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Abstract Climate-driven expansions of ocean hypoxic zones are predicted to concentrate
pelagic fish in oxygenated surface layers, but how expanding hypoxia and fisheries will interact to
affect threatened pelagic sharks remains unknown. Here, analysis of satellite-tracked blue sharks
and environmental modelling in the eastern tropical Atlantic oxygen minimum zone (OMZ) shows
shark maximum dive depths decreased due to combined effects of decreasing dissolved oxygen
(DO) at depth, high sea surface temperatures, and increased surface-layer net primary production.
Multiple factors associated with climate-driven deoxygenation contributed to blue shark vertical
habitat compression, potentially increasing their vulnerability to surface fisheries. Greater intensity
of longline fishing effort occurred above the OMZ compared to adjacent waters. Higher shark
catches were associated with strong DO gradients, suggesting potential aggregation along
suitable DO gradients contributed to habitat compression and higher fishing-induced mortality.
Fisheries controls to counteract deoxygenation effects on shark catches will be needed as oceans
continue warming.

Introduction
Dissolved oxygen (DO) content of the global ocean is declining (ocean deoxygenation) due to sea
temperature warming, increased stratification, and changing circulation, and the interactions of
these processes with hypoxia-inducing biological activity ( Keeling et al., 2010 ; Gilly et al., 2013 ;
Watson, 2016 ; Schmidtko et al., 2017 ; Breitburg et al., 2018 ; Levin, 2018 ; Laffoley and Baxter,
2019 ; Stramma and Schmidtko, 2019 ). Permanent oxygen minimum zones (OMZs) are present in
all the world's ocean basins and occur where DO reaches low (hypoxic) levels of <0.45±1.00 ml O 2
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l� 1 in the depth range ~200±800 m (Keeling et al., 2010 ; Gilly et al., 2013 ; for oxygen units used
see Materials and methods). Ocean deoxygenation has resulted in horizontal and vertical expansions
of OMZs with the prospect of profound effects on marine biota because long-term DO declines are
particularly acute in OMZs (Stramma et al., 2008 ; Gilly et al., 2013 ; Breitburg et al., 2018 ).

Levels of DO have a major role in structuring marine ecosystems (Grantham et al., 2004 ;
Ekau et al., 2010 ; Gilly et al., 2013 ; Levin and Le Bris, 2015 ; Breitburg et al., 2018 ; Penn et al.,
2018 ; Laffoley and Baxter, 2019 ) because the vast majority of organisms have a low hypoxic
threshold, where concentrations of ~1.35±2.70 ml O2 l� 1 cause hypoxic stress (Vaquer-Sunyer and
Duarte, 2008 ; Ekau et al., 2010 ). OMZ vertical expansions may alter microbial processes key to
nutrient cycling and gas fluxes (Levin and Le Bris, 2015 ), change predator±prey dynamics
(Ekau et al., 2010 ; Stewart et al., 2013 ), and shift distributions, abundance, and capture risk of eco-
logically and commercially important species ( Ekau et al., 2010 ; Gilly et al., 2013 ; Prince and
Goodyear, 2006 ; Prince et al., 2010 ; Stramma et al., 2012 ; Deutsch et al., 2015 ). In particular,
OMZ expansion may have significant implications for top predator ecology and fisheries ( Gilly et al.,
2013 ; Stramma et al., 2012 ) since shoaling hypoxic layers are expected to compress the habitat of
pelagic fishes (Prince and Goodyear, 2006 ; Prince et al., 2010 ; Stramma et al., 2012 ;
Leung et al., 2019 ). Hypoxia-based habitat compression is the habitat loss associated with expand-
ing hypoxia, signified by the shoaling of cold, hypoxic water reducing the depth of the oxygenated
surface mixed layer (Stramma et al., 2012 ). For large tropical pelagic fishes such as tunas and bill-
fishes, water layers with DO concentrations 3.0±3.5 ml O 2 l� 1 have been recognised as a generalised
lower habitat boundary associated with waters overlying OMZs that limits depth distributions
(Lowe et al., 2000 ; Ekau et al., 2010 ; Stramma et al., 2012 ). This predicts shifts in predatory fish
distributions even with mild hypoxia occurring in waters above OMZs ( Vaquer-Sunyer and Duarte,
2008 ; Ekau et al., 2010 ; Sims, 2019). Nonetheless, the increased susceptibility of large pelagic
fishes to fisheries due to shoaling OMZs has been hypothesised (Gilly et al., 2013 ; Prince and
Goodyear, 2006 ; Prince et al., 2010 ; Stramma et al., 2012 ) but has not been quantified directly.

Pelagic sharks are ecologically important oceanic apex predators ( Hammerschlag et al., 2019 )
with comparatively high physiological demands for oxygen ( Payne et al., 2015 ) that have been
widely observed in the surface layers above OMZs (e.g. Vetter, 2008 ; Nasby-Lucas et al., 2009 ;
Abascal et al., 2011 ; Queiroz et al., 2016 ; Queiroz et al., 2019 ; Sims, 2019). This raises an impor-
tant question: will expanding volumes of oxygen-depleted water, such as expanding OMZs, reduce
the vertical extent of pelagic sharks into preferred but contracting surface habitat, increasing their
risk of capture by surface fisheries? Tens of millions of pelagic sharks are caught each year by largely
unregulated fisheries in the high seas (areas beyond national jurisdiction, ABNJ), leading to overfish-
ing and declining catch rates documented for many species ( Baum et al., 2003 ; Ferretti et al.,
2010 ; Worm et al., 2013 ; Campana, 2016 ; International Commission for the Conservation of
Atlantic Tunas, 2017a ; International Commission for the Conservation of Atlantic Tunas, 2019 ).
Despite high fishing pressure, there has been limited management of commercially important
pelagic sharks where OMZs occur in ABNJ (Campana, 2016 ; Queiroz et al., 2019 ), such as for blue
Prionace glauca and shortfin mako Isurus oxyrinchussharks that are the most common sharks caught
by Atlantic pelagic fisheries ( Queiroz et al., 2016 ; Oliver et al., 2015 ; Sims et al., 2018 ). This sug-
gests pelagic sharks including blue shark could be at growing risk from deoxygenation through
reduction of the habitable space available and, therefore, potentially higher capture rates in those
affected areas that overlap with pelagic fisheries. However, no studies have tested the hypothesis of
hypoxia-based habitat compression in pelagic sharks acting to increase the capture risk of sharks to
surface fisheries above OMZ areas, or considered specifically how catch rates are affected by shoal-
ing hypoxia.

The eastern tropical Atlantic (ETA) OMZ provides an appropriate system to study in this context
because expansion of this OMZ has been recorded over the last 50 years, with DO declines there
being particularly intense compared to other OMZs ( Stramma et al., 2008 ). For example, in this
OMZ the vertical extent with DO concentrations <2.0 ml O 2 l� 1 ± levels known to affect pelagic fish
physiology and behaviour (Ekau et al., 2010 ; Sims, 2019) ± increased in thickness by 85% between
1960 and 2006 (Stramma et al., 2008 ), with more recent observations of exceptionally low DO con-
centrations of <0.05 ml O 2 l� 1 (`dead zones') in some ETA mesoscale eddies (Karstensen et al.,
2015 ). Therefore, hypoxic water of 1.5±3.5 ml O 2 l� 1 becoming increasingly prevalent in the pelagic
zones above the core ETA OMZ (with concentrations <0.9 ml l � 1; Karstensen et al., 2015 ) as it
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expands are likely to induce threshold physiological and behavioural responses of pelagic fishes
leading to abundance and distributional changes ( Lowe et al., 2000 ; Ekau et al., 2010 ), including
those of sharks (Sims, 2019). Despite this, no targeted studies have investigated how shoaling hyp-
oxia influences pelagic shark behaviour and susceptibility to fisheries.

