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Abstract Speech processing is built upon encoding by the auditory nerve and brainstem, yet we

know very little about how these processes unfold in specific subcortical structures. These

structures are deep and respond quickly, making them difficult to study during ongoing speech.

Recent techniques have begun to address this problem, but yield temporally broad responses with

consequently ambiguous neural origins. Here, we describe a method that pairs re-synthesized

‘peaky’ speech with deconvolution analysis of electroencephalography recordings. We show that in

adults with normal hearing the method quickly yields robust responses whose component waves

reflect activity from distinct subcortical structures spanning auditory nerve to rostral brainstem. We

further demonstrate the versatility of peaky speech by simultaneously measuring bilateral and ear-

specific responses across different frequency bands and discuss the important practical

considerations such as talker choice. The peaky speech method holds promise as a tool for

investigating speech encoding and processing, and for clinical applications.

Introduction
Understanding speech is an important, complex process that spans the auditory system from cochlea

to cortex. A temporally precise network transforms the strikingly dynamic fluctuations in amplitude

and spectral content of natural, ongoing speech into meaningful information and modifies that infor-

mation based on attention or other priors (Mesgarani et al., 2009). Subcortical structures play a crit-

ical role in this process – they do not merely relay information from the periphery to the cortex, but

also perform important functions for speech understanding, such as localizing sound (e.g.,

Grothe and Pecka, 2014) and encoding vowels across different levels and in background noise

(e.g., Carney et al., 2015). Furthermore, subcortical structures receive descending information from

the cortex through corticofugal pathways (Bajo et al., 2010; Bajo and King, 2012; Winer, 2005),

suggesting that they may also play an important role in modulating speech and auditory streaming.

Given the complexity of speech processing, it is important to parse and understand contributions

from different neural generators. However, these subcortical structures are deep and respond to

stimuli with very short latencies, making them difficult to study during ecologically salient stimuli

such as continuous and naturalistic speech. We created a novel paradigm aimed at elucidating the

contributions from distinct subcortical structures to ongoing, naturalistic speech.

Activity in deep brainstem structures can be ‘imaged’ by the latency of waves in a surface electri-

cal potential (electroencephalography [EEG]) called the auditory brainstem response (ABR). The

ABR’s component waves have been attributed to activity in different subcortical structures with char-

acteristic latencies: the auditory nerve contributes to waves I and II (~1.5–3 ms), the cochlear nucleus
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to wave III (~4 ms), the superior olivary complex and lateral lemniscus to wave IV (~5 ms), and the lat-

eral lemniscus and inferior colliculus to wave V (~6 ms) (Møller and Jannetta, 1983; review by

Moore, 1987; Starr and Hamilton, 1976). Waves I, III, and V are most often easily distinguished in

the human response. Subcortical structures may also contribute to the earlier P0 (12–14 ms) and

Na (15–25 ms) waves (Hashimoto, 1982; Kileny et al., 1987; Picton et al., 1974) of the middle

latency response (MLR), which are then followed by thalamo-cortically generated waves Pa, Nb, and

Pb/P1 (Geisler et al., 1958; Goldstein and Rodman, 1967). ABR and MLR waves have a low signal-

to-noise ratio (SNR) and require numerous stimulus repetitions to record a good response. Further-

more, they are quick and often occur before the stimulus has ended. Therefore, out of necessity,

most human brainstem studies have focused on brief stimuli such as clicks, tone pips, or speech sylla-

bles rather than more natural speech.

Recent analytical techniques have overcome limitations on stimuli, allowing continuous naturally

uttered speech to be used. One such technique extracts the fundamental waveform from the speech

stimulus and finds the envelope of the cross-correlation between that waveform and the recorded

EEG data (Forte et al., 2017). The response has an average peak time of about 9 ms, with contribu-

tions primarily from the inferior colliculus (Saiz-Alı́a and Reichenbach, 2020). A second technique

considers the rectified broadband speech waveform as the input to a linear system and the EEG

data as the output, and uses deconvolution to compute the ABR waveform as the impulse response

of the system (Maddox and Lee, 2018). The speech-derived ABR shows a wave V peak whose

latency is highly correlated with the click response wave V across subjects, demonstrating that the

component is generated in the rostral brainstem. A third technique averages responses to each chirp

(click-like transients that quickly increase in frequency) in re-synthesized ‘cheech’ stimuli (CHirp

spEECH; Backer et al., 2019) that interleaves alternating octave frequency bands of speech and

chirps aligned with some glottal pulses. Brainstem responses to these stimuli also show a wave V,

but do not show earlier waves (Backer et al., 2019). While these methods reflect subcortical activity,

the first two provide temporally broad responses with a lack of specificity regarding underlying neu-

ral sources. None of the three methods shows the earlier canonical components such as waves I and

III that would allow rostral brainstem activity to be distinguished from, for example, the auditory

nerve. Such activity is important to assess, especially given the current interest in the potential con-

tributions of auditory nerve loss in disordered processing of speech in noise (Bramhall et al., 2019;

Liberman et al., 2016; Prendergast et al., 2017).

Although click responses can assess sound encoding (of clicks) at early stages of the auditory sys-

tem, a speech-evoked response with the same components would assess subcortical structure-spe-

cific encoding within the acoustical context of the dynamic spectrotemporal characteristics of speech

– information that is not possible to obtain from click responses. Furthermore, changes to the ampli-

tudes and latencies of these early components could inform our understanding of speech processing

if deployed in experiments that compare conditions requiring different states of processing, such as

attended/unattended speech or understood/foreign language. For example, if a wave I from the

auditory nerve differed between speech stimuli that were attended versus unattended, then this

would add to our current understanding of the brainstem’s role in speech processing. Therefore, a

click-like response that is evoked by speech stimuli facilitates new investigations into speech encod-

ing and processing.

Thus, we asked if we could further assess underlying speech encoding and processing in multiple

distinct early stages of the auditory system by (1) evoking additional waves than wave V of the

canonical ABR and (2) measuring responses to different frequency ranges of speech (corresponding

to different places of origin on the cochlea). The ABR is strongest to very short stimuli such as clicks,

so we created ‘peaky’ speech. The design goal of peaky speech is to re-synthesize natural speech so

that its defining spectrotemporal content is unaltered – maintaining the speech as intelligible and

identifiable – but its pressure waveform consists of maximally sharp peaks so that it drives the ABR

as effectively as possible (giving a very slight ‘buzzy’ quality when listening under good

headphones; Audio files 1–6). The results show that peaky speech evokes canonical brainstem

responses and frequency-specific responses, paving the way for novel studies of subcortical contri-

butions to speech processing.
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Results

Broadband peaky speech yields more robust responses than unaltered
speech
Broadband peaky speech elicits canonical brainstem responses
We re-synthesized speech to be ‘peaky’ with the primary aim to evoke additional, earlier waves of

the ABR that identify different neural generators. Indeed, Figure 1 shows that waves I, III, and V of

the canonical ABR are clearly visible in the group average and the individual responses to broadband

peaky speech, which were filtered at a typical high-pass cutoff of 150 Hz to highlight the earlier ABR

waves. This means that broadband peaky speech, unlike the unaltered speech, can be used to assess

naturalistic speech processing at discrete parts of the subcortical auditory system, from the auditory

nerve to rostral brainstem.

Waves I and V were identifiable in responses from all subjects (N = 22), and wave III was identifi-

able in 19 of the 22 subjects. The numbers of subjects with identifiable waves I and III in these peaky

speech responses were similar to the 24 and 16 out of 24 subjects for the click-evoked responses in

Maddox and Lee, 2018. These waves are marked on the individual responses in Figure 1. Mean ±

SEM peak latencies for ABR waves I, III, and V were 3.23 ± 0.09 ms, 5.51 ± 0.07 ms, and 7.22 ± 0.07

ms, respectively. These mean peak latencies are shown superimposed on the group average

response in Figure 1 (bottom right). Inter-wave latencies were 2.24 ± 0.06 ms (N = 19) for I–III,

1.68 ± 0.05 ms (N = 19) for III–V, and 4.00 ± 0.08 (N = 22) for I–V. These peak inter-wave latencies

fall within a range expected for brainstem responses, but the absolute peak latencies were later than

those reported for a click ABR at a level of 60 dB sensation level (SL) and rate between 50 and 100

Hz (Burkard and Hecox, 1983; Chiappa et al., 1979; Don et al., 1977).

More components of the ABR and MLR are present with broadband peaky
than unaltered speech
Having established that broadband peaky speech evokes robust canonical ABRs, we next compared

both ABR and MLR responses to those evoked by unaltered speech. To simultaneously evaluate

ABR and MLR components, a high-pass filter with a 30-Hz cutoff was used (unlike the broadband

peaky response, the 150 Hz high-pass cutoff does not reveal earlier components in the response to

unaltered speech). Figure 2A shows that overall there were morphological similarities between

responses to both types of speech; however, there were more early and late component waves to

broadband peaky speech. More specifically, whereas both types of speech evoked waves V, Na, and

Pa, broadband peaky speech also evoked waves I, often III (14–19 of 22 subjects depending

on whether a 30 or 150 Hz high-pass filter cutoff was used), and P0. With a lower cutoff for the high-

pass filter, wave III rode on the slope of wave V and was less identifiable in the grand average shown

in Figure 2A than that shown with a higher cutoff in Figure 1. Wave V was more robust and sharper

to broadband peaky speech but peaked slightly later than the broader wave V to unaltered speech.

For reasons unknown to us, the half-rectified speech method missed the MLR wave P0, and conse-

quently had a broader and earlier Na than the broadband peaky speech method, though this missing

P0 was consistent with the results of Maddox and Lee, 2018. These waveforms indicate that broad-

band peaky speech is better than unaltered speech at evoking canonical responses that distinguish

activity from distinct subcortical and cortical neural generators.

Peak latencies for the waves common to both types of speech are shown in Figure 2B. As sug-

gested by the waveforms in Figure 2A, mean ± SEM peak latencies for waves V, Na, and Pa were

longer for broadband peaky than unaltered speech by 0.87 ± 0.06 ms (independent t-test, t(21) =

14.7, p<0.01, d = 3.22), 6.92 ± 0.44 ms (t(21) = 15.4, p<0.01, d = 3.44), and 1.07 ± 0.45 ms (t(20) =

2.3, p=0.032, d = 0.52), respectively.

The response to broadband peaky speech showed a small but consistent response at negative

and early positive lags (i.e., pre-stimulus) when using the pulse train as a regressor in the deconvolu-

tion, particularly when using the lower high-pass filter cutoff of 30 Hz (Figure 2A) compared to 150

Hz (Figure 1). For a perfectly linear causal system, this would not be expected. To better understand

the source of this pre-stimulus component – and to determine whether later components were influ-

encing the earliest components – we performed two simulations. (1) A simple linear deconvolution

model in which EEG for each 64 s epoch was simulated by convolving the rectified broadband peaky
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Figure 1. Single-subject and group average (bottom right) weighted-average auditory brainstem responses (ABRs) to ~43 min of broadband peaky

speech. Areas for the group average show ±1 SEM. Responses were high-pass filtered at 150 Hz using a first-order Butterworth filter. Waves I, III, and V

of the canonical ABR are evident in most of the single-subject responses (N = 22, 16, and 22, respectively) and are marked by the average peak

latencies on the average response.
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speech audio with an ABR kernel that did not show the pre-stimulus component (Figure 3—figure

supplement 1): the average broadband peaky speech ABR from 0 to 16 ms was zero-padded from

0 ms to the beginning of wave I (1.6 ms), windowed with a Hann function, normalized, and then

zero-padded from �16 ms to 0 ms to center the kernel. (2) A more nuanced and well-known model

of the auditory nerve and periphery that accounts for acoustics and some of the nonlinearities of the

auditory system (Rudnicki et al., 2015; Verhulst et al., 2018; Zilany et al., 2014) – we simulated

EEG for waves I, III, and V using the framework described by Verhulst et al., 2018, but due to com-

putation constraints, modified the implementation to use the peripheral model by Zilany et al.,

2014. The simulated EEG of each model was then deconvolved with the pulse trains to derive the

modeled responses, which are shown in comparison with the measured response in Figure 3. The

pre-stimulus component of the measured response was present in both models, suggesting that

there are nonlinear parts of the response that are not accounted for in the deconvolution with the

pulse train regressor. However, the pre-stimulus component was temporally broad compared to the

components representing activity from the auditory nerve and cochlear nucleus (i.e., waves I and III),

and could thus be dealt with by high-pass filtering. The pre-stimulus component was reduced with a

150-Hz first-order Butterworth high-pass filter (Figure 1) and minimized with a more aggressive 200-

Hz second-order Butterworth high-pass filter (Figure 3, bottom). As expected from more aggressive

high-pass filtering, wave V became smaller, sharper, and earlier, and was followed by a significant

negative deflection. Therefore, when doing an experiment where the analysis needs to evaluate spe-

cific contributions to the earliest ABR components, we recommend high-pass filtering to help miti-

gate the complex and time-varying nonlinearities inherent in the auditory system, as well as

potential influences by responses from later sources.

