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Abstract Channelrhodopsins (ChRs) are microbial light-gated ion channels utilized in

optogenetics to control neural activity with light . Light absorption causes retinal chromophore

isomerization and subsequent protein conformational changes visualized as optically distinguished

intermediates, coupled with channel opening and closing. However, the detailed molecular events

underlying channel gating remain unknown. We performed time-resolved serial femtosecond

crystallographic analyses of ChR by using an X-ray free electron laser, which revealed

conformational changes following photoactivation. The isomerized retinal adopts a twisted

conformation and shifts toward the putative internal proton donor residues, consequently inducing

an outward shift of TM3, as well as a local deformation in TM7. These early conformational changes

in the pore-forming helices should be the triggers that lead to opening of the ion conducting pore.
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Introduction
Channelrhodopsins (ChRs) are light-gated cation channels first identified as sensory photoreceptors

in green algae (Nagel et al., 2003). ChRs consist of seven transmembrane helices and a retinal chro-

mophore covalently attached to a conserved lysine residue via a Schiff base linkage. ChRs allow fast

ion flux across cell membranes upon illumination and thus are widely utilized as optogenetic tools to

precisely control neural activity (Schneider et al., 2015; Ernst et al., 2014; Zhang et al., 2011). As

in the well-studied bacterial proton pump bacteriorhodopsin (BR), light absorption triggers all-trans

to 13-cis isomerization of the retinal, and induces the transitions of optically distinguishable inter-

mediates that lead to channel opening and closing (photocycle process) (Kuhne et al., 2019;

Bamann et al., 2010; Bamann et al., 2008; Figure 1). Spectroscopic studies have provided detailed

characterizations of the respective intermediates in the photocycle of ChRs. In the best studied vari-

ant, Chlamydomonas reinhardtii ChR2 (CrChR2) (Bamann et al., 2008; Stehfest and Hegemann,

2010; Lórenz-Fonfrı́a et al., 2013), retinal isomerization leads to an intermediate with a red-shifte-

dabsorption peak, P1
520 (K or L in BR), and sequential deprotonation and reprotonation of the Schiff

base generate P2
390 and P3

520 (M and N in BR), respectively (Figure 1). Photocycle transitions are

determined in most ChRs by an aspartate–cysteine pair in the retinal binding pocket (DC-pair)

(Berndt et al., 2009; Yizhar et al., 2011; Figure 1—figure supplement 1), but the mechanism by

which ion pore formation is associated with these residues is still under debate. Recent studies have

suggested that the ion conducting pore is formed during the late P2
390 intermediate Kuhne et al.,

2019, involving the rearrangement of the pore-forming TM helices (Müller et al., 2011), and a two-

dimensional crystal study indeed revealed low resolution projection maps of the light-induced helix

movement in ChR (Müller et al., 2011; Müller et al., 2015). A detailed mechanism for how retinal

isomerization causes conformational changes and how these changes induce ion pore opening has

remained elusive.

Figure 1. Photocycle model of channelrhodopsin. Schematic model of the C1C2 photocycle. Superscript of each reaction intermediate (P1
(520), P2

(390),

P3
(520), P4

(480)) indicates the wavelength of maximum absorption. Open/close states of the channel pore and the proposed model of the retinal and

protonation of Schiff base are indicated. The time range in which the P1–P3 intermediates were observed in the spectroscopic studies in solution is

shown.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Sequence alignment of channelrhodopsin (ChR) variants.
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The recent development of the X-ray free electron laser (XFEL) technology has enabled high-reso-

lution visualization of the time-resolved molecular conformational changes in crystals, thus pro-

foundly advancing our understanding of biological reactions (Tosha et al., 2017; Nango et al.,

2016; Suga et al., 2017; Shimada et al., 2017). In this study, we performed the time-resolved serial

femtosecond crystallography (TR-SFX) analysis of ChR, which revealed critical conformational

changes occurring early in the photocycle that probably induce the cation permeation in the later

stages.

Results

Time-resolved spectroscopy of C1C2
We used a chimeric construct between Chlamydomonas reinhardtii ChR1 (CrChR1) and ChR2

(CrChR2) for the TR-SFX experiments (hereafter referred to as C1C2) (Kato et al., 2012; Figure 1—

figure supplement 1), which has normal ChR1 photocycle properties (Hontani et al., 2017;

Inaguma et al., 2015; Figure 2a,b). C1C2 yielded high-density microcrystals that diffracted XFEL to

about 2.3 Å at SACLA (Figure 3a,b). The dark state structure of C1C2 determined at SACLA is

almost the same as the previous structure solved by the synchrotron analysis, including the

Figure 2. Flash photolysis and flash photo activation measurement of C1C2. (a) Transient absorption spectra of C1C2 reconstituted in POPE/POPG

(protein/lipid molar ratio = 1/50), 150 mM NaCl, 50 mM Tris-HCl (pH 8.0), 5% glycerol, and 0.01% cholesteryl hemisuccinate (CHS). (b) Time trace of

absorption changes of C1C2 reconstituted in POPE/POPG, at 445 (green), 375 (blue), and 520 (red) nm probe wavelengths, which roughly estimate

C1C2 (ground state), P2, and P3 formation, respectively. (c) Normalized, log-binned and averaged photocurrents of the C1C2 protein (mean ± SEM,

n = 3 - 5). The black arrow indicates the inward directed current caused by retinal Schiff base deprotonation. (d) Transient difference absorption spectra

recorded from the multiple C1C2 crystals. Each time-resolved spectrum was averaged over 21 crystal data sets. The time evolution is indicated from red

to purple.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Flash photolysis measurements of C1C2 solution in n-dodecyl-b-D-maltoside (DDM).