We investigated these unknowns by satellite tracking blue sharks, the world's widest ranging
shark, and recording horizontal and vertical habitat use with data-logging tags in waters above the
ETA OMZ and adjacent areas. The outer boundaries of OMZs have strong gradients in DO concen-
tration, whereby moving a short horizontal distance means the mixed layer depth (MLD) characteris-
ing the boundary between upper oxygenated and deeper hypoxic water rises upwards steeply
(large DO gradient) ( Schmidtko et al., 2017 ). These hypoxia depth gradients mimic the process of
OMZ expansion through a space-for-time approach. Therefore, blue sharks were tracked and diving
behaviour recorded in these areas to enable the effect of OMZ `expansion' on shark dive patterns to
be examined. We developed models to determine environmental drivers of vertical habitat use of
sharks by including surface and at-depth DO, water temperature, salinity, and three biological pro-
ductivity proxies in environmental models to estimate how shark maximum daily dive (MDD) depth
was affected in both OMZ and normally oxygenated adjacent areas.

We also sought to understand from empirical observations how pelagic fishing effort and blue
shark catches by longlines were distributed across the ETA OMZ area in relation to hypoxic water.
The blue shark is highly migratory and the pelagic shark most frequently caught by pelagic longline
fisheries worldwide and including in the Atlantic Ocean ( Oliver et al., 2015 ; Queiroz et al., 2016 ).
Classified by the International Union for the Conservation of Nature (IUCN) Red List as Near Threat-
ened globally, this species has few catch restrictions anywhere in the world. Catch limits for Atlantic
blue sharks were, however, agreed in November 2019 indicating concerns that the Atlantic popula-
tions are at potential risk of overexploitation ( International Commission for the Conservation of
Atlantic Tunas, 2019 ). Therefore, we tracked fishing patterns of the entire Spanish and Portuguese
longline fleets ± two of the most important oceanic fleets in the Atlantic that retain sharks
(Queiroz et al., 2019 ) [deploying 15% of all hooks International Commission for the Conservation
of Atlantic Tunas, 2017a ] ± in relation to the ETA OMZ and adjacent areas to quantify fine-scale dif-
ferences in fishing effort and intensity directly. Finally, spatially referenced catch data for blue shark
from Spanish longline fleet logbooks were used to examine how retained catches (hooking mortality)
were distributed across the ETA OMZ area.

Results

Shark movements near hypoxic zones
A total of 55 adult or sub-adult blue sharks were tracked in the North Atlantic with either an Argos
(position only) satellite transmitter or a satellite-linked depth and temperature-recording tag (pop-
off satellite archival transmitter, PSAT) (Figure 1 ; Supplementary file 1 ). One shark, S1, was double-
tagged. The purpose of using Argos transmitters was to determine the broad extent of horizontal
movements and space utilisation of sharks in OMZ and adjacent areas of the North Atlantic, and as a
spatial context for assessing potential habitat selection of sharks in the OMZ area, while PSAT tags
were used to record spatially explicit swimming depths of sharks directly in relation to modelled DO
and other environmental variables in OMZ and adjacent areas. Of the 22 sharks tagged with Argos
transmitters between 2009 and 2014 in fully oxygenated waters adjacent to the ETA OMZ, 10 sharks
displayed sustained southern movements of which six utilised waters above the OMZ ( Figure 1A ).
To test whether sharks showed habitat selection for waters above the OMZ area when encountered
we compared the movements of individuals to correlated random walk models with move steps
(Jaine et al., 2014 ) and bearings randomly and independently drawn from each respective real shark
trajectory (Materials and methods) ( Supplementary file 2 ; Figure 1Ðfigure supplement 1 ). Five
(out of six) sharks spent significantly more time above the ETA OMZ than respective random models
(Supplementary file 2 ). To investigate more directly whether waters above the ETA OMZ may be a
preferred habitat we tagged 10 blue sharks with Argos transmitters above the OMZ in 2017
(Figure 1A ; Supplementary file 1 ) and recorded movements post-tagging. Three sharks (S24, S25,
and S27) stayed entirely within the region above the OMZ for the tracking durations (22±40 days),
and while seven eventually left the area, two of the seven sharks remained for a significantly longer
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Figure 1. North Atlantic-wide movements of blue sharks in relation to the eastern tropical Atlantic (ETA) oxygen
minimum zone (OMZ). Sharks were tracked with (A) ARGOS satellite transmitters (deployed in the Azores and
above the ETA OMZ) and (B) pop-off satellite-linked archival transmitters (PSAT) (deployed in west and central
North Atlantic, and above the ETA OMZ) overlaid on modelled dissolved oxygen concentrations (at 100
m). Coloured trajectories indicate individual sharks that moved into waters above the OMZ, which is illustrated
using different oxyclines (1.5±4.5 ml O2 l� 1 at 100 m depth). Note that shark S1* was double-tagged and appears
in both panels.
The online version of this article includes the following figure supplement(s) for figure 1:

Figure 1 continued on next page
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period than what would be expected by random movements prior to leaving (S23 and S29; tracked
for 73 and 125 days, respectively).

Shark diving patterns
Of the 16 sharks tagged with PSATs outside the OMZ area in 2010±2011, six made southerly move-
ments from more oxygenated waters with three individuals (S1, S39, and S47) encountering waters
above the OMZ (Figure 1B ; Table 1). A further seven sharks (S48±54) were PSAT-tracked in waters
above the ETA OMZ in 2017 (Figure 1B ; Table 1). A vertical shift to shallower depths (increased
shoaling) occurred as sharks moved across the core OMZ area compared to dive depths in adjacent
(normoxic) waters (Figure 2 ). For example, the MDD depths of shark 47 in adjacent waters to the
OMZ ranged between 500 and 1400 m, whereas above the core OMZ area MDD depths were 200±
520 m (Figure 2A ; Table 1). Similarly, the deepest MDD depths of shark 52 reached 1480 m in adja-
cent areas, but were mainly shallower than 250 m in the OMZ (97.6% of time) and only once reached
980 m (Figure 2B ; Table 1). This pattern of shallow MDD depths in the ETA OMZ was also evident
for sharks 53 and 54 (Figure 2C and D ).

Overall, the mean MDD depth reached by individuals that encountered the OMZ was 754 m com-
pared to a mean depth of 1250 m outside the OMZ ( Table 1). For all sharks, the mean number of
dives >600 m was an order of magnitude lower in waters above the core OMZ than more oxygen-
ated waters outside (mean deep dives per track: above the OMZ = 1.1; adjacent to OMZ
area = 10.8; Table 1 ; Figures 2 and 3). In addition, it was evident from dive data that although blue
sharks undertook dives in the OMZ area (down to 1552 m) potentially taking them through hypoxic
water (Figure 3B and D ), these were of relatively short duration given that close to 100% of time
was spent <500 m (Figures 3A and C and 4), with 91% of time in depths <250 m ( Table 1).