We verified that the EEG data collected in response to broadband peaky speech could be

regressed with the half-wave rectified speech to generate a response. Figure 4A shows that the

derived responses to unaltered and broadband peaky speech were similar in morphology when

using the half-wave rectified audio as the regressor. Correlation coefficients from the 22 subjects for

the 0–40 ms lags had a median (interquartile range) of 0.84 (0.72–0.91). This means that the same

EEG collected to broadband peaky speech can be flexibly used to generate the robust canonical

brainstem response to the pulse train, as well as the broader response to the half-wave rectified

speech.

Although responses to broadband peaky speech can be derived from both the half-wave rectified

audio and pulse train regressors, the same cannot be said about unaltered speech. We also

regressed the EEG data collected in response to unaltered speech with the pulse train. Figure 4B

shows that simply using the pulse train as a regressor does not give a robust canonical response –

the response contained a wave that slightly resembled wave V of the response to broadband peaky

Figure 2. Comparison of auditory brainstem response (ABR) and middle latency response (MLR) to ~43 min each of unaltered speech and broadband

peaky speech. (A) The average waveform to broadband peaky speech (blue) shows additional, and sharper, waves of the canonical ABR and MLR than

the broader average waveform to unaltered speech (black). Responses were high-pass filtered at 30 Hz with a first-order Butterworth filter. Areas

show ±1 SEM. (B) Comparison of peak latencies for ABR wave V (circles) and MLR waves Na (downward triangles) and Pa (upward triangles) that were

common between responses to broadband peaky and unaltered speech. Blue symbols depict individual subjects, and black symbols depict the mean.

Polonenko and Maddox. eLife 2021;10:e62329. DOI: https://doi.org/10.7554/eLife.62329 5 of 37

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.62329


speech, albeit at a later latency and smaller amplitude, but there were no other earlier waves of the

ABR or later waves of the MLR. The correlation coefficients comparing the unaltered and broadband

peaky speech responses to the pulse train had a median (interquartile range) of 0.20 (0.05–0.39).

The response morphology was abnormal, with an acausal response at 0 ms and a smearing of the

response in time, particularly at lags of the MLR – these effects are consistent with some phases in

the unaltered speech that come pre-pulse, which differs from that of the peaky speech that has

aligned phases at each glottal pulse. The aligned phases of the broadband peaky response allow for

the distinct waves of the canonical brainstem and MLRs to be derived using the pulse train

regressor.

Broadband peaky speech responses differ across talkers
We next sought to determine whether response morphologies depended on the talker identity. To

determine to what extent the morphology and robustness of peaky speech responses depend on a

specific narrator’s voice and fundamental frequency – and therefore, rate of stimulation – we com-

pared waveforms and peak wave latencies of male- and female-narrated broadband peaky speech in

11 subjects.

The group average waveforms to female- and male-narrated broadband peaky speech showed

similar canonical morphologies but were smaller and later for female-narrated ABR responses

(Figure 5A), much as they would be for click stimuli presented at higher rates (e.g., Burkard et al.,

1990; Burkard and Hecox, 1983; Chiappa et al., 1979; Don et al., 1977; Jiang et al., 2009). All

component waves of the ABR and MLR were visible in the group average, although fewer subjects

exhibited a clear wave III in the female-narrated response (9 versus all 11 subjects). The median

(interquartile range) male–female correlation coefficients were 0.68 (0.56–0.78) for ABR lags of 0–15

ms with a 150 Hz high-pass filter and 0.53 (0.50–0.60) for ABR/MLR lags of 0–40 ms with a 30 Hz

Figure 3. Comparison of grand average (N = 22) measured and modeled responses to ~43 min of broadband peaky speech. Amplitudes of the linear

(dashed line) and auditory nerve (AN; dotted line) modeled responses were in arbitrary units, and thus scaled to match the amplitude of the measured

response (solid line) over the 0–20 ms lags. The pre-stimulus component was present in all three responses using a first-order 30 Hz high-pass

Butterworth filter (left column), but was minimized by aggressive high-pass filtering with a second-order 200 Hz high-pass Butterworth filter

(right column).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Auditory brainstem response (ABR) kernel used for the simple linear deconvolution model.
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high-pass filter (Figure 5B). This stimulus dependence was significantly different than the variability

introduced by averaging only half the epochs (i.e., splitting by male- and female-narrated epochs) –

the correlation coefficients for the data reanalyzed into even and odd epochs (each of the even/odd

splits contained the same number of male- and female-narrated epochs) had a median (interquartile

range) of 0.89 (0.79–0.95) for ABR lags and 0.66 (0.39–0.78) for ABR/MLR lags. These odd–even

coefficients were significantly higher than the male–female coefficients for the ABR (W(10) = 0.0,

p=0.001; Wilcoxon signed-rank test) but not when the response included all lags of the MLR (W(10) =

17.0, p=0.175), which is indicative of the increased variability of these later waves. These high odd–

even correlations also show that responses from a single narrator are similar even if the text spoken

is different. The overall male–female narrator differences for the ABR indicate that the choice of nar-

rator for using peaky speech impacts the morphology of the early response.

As expected from the waveforms, peak latencies of component waves differed between male-

and female-narrated broadband peaky speech (Figure 5C). Mean ± SEM peak latency differences

(female – male) for waves I, III, and V of the ABR were 0.21 ± 0.13 ms (t(10) = 1.59, p=0.144,

d = 0.50), 0.42 ± 0.11 ms (t(9) = 3.47, p=0.007, d = 1.16), and 0.54 ± 0.09 ms (t(10) = 5.56, p<0.001,

d = 1.76), respectively. Latency differences were not significant for MLR peaks (P0: �0.89 ± 0.40 ms,

t(9) = �2.13, p=0.062, d = �0.71; Na: �0.91 ± 0.55 ms, t(8) = �1.56, p=0.158, d = �0.55; Pa:

0.09 ± 0.55 ms, t(9) = �0.16, p=0.880, d = �0.05).

Multiband peaky speech yields frequency-specific brainstem responses
to speech
Frequency-specific responses show frequency-specific lags
Broadband peaky speech gives new insights into subcortical processing of naturalistic speech. Not

only are brainstem responses used to evaluate processing at different stages of auditory processing

but ABRs can also be used to assess hearing function across different frequencies. Traditionally, fre-

quency-specific ABRs are measured using clicks with high-pass masking noise or frequency-specific

tone pips. We tested the flexibility of using our new peaky speech technique to investigate how

speech processing differs across frequency regions, such as 0–1, 1–2, 2–4, and 4–8 kHz frequency

bands (for details, see ’Multiband peaky speech’ section in ’Materials and methods’).

Figure 4. Comparison of responses derived by using the same type of regressor in the deconvolution. Average waveforms (areas show ±1 SEM) are

shown for ~43 min each of unaltered speech (black) and broadband peaky speech (blue). EEG was regressed with the (A) half-wave rectified audio and

(B) pulse train. Responses were high-pass filtered at 30 Hz using a first-order Butterworth filter.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Comparison of responses derived by using the half-wave rectified audio as the regressor in the deconvolution with

electroencephalography (EEG) recorded in response to ~43 min of unaltered speech and multiband peaky speech.
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Mean ± SEM responses from 22 subjects to the four frequency bands (0–1, 1–2, 2–4, and 4–8

kHz) of male-narrated multiband peaky speech are shown as colored waveforms with solid lines in

Figure 6A. A high-pass filter with a cutoff of 30 Hz was used. Each frequency band response com-

prises a frequency-band-specific component as well as a band-independent common component,

both of which are due to spectral characteristics of the stimuli and neural activity. The pulse trains

are independent over time in the vocal frequency range – thereby allowing us to pull out responses

to each different pulse train and frequency band from the same EEG – but they became coherent at

frequencies lower than 72 Hz for the male-narrated speech and 126 Hz for the female speech (see

Figure 15 in Materials and methods). This coherence was due to all pulse trains beginning and end-

ing together at the onset and offset of voiced segments and was the source of the low-frequency

common component of each band’s response. The way to remove the common component is to cal-

culate the common activity across the frequency band responses and subtract this waveform from

each of the frequency band responses (see ’Response derivation’ section in ’Materials and meth-

ods’). This common component waveform is shown by the dot-dashed gray line, which is superim-

posed with each response to the frequency bands in Figure 6A. The subtracted, frequency-specific

waveforms to each frequency band are shown by the solid lines in Figure 6B. Of course, the

Figure 5. Comparison of responses to 32 min each of male- (dark blue) and female-narrated (light blue) re-synthesized broadband peaky speech. (A)

Average waveforms across subjects (areas show ±1 SEM) are shown for auditory brainstem response (ABR) time lags with high-pass filtering at 150 Hz

(top), and both ABR and middle latency response (MLR) time lags with a lower high-pass filtering cutoff of 30 Hz (bottom). (B) Histograms of the

correlation coefficients between responses evoked by male- and female-narrated broadband peaky speech during ABR (top) and ABR/MLR (bottom)

time lags. Solid lines denote the median and dotted lines the interquartile range. (C) Comparison of ABR (top) and MLR (bottom) wave peak latencies

for individual subjects (gray) and the group mean (black). ABR and MLR responses were similar to both types of input but are smaller for female-

narrated speech, which has a higher glottal pulse rate. Peak latencies for female-evoked speech were delayed during ABR time lags but faster for early

MLR time lags.
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Figure 6. Comparison of responses to ~43 min of male-narrated multiband peaky speech. (A) Average waveforms across subjects (areas show ±1 SEM)

are shown for each band (colored solid lines) and common component (dot-dash gray line, same waveform replicated as a reference for each band),

which was calculated using six false pulse trains. (B) The common component was subtracted from each band’s response to give the frequency-specific

waveforms (areas show ±1 SEM), which are shown with high-pass filtering at 30 Hz (solid lines) and 150 Hz (dashed lines). (C) Mean ± SEM peak latencies

Figure 6 continued on next page
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subtracted waveforms could also then be high-pass filtered at 150 Hz to highlight earlier waves of

the brainstem responses, as shown by the dashed lines in Figure 6B. However, this method reduces

the amplitude of the responses, which in turn affects response SNR and detectability. In some sce-

narios, due to the low-pass nature of the common component, high-passing the waveforms at a high

enough frequency may obviate the need to formally subtract the common component. For example,

at least for the narrators used in these experiments, the common component contained minimal

energy above 150 Hz, so if the waveforms are already high-passed at 150 Hz to focus on the early

waves of the ABR, then the step of formally subtracting the common component may not be neces-

sary. But beyond the computational cost, there is no reason not to subtract the common component

and doing so allows lower filter cutoffs to be used.

Overall, the frequency-specific responses showed characteristic ABR and MLR waves with longer

latencies for lower frequency bands, as would be expected from responses arising from different

cochlear regions. Also, waves I and III of the ABR were visible in the group average waveforms of

the 2–4 kHz (�41% of subjects) and 4–8 kHz (�86% of subjects) bands, whereas the MLR waves

were more prominent in the 0–1 kHz (�95% of subjects) and 1–2 kHz (�54% of subjects) bands.