Figure supplement 2. Voltage-clamp recordings in HEK293 cells of photocurrents from C1C2.

Figure supplement 3. Flash photolysis measurements of C1C2 crystals and C1C2 solution in n-dodecyl-b-D-maltoside (DDM).
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Figure 3. Microcrystals for serial femtosecond crystallography (SFX) experiment and C1C2 SFX structure. (a) Lipidic

cubic phase (LCP) crystals of C1C2 optimized for the time-resolved SFX (TR-SFX) experiments. The orange scale

bar on the lower right indicates 50 mm, with 5 mm sub-scaling lines. The size of the crystals ranged from 2 to 5 mm.

(b) A diffraction image from a C1C2 crystal, obtained with a single SACLA-XFEL pulse. (c) The structure of dark

state C1C2 determined by serial femtosecond crystallography. A water accessible cavity is illustrated, with the

putative ion pathway indicated by an arrow. The five glutamic acid residues lining the ion pore (E1–5) and the two

counterion residues (Ci1 and Ci2) are indicated by sticks, and the three constriction sites, the inner, central, and

outer gates, are enclosed in boxes. (d) Comparisons of the constriction sites of the TR-SFX structure (left panels)

and the synchrotron structure (right panels; PDB code 3UG9) of C1C2, for the inner (upper panels), central (middle

panels), and outer (lower panels) gates. The constituent residues are shown as sticks, and the TM helix number is

indicated on each helix.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Electron density of retinal.

Figure supplement 2. Comparison of the crystal packing between C1C2 and CrChR2.

Figure 3 continued on next page
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chromophore retinal, the interhelical interactions of the inner and central gates, and the extracellular

water access channel in the dark state (Figure 3c,d, and Figure 3—figure supplement 1;

Hontani et al., 2017). The C1C2 photocycle was reported in detail recently (Hontani et al., 2017),

revealing different accumulations of the P1 and P2 photo-intermediates, as compared to CrChR2.

Preceding the TR-SFX experiment, we investigated the photocycle and ion pore formation processes

of C1C2. In the flash-photolysis experiments, C1C2 showed similar photo-intermediates as observed

in the previous study (Hontani et al., 2017), in detergent micelles or reconstituted lipid membranes

(Figure 2a,b and Figure 2—figure supplement 1). The results indicate a rapid rise of 520 nm

absorption after photo-excitation, occurring before 10 ms, which corresponds to the formation of the

P1 intermediate with an isomerized retinal (Hontani et al., 2017; Nogly et al., 2018), and the subse-

quent increases at 390 nm and 520 nm show formation of the P2 and P3 intermediates with a depro-

tonated and reprotonated retinal Schiff base, respectively (Figure 2a). The absorption spectra of P1

and P3 resemble each other and cannot be distinguished in C1C2, but the delayed rise of the 530

nm absorption after 360 ms shows the formation of the P3 intermediate at the later time point. To

correlate the different photocycle intermediates to formation of the ion conducting pore, we next

measured the C1C2 photocurrents evoked by 7-ns laser flash (Figure 2c and Figure 2—figure sup-

plement 2). The C1C2 photocurrents are initiated by a fast, inward directed charge transfer that

likely coincides with the retinal deprotonation (P2 formation), which has not been fully time-resolved

in the whole cell patch clamp recordings. Afterwards, passive photocurrents rise with a time constant

of 70–140 ms (rather faster at acidic pH) and change direction depending on the membrane voltage.

The photocurrent remains after reprotonation of the retinal Schiff base and declines in a biexponen-

tial manner, with two voltage dependent time constants of 8–40 ms and 60–130 ms and a kinetic

amplitude ratio that depends on the pH, correlating neither precisley with the P2nor the

P3 intermediate. The absorption spectrum of ChR depends mostly on the microenvironment of the

chromophore retinal, especially on the Schiff base environment (Ritter et al., 2008), and does not

need to reflect changes in the ion pore structure . As recently shown for CrChR2 (Kuhne et al.,

2019), also C1C2 channel opening takes place only after deprotonation of the retinal Schiff base,

during further confirmational changes of the P2 intermediate.

To determine the time points for the TR-SFX study, we next investigated the photocycle of C1C2

in the lipidic cubic phase (LCP) crystals. The flash illumination induced a rapid elevation at 530 nm,

confirming retinal isomerization (P1 formation) (Figure 2d and Figure 2—figure supplement 3a, c).