Changes in diving behaviour were concomitant with reductions in estimated concentrations of
modelled DO and the calculated partial pressure of oxygen (pO 2) in the vicinity of each shark (after
taking into account changing temperature and salinity with depth; see Materials and methods).
Sharks tagged outside the OMZ area compared to inside potentially experienced an average

Figure 1 continued

Figure supplement 1. Assessing blue shark habitat preference for surface waters above the oxygen minimum
zone (OMZ).

Table 1. Summary of vertical movement data for pop-off satellite archival transmitter (PSAT)-tracked
blue sharks that encountered waters above the oxygen minimum zone (OMZ) area.
DNR denotes a tag that did not report.

Shark ID
% Time upper
250 m

Number dives below
600 m Maximum dive depth

OMZ Outside OMZ Outside OMZ Outside

S1 59.7 69.9 2 6 680 696

S39 98.5 83.8 0 19 288 1464

S47 90.7 74.0 0 29 520 1400

S48 88.8 92.9 2 7 1174 1390

S49 98.6 - 1 - 930 -

S50 DNR 85.7 1 2 804 1463

S51 88.4 87.2 0 2 336 712

S52 97.6 89.2 2 24 984 1480

S53 98.0 84.7 3 1 1552 1264

S54 97.9 92.1 0 7 272 1384

Mean 90.9 84.4 1.1 10.8 754.0 1250.3

S.D. 12.5 7.8 1.1 10.5 419.5 316.4
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Figure 2. Vertical movements of blue sharks in relation to dissolved oxygen (DO) concentration and water temperature. Daily minimum-maximum
depth plots (shaded area) for sharks 47 and 52±54, overlaid on DO concentration data (left panels) and water temperature (right panels) from the
surface to 1700 m. Red and blue bars at the top of each panel denote the period spent inside (red) and outside (blue) the area overlying the oxygen
minimum zone (OMZ). Numbers in the right panels denote oxyclines (ml O 2 l� 1) and in the left panels isotherms (ÊC).

Figure 2 continued on next page
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decrease from 4.23 (±0.82 S.D.; minimum of 2.00 ml l � 1, maximum of 5.66 ml l � 1) to 2.48
ml O2 l� 1 (±1.18 S.D.; min. of 1.17 ml l � 1, max. of 5.17 ml l � 1), corresponding to a decrease in the
mean pO2 from 13.39 (±3.08 S.D.; min. of 6.23 kPa, max. of 18.33 kPa) to 8.01 (±4.64 S.D.) kPa, with
a minimum of 3.58 kPa and a maximum of 18.37 kPa (Figure 2Ðfigure supplement 1 ). PSAT-
tracked sharks in 2017 experienced a similar transition from 2.71 ml O 2 l� 1 (±1.15 S.D.; min. of 1.38
ml l � 1; max. of 5.11 ml l � 1) within the area above the OMZ to 4.10 ( ±0.88 S.D.; min. of 1.97 ml l � 1;
max. of 5.49 ml l � 1) in more oxygenated waters outside the OMZ ( Figures 3 and 4). This corre-
sponded to a mean pO 2 of 8.70 (±4.55 S.D.) and a minimum of 4.27 kPa (max. of 18.48 kPa) above
the OMZ compared with a mean pO 2 of 13.31 kPa (±3.58 S.D.; min. of 6.14, max. of 18.33) in nor-
moxia (Figure 4 and Figure 2Ðfigure supplement 1 ).

Environmental influences on diving
Almost 100% of shark dive time in the OMZ was spent at depths <500 m even though the sea sur-
face temperatures (SSTs) there were warmer (23±26ÊC) compared to dive locations outside the OMZ
(Figure 3A and B ). The warmer SST above the OMZ corresponds with the shallower MLD above the
OMZ compared to adjacent waters ( Figure 2 ). However, the temperatures encountered vertically by
sharks down to MDD depths were similar between the two areas (mean ± S.D. OMZ: 15.84 ± 5.18ÊC;
normoxia: 15.75 ± 4.53ÊC), down to a minimum of~5ÊC (maximum of 26.04ÊC) in the OMZ and a min-
imum of ~4ÊC (maximum of 26.84ÊC) in normoxia, albeit that these lower temperatures were encoun-
tered at shallower depths in the OMZ than outside ( Figure 3D ).

Sharks entered low temperature waters (<7ÊC) during deeper dives outside the OMZ but such
waters were not generally reached when in the OMZ area, even though the 10ÊC isotherm was shal-
lower in the OMZ ( Figure 2 ). Shark 47, for example, regularly reached depths with water tempera-
tures <7ÊC when moving near the edges of the OMZ and in adjacent waters, but did not enter <10Ê
C water when in the core OMZ except on 1 day ( Figure 2A , right panel). Shark 52 showed similar

Figure 2 continued

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Vertical movements of blue sharks in relation to environmental variables.

Figure 3. Vertical distribution of blue shark movements above oxygen minimum zone (OMZ) and adjacent waters. The percentage of tag-recorded time
spent by blue sharks per day in the upper 500 m of the water (A and C) and maximum daily dive (MDD) depths (B and D) in relation to the dissolved
oxygen (DO) concentration at 100 m depth. Time-at-depth (TAD) and MDD depth are given in relation to sea surface temperature (SST) (A and B) and
temperature at depth ( C and D). Each marker plotted summarises percentage TAD for 1 day. The dashed vertical line in each panel denotes the lower
DO concentration indicated by the generalised additive mixed model (GAMM) below which MDD depth begins to decrease (3.5 ml O 2 l� 1).
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responses, with substantially fewer deep dives into <10ÊC waters when in the OMZ compared to
adjacent areas (Figure 2B , right panel). This indicates for these sharks at least that they were capa-
ble of tolerating <7ÊC waters at depth outside of core OMZs. However, when the 7ÊC isotherm was
shallower in the OMZ area they did not reach those depths, demonstrating that cold water did not
limit MDD depth in the same manner across OMZ and adjacent habitats.

The vertical gradients in water temperature where the sharks were recorded diving inside and
outside the OMZ area were different principally in there being a sharper thermocline between 50
and 150 m above the OMZ compared to outside ( Figure 4 ). This was also the depth range over

Figure 4. Time-at-depth of blue sharks in oxygen minimum zone (OMZ) and adjacent areas in relation to environmental variables. Vertical depth use
ratio (left panel) between waters above the OMZ (red) and adjacent waters outside the area of OMZ (blue) for sharks 47 and 52 (A and B); depth use
ratio comparing depth distributions of shark 53 above the OMZ with shark 54 outside the area above the OMZ ( C). In A±C, the panels on the right show
the average dissolved oxygen (DO) concentration, water temperature, pO 2, and net primary production (NPP) concentration between the surface and
1750 m, and horizontal dotted lines denote the MDD depth of each shark recorded inside (red) and outside (blue) the OMZ area.
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which DO and pO 2 decreased the most and which signalled the MLD characterised by oxygenated
water above and more hypoxic water below. However, the temperature gradient ( DT ÊC) from the
middle of the MLD at 100 m to the MDD depth between waters inside the OMZ area and outside
was 11.0ÊC and 15.0ÊC, respectively, for shark 47 (e.g.Figure 4A , compare red and blue lines in sec-
ond panel from right) and 6.0ÊC and 7.5ÊC, respectively, for shark 52 (Figure 4B ). Therefore, the DT
values encountered by sharks during dives were similar inside and outside the OMZ area, although
the minimum and maximum absolute temperatures were different (as mentioned above).