These frequency-dependent latency changes for the frequency-specific responses are highlighted

further in Figure 6C, which shows mean ± SEM peak latencies and the number of subjects who had

a clearly identifiable wave. The change in peak latency with frequency band was modeled using a

power law regression (Harte et al., 2009; Neely et al., 1988; Rasetshwane et al., 2013;

Strelcyk et al., 2009). The fixed effect of wave and its interaction with frequency were also included.

Details of the statistical model are described in Supplementary file 1A. Modeled parameters that

can be meaningfully compared to existing norms are given in Table 1A. In general, there was good

agreement with these norms. There was a significant decrease in wave V latency with increasing fre-

quency band (slope p<0.001 for 30 and 150 Hz), which was shallower (i.e., less negative) for MLR

Figure 6 continued

for each wave decreased with increasing band frequency. Numbers of subjects with an identifiable wave are given for each wave and band. Details of

the mixed effects models for (C) are provided in Supplementary file 1A.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Comparison of responses to 64 min each of male- (left) and female-narrated (right) multiband peaky speech created with the

dynamic random frequency shift method.

Table 1. Parameter estimates and SEM for power law fits to the multiband peaky speech auditory brainstem response wave V data in

the three experiments*.

Type Narrator High-pass cutoff a b d

Norms† 4.70–5.00 ms 3.46–5.39 ms 0.22–0.50

A. Experiment 1

Diotic
four-bands

Male 30 Hz 5.13 ± 0.08 ms 3.95 ± 1.03 ms 0.41 ± 0.02

150 Hz 4.80 ± 0.08 ms 3.95 ± 1.03 ms 0.37 ± 0.02

B. Experiment 2

Diotic
four-bands

Male 30 Hz 5.06 ± 0.14 ms 4.42 ± 1.04 ms 0.45 ± 0.03

Female 30 Hz 5.58 ± 0.12 ms 3.94 ± 1.08 ms 0.44 ± 0.05

C. Experiment 3

Dichotic
five-bands

Male 30 Hz 5.06 ± 0.14 ms‡ 4.13 ± 1.04 ms§ 0.36 ± 0.02

Female 30 Hz 5.58 ± 0.12 ms‡ 3.75 ± 1.07 ms§ 0.41 ± 0.03

*Power model: t fð Þ ¼ aþ bf�d where a ¼ t synaptic þ t I�V and t synaptic = 0.8 ms. See ’Statistical analyses’ section in ’Materials and methods’ for more

detail.
†Norms for tone pips and derived bands were calculated for 65 dBppeSPL using the model’s level-dependent parameter when appropriate (Neely et al.,

1988; Rasetshwane et al., 2013; Strelcyk et al., 2009).
‡Estimates from experiment 2 were used.
§Estimates given for the left ear; there was not a significant difference for the right ear.
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waves compared to the ABR wave V (all p<0.001 for interactions between wave and frequency

term). Unsurprisingly there were significantly different latencies for each MLR wave P0, Na, and Pa

compared to the ABR wave V (all effects of wave on the intercept p<0.001).

Next, the frequency-specific responses (i.e., multiband responses with common component sub-

tracted) were summed and the common component added to derive the entire response to multi-

band peaky speech. As shown in Figure 7, this summed multiband response was strikingly similar in

morphology to the broadband peaky speech. Both responses were high-passed filtered at 150 Hz

and 30 Hz to highlight the earlier ABR waves and later MLR waves, respectively. The median (inter-

quartile range) correlation coefficients from the 22 subjects were 0.90 (0.84–0.94) for 0–15 ms ABR

lags and 0.66 (0.55–0.83) for 0–40 ms MLR lags. The similarity verifies that the frequency-dependent

responses are complementary to each other to the common component such that these components

add linearly into a ‘whole’ broadband response. If there were significant overlap in the cochlear

regions, for example, the summed response would not resemble the broadband response to such a

degree and would instead be larger. The similarity also verified that the additional changes we

made to create re-synthesized multiband peaky speech did not significantly affect responses com-

pared to broadband peaky speech.

We also verified that the EEG data collected in response to multiband peaky speech could be

regressed with the half-wave rectified speech to generate a response. Figure 4—figure supplement

1 shows that the derived responses to unaltered and multiband peaky speech were similar in mor-

phology when using the half-wave audio as the regressor, although the multiband peaky speech

response was broader in the earlier latencies. Correlation coefficients from the 22 subjects for the 0–

40 ms lags had a median (interquartile range) of 0.83 (0.77–0.88). This means that the same EEG col-

lected to multiband peaky speech can be flexibly used to generate the frequency-specific brainstem

responses to the pulse train, as well as the broader response to the half-wave rectified speech.

Frequency-specific responses also differ by narrator
We also investigated the effects of male- versus female-narrated multiband peaky speech in the

same 11 subjects. As with broadband peaky speech, responses to both narrators showed similar

morphology, but the responses were smaller and the MLR waves more variable for the female than

the male narrator (Figure 8A). Figure 8B shows the male–female correlation coefficients for

responses between 0–40 ms with a high-pass filter of 30 Hz and between 0–15 ms with a high-pass

filter of 150 Hz. The median (interquartile range) male–female correlation coefficients were better

for higher frequency bands, ranging from 0.12 (�0.11–0.34) for the 1–2 kHz band to 0.44 (0.32–0.49)

Figure 7. Comparison of responses to ~43 min of male-narrated peaky speech in the same subjects. Average waveforms across subjects (areas

show ±1 SEM) are shown for broadband peaky speech (blue) and summed frequency-specific responses to multiband peaky speech with the common

component added (red), high-pass filtered at 150 Hz (left) and 30 Hz (right). Regressors in the deconvolution were pulse trains.
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for the 4–8 kHz band for MLR lags (Figure 8B, left), and from 0.49 (0.30–0.69) for the 1–2 kHz band

to 0.79 (0.64–0.81) for the 4–8 kHz band for ABR lags (Figure 8B, right). These male�female correla-

tion coefficients were significantly weaker than those of the same EEG split into even and odd trials

for all but the 2–4 kHz frequency band when responses were high-pass filtered at 30 Hz and corre-

lated across 0–40 ms lags (2–4 kHz: W(10) = 17.0, p=0.175; other bands: W(10) � 5.0, p�0.010), but

were similar to the even/odd trials for responses from all frequency bands high-pass filtered at 150

Figure 8. Comparison of responses to 32 min each of male- and female-narrated re-synthesized multiband peaky speech. (A) Average frequency-

specific waveforms across subjects (areas show ±1 SEM; common component removed) are shown for each band in response to male- (dark red lines)

and female-narrated (light red lines) speech. Responses were high-pass filtered at 30 Hz (left) and 150 Hz (right) to highlight the middle latency

response (MLR) and auditory brainstem response (ABR), respectively. (B) Correlation coefficients between responses evoked by male- and female-

narrated multiband peaky speech during ABR/MLR (left) and ABR (right) time lags for each frequency band. Black lines denote the median. (C) Mean ±

SEM peak latencies for male- (dark) and female-narrated (light) speech for each wave decreased with increasing frequency band. Numbers of subjects

with an identifiable wave are given for each wave, band, and narrator. Lines are given a slight horizontal offset to make the error bars easier to see.

Details of the mixed effects models for (C) are provided in Supplementary file 1B.
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Hz (W(10) � 11.0, p�0.054). These results indicate that the specific narrator can affect the robustness

of frequency-specific responses, particularly for the MLR waves.

As expected from the grand average waveforms and male–female correlations, there were fewer

subjects who had identifiable waves across frequency bands for the female- than male-narrated

speech. These numbers are shown in Figure 8C, along with the mean ± SEM peak latencies for each

wave, frequency band, and narrator. Again, there were few numbers of subjects with identifiable

waves I and III for the lower frequency bands. Therefore, a similar power law model as used above

was performed for waves V, P0, Na, and Pa of responses in the four frequency bands that were high-

pass filtered at 30 Hz. This model also included fixed effects of narrator and its associated interac-

tions. Details of the statistical model are described in Supplementary file 1B. The post-cochlear

delay estimate for the female narrator of 5.58 ms was slightly outside the normal range of 4.7–5.0

ms, which is likely a result of high-passing at 30 Hz here compared to 100 Hz in the previous studies.

All other values were consistent with their norms and appear in Table 1B. As before, peak latencies

were different for each wave and decreased with increasing frequency in a manner more pro-

nounced for wave V than later waves (all p<0.001). There was a main effect of narrator on peak

latencies but no interaction with wave (narrator p=0.001, wave–narrator interactions p>0.087).

Therefore, as with broadband peaky speech, frequency-specific peaky responses were more robust

with the male narrator and the frequency-specific responses peaked earlier for a narrator with a

lower fundamental frequency.

Frequency-specific responses can be measured simultaneously in each ear
(dichotically)
We have so far demonstrated the effectiveness of peaky speech for diotic stimuli, but there is often

a need to evaluate auditory function in each ear, and the most efficient tests assess both ears simul-

taneously. Applying this principle to generate multiband peaky speech, we investigated whether

ear-specific responses could be evoked across the five standard audiological octave frequency bands

(500–8000 Hz) using dichotic multiband speech. We created 10 independent pulse trains, two for

each ear in each of the five frequency bands (see ’Multiband peaky speech’ and ’Band filters’

sections in ’Materials and methods’).

We recorded responses to male- and female-narrated dichotic multiband peaky speech in 11 sub-

jects. The frequency-specific (i.e., common component-subtracted) group average waveforms for

each ear and frequency band are shown in Figure 9A. The 10 waveforms were small, especially for

female-narrated speech, but a wave V was identifiable for both narrators. Also, waves I and III of the

ABR were visible in the group average waveforms of the 4 kHz band (�45% and 18% of subjects for

the male and female narrator, respectively) and 8 kHz band (�90% and 72% of subjects for the male

and female narrator, respectively). MLR waves were not clearly identifiable for responses to female-

narrated speech. Therefore, correlations between responses were performed for ABR lags between

0–15 ms. As shown in Figure 9B, the median (interquartile range) left–right ear correlation coeffi-

cients (averaged across narrators) ranged from 0.28 (0.02–0.52) for the 0.5 kHz band to 0.73 (0.62–

0.84) for the 8 kHz band. Male–female correlation coefficients (averaged across ear) ranged from

0.44 (0.00–0.58) for the 0.5 kHz band to 0.76 (0.51–0.80) for the 8 kHz band. Although the female-

narrated responses were smaller than the male-narrated responses, these male–female coefficients

did not significantly differ from correlations of same EEG split into even–odd trials and averaged

across ear (W(10) � 12.0, p�0.067), likely reflecting the variability in such small responses.

Figure 9C shows the mean ± SEM peak latencies of wave V for each ear and frequency band for

the male- and female-narrated dichotic multiband peaky speech. The change in wave V latency with

frequency was modeled by a similar power law as used above. This model also included fixed effects

of narrator, ear, and the interactions between narrator and frequency. Details of the statistical model

are described in Supplementary file 1C. For wave V, the estimated mean parameters for both narra-

tors were consistent with norms and appear in Table 1C. Latency decreased with increasing fre-

quency (slope, p<0.001) in a similar way for both narrators (interaction with slope p=0.085). Peak

latency differed by narrator (interaction with intercept p=0.004) but not between ears (p=0.265).

Taken together, these results confirm that, while small in amplitude, frequency-specific responses

can be elicited in both ears across five different frequency bands and show characteristic latency

changes across the different frequency bands.
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Figure 9. Comparison of responses to ~60 min each of male- and female-narrated dichotic multiband peaky speech with standard audiological

frequency bands. (A) Average frequency-specific waveforms across subjects (areas show ±1 SEM; common component removed) are shown for each

band for the left ear (dotted lines) and right ear (solid lines). Responses were high-pass filtered at 30 Hz. (B) Left–right ear correlation coefficients (top,

averaged across gender) and male–female correlation coefficients (bottom, averaged across ear) during auditory brainstem response time lags (0–15

ms) for each frequency band. Black lines denote the median. (C) Mean ± SEM wave V latencies for male- (dark red) and female-narrated (light red)

speech for the left (dotted line, cross symbol) and right ear (solid line, circle symbol) decreased with increasing frequency band. Lines are given a slight

horizontal offset to make the error bars easier to see. Details of the mixed effects model for (C) are provided in Supplementary file 1C.
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Responses are obtained quickly for male-narrated broadband peaky
speech but not multiband peaky speech
Having demonstrated that peaky broadband and multiband speech provides canonical waveforms

with characteristic changes in latency with frequency, we next evaluated the acquisition time

required for waveforms to reach a decent SNR (see ’Response SNR calculation’ section in ’Materials

and methods’ for details).