The elevation of the 390 nm absorption, which is most prominent in 2.1–21 ms, showed the P2 for-

mation, but the subsequent increase at the 530 nm absorption was not observed in the crystal

(Figure 2d and Figure 2—figure supplement 1 and Figure 2—figure supplement 3a,c), suggesting

that the transition from P2 to P3 is hindered in the crystal, although the C1C2 crystal has only minimal

interactions at the extracellular membrane region (Figure 3—figure supplement 2). Nonetheless,

the accumulation of the P2 intermediate is more prominent in the crystals, as the spectral increase at

390 nm is relatively higher, as compared to the similar increase detected in micelles and reconsti-

tuted membranes (Figure 2a,d and Figure 2—figure supplement 1, Figure 2—figure supplement

3b,d). In addition, the flash photo-activation experiment using HEK cells showed that the photocur-

rent rose in between 100–1000 ms, regardless of pH, which corresponds to a second late P2 interme-

diate (Figure 2c and Figure 2—figure supplement 2), in a good agreement with the previous

studies in ChR2 (Kuhne et al., 2015; Kuhne et al., 2019). Therefore, we selected the time points

corresponding to the P1 to P2 transition in the crystals for the TR-SFX study, to understand the

detailed mechanism of the light-dependent channel opening in ChR.

Structural change in ChR
The LCP matrix containing C1C2 microcrystals was introduced to the XFEL chamber in a continuous

flow. Since the crystallized sample was swollen and almost in the liquid sponge phase, we added

paraffin and solid LCP matrix to enable stable and constant sample flow to the FEL beam (detailed

in Materials and methods). The diffraction images were collected at 30 Hz, with the 470 nm pump-

Figure 3 continued

Figure supplement 3. Schematic model of the time-resolved serial femtosecond crystallography setup.
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pulse laser at 15 Hz and the delayed time points at 1 ms, 50 ms, 250 ms, 1 ms, and 4 ms (Figure 3—

figure supplement 3a,c and Supplementry file 1). The absence of light contamination was checked

by the second dark data set, obtained with a 10 Hz pump laser pulse (Figure 3—figure supplement

3c,d). The difference-Fourier maps were calculated at 2.5 Å for each delayed time point, with the

dark state SFX structure as the reference (Figure 4), and they clearly revealed the structural changes

in the protein core region of C1C2 (Figure 4—figure supplement 1; Figure 4—figure supplement

2 and Video 1). Due to the low quantum efficiency of the retinal isomerization, which is estimated as

only about 30% in C1C2 (Hontani et al., 2017), we calculated the extrapolated structure factor

amplitudes and the models were refined against the extrapolated maps (detailed in

Materials and methods and Figure 4—figure supplement 3). We also calculated the Fc
light–Fc

dark

maps using the models, which shows a similar appearance with the difference-Fourier map and thus

confirms the conformational change (Figure 4—figure supplement 4).

Since the retinal isomerization reaction is generally completed within a few picoseconds

(Hontani et al., 2017; Neumann-Verhoefen et al., 2013; Bühl et al., 2018), the observed changes

correspond to the events following the retinal isomerization. The isomerization of the retinal induces

conformational changes of the retinal-linked residue, Lys296, and TM7 (Figure 4, left panels). The

positive densities along Lys296 suggest its downward shift (toward the extracellular side), which is

detected from 1 ms and becomes most prominent at 4 ms (Figure 4, left panels). In accordance with

this shift, positive and negative difference densities are observed around the proximal residues in

TM7, such as Trp299, indicating an overall downward shift of the middle portion of TM7. The similar

downward shift of TM7 (Helix G) was the most distinct feature in the L-like intermediate of BR,

observed in both the cold-trapped synchrotron structure (Neutze et al., 2002) and the recent TR-

SFX study (Nango et al., 2016). In the TR-SFX experiment of BR, the primary retinal isomerization

reaction induced local distortion around the C13–C14 double bond of the retinal, which was subse-

quently propagated as conformational changes to other protein regions, also involving a downward

shift of TM7. Therefore, the retinal-attached residue in C1C2 probably undergoes similar conforma-

tional changes, although the primary retinal isomerization was not visualized, due to the limited reso-

lution of the current TR-SFX experiment. Notably, at 50 ms we observed positive and negative

difference densities at the putative internal proton acceptor residue, Asp292 (Figure 4, left panels),

indicating a slight downward shift of this residue, which might be associated with the proton accept-

ing reaction.

Retinal kink-induced outward shift of TM3
The most prominent change occurs in TM3 (Figure 4, right panels). A strong negative density

appears at Cys167, accompanied by a complementary positive density at the distal site from the reti-

nal, suggesting an outward shift of Cys167. In addition, a strong positive density appears near

Pro168 on the outside of the TM3 segment, which indicates an outward shift of the cytoplasmic seg-

ment of TM3, originating at the helix kink at the Pro168 residue. Along with these changes, negative

and positive densities appear at the C13 methyl group and on the lateral side of the polyene chain of

the retinal, respectively. This kink and lateral shift of retinal allows lateral movement of TM6 as well

as TM3 (Figure 4, right panels). The current difference Fourier map is in excellent agreement with

the recent MD simulation combined with QM/MM calculations (Cheng et al., 2018), in which the ret-

inal adopts a kinked conformation toward TM3 upon the Schiff base deprotonation, probably due to

the destabilized resonance structure of the polyene chain (Figure 5), although the QM/MM simula-

tion focuses only on the molecular events after the Schiff base deprotonation and thus does not

exactly match the experimental time scale. Together, the sequential changes in the difference-Four-

ier maps suggest that the retinal kink occurs, followed by the consequent outward shift of TM3. Con-

sistently, the positive/negative peaks at the retinal appear slightly earlier, whereas the change in

TM3 becomes slower and reaches the maximum at the later time points of 1 ms and 4 ms

(Figure 5).