Similarity in thermal gradients encountered during diving by sharks was also evident from calculat-
ing the percentage time that individual sharks spent at different depths, DO concentrations, and water
temperatures (Figure 5 ). For example, shark 47 spent most time at 0±50 m depth in water tempera-
tures predominantly between 15ÊC and 18ÊC both inside and outside the OMZ area, and only outside
the OMZ was appreciable time spent at around 400 m depth ( Figure 5A±C left panels). In contrast,
the time spent at different DO concentrations changed markedly over the same time course of diving
movements, with most time in water of 4.8 ml O 2 l� 1 before entering the OMZ, compared to most
time spent in water of 2.5 ml l � 1 inside the OMZ area despite the majority of water temperatures
encountered remaining between 15ÊC and 18ÊC (Figure 5B , left panel). Results from shark 54 outside
the ETA OMZ area confirms the predominance of surface orientated behaviour (0±50 m) and time
spent diving to deeper depths (200±500 m) in waters with higher DO (5.5 ml O 2 l� 1) and a fairly con-
stant temperature range (18±24ÊC) (Figure 5A±C , right panels). Data from two further sharks (52 and
53) show similar patterns to sharks 47 and 54 both inside and outside the OMZ area ( Figure 5Ðfigure
supplement 1 ).

Net primary production (NPP) was higher inside the OMZ area than outside, confirming the
known relationship of higher phytoplankton growth in the ETA OMZ area as a consequence of
increased stratification and warmer SST above the MLD, and which coincided with greater time
spent by blue sharks in the uppermost 150 m water layer ( Figure 4 ). Peak values of NPP occurred
above the MLD at ~100 m depth inside the OMZ, values that were some nine times higher than
peak values outside the OMZ in adjacent waters. NPP fell to very low concentrations below 200 m
and remained low throughout deeper depths both inside and outside the OMZ.

Modelling shark responses to environmental variables
The biotic and abiotic environmental variables influencing shark diving depths were likely to be com-
plex in the OMZ region with strong horizontal and vertical gradients in DO, temperature, and bio-
logical productivity for instance. To explore this, we used a generalised additive mixed model
(GAMM) to predict the MDD depth of tracked blue sharks as a function of surface and at-depth
salinity, DO, water temperature, chlorophyll ` a' and phytoplankton concentration, and NPP (Materi-
als and methods). Results showed that MDD depth was best explained by a combination of DO at
depth and SST and NPP at depth (Table 2). The variables of water temperature at depth, surface
salinity and at depth, chlorophyll `a' and phytoplankton concentration (surface and at depth) did not
contribute to the best fit model. Although the relationship between MDD depth and the selected
variables in the best fit model was complex, MDD depth tended to decrease with decreasing DO at
depth and SST, and increase with decreasing NPP at depth (Figure 6 ). The decrease in MDD depth
was greatest where DO at depth decreased below 3.5 ml l � 1, whereas above this DO concentration
MDD depth was not strongly affected ( Figure 6A ). At the highest levels of NPP at depth (100 m)
MDD depth varied little, whereas when NPP decreased below ~0.0025 g l � 1 d � 1, shark MDD depth
increased (Figure 6B ). Increasing MDD depths occurred with increasing SST up to 24ÊC; however, in
waters with SST above 24ÊC, which were common above the OMZ (Figure 3B ), MDD depths
decreased (Figure 6C ).

We used the modelled relationships between shark MDD depth, DO, SST, and NPP to predict
the extent of potential shark habitat compression occurring across the ETA OMZ region ( Figure 6D ;
see Materials and methods). Predicted shallowest MDD depths were evident along the northern and
western edges of the OMZ and off the continental shelf of western Africa ( Figure 6D ).

Shark exposure risk to fisheries
To examine the potential increased susceptibility of sharks to fisheries in OMZ areas, we analysed
the spatial overlap between the ETA OMZ and distributions of Spanish and Portuguese longline fleet
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fishing locations (following the approach of Queiroz et al., 2016 ) (Materials and methods). We
hypothesised that shallower MDD depths in the OMZ area compared to adjacent areas due to
potential deoxygenation-driven habitat compression would act to increase the susceptibility of
sharks to capture by surface longline fisheries. To explore this we mapped the extent of the ETA
OMZ using the model-derived oxycline of 3.5 ml O 2 l� 1 at 100 m depth: this was chosen because
the GAMM indicated that MDD depth begins to decrease below this DO concentration, inferring
sharks show reduced preference for depths having these lower DO levels ( Figure 6A ). Analysis of

Figure 5. Changes in percentage time sharks spent at depth, dissolved oxygen (DO) concentrations, and water temperatures across oxygen minimum
zone (OMZ) and adjacent areas. Left panels show percentage times of shark 47 and the right panels show shark 54.
The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Changes in percentage time sharks spent at depth, dissolved oxygen (DO) concentrations, and water temperatures across
oxygen minimum zone (OMZ) and adjacent areas.
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satellite-tracked fishing vessel movements in relation to this horizontal map of the subsurface OMZ
extent showed different fine-scale fishing effort patterns (gear deployment locations) that reflected
the different geographic regions and oceanographic regimes exploited. At the ocean-basin scale,
fishing effort (active fishing days with gear deployed) was higher in the whole North Atlantic when
compared to the South Atlantic, with longline fishing vessels spending on average 65 ( ±74 S.D.) and
30 (±30) fishing effort days per 1 � 1Ê grid cell, respectively (Figure 7 ; Supplementary file 3 ). At the
regional scale in the North Atlantic, fishing effort and fishing intensity (proportion of total active fish-
ing locations occurring in spatial clusters) were both higher above OMZ areas compared to adjacent
waters outside (Mann±Whitney rank sum test, p<0.001; Table 3) (Materials and methods). Equally, in

Table 2. Results of the GAMM model relating maximum daily dive (MDD) depth to environmental
variables.
Std. error, standard error; R2 (adj), adjusted r-squared for the model; s, smooth; edf, estimated
degrees of freedom; Ref df, estimated residual degrees of freedom. SST, sea surface temperature;
DO, dissolved oxygen concentration at depth; PP, net primary productivity at depth.

Estimate Std. error T value p-value

MDD depth (m) (n = 1085) (intercept) 347.58 14.39 24.16 <0.001

edf Ref. df F p-value

R2(adj) = 0.081 s(DO) 2.24 2.24 8.668 <0.001

s(PP) 2.183 2.183 10.16 <0.001

s(SST) 3.895 3.895 4.144 0.002

Figure 6. Generalised additive mixed model (GAMM) model relationships between blue shark dive depths and environmental variables with predicted
present-day maximum daily dive (MDD) depths in the eastern tropical Atlantic (ETA) oxygen minimum zone (OMZ). Predicted response of modelled
shark MDD depth (m) to (A) dissolved oxygen (DO) at depth, (B) sea surface temperature (SST), and (C) net primary productivity at
depth (NPP). Modelled shark MDD depth increases with increasing DO at depth, with a lower threshold DO concentration at about 3.5 ml O 2 l� 1 below
which MDD starts decreasing (A), and with increasing SST up to ca. 24ÊC, above which MDD depths decrease (B). The model showed an inverse
relationship of MDD depth with NPP at depth, where modelled MDD depth declines with increasing NPP at depth ( C). Continuous lines represent
mean modelled MDD depth and shaded areas represent the standard error. ( D) The predicted present-day extent of blue shark MDD depths off
western Africa determined with the GAMM model relationships. Black dotted line denotes position of the oxycline of 3.5 ml O 2 l� 1 at 100 m depth.
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Figure 7. Spatial distribution of fishing effort of pelagic longline vessel fleets. Spanish and Portuguese longline fishing vessels (n = 322) were GPS
satellite-tracked between 2003 and 2011 with the vessel monitoring system (VMS). Black dotted line: oxycline (3.5 ml O2 l� 1 at 100 m) used to denote
the positions of the North and South Atlantic hypoxic zones that we define by the lower habitat boundary (hypoxia threshold) for blue shark estimated
by our generalised additive mixed model (GAMM) (see Figure 6 ) for blue shark maximum daily dive (MDD) in relation to dissolved oxygen (DO)
concentration. FAO boxes shown for reference provided arbitrary areas for use in vessel spatial analysis.