Figure 10 shows the cumulative proportion of subjects who had responses with �0 dB SNR to

unaltered and broadband peaky speech as a function of recording time. Acquisition times for 22

subjects were similar for responses to both unaltered and broadband peaky male-narrated speech,

with 0 dB SNR achieved by 7–8 min in 50% of subjects and about 20 min for all subjects. For

responses high-pass filtered at 150 Hz to highlight the ABR (0–15 ms interval), the time reduced to 2

and 5 min for 50% and 100% of subjects respectively for broadband peaky speech but increased to

8 and >20 min for 50% and 100% of subjects respectively for unaltered speech. The increased time

for the unaltered speech reflects the broad morphology of the response during ABR lags. These

times for male-narrated broadband peaky speech were confirmed in our second cohort of 11 sub-

jects. However, acquisition times were at least 2.1 times – but in some cases over 10 times – longer

for female-narrated broadband peaky speech. In contrast to male-narrated speech, not all subjects

achieved this threshold for female-narrated speech by the end of the 32 min recording. Taken

together, these acquisition times confirm that responses with useful SNRs can be measured quickly

for male-narrated broadband peaky speech but longer recording sessions are necessary for narrators

with higher fundamental frequencies.

The longer recording times necessary for a female narrator became more pronounced for the

multiband peaky speech. Figure 11A shows the cumulative density function for responses high-pass

filtered at 150 Hz and the SNR estimated over the ABR interval. Many subjects (72%) had frequency-

specific responses (common component subtracted) with �0 dB SNR for all four frequency bands by

the end of the 32 min recording for the male-narrated speech, but this was achieved in only 45% of

subjects for the female-narrated speech. Multiband peaky speech required significantly longer

recording times than broadband peaky speech, with 50% of subjects achieving 0 dB SNR by 15 min

Figure 10. Cumulative proportion of subjects who have responses with �0 dB signal-to-noise ratio (SNR) as a function of recording time. Time required

for unaltered (black) and broadband peaky speech (dark blue) of a male narrator is shown for 22 subjects in the left plot, and for male (dark blue) and

female (light blue) broadband peaky speech is shown for 11 subjects in the right plot. Solid lines denote SNRs calculated using variance of the signal

high-pass filtered at 30 Hz over the auditory brainstem response (ABR)/middle latency response (MLR) interval 0–30 ms, and dashed lines denote SNR

variances calculated on signals high-pass filtered at 150 Hz over the ABR interval 0–15 ms. Noise variance was calculated in the pre-stimulus interval

�480 to �20 ms.
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compared to 2 min for the male-narrated responses across the ABR 0–15 ms interval and 17 min

compared to 5 min for the MLR 0–30 ms interval. Even more time was required for dichotic multi-

band speech, which comprised a larger number of frequency bands (Figure 11B). All 10 audiological

band responses achieved � 0 dB SNR in 45% of ears (10/22 ears from 11 subjects) by 64 min for

male-narrated speech and in 27% of ears (6/22 ears) for female-narrated speech. The smaller and

broader responses in the low-frequency bands were slower to obtain and were the main constraint

on testing time. These recording times suggest that deriving multiple frequency-specific responses

will require at least more than 30 min per condition for <5 bands and more than an hour session for

one condition of peaky multiband speech with 10 bands.

Discussion
The major goal of this work was to develop a method to investigate early stages of naturalistic

speech processing. We re-synthesized continuous speech taken from audiobooks so that the phases

of all harmonics aligned at each glottal pulse during voiced segments, thereby making speech as

Figure 11. Cumulative proportion of subjects who have frequency-specific responses (common component subtracted) with �0 dB signal-to-noise

ratio (SNR) as a function of recording time. Acquisition time was faster for male- (left) than female-narrated (right) multiband peaky speech with (A) four

frequency bands presented diotically and (B) five frequency bands presented dichotically (total of 10 responses, five bands in each ear). SNR was

calculated by comparing variance of signals high-pass filtered at 150 Hz across the auditory brainstem response interval of 0–15 ms to variance of noise

in the pre-stimulus interval �480 to �20 ms.
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impulse-like (peaky) as possible to drive the auditory brainstem. Then we used the glottal pulse

trains as the regressor in deconvolution to derive the responses. Indeed, comparing waveforms to

broadband peaky and unaltered speech validated the superior ability of peaky speech to evoke

additional waves of the canonical ABR and MLR, reflecting neural activity from multiple subcortical

structures. Robust ABR and MLR responses were recorded in less than 5 and 20 min, respectively,

for all subjects, with half of the subjects exhibiting a strong ABR within 2 min and MLR within 8 min.

Longer recording times were required for the smaller responses generated by a narrator with a

higher fundamental frequency. We also demonstrated the flexibility of this stimulus paradigm by

simultaneously recording up to 10 frequency-specific responses to multiband peaky speech that was

presented either diotically or dichotically, although these responses required much longer recording

times. Taken together, our results show that peaky speech effectively yields responses from distinct

subcortical structures and different frequency bands, paving the way for new investigations of

speech processing and new tools for clinical application.

Peaky speech responses reflect activity from distinct subcortical
components
Canonical responses can be derived from speech with impulse-like
characteristics
For the purpose of investigating responses from different subcortical structures, we accomplished

our goal of creating a stimulus paradigm that overcame some of the limitations of current methods

using natural speech. Methods that do not use re-synthesized impulse-like speech generate

responses characterized by a broad peak between 6–9 ms (Forte et al., 2017; Maddox and Lee,

2018), with contributions predominantly from the inferior colliculus (Saiz-Alı́a and Reichenbach,

2020). In contrast, for the majority of our subjects, peaky speech evoked responses with canonical

morphology comprising waves I, III, V, P0, Na, and Pa (Figure 1), reflecting neural activity from dis-

tinct stages of the auditory system from the auditory nerve to thalamus and primary auditory cortex

(e.g., Picton et al., 1974). Although clicks also evoke responses with multiple component waves,

current studies of synaptopathy show quite varied results with clicks and poor correlation with

speech in noise (Bramhall et al., 2019; Prendergast et al., 2017). Obtaining click-like responses to

stimuli with all of speech’s spectrotemporal richness may provide a better connection to the specific

neural underpinnings of speech encoding, similar to how the complex cross-correlation to a funda-

mental waveform can change based on the context of attention (Forte et al., 2017; Saiz-Alı́a et al.,

2019).

The ABR wave V and similar MLR waves evoked here were also evoked by a method using

embedded chirps intermixed within alternating octave bands of speech (Backer et al., 2019). Chirps

are transients that compensate for the cochlear traveling delay wave by introducing different phases

across frequency, leading to a more synchronized response across the cochlea and a larger brain-

stem response than for clicks (Dau et al., 2000; Elberling and Don, 2008; Shore and Nuttall,

1985). The responses to embedded chirps elicited waves with larger mean amplitude than those to

our broadband peaky speech (~0.4 versus ~0.2 mV, respectively), although a similar proportion of

subjects had identifiable waves, the SNR was good, and several other factors may contribute to

amplitude differences. For example, higher click rates (e.g., Burkard et al., 1990; Burkard and

Hecox, 1983; Chiappa et al., 1979; Don et al., 1977; Jiang et al., 2009) and higher fundamental

frequencies (Maddox and Lee, 2018; Saiz-Alı́a et al., 2019; Saiz-Alı́a and Reichenbach, 2020)

reduce the brainstem response amplitude, and dynamic changes in rate may create interactions

across neural populations that lead to smaller amplitudes. Our stimuli kept the dynamic changes in

pitch across all frequencies (instead of alternate octave bands of chirps and speech) and created

impulses at every glottal pulse, with an average pitch of ~115 Hz and ~198 Hz for the male and

female narrators, respectively. These presentation rates were much higher and more variable than

the flat 42 Hz rate at which the embedded chirps were presented (pitch flattened to 82 Hz and

chirps presented every other glottal pulse). We could evaluate whether chirps would improve

response amplitude to our dynamic peaky speech by simply all-pass filtering the re-synthesized

voiced segments by convolving with a chirp prior to mixing the re-synthesized parts with the

unvoiced segments. While maintaining the amplitude spectrum of speech, the harmonics would then

have the different phases associated with chirps at each glottal pulse instead of all phases set to 0.
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Regardless, our peaky speech generated robust canonical responses with good SNR while maintain-

ing a natural-sounding, if very slightly ‘buzzy’, quality to the speech. Overall, continuous speech re-

synthesized to contain impulse-like characteristics is an effective way to elicit responses that distin-

guish contributions from different subcortical structures.

Latencies of component waves are consistent with distinct subcortical
structures
The latencies of the component waves of the responses to peaky speech are consistent with activity

arising from known subcortical structures. The inter-wave latencies between I–III, III–V, and I–V fall

within the expected range for brainstem responses elicited by transients at 50–60 dB SL and 50–100

Hz rates (Burkard and Hecox, 1983; Chiappa et al., 1979; Don et al., 1977), suggesting that the

transmission times between auditory nerve, cochlear nucleus, and rostral brainstem remain similar

for speech stimuli. However, these speech-evoked waves peak at later absolute latencies than

responses to transient stimuli at 60 dB SL and 90–100 Hz, but at latencies more similar to those pre-

sented at 50 dB SL or 50 dB nHL in the presence of some masking noise (Backer et al., 2019;

Burkard and Hecox, 1983; Chiappa et al., 1979; Don et al., 1977; Maddox and Lee, 2018). There

are reasons why the speech-evoked latencies may be later. First, our level of 65 dB sound pressure

level (SPL) may be more similar to click levels of 50 dB SL. Second, although spectra of both speech

and transients are broad, clicks, chirps, and even our previous speech stimuli (which was high-pass

filtered at 1 kHz; Maddox and Lee, 2018) have relatively greater high-frequency energy than the

unaltered and peaky broadband speech used in the present work. Neurons with higher characteristic

frequencies respond earlier due to their basal cochlear location and contribute relatively more to

brainstem responses (e.g., Abdala and Folsom, 1995), leading to quicker latencies for stimuli that

have greater high-frequency energy. Also consistent with having greater lower frequency energy,

our unaltered and peaky speech responses were later than the response from the same speech seg-

ments that were high-pass filtered at 1 kHz (Maddox and Lee, 2018). In fact, the ABR to broadband

peaky speech bore a close resemblance to the summation of each frequency-specific response and

the common component to peaky multiband speech (Figure 7), with peak wave latencies represent-

ing the relative contribution of each frequency band. Third, higher stimulation rates prolong laten-

cies due to neural adaptation, and the 115–198 Hz average fundamental frequencies of our speech

were much higher than the 41 Hz embedded chirps and 50–100 Hz click rates (e.g., Burkard et al.,

1990; Burkard and Hecox, 1983; Chiappa et al., 1979; Don et al., 1977; Jiang et al., 2009). The

effect of stimulation rate was also demonstrated by the later ABR wave I, III, and V peak latencies for

the female narrator with the higher average fundamental frequency of 198 Hz (Figure 6A, C). There-

fore, the differing characteristics of typical periodic transients (such as clicks and chirps) and continu-

ous speech may give rise to differences in brainstem responses, even though they share canonical

waveforms arising from similar contributing subcortical structures.

The latency of the peaky speech-evoked response also differed from the non-standard, broad

responses to unaltered speech. However, latencies from these waveforms are difficult to compare

due to the differing morphology and the different analyses that were used to derive the responses.

Evidence for the effect of analysis comes from the fact that the same EEG collected in response to

peaky speech could be regressed with pulse trains to give canonical ABRs (Figure 1, Figure 2), or

regressed with the half-wave rectified peaky speech to give the different, broad waveform (Figure 4).