The current TR-SFX experiment revealed two critical conformational changes occurring early in

the photocycle process: the outward shift of TM3 and the downward shift of TM7, both of which

constitute gate constriction sites along the ion permeation pathway in the dark state (Figure 3).

TM7 contributes essentially to the ‘central gate’, in which Asn297 forms hydrogen bond interactions

with Ser102 (TM1) and Glu129 (TM2). Therefore, the TM7 shift, as well as the outward shift of

Asp292 upon proton acceptance, should lead to rearrangements of the central gate residues. The
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Figure 4. Difference Fourier electron density map and structural changes around TM7 and TM3. Views of the |

Fobs|
light

� |Fobs|
dark difference Fourier electron density maps and the structural changes around TM7 (a–e) and TM3

(f–j) for 1 ms (a and f), 50 ms (b and g), 250 ms (c and h), 1 ms (d and i), and 4 ms (e and j). Green and purple meshes

indicate positive and negative difference electron densities, respectively (contoured at ±3.1 to 3.3s, see also

Figure 4 continued on next page
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intracellular end of TM3 shapes the ‘inner-gate’, in which His173 forms ionic interactions with

Arg307 in TM7 and Glu121 and Glu122 in TM2. The recent MD simulation showed a similar retinal

kink and subsequent water influx from the intracellular side (Figure 5; Cheng et al., 2018). There-

fore, the conformational change in the middle of TM3 might propagate to the intracellular segment

and induce the opening of the inner gate.

Cys167 and Asp195 have been identified as important residues for channel gating and are thus

termed DC-gate or DC-pair, which is conserved

among most ChRs. FTIR and structural studies

have suggested that Asp195 functions as the

internal proton donor for the deprotonated

Schiff base, via an internal hydrated water mole-

cule and Cys167 (Nack et al., 2010;

Bamann et al., 2010; Lórenz-Fonfrı́a et al.,

2013). A previous FTIR study showed an

increase of the S-H stretching frequency of the

Cys167 side chain upon illumination (Ito et al.,

2014). The DC-pair residues are critical for the

fast channel kinetics of ChRs, as mutations of

any of them drastically slowed the open/close

kinetics of the channel, resulting in step function

opsin (SFO) mutants, with long-lasting photocur-

rents that can be switched on and off by differ-

ent wavelengths of light (Berndt et al., 2009;

Yizhar et al., 2011). Previous 2D crystallo-

graphic studies of the CrChR2 C128T mutant

(corresponding to Cys167 in C1C2 [Figure 1—

figure supplement 1]) suggested rearrange-

ments of TM2, 6, and 7 in the open channel con-

formation, that was here induced by the

stationary light (Müller et al., 2011;

Müller et al., 2015). These conformational

changes are partly consistent with the current

TR-SFX analysis. However, the TM3 shift is only

observed in the current study, indicating the crit-

ical role of the Cys residue in the TM3 shift. The

movement of TM7, on the other hand, is similarly

observed in both experiments, although to dif-

ferent degrees. We therefore propose that the

conformational changes in TM7 and TM3 are the

Figure 4 continued

Figure 4—figure supplement 1). The difference Fourier maps were calculated by using the phases from the

coordinates of the dark-adapted C1C2 structure (gray). Paired negative and positive difference electron densities

indicate the downward shift of TM7 and the outward shift of TM3. The structural model (blue) was refined against

the extrapolated data of each time point and the model was superimposed upon the initial-state C1C2 model

(gray). Movements of the residues and the TM helices are indicated by arrows. Probably due to the variations in

the crystal quality (Table 1), the difference density in the 250 ms time-delay seems rather weak.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Overview of the |Fobs|
light

� |Fobs|
dark difference Fourier electron density maps for five

time points.

Figure supplement 2. Stereo views of the difference Fourier electron density maps and structural changes.

Figure supplement 3. Electron density of extrapolated map.

Figure supplement 4. Calculated difference |Fcalc|
light

� |Fcalc|
dark map and structural changes around TM7 and

TM3.

Figure supplement 5. Difference Fourier maps along the putative ion pore.

Video 1. Overview of the |Fobs|
light

� |Fobs|
dark

difference. Fourier electron density maps for five

time points and structural changes. Views of the |

Fobs|
light

� |Fobs|
dark difference Fourier electron density

maps and the structural changes. Green and purple

meshes indicate positive and negative difference

electron densities, respectively (contoured

at ±3.1 to 3.3s, see also Figure 4—figure supplement

1). The difference Fourier maps were calculated by

using the phases from the coordinates of the dark-

adapted C1C2 structure (gray). Paired negative and

positive difference electron densities indicate the

downward shift of TM7 and the outward shift of TM3.

The structural model (blue) was refined against the

extrapolated data of each time point and the model

was superimposed upon the initial-state C1C2 model

(gray). Movements of the residues and the TM helices

are indicated by arrows. Probably due to the variations

in the crystal quality (Supplementary file 1), the

difference density in the 250 ms time-delay seems

rather weak.

https://elifesciences.org/articles/62389#video1
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two important triggers that cooperatively induce channel opening by eliciting sequential conforma-

tional changes in the surrounding helices, such as TM2 and TM6 (Figure 6), as observed in the

‘open’ conformation of the SFO mutant of CrChRs (Müller et al., 2015). This model is also in good

agreement with the results of the vibrational spectroscopic study showing a two-phasic helix hydra-

tion occurring during the early and late stages of the P2 intermediate, in which only the latter leads

to the fully-open channel pore (Lórenz-Fonfrı́a et al., 2015). Furthermore, site-directed labeling

with infrared sensitive, unnatural amino acids subsequently showed more specificly, that espacially

hydration changes in the intracellular gate are correlated with channel opening (Krause et al.,

2019). In summary, our TR-SFX experiment has revealed two critical conformational changes in TM7

and TM3 that occur during the early part of the photocycle, and these triggers would induce water

and proton influx and subsequent pore dilation, although only slight structural perturbations in the

gate constrictions were observed in the current study, as they were probably affected by the crystal

packing interactions (Figure 4—figure supplement 5).