Table 3. Fishing activity information for major fishing areas in the Atlantic with permanent OMZs indicate greater fishing intensity in
waters above oxygen minimum zones (OMZs).
FAO fishing area Hypoxic (OMZ) or normoxic (more oxygenated) Mean number of fishing days (per grid cell) Fishing intensity (%)

FAO 34 (N Atlantic) OMZ area 72.7 65.0

Normoxic area 62.5 57.9

FAO 47 (S Atlantic) OMZ area 20.2 61.6

Normoxic area 31.3 56.7
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the South Atlantic fishing intensity was highest above OMZs ( Figure 7 ; Table 3). Furthermore, it was
evident that distinct hotspots of fishing effort occurred along the northern, western, and southern
boundaries of the OMZ as defined by the oxycline of 3.5 ml O 2 l� 1 at 100 m depth ( Figure 7 ).

Blue shark catches in OMZ area
The blue shark catches of Spanish longline vessels as reported in logbooks showed higher catch per
unit effort (CPUE; mean CPUE: kilograms of blue shark caught and retained per grid cell per longline
set [day]) in the OMZ area compared to adjacent waters further north (>22ÊN) which were not
affected by hypoxic waters at depth ( Figure 8A ). A higher number of grid cells with the highest
CPUE occurred along the northern boundary of the OMZ (between 15 and 22ÊN), where there are
very strong DO gradients horizontally and vertically ( Figures 1 , 2, and 8A and B ). CPUE hotspots
were also evident on the western extent (9±15ÊN and 30±41ÊW) and southern boundaries (south of 9Ê
N) (Figure 8A and C±G ). Relatively high CPUE in the western OMZ area was spatially more extensive
than along the northern boundary; however, generally where catches were made the CPUE was
lower (e.g. compare Figure 8B with E; Table 4). Few peak CPUE catches were made in the southern
area, but where they did occur, they were located along the southern boundary with more fully oxy-
genated waters (Figure 8A ).

Examining the fishing-induced blue shark mortality along transects through the OMZ areas showed
CPUE increased most where DO at 100 m was generally decreasing (Figure 8B±G and Figure 8Ðfig-
ure supplement 1 ). Along the northern boundary (20.5 and 15.5ÊN transects) CPUE peaked where DO
concentration at 100 m decreased most markedly, from ~5 ml O2 l� 1 in the west (25±35ÊW) down to~1
ml O2 l� 1 in the east (15.0±15.5ÊW). For example, along the 20.5ÊN transect the peak CPUE was esti-
mated to occur where the DO concentration was 3.51 ml O 2 l� 1 (Figure 9A ). In the western region the
decrease in DO concentration was less abrupt than further north (from ~4 ml O2 l� 1 at 45ÊW to~1 ml O2

l� 1 at 15.5ÊW), and catches of blue sharks were more consistent in terms of CPUE and more broadly dis-
tributed along transects than further north ( Figure 8C and Figure 8Ðfigure supplement 1 ). Peak
CPUE in individual grid cells occurred along transects where DO concentrations ranged from 1.65 to
3.49 ml O2 l� 1 (Table 4). For all CPUE and DO data across grid cells, we estimated that blue shark CPUE
peaked along transects in the OMZ area where DO at 100 m was 2.96 ml O 2 l� 1 (Figure 9B ). Overall,
the results show peak catches of blue shark occurred where sharp gradients in DO were present hori-
zontally and vertically due to shoaling hypoxic water associated with the OMZ.

Discussion
In this study we use the combined approach of satellite archival telemetry of blue sharks, environ-
mental modelling, and spatial analysis of longline fishing effort and catch data to investigate shark
responses to OMZ habitats and to examine vulnerability to capture by fisheries in deoxygenated
regions. Overall, our results show that the ETA OMZ environment decreases the vertical range of
sharks compared to adjacent waters consistent with the habitat compression hypothesis. Modelling
showed MDD depth of blue sharks increased with increasing DO at depth and SST (up to 24ÊC) and
decreasing NPP at depth. Interestingly, we found that water temperature at depth did not contrib-
ute to the best fit model, indicating that low DO at depth, specific SST values, and high NPP at
depths within the uppermost 150 m layer were more important in reducing tracked blue shark MDD
depth than gradients in temperature, salinity, and phytoplankton proxies in the water column of the
OMZ. Furthermore, we found that CPUE of blue sharks by longline fishing vessels was higher in the
OMZ area, primarily within fishing hotspots along the northern and western edges of the OMZ
where the intensity of fishing was significantly higher and where predicted blue shark MDD depths
were generally shallower.

Shark diving behaviour
The blue shark is probably the ocean's widest ranging shark with documented individual movements
of thousands of kilometres across entire ocean basins and from the surface down to over 1600 m
depth (Vandeperre et al., 2014 ; Queiroz et al., 2017 ; Queiroz et al., 2019 ). Blue sharks in the
course of these extensive movements encounter and appear capable of tolerating a very broad
range of environmental conditions, such as water temperatures between 4ÊC and 30ÊC
(Howey et al., 2017 ). Despite this, we found that the average maximum dive depth of tracked blue
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sharks in the ETA OMZ was 40% less than the mean depth attained outside the area, together with
a greatly reduced frequency of deep diving below 600 m inside the OMZ. Tracked blue sharks were
limited to shallower dives in the OMZ area compared to adjacent, normally oxygenated waters. In
contrast, there was only a relatively small increase (6%) in the time spent in the upper 250 m layer
when sharks were inside the OMZ area compared to outside it. This small difference in overall depth

Figure 8. Longline catches of blue shark associated with the eastern tropical Atlantic (ETA) oxygen minimum zone (OMZ) and adjacent waters. (A) The
mean catch per unit effort (CPUE) of blue sharks by Spanish pelagic longline vessels in the area of the OMZ (2013±2018). Horizontal lines denote the six
data transects shown in B±G. The dotted line denotes the 3.5 ml O 2 l� 1 oxycline at 100 m depth representing the lower habitat boundary (hypoxia
threshold) for blue shark estimated by our generalised additive mixed model (GAMM) (see Figure 6 ). (B±G) panels show how mean CPUE changes
along each transect in relation to dissolved oxygen (DO) concentration at 100 m depth. The horizontal dotted line in each panel denotes the 3.5 ml O 2

l� 1 oxycline.
The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Cumulative mean catch per unit effort (CPUE) along each transect in relation to dissolved oxygen (DO) concentration at 100 m.
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use reflects the preference of individual blue sharks to remain within the upper layer from where
they undertake dives into deeper waters for relatively short periods of time. This depth use pattern
is one of the common dive profiles documented for blue sharks in several previous studies con-
ducted in different oceans, and is characterised by more time spent in the warmer upper layers dur-
ing the night and more time at moderate depths during the day interspersed with much deeper
dives into cooler waters (Stevens et al., 2010 ; Queiroz et al., 2012 ; Howey et al., 2017 ;

Queiroz et al., 2017 ). Limitation of the vertical
extent of deep dives in OMZ areas compared to
adjacent areas was also apparent for white
sharks (Carcharodon carcharias; Nasby-
Lucas et al., 2009 ) and shortfin mako sharks (Isu-
rus oxyrinchus; Abascal et al., 2011 ) along the
northern and southern edges of the eastern
Pacific OMZ, respectively. Similarly, our results
show blue shark vertical movements in the OMZ
area principally comprised a reduced mean max-
imum depth and frequency of deep dives >600
m, rather than a substantial shift in the temporal
use of the uppermost water layer.