Furthermore, non-peaky continuous speech stimuli with similar ranges of fundamental frequencies

(between 100–300 Hz) evoke non-standard, broad brainstem responses that also differ in morphol-

ogy and latency depending on whether the EEG is analyzed by deconvolution with the half-wave rec-

tified speech (Figure 2, Maddox and Lee, 2018) or complex cross-correlation with the fundamental

frequency waveform (Forte et al., 2017). Therefore, again, even though the inferior colliculus and

lateral lemniscus may contribute to generating these different responses (Møller and Jannetta,

1983; Saiz-Alı́a and Reichenbach, 2020; Starr and Hamilton, 1976), the morphology and latency

may differ (sometimes substantially) depending on the analysis technique used.

Responses reflect activity from different frequency regions
In addition to evoking canonical brainstem responses, peaky speech can be exploited for other tradi-

tional uses of ABR, such as investigating subcortical responses across different frequencies.
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Frequency-specific responses were measurable to two different types of multiband peaky speech:

four frequency bands presented diotically (Figure 6, Figure 8) and five frequency bands presented

dichotically (Figure 9). Peak wave latencies of these responses decreased with increasing band fre-

quency in a similar way to responses evoked by tone pips and derived bands from clicks in noise

(Gorga et al., 1988; Neely et al., 1988; Rasetshwane et al., 2013; Strelcyk et al., 2009), thereby

representing activity evoked from different areas across the cochlea. In fact, our estimates of the

power law parameters of a (the central conduction time), d (the frequency dependence), and b (the

latency corresponding to 1 kHz and 65 dB SPL) for wave V fell within the corresponding ranges that

were previously reported for tone pips and derived bands at 65 dB ppeSPL (Neely et al., 1988;

Rasetshwane et al., 2013; Strelcyk et al., 2009). Interestingly, the frequency-specific responses

across frequency band were similar in amplitude or possibly slightly smaller for the lower frequency

bands (Figure 6, Figure 8, Figure 9), even though the relative energy of each band decreased with

increasing frequency, resulting in an ~30 dB difference between the lowest and highest frequency

bands (Figure 14). A greater response elicited by higher frequency bands is consistent with the rela-

tively greater contribution of neurons with higher characteristic frequencies to ABRs (Abdala and

Folsom, 1995), as well as the need for higher levels to elicit low-frequency responses to tone pips

that are close to threshold (Gorga et al., 2006; Gorga et al., 1993; Hyde, 2008; Stapells and

Oates, 1997). Also, canonical waveforms were derived in the higher frequency bands of diotically

presented speech, with waves I and III identifiable in most subjects. Multiband peaky speech will not

replace the current frequency-specific ABR, but there are situations where it may be advantageous

to use speech over tone pips. Measuring waves I, III, and V of high-frequency responses in the con-

text of all the dynamics of speech may have applications to studying effects of cochlear synaptop-

athy on speech comprehension (Bharadwaj et al., 2014; Liberman et al., 2016). Another exciting

potential application is the evaluation of supra-threshold hearing across frequency in toddlers and

individuals who do not provide reliable behavioral responses as they may be more responsive to sit-

ting for longer periods of time while listening to a narrated story than to a series of tone pips. Giving

a squirmy toddler an iPad and presenting a story for 30 min could allow responses to multiband

peaky speech that confirm audibility at normal speech levels. Such a screening or metric of audibility

is a useful piece of knowledge in pediatric clinical management and is also being investigated for

the frequency following response (Easwar et al., 2020; Easwar et al., 2015), which provides differ-

ent information than the canonical responses. An extension of this assessment would be to evaluate

neural speech processing in the context of hearing loss, as well as rehabilitation strategies such as

hearing aids and cochlear implants. Auditory prostheses have algorithms specifically tuned for the

spectrotemporal dynamics of speech that behave very differently in response to standard diagnostic

stimuli such as trains of clicks or tone pips. Peaky speech responses could allow us to assess how the

auditory system is encoding the amplified speech and validate audibility of the hearing aid fittings

before the infant or toddler is old enough to provide reliable speech perception testing. Therefore,

the ability of peaky speech to yield both canonical waveforms and frequency-specific responses

makes this paradigm a flexible method that assesses speech encoding in new ways.

Practical considerations for using peaky speech and deconvolution
Filtering
Having established that peaky speech is a flexible stimulus for investigating different aspects of

speech processing, there are several practical considerations for using the peaky speech paradigm.

First, filtering should be performed carefully. As recommended in Maddox and Lee, 2018, causal fil-

ters – which have impulse responses with non-zero values at positive lags only – should be used to

ensure cortical activity at later peak latencies does not spuriously influence earlier peaks correspond-

ing to subcortical origins. Applying less aggressive, low-order filters (i.e., broadband with shallow

roll-offs) will help reduce the effects of causal filtering on delaying response latency. The choice of

high-pass cutoff will also affect the response amplitude and morphology. After evaluating several

orders and cutoffs to the high-pass filters, we determined that early waves of the peaky broadband

ABRs were best visualized with a 150 Hz cutoff, whereas a lower cutoff frequency of 30 Hz was nec-

essary to view the ABR and MLR of the broadband responses. When evaluating specific contribu-

tions to the earliest waves, we recommend at least a first-order 150 Hz high-pass filter or a more

aggressive second-order 200 Hz high-pass filter to deal with artifacts arising from nonlinearities that
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are not taken into account by the pulse train regressor or any potential influences by responses from

later sources (Figure 3). For multiband responses, the 150 Hz high-pass filter significantly reduced

the response but also decreased the low-frequency noise in the pre-stimulus interval. For the 4-band

multiband peaky speech, the 150 Hz and 30 Hz filters provided similar acquisition times for 0 dB

SNR, but better SNRs were obtained quicker with 150 Hz filtering for the 10-band multiband peaky

speech.

Choice of narrator (stimulation rate)
Second, the choice of narrator impacts the responses to both broadband and multiband peaky

speech. Although overall morphology was similar, the male-narrated responses were larger, con-

tained more clearly identifiable component waves in a greater proportion of subjects, and achieved

a 0 dB SNR at least 2.1 to over 10 times faster than those evoked by a female narrator. These differ-

ences likely stemmed from the ~77 Hz difference in average pitch as higher stimulation rates evoke

smaller responses due to adaptation and refractoriness (e.g., Burkard et al., 1990; Burkard and

Hecox, 1983; Chiappa et al., 1979; Don et al., 1977; Jiang et al., 2009). Indeed, a 50 Hz change

in fundamental frequency yields a 24% reduction in the modeled ABR that was derived as the com-

plex cross-correlation with the fundamental frequency (Saiz-Alı́a and Reichenbach, 2020). The narra-

tor differences exhibited in the present study may be larger than those in other studies with

continuous speech (Forte et al., 2017; Maddox and Lee, 2018; Saiz-Alı́a et al., 2019) as a result of

the different regressors. These response differences do not preclude using narrators with higher fun-

damental frequencies in future studies, but the time required for usable responses from each narra-

tor must be considered when planning experiments, and caution taken when interpreting

comparisons between conditions with differing narrators. The strongest results will come from com-

paring responses to the same narrator (or even the same speech recordings) under different experi-

mental conditions.

SNR and recording time for multiple responses
Third, the necessary recording time depends on the chosen SNR threshold, experimental demands,

and stimulus. We chose a threshold SNR of 0 dB based on when waveforms became clearly identifi-

able, but of course a different threshold would change our recording time estimates (though, nota-

bly, not the ratios between them). With this SNR threshold, acquisition times were quick enough for

broadband peaky responses to allow multiple conditions in a reasonable recording session. With

male-narrated broadband peaky speech, all subjects achieved 0 dB SNR ABRs in <5 min and MLRs

in <20 min, thereby affording between 3 and 12 conditions in an hour recording session. These

recording times are comparable, if not faster, than the 8 min for the broad response to unaltered

speech, 6–12 min for the chirp-embedded speech (Backer et al., 2019), ~10 min for the broad com-

plex-cross correlation response to the fundamental waveform (Forte et al., 2017), and 33 min for

the broad response to high-passed continuous speech (Maddox and Lee, 2018). However, using a

narrator with a higher fundamental frequency could increase testing time by two- to over tenfold. In

this experiment, at most two conditions per hour could be tested with the female-narrated broad-

band peaky speech. Unlike broadband peaky speech, the testing times required for all frequency-

specific responses to reach 0 dB SNR were significantly longer, making only one condition feasible

within a recording session. At least 30 min was necessary for the multiband peaky speech, but based

on extrapolated testing times, about 1 hr is required for 90% of subjects and 2 hr for 75% of subjects

to achieve this threshold for all 4 bands of diotic speech and all 10 bands of dichotic speech, respec-

tively. It is also possible that there was some contralateral suppression in our dichotic recordings;

however, it is unlikely that separate monaural presentation would enlarge responses enough to be

worth the doubled recording time. The longer testing times here are important to consider when

planning studies using multiband peaky speech with several frequency bands.

Number of frequency bands
Fourth, as mentioned above, the number of frequency bands incorporated into multiband peaky

speech decreases SNR and increases testing time. Although it is possible to simultaneously record

up to 10 frequency-specific responses, the significant time required to obtain decent SNRs reduces

the feasibility of testing multiple conditions or having recording sessions lasting less than 1–2 hr.
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However, pursuing shorter testing times with multiband peaky speech is possible. Depending on the

experimental question, different multiband options could be considered. For male-narrated speech,

the 2–4 and 4–8 kHz responses had good SNRs and exhibited waves I, III, and V within 9 min for

90% of subjects. Therefore, if researchers were more interested in comparing responses in these

higher frequency bands, they could stop recording once these bands reach threshold but before the

lower frequency bands reach criterion (i.e., within 9 min). Alternatively, the lower frequencies could

be combined into a single broader band in order to reduce the total number of bands or the inten-

sity could be increased to evoke responses with larger amplitudes. Therefore, different band and

parameter considerations could reduce testing time and improve the feasibility, and thus utility, of

multiband peaky speech.

Flexible analysis windows for deriving responses from auditory nerve to
cortex
Fifth, and finally, a major advantage of deconvolution analysis is that the analysis window for the

response can be extended arbitrarily in either direction to include a broader range of latencies

(Maddox and Lee, 2018). Extending the pre-stimulus window leftward provides a better estimate of

the SNR, and extending the window rightward allows parts of the response that come after the ABR

and MLR to be analyzed as well, which are driven by the cortex. These later responses can be evalu-

ated in response to broadband peaky speech, but as shown in Figures 8 and 9, only ABR and early

MLR waves are present in the frequency-specific responses. The same broadband peaky speech

data from Figure 5 are high-pass filtered at 1 Hz and displayed with an extended time window in

Figure 12, which shows component waves of the ABR, MLR, and late latency responses (LLR). Thus,

this method allows us to simultaneously investigate speech processing ranging from the earliest level

of the auditory nerve all the way through the cortex without requiring extra recording time. Usually

the LLR is larger than the ABR/MLR, but our subjects were encouraged to relax and rest, yielding a

passive LLR response. Awake and attentive subjects may improve the LLR; however, other studies

that present continuous speech to attentive subjects also report smaller and different LLR

(Backer et al., 2019; Maddox and Lee, 2018), possibly from cortical adaptation to a continuous

stimulus. Here, we used a simple two-channel montage that is optimized for recording ABRs, but a

full multichannel montage could also be used to more fully explore the interactions between subcor-

tical and cortical processing of naturalistic speech. The potential for new knowledge about how the

brain processes naturalistic and engaging stimuli cannot be undersold.