Discussion

Channel pore gating in ChR
The current results highlight the diversity and similarity of rhodopsin proteins. TM7 is covalently

attached to the retinal and thus undergoes a similar shift in other rhodopsin proteins, such as the

proton pump BR (Nango et al., 2016), and the Na+ pump KR2 (Skopintsev et al., 2020), albeit with

some variations. Therefore, this structural movement is probably conserved in rhodopsin proteins.

Most notably, the retinal kink and TM3 shift were also observed in KR2, even though it is evolution-

ally and functionally distant from ChRs, while such a conformational change was not observed in BR.

In BR, the retinal is transiently kinked toward the opposite direction, but only during the very early

time after photoexcitation (around 10 ps to 16 ns), and causes totally different changes in the pro-

tein part. Therefore, the retinal kink and subsequent conformational changes are likely to be affected

by the residues constituting the retinal pocket. Indeed, the outward shift of TM3 was not observed

in the Cys167 mutant of C1C2, as elucidated by the light-activated projection maps on the 2D

Figure 5. Conformational change of retinal and comparison with QM/MM model. (a) Intracellular view of the |

Fobs|
light

� |Fobs|
dark difference Fourier electron density map and the structural changes around the retinal. Green

and purple meshes indicate positive and negative difference electron densities, respectively. The structural model

(blue) was refined against the extrapolated data of 1 ms and the model was superimposed upon the initial-state

C1C2 model (gray). Movements of residues or TM helices are indicated by arrows. (b) The retinal pocket of dark-

adapted C1C2 (gray), the model at the 1 ms delayed-time point (blue), and the model at 400 ns of the QM/MM

simulation (Cheng et al., 2018) (red) are superimposed together.
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crystallographic study (Müller et al., 2015). A recent MD simulation demonstrated the hydrogen

bonding interactions between the deprotonated Schiff base and the hydroxyl group of Thr166,

located beside the Cys167 residue (Cheng et al., 2018), which are likely to affect the retinal confor-

mation. The same threonine is highly conserved among microbial rhodopsins, and in CrChR2 it was

also proposed to couple the protonation changes in the counterion region to the hydrogen bonding

changes in the DC-pair and the conformational changes of TM3 (Watanabe et al., 2012). Together,

the hydrogen-bonding network beside the retinal, involving the DC-pair, may affect the retinal con-

formation after isomerization, in good agreement with the experimental evidence that the residues

lining the retinal pocket affect channel kinetics (Oda et al., 2018). These results would pave the way

for the development of novel optogenetic tools with different kinetics.

Materials and methods

Laser flash photolysis experiment
The time-evolution of the transient absorption changes of photo-excited C1C2 was measured as pre-

viously described (Inoue et al., 2013; Inoue et al., 2016). The purified protein sample was solubi-

lized in buffer containing 150 mM NaCl, 50 mM Tris-HCl (pH 8.0), 0.05% n-dodecyl-b-D-maltoside

(DDM), 5% glycerol, and 0.01% cholesteryl hemisuccinate (CHS). For the measurement of C1C2 in

liposomes, the purified C1C2 protein was mixed with a lipid mixture of POPE and POPG (molar

ratio = 3: 1) at a protein-to-lipid molar ratio of 1: 50 (the final concentrations of C1C2 and lipids

were adjusted to 5 mM and 250 mM, respectively), and the DDM was removed by BioBeads (SM-2,

Bio-Rad). The sample solution was placed in a quartz cuvette with a 1 cm optical path length and illu-

minated with a 480 nm beam generated by an OPO system, pumped by the third harmonics genera-

tion of a nanosecond Nd3+: YAG laser (LT-2214, LOTIS TII, Minsk, Republic of Belarus). The

intensities of the transmitted probe light from a Xe arc lamp (L8004, Hamamatsu Photonics, Japan)

were measured before and after laser excitation with an ICCD linear array detector (C8808-01,

Hamamatsu, Japan) at 24˚C, and transient absorption spectra were obtained by calculating the ratios

Figure 6. Schematic model of the C1C2 channel opening. The inner gate formed by Glu121, Glu122, His173, and

Arg307 prevents water influx in the initial dark-adapted state. After the retinal isomerization reaction, the retinal

twists and shifts toward Cys167 and induces an outward shift of TM3, originating at the kink introduced by Pro168.