Environmental drivers of shark
dive depths
The reduced maximum dive depths and the
lower frequency of deep dives by blue sharks
were driven by sharp horizontal and vertical gra-
dients in physical and biological variables pres-
ent in the OMZ. The GAMM identified the
principal drivers of blue shark MDD depth to be
DO at depth, SST and NPP at depth, with MDD
depth increasing as DO at depth increased from
1.25 to 3.5 ml O 2 l� 1, as SST increased to 24ÊC
(above which MDD decreased with increasing
SST) and as NPP at depth decreased. These
results support the hypothesis that blue shark
vertical habitat became compressed as they
moved from normally oxygenated waters into
the ETA OMZ area, which has both low DO at
depth, high SST, and high primary production
above the MLD.

Our finding that DO at depth is a major driver
of blue shark MDD depth in areas above OMZs

Table 4. Summary of blue shark longline catch data across the eastern tropical Atlantic (ETA) oxygen minimum zone (OMZ).
Longline catch of blue sharks were taken from Spanish pelagic longline vessel logbooks and aggregated into 1 � 1Ê grid cells. Each
data transect analysed extended from 15.5ÊW to 46.5ÊW.

Transect
latitude (ÊN)

Number of
longline sets

Total blue shark catch in all transect
grid cells (tonnes)

Peak catch per unit effort (CPUE)
(kg/grid cell/day)

Dissolved oxygen (ml O 2 l� 1 at 100
m) at peak CPUE

20.5 665 3148 7025.02 3.49

15.5 1045 4021 6195.48 2.16

12.5 399 1436 6294.53 1.65

11.5 506 2006 4778.71 2.39

10.5 477 1815 5736.87 2.36

9.5 377 1386 5769.6 2.70

Figure 9. Variation in longline catches of blue shark
along transects as a function of dissolved oxygen (DO)
at depth. Catch per unit effort of blue shark (mean
CPUE: kilograms of blue shark/grid cell/fishing set)
along (A) the 20.5ÊN transect of the northern boundary
of the eastern tropical Atlantic (ETA) oxygen minimum
zone (OMZ) and (B) CPUE for all grid cells along all six
transects in relation to modelled DO (at 100 m depth).
Solid lines are quadratic fits to the data to provide an
estimate of the DO concentration at 100 m depth
supporting an estimated peak catch of blue shark.
Equations and statistics of the fitted quadratic models:
(A) log10CPUE = 1.833 + 1.082 DO ± 0.1539 DÔ2
(n = 16, adj. r2 = 0.37, F = 5.49, p=0.019) and (B)
log10CPUE = 2.846 + 0.4570 DO - 0.07732 DÔ2
(n = 123, adj. r2 = 0.14, F = 10.88, p<0.0001).
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supports the hypoxia-driven habitat compression hypothesis but also identifies other contributing
factors of SST and NPP at depth. Considering DO concentrations, the GAMM results indicate a
lower DO habitat boundary ± defined here as the DO concentration below which MDD depth
becomes more limited by further decreases in oxygen content ± that was estimated by our model to
be ~3.5 ml O2 l� 1 at ~18ÊC. There were similarities in the DO concentrations reducing blue shark
MDD depth with those observed for other large pelagic fishes. The lower habitat boundary DO con-
centration we found for blue shark is consistent with studies showing depth distributions of yellowfin
(Thunnus albacares) and skipjack (Katsuwonus pelamis) tunas are limited by reductions in oxygen
content to only 3.5 ml O 2 l� 1 (Gooding et al., 1981 ; CayreÂand Marsac, 1993 ; Richard, 1994 ;
Lowe et al., 2000 ). Tracking-based or fishing depth-of-capture estimates of lower DO concentra-
tions encountered by blue sharks do not identify strict habitat boundaries, however, since sharks
may choose to enter lower DO concentration waters for a short time period ± a behaviour confirmed
by our tracking-based results ± which may incur an oxygen debt. Rather, laboratory-based experi-
mental whole-animal measurements of the critical oxygen level ( Pcrit) determine the level below
which a stable rate of oxygen uptake (oxyregulation) can no longer be maintained and becomes
dependent upon ambient oxygen availability (oxyconforming). Pcrit was found to average 5.15 ± 2.21
kPa for 151 fish species, ranging from 1.02 to 16.2 kPa, although only two species included were
sharks (Rogers et al., 2016 ). For southern Bluefin tuna, Thunnus maccoyii, Pcrit was around 5.5 kPa
at 19ÊC (Rogers et al., 2016 ); however, similar data for pelagic sharks are lacking. The mean Pcrit for
the bottom-dwelling catshark Scyliorhinus canicula was determined to be 6.5 and 8.0 kPa at 12ÊC
and 17ÊC respectively (Rogers et al., 2016 ), and between 10.5 and 11.9 kPa at 24±32ÊC for sandbar
sharks, an obligate ram-ventilation species (Crear et al., 2019 ). For blue sharks, we estimated from
modelled oxygen concentrations during vertical movements that the minimum oxygen conditions
potentially encountered were 3.58±4.27 kPa at 12±18ÊC, suggesting blue sharks enter waters with
low partial pressures of oxygen that in many fish species, including benthic sharks, would be oxygen
levels that elicit oxyconforming responses ( Rogers et al., 2016 ). Therefore, whilst blue sharks appear
able to utilise low DO environments associated with the ETA OMZ for short time periods, our results
overall indicate that the OMZ habitat reduced MDD depths and the frequency at which deep MDD
depths were reached.

The DO concentrations that limit oceanic pelagic shark movements and behaviour in the wild are
little known for the majority of species at present ( Ekau et al., 2010 ; Sims, 2019). However, track-
ing-based estimates of potential hypoxic thresholds with DO concentrations of 1.2±3.5 ml O 2 l� 1

that we estimated for blue sharks also generally limit the dive depths of other pelagic sharks ( Vet-
ter, 2008 ; Abascal et al., 2011 ; Nasby-Lucas et al., 2009 ). For example, studies tracking shortfin
mako (I. oxyrinchus) near the eastern tropical Pacific (ETP) OMZ indicated individuals generally
remained in waters with >3 ml O 2 l� 1 and rarely encountered water with <2 ml O 2 l� 1 (Vetter, 2008 ;
Abascal et al., 2011 ). Similarly, white sharks (Carcharodon carcharias) offshore in the ETP were typi-
cally associated with DO concentrations of >3 ml O 2 l� 1 (Nasby-Lucas et al., 2009 ), and salmon
sharks (Lamna ditropis) in the eastern North Pacific were found to exploit low DO environments
of <3 ml O 2 l� 1 (Coffey et al., 2017 ). Our study also showed blue sharks may occasionally enter low
DO waters (<1.5 ml O 2 l� 1), which is proposed for other pelagic shark species ( Vetter, 2008 ;
Abascal et al., 2011 ; Nasby-Lucas et al., 2009 ). For example, the dive profile of a single scalloped
hammerhead shark (Sphyrna lewini) in Baja California, eastern central Pacific, showed occupation of
depths where modelled DO was estimated to be severely hypoxic (<0.5 ml O 2 l� 1)
(Jorgensen et al., 2009 ). In addition, salmon sharks were tracked in waters where modelled-DO
minimum concentrations ranged from 0.4 to 0.9 ml O 2 l� 1 (Coffey et al., 2017 ). The overall picture
emerging from tracking sharks in relation to modelled DO, including this study, is that vertical extent
is limited by low DO, with a general lower habitat boundary around 3.5 ml O 2 l� 1 but with shorter
duration deeper dives into more hypoxic water possible.