Figure 12. The range of lags can be extended to allow early, middle, and late latency responses to be analyzed from the same recording to broadband

peaky speech. Average waveforms across subjects (areas show ±1 SEM) are shown for responses measured to 32 min of broadband peaky speech

narrated by a male (dark blue) and female (light blue). Responses were high-pass filtered at 1 Hz using a first-order Butterworth filter, but different filter

parameters can be used to focus on each stage of processing. Canonical waves of the auditory brainstem response, middle latency response, and late

latency response are labeled for the male-narrated speech. Due to adaptation, amplitudes of the late potentials are smaller than typically seen with

other stimuli that are shorter in duration with longer inter-stimulus intervals than our continuous speech. Waves I and III become more clearly visible by

applying a 150 Hz high-pass cutoff.
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Peaky speech is a tool that opens up new lines of query
The peaky speech paradigm is a viable method for recording broadband and frequency-specific

responses from distinct subcortical structures using an engaging, continuous speech stimulus. The

customizability and flexibility of peaky speech facilitates new lines of query, both in neuroscientific

and clinical domains. Speech often occurs within a mixture of sounds, such as other speech sources,

background noise, or music. Furthermore, visual cues from a talker’s face are often available to aid

speech understanding, particularly in environments with low SNR (e.g., Bernstein and Grant, 2009;

Grant et al., 2007). Peaky speech facilitates investigation into the complex subcortical encoding

and processing that underpins successful listening in these scenarios using naturalistic, engaging

tasks. Indeed, previous methods have been quite successful in elucidating cortical processing of

speech under these conditions (O’Sullivan et al., 2019; Teoh and Lalor, 2019). Whereas these corti-

cal studies could use regressors that are not acoustically based – such as semantics or surprisal – the

fast responses of subcortical structures necessitate a regressor that can allow timing of components

to separate subcortical from cortical origins. The similarity of the peaky speech response to the click

response is an advantage because it is the only way to understand what is occurring in separate sub-

cortical regions during the dynamic spectrotemporal context of speech. As with other work in this

area, how informative the response is about speech processing will depend on how it is deployed

experimentally. Experiments that measure the response to the same stimuli in different cognitive

states (unattended/attended, understood/not understood) will illuminate the relationship between

those states and subcortical encoding. Such an approach was recently used to show how the brain-

stem complex cross-correlation to a fundamental waveform can change based on top-down atten-

tion (Forte et al., 2017). Finally, the ability to customize peaky speech for measuring frequency-

specific responses provides potential applications to clinical research in the context of facilitating

assessment of supra-threshold hearing function and changes to how speech may be encoded follow-

ing intervention strategies and technologies while using a speech stimulus that algorithms in hearing

aids and cochlear implants are designed to process.

Materials and methods

Participants
Data were collected over three experiments that were conducted under a protocol approved by the

University of Rochester Research Subjects Review Board (#1227). All subjects gave informed consent

before the experiment began and were compensated for their time. In each of experiments 1 and 2,

there were equipment problems during testing for one subject, rendering data unusable in the anal-

yses. Therefore, there were a total of 22, 11, and 11 subjects included in experiments 1, 2, and 3

respectively. Four subjects completed both experiments 1 and 2, and two subjects completed both

experiments 2 and 3. The 38 unique subjects (25 females, 66%) were aged 18–32 years with a mean

± SD age of 23.0 ± 3.6 years. Audiometric screening confirmed subjects had normal hearing in both

ears, defined as thresholds �20 dB HL from 250 to 8000 Hz. All subjects identified English as their

primary language.

Stimulus presentation and EEG measurement
In each experiment, subjects listened to 128 min of continuous speech stimuli while reclined in a

darkened sound booth. They were not required to attend to the speech and were encouraged to

relax and sleep. Speech was presented at an average level of 65 dB SPL over ER-2 insert earphones

(Etymotic Research, Elk Grove, IL) plugged into an RME Babyface Pro digital sound card (RME,

Haimhausen, Germany) via an HB7 headphone amplifier (Tucker Davis Technologies, Alachua, FL).

Stimulus presentation was controlled by a custom python (Python Programming Language, RRID:

SCR_008394) script using publicly available software (Expyfun, RRID:SCR_019285; available at

https://github.com/LABSN/expyfun; Larson et al., 2014). We interleaved conditions in order to pre-

vent slow impedance drifts or transient periods of higher EEG noise from unevenly affecting one

condition over the others. Physical measures to reduce stimulus artifact included (1) hanging ear-

phones from the ceiling so that they were as far away from the EEG cap as possible and (2) sending

an inverted signal to a dummy earphone (blocked tube) attached in the same physical orientation to

the stimulus presentation earphones in order to cancel electromagnetic fields away from
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transducers. The sound card also produced a digital signal at the start of each epoch, which was

converted to trigger pulses through a custom trigger box (modified from a design by the National

Acoustic Laboratories, Sydney, NSW, Australia) and sent to the EEG system so that audio and EEG

data could be synchronized with sub-millisecond precision.

EEG was recorded using BrainVision’s PyCorder software (RRID:SCR_019286). Ag/AgCl electro-

des were placed at the high forehead (FCz, active non-inverting), left and right earlobes (A1, A2,

inverting references), and the frontal pole (Fpz, ground). These were plugged into an EP-Preamp

system specifically for recording ABRs, connected to an ActiCHamp recording system, both manu-

factured by BrainVision. Data were sampled at 10,000 Hz and high-pass filtered at 0.1 Hz. Offline,

raw data were high-pass filtered at 1 Hz using a first-order causal Butterworth filter to remove slow

drift in the signal, and then notch filtered with 5 Hz wide second-order infinite impulse response

notch filters to remove 60 Hz and its first three odd harmonics (180, 300, 420 Hz). To optimize

parameters for viewing the ABR and MLR components of peaky speech responses, we evaluated

several orders and high-pass cutoffs to the filters. Early waves of the broadband peaky ABRs were

best visualized with a 150 Hz cutoff, whereas a lower cutoff frequency of 30 Hz was necessary to

view the ABR and MLR of the broadband responses. Conservative filtering with a first-order filter

was sufficient with these cutoff frequencies.

Speech stimuli and conditions
Speech stimuli were taken from two audiobooks. The first was The Alchemyst (Scott, 2007), read by

a male narrator and used in all three experiments. The second was A Wrinkle in Time (L’Engle, 2012),

read by a female narrator and used in experiments 2 and 3. The average fundamental frequency was

115 Hz for the male narrator and 198 Hz for the female narrator. These stimuli were used in

Maddox and Lee, 2018, but in that study a gentle high-pass filter was applied, which was not done

for this study. Briefly, the audiobooks were resampled to 44,100 Hz and then silent pauses were

truncated to 0.5 s. Speech was segmented into 64 s epochs with 1 s raised cosine fade-in and fade-

out. Because conditions were interleaved, the last 4 s of a segment were repeated in the next seg-

ment so that subjects could pick up where they left off if they were listening.

In experiment 1, subjects listened to three conditions of male speech (42.7 min each): unaltered

speech, re-synthesized broadband peaky speech, and re-synthesized multiband peaky speech (see

below for a description of re-synthesized speech). In experiment 2, subjects listened to four condi-

tions of re-synthesized peaky speech (32 min each): male and female narrators of both broadband

and multiband peaky speech. For these first two experiments, speech was presented diotically

(same speech to both ears). In experiment 3, subjects listened to both male and female dichotic

(slightly different stereo speech of the same narrator in each ear) multiband peaky speech designed

for audiological applications (64 min of each narrator). The same 64 s of speech was presented

simultaneously to each ear, but the stimuli were dichotic due to how the re-synthesized multiband

speech was created (see below).

Stimulus design
The brainstem responds best to impulse-like stimuli, so we re-synthesized the speech segments from

the audiobooks (termed ‘unaltered’) to create three types of ‘peaky’ speech, with the objectives of

(1) evoking additional waves of the ABR reflecting other neural generators and (2) measuring

responses to different frequency regions of the speech. The process is described in detail below but

is best read in tandem with the code that is publicly available (https://github.com/maddoxlab). Fig-

ure 13 compares the unaltered speech and re-synthesized broadband and multiband peaky speech.

Comparing the pressure waveforms shows that the peaky speech is as click-like as possible, but com-

paring the spectrograms (how sound varies in amplitude at every frequency and time point) shows

that the overall spectrotemporal content that defines speech is basically unchanged by the re-syn-

thesis. Audio files 1– 6 provide examples of each stimulus type for both narrators, which demon-

strate the barely perceptible difference between unaltered and peaky speech.

Broadband peaky speech
Voiced speech comprises rapid openings and closings of the vocal folds, which are then filtered by

the mouth and vocal tract to create different vowel and consonant sounds. The first processing step
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in creating peaky speech was to use speech processing software (PRAAT, RRID:SCR_016564;

Boersma and Weenink, 2018) to extract the times of these glottal pulses. Sections of speech where

glottal pulses were within 17 ms of each other were considered voiced (vowels and voiced conso-

nants like /z/), as 17 ms is the longest inter-pulse interval one would expect in natural speech

because it is the inverse of 60 Hz, the lowest pitch at which someone with a deep voice would likely

speak. A longer gap in pulse times was considered a break between voiced sections. These seg-

ments were identified in a ‘mixer’ function of time, with indices of 1 indicating unvoiced and 0 indi-

cating voiced segments (and would later be responsible for time-dependent blending of re-

synthesized and natural speech, hence its name). Transitions of the binary mixer function were

smoothed using a raised cosine envelope spanning the time between the first and second pulses, as

well as the last two pulses of each voiced segment. During voiced segments, the glottal pulses set

the fundamental frequency of speech (i.e., pitch), which were allowed to vary from a minimum to

maximum of 60–350 Hz for the male narrator and 90–500 Hz for the female narrator. For the male

and female narrators, these pulses gave a mean ± SD fundamental frequency (i.e., pulse rate) in

voiced segments of 115.1 ± 6.7 Hz and 198.1 ± 20 Hz, respectively, and a mean ± SD pulses per sec-

ond over the entire 64 s, inclusive of unvoiced periods and silences, of 69.1 ± 5.7 Hz and

110.8 ± 11.4, respectively. These pulse times were smoothed using 10 iterations of replacing pulse

time pi with the mean of pulse times pi�1 to piþ1 if the log2 absolute difference in the time between

pi and pi�1 and piþ1 was less than log2 1:6ð Þ.

The fundamental frequency of voiced speech is dynamic, but the signal always consists of a set of

integer-related frequencies (harmonics) with different amplitudes and phases. To create the

Figure 13. Unaltered speech waveform (top left) and spectrogram (top right) compared to re-synthesized broadband peaky speech (middle left and

right) and multiband peaky speech (bottom left and right). Comparing waveforms shows that the peaky speech is as ‘click-like’ as possible, while

comparing the spectrograms shows that the overall spectrotemporal content that defines speech is basically unchanged by the re-synthesis. A naı̈ve

listener is unlikely to notice that any modification has been performed, and subjective listening confirms the similarity. Yellow/lighter colors represent

larger amplitudes than purple/darker colors in the spectrogram. See supplementary files for audio examples of each stimulus type for both narrators.
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waveform component at the fundamental frequency, f0 tð Þ, we first created a phase function, ’ tð Þ,

which increased smoothly by 2p between glottal pulses within the voiced sections as a result of cubic

interpolation. We then computed the spectrogram of the unaltered speech waveform – which is a

way of analyzing sound that shows its amplitude at every time and frequency (Figure 13, top right) –

that we called A t; f0 tð Þ½ �. We then created the fundamental component of the peaky speech wave-

form as

h0 tð Þ ¼ A t; f0 tð Þ½ �cos ’ tð Þ½ �:

This waveform has an amplitude that changes according to the spectrogram but always peaks at

the time of the glottal pulses.

Next the harmonics of the speech were synthesized. The k th harmonic of speech is at a frequency

of k þ 1ð Þf0 so we synthesized each harmonic waveform as

hk tð Þ ¼ A t; kþ 1ð Þf0 tð Þ½ �cos kþ 1ð Þ’ tð Þ½ �:

Each of these harmonic waveforms has multiple peaks per period of the fundamental, but every

harmonic also has a peak at exactly the time of the glottal pulse. Because of these coincident peaks,

when the harmonics are summed to create the re-synthesized voiced speech, there is always a large

peak at the time of the glottal pulse. In other words, the phases of all the harmonics align at each

glottal pulse, making the pressure waveform of the speech appear ‘peaky’ (Figure 13, left middle).