Isomerization of the retinal also induces a downward shift of the middle portion of TM7, especially at the retinal-

attached residue, Lys296 (transition between the P1 and P2 intermediates). These movements are likely to induce

water influx, by destabilizing the intracellular constriction, and further induce rearrangement of the surrounding

helices (Open model).
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between them. Ninety spectra were averaged to improve the signal-to-noise (S/N) ratio. To obtain

the detailed time evolution of the transient absorption change after photoexcitation, the change in

the intensity of the monochromated output of a Xe arc lamp (L9289-01, Hamamatsu Photonics,

Japan), passed through the sample at 24˚C, was observed by a photomultiplier tube (R10699, Hama-

matsu Photonics, Japan) at 375, 445, and 520 nm. The signal from the photomultiplier tube was

averaged to improve the S/N ratio and stored in a digital-storage-oscilloscope (DPO7104, Tektronix,

Japan). The obtained kinetics data were fitted with a multi-exponential function.

Dark adaptation kinetics of C1C2 was measured for the 0.05% DDM-solubilized sample at 24˚C,

as previously described (Inoue et al., 2016). The dark-adapted sample was illuminated for 1 min by

using the output from a 1-kW tungsten–halogen projector lamp (Master HILUX-HR, Rikagaku,

Japan), through an interference filter at 460 nm. After turning off the light, the spectra or the

absorption at a specific wavelength were measured by a UV-visible spectrometer (V-730, JASCO).

Flash photo-activation current measurement
HEK293 cells were cultured in Dulbecco’s Modified Medium (Biochrom), supplemented with 10% (v/

v) fetal bovine serum (FBS Superior; Biochrom), 1 mM all-trans retinal, and 100 mg/ml penicillin/strep-

tomycin (Biochrom, Berlin, Germany). Cells were seeded on poly-lysine coated glass coverslips at a

concentration of 1 � 105 cells/ml, and transiently transfected using the FuGENE HD Transfection

Reagent (Promega) 28–48 hr before measurement. C1C2 was fused to an mCherry-fluorophor and

expressed under the control of the CMV-promotor.

Patch pipettes were prepared from borosilicate glass capillaries (G150F-3; Warner Instruments)

using a P-1000 micropipette puller (Sutter Instruments), and fire polished with a final pipette resis-

tance of 1.5–3.0 MW. Fluorescent cells were identified using an Axiovert 100 inverted microscope

(Carl Zeiss). Single ns laser pulses were generated by an Opolette Nd:YAG laser/OPO system (OPO-

TEK), selected by an LS6ZM2 shutter system (Vincent Associates), and delivered to the cells through

the optics of the microscope and a 90/10 beamsplitter (Chroma). The laser intensity was set to 5%

using the built-in motorized variable attenuator, resulting in a pulse energy of 100 ± 20 mJ/mm2.

Photocurrents were recorded with an AxoPatch 200B amplifier (Molecular Devices) at a maximal

bandwidth of 100 kHz and digitized using a DigiData 1440A digitizer (Molecular Devices) at a sam-

pling rate of 250 kHz. Membrane resistance was typically >1 GW, while access resistance was below

10 MW. Pipette capacity, series resistance, and cell capacity compensations were applied. A 140 mM

NaCl agar bridge was employed for the reference bath electrode. Intracellular pipette and extracel-

lular bath solutions contained 110 mM NaCl, 1 mM KCl, 1 mM CsCl, 2 mM CaCl2, and 2 mM MgCl2,

and were buffered to pH 6.0, 7.2, or 8.0 by 10 mM MES, HEPES, or TRIS (with glucose added to 290

mOsm for intracellular and 310 mOsm for extracellular solutions). Measurements were controlled by

the pCLAMP software (Molecular Devices). Post measurement photocurrent recordings were first

baseline corrected and time shifted to align with the rising edges of the Q-switch signals of the laser

pulse, using the Clampfit 10.4 software (Molecular Devices). They were then binned to 50 logarithmi-

cally spaced data points per temporal decade, normalized to peak photocurrents at �60 mV, and

averaged for up to 10 individual repetitions for each cell and voltage condition with a custom-written

Matlab script (MathWorks). Kinetic analysis was performed in Origin 9.1 (OriginLab). Passive photo-

currents were calculated by subtracting the photocurrents at 0 mV, which were recorded in the

absence of an electrochemical gradient and represent the inner protein charge transfer reactions.

For sufficient statistical significance, each measurement was repeated multiple times on different

biological replicates, in at least three independent experiments. The exact number of biological rep-

licates for each measurement is provided in the figure legend.

Time-resolved visible absorption spectroscopy
The photocycle reaction was induced by a 6-ns, 470 nm pump pulse from an optical parametric oscil-

lator (OPO) (NT230, EKSPLA), and the spectral changes during the reaction were measured by using

a fiber-coupled spectrometer (Flame-S, Ocean Optics), with a microsecond white-light probe pulse

from a Xe-flash lamp (L11316-11-11, Hamamatsu Photonics). A portion of the probe light (5%) was

used to correct the pulse-to-pulse fluctuation of the probe light intensity. The pump pulse and the

probe light were focused on the sample point, with beam diameters of 300 mm and 40 mm, respec-

tively. The pump energy was reduced to 15 mJ (0.21 nJ/mm [Schneider et al., 2015]), to avoid

Oda, Nomura, Nakane, et al. eLife 2021;10:e62389. DOI: https://doi.org/10.7554/eLife.62389 11 of 21

Research article Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.62389


sample damage by the repetitive pump illuminations during the data accumulation. The pump pulse,

the probe light source, and the spectrometer were synchronized by pulse generators (DG645, Stan-

ford Research Systems), and the pump-probe delay time was adjusted with a timing jitter of ±20 ns.