DO, temperature, and NPP effects
In previous studies of fish including pelagic sharks, the combination of water temperature and DO
has been shown to an important constraint affecting vertical range ( Nasby-Lucas et al., 2009 ;
Abascal et al., 2011 ; Coffey et al., 2017 ). During vertical movements, individuals experience a
wide range of available oxygen, combined with variations in temperature throughout the water col-
umn. These variations in oxygen and temperature affect blood±oxygen binding capacity, and
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consequently, the tolerance of individuals to hypoxia ( Vaquer-Sunyer and Duarte, 2008 ;
Deutsch et al., 2015 ). Hypoxia tolerance represents the minimum environmental pO 2 (Pcrit) with
which an individual can regulate oxygen uptake ( Farrell and Richards, 2009 ) and higher water tem-
peratures decrease oxygen solubility, and consequently, available environmental pO 2 (Tro-
mans, 1998 ; Garcia, 2005 ). In a recent study, the MDD depth of the salmon shark tracked with
satellite archival transmitters in the northeast Pacific Ocean decreased when waters with low DO
(<1±3 ml l� 1) and cold temperatures (<6ÊC) at depth were encountered, with both factors contribut-
ing to the best fit GAMM ( Coffey et al., 2017 ). Although water temperature and DO can be impor-
tant in determining shark dive depths, we found a less marked effect of temperature at depth with
blue sharks diving into cold waters during deep dives both in the OMZ and adjacent waters, and the
vertical change in temperature ( DT ÊC) below the MLD being similar in magnitude both inside and
outside the OMZ. In contrast, we found, for example, most time was spent by a blue shark in low
DO water of 2.5 ml O 2 l� 1 inside the OMZ area despite the majority of water temperatures encoun-
tered remaining between 15ÊC and 18ÊC. The broad environmental tolerances of blue sharks likely
explain why temperatures at depth appeared less important in determining MDD depth. The tem-
peratures encountered by blue sharks in the OMZ (5±26ÊC) were within their normal, wide tempera-
ture range recorded in other studies ( Queiroz et al., 2012 ; Howey et al., 2017 ), which suggests
that the individuals we tracked were not solely limited in MDD depth by temperature at depth. We
cannot discount the possibility that the combination of low DO and temperature at depth may affect
blue shark MDD depth; however, we could not test this given that inside the OMZ the lowest DO
concentrations encountered were coincident not with low temperatures but with a broad range of
water temperatures from 10ÊC to 20ÊC. This infers that DO at depth, SST, and NPP at depth were
more important in driving MDD depth than colder temperatures at depth for blue sharks in the ETA
OMZ.

SST has been shown in previous studies to be an important factor determining the habitat prefer-
ences of blue sharks in the North Atlantic ( Queiroz et al., 2016 ), so it was expected that SST would
contribute to the best fit model. The ETA OMZ is characterised by higher SSTs than adjacent waters
(e.g. Figure 2A ) and, indeed, we found that MDD depth increased with increasing SST up to 24ÊC,
with SST >24ÊC being observed along blue shark tracks across the core OMZ area that coincided
with the shallowest MDD depths. The combination of high SST above the OMZ lowering oxygen sol-
ubility in water, together with the increased metabolic costs (oxygen consumption) of an ectothermic
shark such as the blue shark associated with occupying elevated SSTs (Payne et al., 2015 ), may have
acted to reduce the tolerance of blue sharks to undertake deeper dives into waters with low DO at
depth.

The abundance and distribution of biological resources such as primary productivity has a central
role in determining the habitats selected by consumers and predators in addition to abiotic factors.
For example, the seasonal increase in phytoplankton abundance on the northeast-Atlantic continen-
tal shelf edge occurs a few weeks before an increase in zooplankton abundance and the occurrence
of zooplankton-feeding basking sharks ( Cetorhinus maximus) (Sims et al., 2003 ). Similarly, the MDD
depths of blue sharks were also partly explained in our model by changes in NPP at depth, where
NPP quantifies the rate at which phytoplankton produces biomass. We found that MDD depth
decreased as NPP in the water column increased. At first this pattern seems counter-intuitive, since
greater production at deeper depths might be expected to elicit deeper dives by a predator if prey
species were strongly correlated with NPP. However, in the ETA OMZ area, the highest NPP concen-
trations occurred in the uppermost 150 m layer above the core OMZ. Therefore, our model results
indicate that blue shark MDD depth decreased due to low DO at depth and also due to the influ-
ence of increasing phytoplankton biomass in the uppermost 150 m. The combined effects of low DO
at depth and higher basal biomass in the upper layer above the core OMZ may lead to enhanced
shark±prey interactions in the surface layers. Results support the hypothesis that some tracked blue
sharks (10 of 16; 63%) exhibited selection of habitats above the core OMZ when encountered, which
could be explained by enhanced foraging opportunities for sharks above and possibly within low
DO environments of the OMZ that occurred in the uppermost 150 m layer. Blue shark feed on
pelagic fish prey that may be habitat compressed into surface waters by the ETA OMZ, perhaps also
due to the combined effects of low DO at depth and greater feeding opportunities in the upper
layer. In addition, the diet of blue sharks in the North Atlantic is known to contain hypoxia-tolerant
prey such as cephalopods (e.g. squid Histioteuthis spp.) that are present in deeper hypoxic waters
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during the day and migrate vertically into more oxygenated, productive surface waters at night
(Biton-Porsmogeur, 2017 ; Childress and Seibel, 1998 ). This prey migration into the upper layer
above the core OMZ could be one factor driving the decrease in blue shark MDD depth in the OMZ
area compared to adjacent waters that we observed.

Therefore, overall, our results support the hypothesis that expanding OMZs due to climate
change (shoaling low DO; increasing SST and higher upper layer NPP) will cause habitat compression
of blue sharks further into surface waters above expanding OMZs and reduce habitat volumes. The
results strongly suggest that abiotic (low DO and high SST) and biotic factors (NPP, hence fish prey
species) contribute to the observed decreased MDD depth of blue sharks in the ETA OMZ. This hab-
itat compression suggests blue sharks will be increasingly at risk of capture by surface fisheries as a
consequence of further deoxygenation of waters deeper than the surface mixed (oxygenated) layer
overlying the OMZ. The habitat compression expected in surface waters due to climate-driven OMZ
expansion and its concomitant effects on prey species distributions predicts that the potential sus-
ceptibility (availability and encounterability risks) of sharks to baited longline hook depths above
OMZs are likely to be higher in the future.