The resultant re-synthesized speech contained only the voiced segments of speech and was miss-

ing unvoiced sounds like /s/ and /k/. Thus the last step was to mix the re-synthesized voiced seg-

ments with the original unvoiced parts. This was done by cross-fading back and forth between the

unaltered speech and re-synthesized speech during the unvoiced and voiced segments, respectively,

using the binary mixer function created when determining where the voiced segments occurred. We

also filtered the peaky speech to an upper limit of 8 kHz and used the unaltered speech above 8 kHz

to improve the quality of voiced consonants such as /z/. Filter properties for the broadband peaky

speech are further described below in the ‘Band filters’ subsection.

Multiband peaky speech
The same principles to generate broadband peaky speech were applied to create stimuli designed

to investigate the brainstem’s response to different frequency bands that comprise speech. This

makes use of the fact that over time speech signals with slightly different f0 are independent, or

have (nearly) zero cross-correlation, at the lags for the ABR. To make each frequency band of inter-

est independent, we shifted the fundamental frequency and created a fundamental waveform and

its harmonics as

hk tð Þ ¼ A t; kþ 1ð Þf0 tð Þ½ �cos kþ 1ð Þ’ tð Þ½ �;

where

’ tð Þ ¼ 2p

Z

t

0

f0 tð Þþ f
D

ð Þdt ;

and where f
D

is the small shift in fundamental frequency.

In these studies, we increased fundamentals for each frequency band by the square root of each

successive prime number and subtracting 1, resulting in a few tenths of a hertz difference between

bands. The first, lowest frequency band contained the unshifted f0. Responses to this lowest,

unshifted frequency band showed some differences from the common component for latencies >30

ms that were not present in the other, higher frequency bands (Figure 6, 0–1 kHz band), suggesting

some low-frequency privilege/bias in this response. Therefore, we suggest that the following studies

create independent frequency bands by synthesizing a new fundamental for each band. The static

shifts described above could be used, but we suggest an alternative method that introduces random

dynamic frequency shifts of up to ±1 Hz over the duration of the stimulus. From this random fre-

quency shift, we can compute a dynamic random phase shift, to which we also add a random
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starting phase, �
D

, which is drawn from a uniform distribution between 0 and 2p. The phase function

from the above set of formulae would be replaced with this random dynamic phase function:

’ tð Þ ¼ 2p

Z

t

0

f0 tð Þþ f
D

tð Þ½ �dt þ �
D

Validation data from one subject is provided in Figure 6—figure supplement 1. Responses from

all four bands show more consistent resemblance to the common component, indicating that this

method is effective at reducing stimulus-related bias. However, low-frequency-dependent differen-

ces remained, suggesting that there is also unique neural-based low-frequency activity to the

speech-evoked responses.

This re-synthesized speech was then band-pass filtered to the frequency band of interest (e.g.,

from 0 to 1 kHz or 2–4 kHz). This process was repeated for each independent frequency band, the

bands were mixed together, and then these re-synthesized voiced parts were mixed with the original

unaltered voiceless speech. This peaky speech comprised octave bands with center frequencies of

707, 1414, 2929, and 5656 Hz for experiments 1 and 2, and of 500, 1000, 2000, 4000, and 8000 Hz

for experiment 3. Note that for the lowest band the actual center frequency was slightly lower

because the filters were set to pass all frequencies below the upper cutoff. Filter properties for these

two types of multiband speech are shown in the middle and right panels of Figure 16 and further

described below in the ‘Band filters’ subsection. For the dichotic multiband peaky speech, we cre-

ated 10 fundamental waveforms – two in each of the five filter bands for the two different ears, mak-

ing the output audio file stereo (or dichotic). We also filtered this dichotic multiband peaky speech

to an upper limit of 11.36 kHz to allow for the highest band to have a center frequency of 8 kHz and

octave width. The relative mean-squared magnitude in decibels for components of the multiband

peaky speech (four filter bands) and dichotic (audiological) multiband peaky speech (five filter bands)

are shown in Figure 14.

For peaky speech, the re-synthesized speech waveform was presented during the experiment,

but the pulse trains were used as the input stimulus for calculating the response (i.e., the regressor,

see Response derivation section below). These pulse trains all began and ended together in conjunc-

tion with the onset and offset of voiced sections of the speech. To verify which frequency ranges of

the multiband pulse trains were independent across frequency bands and would thus yield truly

band-specific responses, we conducted spectral coherence analyses on the pulse trains. All 60

Figure 14. Relative mean-squared magnitude in decibels of multiband peaky speech with four filter bands (left) and five filter bands (right) for male-

(dark red circles) and female-narrated (light red triangles) speech. The full audio comprises unvoiced and re-synthesized voiced sections, which was

presented to the subjects during the experiments. The other bands reflect the relative magnitude of the voiced sections (voiced only), and each filtered

frequency band.
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unique 64 s sections of each male- and female-narrated multiband peaky speech used in the three

experiments were sliced into 1 s segments for a total of 3840 slices. Phase coherence across fre-

quency was then computed across these slices for each combination of pulse trains according to the

formula

Cxy ¼
j E F xif g� F yif g½ � j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E F xif g� F xif g½ � E F yif g� F yif g½ �
p

where Cxy denotes coherence between bands x and y, E½ � the average across slices, F the fast Four-

ier transform, * the complex conjugation, xi the pulse train for slice i in band x, and yi the pulse train

for slice i in band y.

Spectral coherence for each narrator is shown in Figure 15. For the four-band multiband peaky

speech used in experiments 1 and 2, there were six pulse train comparisons. For the audiological

multiband peaky speech used in experiment 3, there were five bands for each of the two ears, result-

ing in 10 pulse trains and 45 comparisons. All 45 comparisons are shown in Figure 15A for the stim-

uli created with static frequency shifts, and the six comparisons for the stimuli created with random

dynamic frequency shifts (used in the pilot experiment) are shown in Figure 15B. Pulse trains were

coherent (>0.1) up to a maximum of 71 and 126 Hz for male- and female-narrated speech, respec-

tively, which roughly correspond to the mean ± SD pulse rates (calculated as total pulses/64 s) of

69.1 ± 5.7 Hz and 110.8 ± 11.4, respectively. This means that above ~130 Hz the stimuli were no lon-

ger coherent and evoked frequency-specific responses. Importantly, responses would be to corre-

lated stimuli, that is, not frequency-specific, at frequencies below this cutoff and would result in a

low-frequency response component that is present in (or common to) all band responses. There

were two separated collections of curves for the stimuli with static frequency shifts, which stemmed

from the shifted frequency bands having different coherence with each other than the lowest

unshifted band. This stimulus-related bias in the lowest frequency band was reduced by using

Figure 15. Spectral coherence of pulse trains for multiband peaky speech narrated by a male (left) and female (right). Spectral coherence was

computed across 1 s slices from 60 unique 64 s multiband peaky speech segments (3840 total slices) for each combination of bands. Each light gray line

represents the coherence for one band comparison. (A) There were 45 comparisons across the 10-band (audiological) speech used in experiment 3 (5

frequency bands � 2 ears). The lowest band was unshifted, and the other nine bands had static frequency shifts. (B) There were six comparisons across

four pulse trains of the bands in the pilot experiment, which all had dynamic random frequency shifts. Pulse trains (i.e., the input stimuli, or regressors,

for the deconvolution) were frequency-dependent (coherent) below 72 Hz for the male multiband speech and 126 Hz for the female multiband speech.

The online version of this article includes the following figure supplement(s) for figure 15:

Figure supplement 1. Comparison of the common component derived from the average response to six fake pulse trains that were created using

static frequency shifts (solid, darker lines; used in the paper) or dynamic random frequency shifts (dashed, lighter lines, pilot data and suggested in

’Materials and methods’).

Figure supplement 2. Multiband stimuli responses for male (left) and female (right) derived by deconvolving the absolute value of the dichotic (stereo)

multiband peaky audio (from experiment 3) with the 10 associated pulse trains – five pulse trains were used for each band in each ear (‘correct’ pulse

trains, top row).
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dynamic random frequency shifts (used in the pilot experiment), as indicated by the similar spectral

coherence curves shown in Figure 15B.

To identify the effect of the low-frequency stimulus coherence in the responses, we computed

the common component across pulse trains by creating an averaged response to six additional

‘fake’ pulses trains that were created during stimulus design but were not used during the creation

of the multiband peaky speech wav files. The common component was assessed for both ‘fake’ pulse

trains taken from shifts lower than the original fundamental frequency and those taken from shifts

higher than the highest ‘true’ re-synthesized fundamental frequency. For the dynamic frequency shift

method (pilot experiment), an additional six pulse trains were created. Figure 15—figure supple-

ment 1 shows that the common component was similar for ‘fake’ pulse trains created using static or

dynamic random frequency shifts. To assess frequency-specific responses to multiband speech, we

subtracted this common component from the band responses. Alternatively, one could simply high-

pass the stimuli at 150 Hz using a first-order causal Butterworth filter (being mindful of edge arti-

facts). However, this high-pass filtering reduces response amplitude and may affect response detec-

tion (see Results for more details).

We also verified the independence of the stimulus bands by treating the regressor pulse train as

the input to a system whose output was the rectified stimulus audio and performed deconvolution

(see Deconvolution and Response derivation sections below). Further details are provided in Fig-

ure 15—figure supplement 2. The responses showed that the non-zero responses only occurred

when the correct pulse train was paired with the correct audio.

Band filters
Because the fundamental frequencies for each frequency band were designed to be independent

over time, the band filters for the speech were designed to cross over in frequency at half power. To

make the filter, the amplitude was set by taking the square root of the specified power at each fre-

quency. Octave band filters were constructed in the frequency domain by applying trapezoids – with

center bandwidth and roll-off widths of 0.5 octaves. For the first (lowest frequency) band, all fre-

quencies below the high-pass cutoff were set to 1, and likewise for all frequencies above the low-

pass cutoff for the last (highest frequency) band were set to 1 (Figure 16, top row). The impulse

response of the filters was assessed by shifting the inverse fast Fourier transform (IFFT) of the bands

so that time zero was in the center, and then applied a Nuttall window, thereby truncating the

impulse response to length of 5 ms (Figure 16, middle row). The actual frequency response of the

filter bands was assessed by taking the fast Fourier transform (FFT) of the impulse response and

plotting the magnitude (Figure 16, bottom row).

As mentioned above, broadband peaky speech was filtered to an upper limit of 8 kHz for diotic

peaky speech and 11.36 kHz for dichotic peaky speech. This band filter was constructed from the

second last octave band filter from the multiband filters (i.e., the 4–8 kHz band from the top-middle

of Figure 16, dark red line) by setting the amplitude of all frequencies less than the high-pass cutoff

frequency to 1 (Figure 16, top left, blue line). As mentioned above, unaltered (unvoiced) speech

above 8 kHz (diotic) or 11.36 kHz (dichotic) was mixed with the broadband and multiband peaky

speech, which was accomplished by applying the last (highest) octave band filter (8+ or 11.36+ kHz

band, black line) to the unaltered speech and mixing this band with the re-synthesized speech using

the other bands.

Alternating polarity
To limit stimulus artifact, we also alternated polarity between segments of speech. To identify

regions to flip polarity, the envelope of speech was extracted using a first-order causal Butterworth

low-pass filter with a cutoff frequency of 6 Hz applied to the absolute value of the waveform. Then,

flip indices were identified where the envelope became less than 1% of the median envelope value,

and a function that changed back and forth between 1 and �1 at each flip index was created. This

function of spikes was smoothed using another first-order causal Butterworth low-pass filter with a

cutoff frequency of 10,000 Hz, which was then multiplied with the re-synthesized speech before sav-

ing to a wav file.
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Response derivation
Deconvolution
The peaky speech ABR was derived by using deconvolution, as in previous work (Maddox and Lee,

2018), though the computation was performed in the frequency domain for efficiency. The speech

was considered the input to a linear system whose output was the recorded EEG signal, with the

ABR computed as the system’s impulse response. As in Maddox and Lee, 2018, for the unaltered

speech, we used the half-wave rectified audio as the input waveform. Half-wave rectification was

accomplished by separately calculating the response to all positive and negative values of the input

waveform for each epoch and then combining the responses together during averaging. For our

new re-synthesized peaky speech, the input waveform was the sequence of impulses that occurred

at the glottal pulse times and corresponded to the peaks in the waveform. Figure 17 shows a sec-

tion of stimulus and the corresponding input signal of glottal pulses used in the deconvolution.

