the downregulated GAGs (significantly
related to aging in >50% of weighted tissue-cell types and downregulated in >80% of
weighted tissue-cell types), That is,

RawGAGscorei ¼meanðupregulatedGAGsÞi�meanðdownregulatedGAGsÞi (2)

2. Following the recipe of DeTomaso et al., 2019, z-normalize the raw GAG score using the
expected mean and variance of a random set of genes with the same number of up/downregu-
lated genes:

GAGscorei ¼RawGAGscorei= stdi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=nupþ 1=ndown

q
h i

; (3)

where stdi is the standard deviation of the gene expression of cell i, nup is the number of upre-
gulated GAGs, and ndown is the number of downregulated GAGs.

For robustness consideration, we checked the expression levels of the genes used for computing

the GAG score and found that there are no extreme values. Therefore, the GAG score is unlikely to

be dominated by a few highly expressed genes. We also considered another version of GAG score

where each gene is weighted by its expression range. We found the two versions produce highly

correlated results. Please see Figure 3—figure supplement 2A B for more details.

For estimating the GAG score effects, we model the GAG score of a cell i as being linearly

dependent of the chronological age, sex, and tissue-cell type of the cell, namely,

GAGscorei ~ageiþ sexiþ
X

j

tissue� celltypeij (4)

Here, agei is the age of the animal (in months) that cell i comes from, sexi is one if cell i comes

from a male and zero otherwise, and tissue� celltypeij is one if cell i belongs to tissue-cell type j and

zero otherwise. We do not include the intercept term because all binary coded tissue-cell types sum

up to one. Finally, we further center both response and explanatory variables and perform an ordi-

nary least square regression to estimate the GAG score effects for the age, sex, and each tissue-cell

type.

Meta-analyses in Figure 3B and C and Figure 3—figure supplement 1E F were performed

assuming a random effect model (Riley et al., 2011). For comparisons of the tissue-cell GAG score

effects between data sets, namely those in Figure 3D and Figure 3—figure supplement 1G, we

used all tissue-cell types instead of restricting to the 76 TMS FACS tissue-cell types and 26 TMS

droplet tissue-cell types. This increased the number of overlapping tissue-cell types between data

sets.

Category-specific aging genes
We considered identifying functional-category-specific genes, cell type-specific genes, tissue-specific

genes, and tissue-cell type-specific genes. For a set of tissue-cell types, for example the set of all

immune tissue-cell types, the genes specific to the set (or set-specific genes) are selected as follows.

For each gene, we first estimate its within-set meta age coefficient by meta-analyzing the age coeffi-

cients of all tissue-cell types in the set assuming a random effect model (Riley et al., 2011). Specifi-

cally, it is done by assuming that there is a meta age coefficient for the set of tissue-types, and the

age coefficient for each tissue-cell type in the set is a random variable whose mean is equal to the

meta age coefficient of the set. Similarly, we estimate the outside-set meta age coefficient by meta-

analyzing all tissue-cell types outside the set. Then, we define the set-specific genes to be genes

whose:

1. within-set meta age coefficient is significantly different from its outside-set meta age coeffi-
cient (FDR < 0.01);

2. within-set meta age coefficient is large enough (absolute value > 0.005);
3. outside-set meta age coefficient is not significantly different from 0 (FDR > 0.01).
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The p-values are computed based on the mean and the standard error assuming a normal distri-

bution, and FDR is computed with respect to all genes.

Code availability
The code for reproducing all results is at https://github.com/czbiohub/tabula-muris-senis/tree/mas-

ter/2_aging_signature (Zhang and Pisco, 2021; copy archived at swh:1:rev:

0fd2ee501f4f3bd0e691b6071aee2c9286f1cf92).
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