The repetition rates of the pump and the probe were 0.5 Hz and 1 Hz, respectively. In the solution

measurement, the sample was packed in a spinning quartz cell with an optical path length of 1 mm

and spun at 50 rpm during the measurement. The sample concentration was ~10 mg/ml, dissolved

in 50 mM Tris-HCl, pH 8.0, containing 150 mM NaCl and 5% glycerol. In the microcrystal measure-

ment, we used the C1C2 crystals obtained under similar conditions as in the TR-SFX (below). Specifi-

cally, a pillar of 30 ml protein-laden LCP, approximately 2 cm in length, was extruded from the

syringe and soaked in 900 ml of the crystallization buffer, containing 100 mM HEPES, pH 7.0, 280

mM KH2PO4, and 30% PEG500DM, and incubated for 1 week in the dark at 20˚C, which yielded crys-

tals in a liquid sponge phase floating on the buffer solution. The sponge phase layers were trans-

ferred by pipetting and packed in two quartz windows with a 50 mm-thick spacer. Only a few

absorption signals from the non-crystallized area were observed, and we used the transmitted light

intensity from the non-crystallized area as the reference to calculate the absorption spectra of C1C2.

The sample temperature was kept at 20˚C for both the solution and microcrystal measurements. To

decrease the noise level of the time-resolved spectra, singular value decomposition (SVD)

(Shrager and Hendler, 1998) was used with Igor Pro (Wave Matrix). In the SVD, matrix A comprising

the intensity changes at each wavelength and time (column and row, respectively) was decomposed

according to A = USVT, where S represents the diagonal matrix with the singular values in decreas-

ing order. This allows an evaluation of the number of significant orthonormal basis vectors for the

wavelength (columns of U) and the time (columns of V). By reconstructing the matrix A’ from only

the most significant components, random noise was eliminated from the raw spectra. The time-

resolved spectra for the microcrystal and solution samples were well reconstructed by two and three

components, respectively. Based on the SVD, global fitting was then performed for the time-

resolved reconstructed spectra with Igor Pro (Wave Matrix). In the global fitting, the spectra were fit-

ted with a sum of exponentials with apparent time constants ti as global parameters, where i is the

number of components used for the spectral reconstruction in the SVD analysis.

Crystallization of C1C2
The vector construction and protein production and purification were performed according to the

previous report (Kato et al., 2012). C1C2 was finally purified by size-exclusion chromatography, in

150 mM NaCl, 50 mM Tris-HCl, pH 8.0, 5% glycerol, 0.05% DDM, and 0.01% CHS, and concentrated

to ~15 mg/ml for crystallization. C1C2 was mixed with monoolein (Sigma) in a 2:3 protein to lipid

ratio (w/w), using a 100 ml volume Gastight syringe (Hamilton). A pillar of 30 ml protein-laden LCP,

approximately 2 cm in length, was extruded from the syringe and soaked in 900 ml of the crystalliza-

tion buffer, containing 100 mM MES, pH 6.9, 100 mM Na formate, and 30% PEG500DM, and incu-

bated for 2–3 weeks in the dark at 20˚C. Crystals were observed with a Hirox KH8700 digital

microscope.

Sample preparation for LCP-SFX
100 ml of LCP pillars with grown C1C2 microcrystals were collected and loaded into a Hamilton

syringe and mixed with an equivalent volume of buffer-containing LCP (2:3 ratio of the buffer con-

taining 150 mM NaCl and 50 mM Tris-HCl, pH 8.0, to monoolein). A 10 ml aliquot of liquid paraffin

(Wako) was further added to the LCP material and homogenously mixed to enable smooth flow in

the SFX experiment. All of these procedures were performed in the dark under red LED lights (over

600 nm wavelength).

Diffraction experiment at SACLA-FEL
Single-shot XFEL data collection was performed, using femtosecond X-ray pulses from the SACLA at

BL3. The pulse parameters of SACLA were as follows: pulse duration, <10 fs; X-ray energy, 7 keV;

energy bandwidth, 33.5013 eV (FWHM); pulse flux, 2.0 � 1011 photon/pulse photons per pulse;

beam size 1.5 mm (H) � 1.5 mm (W); repetition rate, 30 Hz. The C1C2 crystals were mixed with pro-

tein-less LCP and paraffin oil, loaded into an injector with a 75 mm inner diameter nozzle, and set in

a diffraction chamber filled with helium gas, in a setup called Diverse Application Platform for Hard
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X-ray Diffraction in SACLA (DAPHNIS). The flow rate was set to 2.5 ml/min (9.4 mm/s). The diffraction

patterns were recorded on a multiport CCD detector with an eight sensor module

(Kameshima et al., 2014). The excitation laser pulses were provided at 15 Hz, and the XFEL pulses

had a repetition rate of 30 Hz. Each ‘pump-on’ image was followed by ‘pump-off’ images, which

were recorded separately. The pump-on images were used to analyze the structural differences,

whereas the diffraction data for the dark-state were collected in a separate run to avoid light

contamination.