The half-wave rectified waveforms and glottal pulse sequences were corrected for the small clock

differences between the sound card and EEG system and then downsampled to the EEG sampling

frequency prior to deconvolution. To avoid temporal splatter due to standard downsampling, the

pulse sequences were resampled by placing unit impulses at sample indices closest to each pulse

time. Regularization was not necessary because the amplitude spectra of these regressors were suffi-

ciently broadband. For efficiency, the time domain response waveform, w, for a given 64 s epoch

was calculated using frequency domain division for the deconvolution, with the numerator the cross-

spectral density (corresponding to the cross-correlation in the time domain) of the stimulus regressor

and EEG response, and the denominator the power spectral density of the stimulus regressor (corre-

sponding to its autocorrelation in the time domain). For a single epoch, that would be

w¼F�1
F xf g� F yf g

F xf g� F xf g

� �

Figure 16. Octave band filters used to create re-synthesized broadband peaky speech (left, blue), diotic multiband peaky speech with four bands

(middle, red), and dichotic multiband peaky speech using five bands with audiological center frequencies (right, red). The last band (2nd, 5th, and 6th,

respectively, black line) was used to filter the high frequencies of unaltered speech during mixing to improve the quality of voiced consonants. The

designed frequency response using trapezoids (top) was converted into time-domain using IFFT, shifted, and Nuttall windowed to create impulse

responses (middle), which were then used to assess the actual frequency response by converting into the frequency domain using FFT (bottom).
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where F denotes the fast Fourier transform, F�1 the inverse fast Fourier transform, * the complex

conjugation, x the input stimulus regressor (half-wave rectified waveform or glottal pulse sequence),

and y the EEG data for each epoch. We used methods incorporated into the MNE-python package

(RRID:SCR_005972; Gramfort et al., 2013). In practice, we made adaptations to this formula to

improve the SNR with Bayesian-like averaging (see below). For multiband peaky speech, stimuli with

slightly different fundamental frequencies will be independent, yielding independent ABRs. There-

fore, the same EEG was deconvolved with each band’s pulse train to derive the ABR and MLR to

each frequency band, and then with an additional six ‘fake’ pulse trains – pulse trains with slightly

different fundamental frequencies that were not used to create the presented multiband peaky

speech stimuli – to derive the common component across bands due to the pulse train coherence at

low frequencies (shown in Figure 15). The averaged response across these six fake pulse trains, or

common component, was then subtracted from the multiband responses to identify the frequency-

specific band responses.

Response averaging
The quality of the ABR waveforms as a function of each type of stimulus was of interest, so we calcu-

lated the averaged response after each 64 s epoch. We followed a Bayesian-like process

(Elberling and Wahlgreen, 1985) to account for variations in noise level across the recording time

(such as slow drifts or movement artifacts) and avoid rejecting data based on thresholds. Each epoch

was weighted by its inverse variance, 1=s2

i , to the sum of the inverse variances of all epochs. Thus,

epoch weights, bi, were calculated as follows:

bi ¼
1=s2

i
Pn

i¼1
1=s2

i

where i is the epoch number and n is the number of epochs collected. For efficiency, weighted aver-

aging was completed during deconvolution. Because auto-correlation of the input stimulus (denomi-

nator of the frequency domain division) was similar across epochs, it was averaged with equal

weighting. Therefore, the numerator of the frequency domain division was summed across weighted

epochs and the denominator averaged across epochs, according to the following formula:

w¼F�1

Pn
i¼1

biF xif g� F yif g
Pn

i¼1

1

n
F xif g� F xif g

( )

where w is the average response waveform, i is again the epoch number, and n is the number of

epochs collected.

Figure 17. Example stimulus, regressor, and deconvolved response. Left: A segment of broadband peaky speech stimulus (top) and the corresponding

glottal pulse train (bottom) used in calculating the broadband peaky speech response. Right: An example broadband peaky speech response from a

single subject. The response shows auditory brainstem response waves I, III, and V at ~3, 5, and 7 ms, respectively. It also shows later peaks

corresponding to thalamic and cortical activity at ~17 and 27 ms, respectively.

Polonenko and Maddox. eLife 2021;10:e62329. DOI: https://doi.org/10.7554/eLife.62329 30 of 37

Tools and resources Neuroscience

https://identifiers.org/RRID/RRID:SCR_005972
https://doi.org/10.7554/eLife.62329


Due to the circular nature of the discrete frequency domain deconvolution, the resulting response

has an effective time interval of [0, 32] s at the beginning and [�32, 0] s at the end, so that

concatenating the two – with the end first – yields the response from [�32, 32] s. Consequently, to

avoid edge artifacts, all filtering was performed after the response was shifted to the middle of the

64 s time window. To remove high-frequency noise and some low-frequency noise, the average

waveform was band-pass filtered between 30–2000 Hz using a first-order causal Butterworth filter.

An example of this weighted average response to broadband peaky speech is shown in

Figure 17 (right). This bandwidth of 30–2000 Hz is sufficient to identify additional waves in the brain-

stem and MLR (ABR and MLR, respectively). To further identify earlier waves of the ABRs (i.e., waves

I and III), responses were high-pass filtered at 150 Hz using a first-order causal Butterworth filter.

This filter was determined to provide the best morphology without compromising the response by

comparing responses filtered with common high-pass cutoffs of 1, 30, 50, 100, and 150 Hz each

combined with first-, second-, and fourth-order causal Butterworth filters.

Response normalization
An advantage of this method over our previous one (Maddox and Lee, 2018) is that because the

regressor comprises unit impulses the deconvolved response is given in meaningful units, which are

the same as the EEG recording, namely microvolts. With a continuous regressor, like the half-wave

rectified speech waveform, this is not the case. Therefore, to compare responses to half-wave recti-

fied speech versus glottal pulses, we calculated a normalization factor, g, based on data from all

subjects:

g¼
1=n

Pn
i¼1

su;i

1=n
Pn

i¼1
sp;i

where n is the number of subjects, su;i is the SD of subject i’s response to unaltered speech between

0–20 ms, and sp;i is the same for the broadband peaky speech. Each subject’s responses to unal-

tered speech were multiplied by this normalization factor to bring these responses within a compara-

ble amplitude range as those to broadband peaky speech. Consequently, amplitudes were not

compared between responses to unaltered and peaky speech. This was not our prime interest,

rather we were interested in latency and presence of canonical component waves. In this study, the

normalization factor was 0.26, which cannot be applied to other studies because this number also

depends on the scale when storing the digital audio. In our study, this unitless scale was based on a

root-mean-square amplitude of 0.01. The same normalization factor was used when the half-wave

rectified speech was used as the regressor with EEG collected in response to unaltered speech,

broadband peaky speech, and multiband peaky speech (Figure 2, Figure 4, Figure 4—figure sup-

plement 1).

Response SNR calculation
We were also interested in the recording time required to obtain robust responses to re-synthesized

peaky speech. Therefore, we calculated the time it took for the ABR and MLR to reach a 0 dB SNR.

We chose 0 dB SNR based on visual assessment of when waveforms were easily inspected and

based on what we have done previously (Maddox and Lee, 2018; Polonenko and Maddox, 2019).

The SNR of each waveform in dB, SNRw, was estimated as

SNRw ¼ 10 log10
s
2

SþN �s
2

N

s
2

N

� �

;

where s
2

SþN represents the variance (i.e., mean-subtracted energy) of the waveform between 0 and

15 ms or 30 ms for the ABR and MLR, respectively (contains both component signals and noise,

SþN), and s
2

N represents the variance of the noise, N, estimated by averaging the variances of 15

ms (ABR) to 30 ms (MLR) segments of the pre-stimulus baseline between �480 and �20 ms. Then,

the SNR for 1 min of recording, SNR60, was computed from the SNRw as

SNR60 ¼ SNRwþ 10 log10 60=tw½ �;

where tw is the duration of the recording in seconds, as specified in the ‘Speech stimuli and
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conditions’ section. For example, in experiment 3, the average waveform resulted from 64 min of

recording, or a tw of 3840 s. The time to reach 0 dB SNR for each subject, t0dB SNR, was estimated

from this SNR60 by

t0dB SNR ¼ 60 � 10
�SNR60=10:

Cumulative density functions were used to show the proportion of subjects that reached an

SNR � 0 dB and determine the necessary acquisition times that can be expected for each stimulus

on a group level.

Statistical analyses
Waveform morphology
Data were checked for normality using the Shapiro–Wilk test. Waveform morphology of responses

to different narrators was compared using Pearson correlations of the responses between 0 and 15

ms for the ABR waveforms or 0 and 40 ms for both ABR and MLR waveforms. The Wilcoxon signed-

rank test was used to determine whether narrator differences (waveform correlations) were signifi-

cantly different than the correlations of the same EEG split into even and odd epochs with equal

numbers of epochs from each narrator. For experiment 1, responses containing an equal number of

epochs from the first and second half of the recording had a median (interquartile range) correlation

coefficient of 0.96 (0.95–0.98) for the 0–15 ms lags, indicating good replication.

Peak latencies
The intraclass correlation coefficient type 3 (absolute agreement) was used to verify good agreement

in peak latencies chosen by an experienced audiologist and neuroscientist (MJP) at two different

time points, 3 months apart. The ICC3 for all peaks were �0.90, indicating excellent reliability for

the chosen peak latencies.

Independent t-tests with m = 0 were conducted on the peak latency differences of ABR/MLR

waves for unaltered and broadband peaky speech. For multiband peaky speech, the change in peak

latency, t , with frequency band was modeled using a power law regression (Harte et al., 2009;

Neely et al., 1988; Rasetshwane et al., 2013; Strelcyk et al., 2009) according to the formula

t fð Þ ¼ aþ bf�d

where

a¼ t synaptic þ t I�V ;

and where f is the band center frequency normalized to 1 kHz (i.e., divided by 1000), t synaptic is the

synaptic delay (assumed to be 0.8 ms; Eggermont, 1979; Strelcyk et al., 2009), and t I�V is the I–V

inter-wave delay from the subjects’ responses to broadband peaky speech. The power law model

was completed for each filter cutoff of 30 and 150 Hz in the log–log domain, according to the

formula

log10 t fð Þ� að Þ ¼ log10 bþ �dð Þ log10 f

and using linear mixed effects regression to estimate the terms d and b (calculated as b = 10intercept).

For subjects who did not have an identifiable wave I in the broadband peaky response, the group

mean I–V delay was used – this occurred for 1 of 22 subjects in experiment 1 and 2 of 11 subjects for

responses to the female narrator in experiment 2. Because only multiband peaky speech was pre-

sented in experiment 3, the mean I–V intervals from experiment 2 were used for each subject for

experiment 3. Random effects of subject and each frequency band term were included to account

for individual variability that is not generalizable to the fixed effects. The mixed effects regressions

were performed using the lme4 (RRID:SCR_015654) and lmerTest (RRID:SCR_015656) packages in R

(RRID:SCR_001905) and RStudio (RRID:SCR_000432) (Bates et al., 2015; Kuznetsova et al., 2017;

R Development Core Team, 2020). A power analysis was completed using the simR package (RRID:

SCR_019287; Green and MacLeod, 2016), which uses a likelihood ratio test on 1000 Monte Carlo

permutations of the response variables based on the fitted model.
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Data availability
Python code is available on the lab GitHub account (https://github.com/maddoxlab/peaky-

speech; Polonenko, 2021; copy archived at swh:1:rev:3c1e5b62d5bb3a5b9cc6130cb3db651bc73-

b3ecd). All EEG recordings are available in the EEG-BIDS format (Pernet et al., 2019) on Dryad

(https://doi.org/10.5061/dryad.12jm63xwd). Stimulus files and python code necessary to derive the

peaky speech responses are deposited to the same Dryad repository.
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et al., 2019) to Dryad (https://doi.org/10.5061/dryad.12jm63xwd). Stimulus files necessary to derive

the peaky speech responses are deposited in the same Dryad repository.
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