Pump laser setup
To advance the C1C2 samples to the excited state, a 6 ns visible light pump pulse with a wavelength

of 470 nm was provided to the samples at Dt = 1 ms, 50 ms, 250 ms, 1 ms, and 4 ms, from an OPO

(NT230, EKSPLA), which was Q-switched at 15 Hz using a pulse generator (DG645, Stanford

Research Systems). The pulse generator was also used to synchronize the pump pulse with the XFEL

pulse and control the delay time (Dt) with a timing jitter of <1 ns. Samples were thus irradiated from

both sides of the LCP microjet, a geometry that was chosen to optimize the crystal excitation effi-

ciency. The pump focal size was set to 40 mm (FWHM) and the pump energy was 20 mJ (10 mJ from

each direction) at the sample point. The pump beam center was aligned 6 mm upstream from the

XFEL spot. The pump light was scattered, as the LCP microjet is semi-transparent. To avoid the

interference from the pump scattering, the sample flow rate (9.4 mm/s) was set to be the same as

that in the TR-SFX analysis of BR, in which each pump-illuminated crystal for the pump-on XFEL

images was separated by 630 mm. A portion of the pump beam (5%) was isolated with a beam sam-

pler, and its photodiode-detected signal was used to monitor the laser status and to tag the diffrac-

tion image with ‘light-on’. Since the repetition rate of the pump laser was half of that of the XFEL,

the ‘light-on’ data and the ‘dark’ data were collected alternately.

Data processing and structural analysis
Data collection was monitored by a real-time data processing pipeline (Nakane et al., 2016), based

on Cheetah (Barty et al., 2014). Diffraction images with more than 20 spots were considered as hits

and processed in CrystFEL, version 0.6.3 (White et al., 2012), with the parameters of hitfinderAlgor-

ithm = 6, hitfinderADC = 40, hitfinderMinSNR = 5. Diffraction spots for indexing were detected by

the built-in spot finding algorithms ‘zaef’ (Zaefferer, 2000) or ‘peakfinder8’ (Barty et al., 2014) in

CrystFEL, and indexing was performed with DirAx (Duisenberg, 1992). Intensities were merged by

Monte Carlo integration with the process_hkl command in the CrystFEL suite, with the per-image

resolution cutoff (–push-res 1.2). Data collection statistics are summarized in Supplementary file 1.

As the cell parameters do not vary among the different delayed-time points, the difference Fourier

electron density maps (|Fobs|
light–|Fobs|

dark)�exp[iFcalc] were calculated by FFT (Ten Eyck, 1973) in the

CCP4 suite (Winn et al., 2011), with phases calculated from the refined dark state model.

Structural refinement
The structure was solved by the molecular replacement method implemented in Phenix Phaser-MR,

using the model of C1C2 (PDB: 3UG9). The structure was manually modified to fit into the electron

density maps, using the program Coot (Emsley et al., 2010), and then refined with the programs

Phenix (Adams et al., 2010) and Refmac5 in the CCP4 suite (Vagin et al., 2004). The model struc-

tures of the respective delayed time points were generated by real-space refinement against the dif-

ference-Fourier maps by COOT, with the restraints of protein geometry and retinal planarity

between C5and C13. Extrapolated data were calculated by a linear approximation, as follows: FExtra
= (Fo

light
� Fo

dark)/R + Fo
dark, where R represents the activation ratio of molecules and FExtra represents

the extrapolated structure factor amplitude. Fo
light was scaled to Fo

dark by using the scaleit program in

the CCP4 suite (Howell and Smith, 1992) before calculating FExtra. The activation ratio R (the ratio

of molecules in the excited state after light illumination) was determined by calculating extrapolated

maps with phases of the dark state at different activation ratios in steps of 0.01, until a feature of the

dark state at Cys167 disappeared. Next, 4 ms model was manually adjusted to fit the extrapolated

map and refined by Refmac5 against FExtra and its estimated error. Then, each time point model was

refined by Refmac5 with external structure restraints using 4 ms structure by the Geman–McClure
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function (Murshudov et al., 2011) the refinement statistics are. Figures were prepared with Cuemol

(http://www.cuemol.org).
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ms). Raw diffraction images have been deposited in the Coherent X-ray Imaging Data Bank (acces-

sion ID 150, https://doi.org/10.11577/1768368).
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Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-
Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC,
Zwart PH. 2010. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta
Crystallographica Section D Biological Crystallography 66:213–221. DOI: https://doi.org/10.1107/
S0907444909052925, PMID: 20124702

Bamann C, Kirsch T, Nagel G, Bamberg E. 2008. Spectral characteristics of the photocycle of channelrhodopsin-2
and its implication for channel function. Journal of Molecular Biology 375:686–694. DOI: https://doi.org/10.
1016/j.jmb.2007.10.072, PMID: 18037436

Bamann C, Gueta R, Kleinlogel S, Nagel G, Bamberg E. 2010. Structural guidance of the photocycle of
channelrhodopsin-2 by an interhelical hydrogen bond. Biochemistry 49:267–278. DOI: https://doi.org/10.1021/
bi901634p, PMID: 20000562

Barty A, Kirian RA, Maia FR, Hantke M, Yoon CH, White TA, Chapman H. 2014. Cheetah: software for high-
throughput reduction and analysis of serial femtosecond X-ray diffraction data. Journal of Applied
Crystallography 47:1118–1131. DOI: https://doi.org/10.1107/S1600576714007626, PMID: 24904246

Berndt A, Yizhar O, Gunaydin LA, Hegemann P, Deisseroth K. 2009. Bi-stable neural state switches. Nature
Neuroscience 12:229–234. DOI: https://doi.org/10.1038/nn.2247
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