A limitation of this study was that modelled DO data from oceanographic data sets were matched
with locations along the paths of tracked pelagic sharks ( Sims, 2019). Actual DO concentrations in
the habitats selected by sharks may therefore differ from interpolated, modelled DO values. This is a
limitation not only of the present study but indeed most previous shark studies. There is a need for
direct DO measurements to assess more accurately how pelagic sharks' movements may be limited
by low DO levels in the wild. Data-logging tags capable of measuring DO and swimming depths
have been developed for recording DO levels that are directly encountered by free-ranging marine
predators (Bailleul et al., 2015 ) including large sharks (Coffey and Holland, 2015 ). Oxygen satura-
tions as low as 9.4% of normoxia (~0.8 ml O2 l� 1 at 5ÊC) were recorded from tags on bluntnose sixgill
sharks (Hexanchus griseus) off Hawaii, Pacific Ocean, during dives to nearly 700 m depth
(Coffey and Holland, 2015 ; Coffey et al., 2020 ). DO sensor tag results to date confirm that very
low DO concentrations are encountered and can be tolerated by large sharks during normal vertical
movement. These types of sensors will enable new research on the physiological responses of ram-
ventilating pelagic sharks to low DO in the wild ( Sims, 2019) which, when combined with novel sea-
going respirometers ( Payne et al., 2015 ) for direct determination of Pcrit, will pave the way for a
mechanistic understanding of hypoxia tolerance in large shark species.

Fishing effort and shark catches
The model output predicting how the OMZ environment affects blue shark vertical habitat suggests
the susceptibility to capture by fisheries will be increased in areas where the DO shoals the most to
further reduce vertical extent. This assertion was broadly supported in this study by the empirical
fishing effort and catch data. This showed that fishing effort and blue shark CPUE were highest in
the same discrete areas (hotspots) along the northern, western, and southern boundaries of the ETA
OMZ, indicating both higher fishing intensity and capture success in those areas with greatest reduc-
tion in blue shark MDD depth. Strikingly, we found that blue shark catches peaked where horizontal
DO gradients were sharpest, which suggests a profound effect of shoaling hypoxia on susceptibility
of blue sharks to capture by pelagic longline vessels.

The results indicate longline fishing patterns above the ETA OMZ form among the most impor-
tant fishing hotspots within the entire eastern Atlantic, particularly along the northern extent of the
ETA OMZ. Fishing effort hotspots are formed where fishing effort is spatially concentrated. This sug-
gests that oceanographic features associated with waters above the OMZ are a target area for sur-
face longline vessels. Furthermore, higher fishing intensity in the OMZ area indicates that vessels
spend less time searching for, or moving to, different fishing locations. As a result, vessels above the
OMZ deploy longlines nearly continuously (daily) in localised areas rather than having to interrupt
fishing by travelling for days between fishing hotspots ( Queiroz et al., 2016 ). These areas of high
fishing intensity are likely known to fishers from previous experience to be fishing hotspots support-
ing higher large fish catches (Queiroz et al., 2016 ). Although incomplete, longline fishery catch
records for other species of pelagic sharks (e.g. International Commission for the Conservation of
Atlantic Tunas, 2017b ) and tunas (Prince and Goodyear, 2006 ; Prince et al., 2010 ) in surface
waters above the ETA OMZ compared to adjacent areas support this conclusion.
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Our results showed blue shark CPUE by Spanish longlines peaked where the modelled DO con-
centrations at 100 m were in the range 3.0±3.5 ml O 2 l� 1 (Supplementary file 1 ), which is a similar
concentration range to a lower-habitat-boundary DO concentration of ~3.5 ml O2 l� 1 that we deter-
mined from the GAMM (with tracking-derived MDD depth as the response variable). The similarity
of these ranges suggests a potential mechanism underlying the peak catches observed. Here, blue
sharks begin being limited in vertical extent by the 3.5 ml l � 1 DO surface (oxycline). Where there is a
strong gradient between this preferred DO surface and deeper, less oxygenated waters, the move-
ments of sharks along the more suitable oxygen gradients may therefore lead to aggregation along
the boundary of the hypoxic zone. Previous studies on fish and invertebrates near low oxygen envi-
ronments have reported higher mean catches, or steep increases in catches, relative to lower DO
values (Howell and Simpson, 1994 ; Song et al., 2009 ; Ekau et al., 2010 ; Craig, 2012 ;
Potier et al., 2014 ). For example, the effects of hypoxia avoidance by brown shrimp ( Farfantepa-
naeus aztecus) and several demersal fish species in the Gulf of Mexico resulted in evading organisms
aggregating short distances of 1±3 km just beyond the margins of the hypoxic zone and in a narrow
region along the hypoxic edge ( Craig, 2012 ). This suggested the potential for enhanced catches of
those target and bycatch species along the hypoxic boundary ( Craig, 2012 ). Likewise, several spe-
cies of tunas frequently diving below the thermocline show a vertical compression to shallow depths
in the presence of an OMZ (Richard, 1994 ; Song et al., 2009 ; Potier et al., 2014 ). This avoidance
of hypoxic waters may be a behavioural mechanism to reduce physiological consequences of pro-
longed oxygen debt ( Richard, 1994 ). Consequently, increased occurrence in well-oxygenated waters
above OMZs increases the overlap between tuna vertical distribution and depths of gear deploy-
ments of surface longline fishing hooks and purse seiners (Richard, 1994 ; Song et al., 2009 ;
Potier et al., 2014 ). The increased vulnerability of tunas to fisheries in OMZs is in line with the
observed higher catches of tunas within these areas (Song et al., 2009 ; Potier et al., 2014 ). Simi-
larly, the peak catches of blue sharks we observed in association with strong DO gradients may have
resulted from movements limited by and, hence, aggregated along and above this boundary-edge
oxycline, which may also have aggregated prey species, thus leading to higher use of these areas by
blue sharks. The results highlight the potential for overexploitation of habitat-compressed pelagic
sharks occurring along suitable oxygen gradients associated with expanding OMZs.

Conclusions
Collectively, our findings suggest that blue sharks above the ETA OMZ will undergo habitat com-
pression as they respond by avoiding lower DO concentrations and associating with high SST and
NPP in the uppermost 100 m layer, and show preference for suitable DO gradients along the mar-
gins of OMZ areas ± potentially due to the physiological limits of sharks ( Payne et al., 2015 ;
Coffey et al., 2017 ; Sims, 2019), to habitat compression of prey species ( Gilly et al., 2013 ;
Childress and Seibel, 1998 ), or even hypoxia-related visual impairment ( McCormick and Levin,
2017 ). Our results propose that these responses combine to further increase shark risk of capture by
surface fisheries as OMZs expand given that longline fisheries already target specific OMZ habitats
where increased shark catches are made. The blue shark makes up~90% of the total reported catch
of pelagic sharks in the Atlantic ( Oliver et al., 2015 ) and its fins are those most commonly traded in
international markets (Fields et al., 2018 ). Reporting of catches remains poor, however ( Cam-
pana, 2016 ), despite uncertainty about blue shark stock status (e.g. North Atlantic;
International Commission for the Conservation of Atlantic Tunas, 2017a ;
International Commission for the Conservation of Atlantic Tunas, 2019 ). Our study predicts that
blue shark habitat will not only become further compressed above OMZs in the future due to ongo-
ing ocean deoxygenation ( Breitburg et al., 2018 ), but, as a consequence, this species will become
more susceptible to capture due to higher fishing intensity leading to higher CPUE than in more oxy-
genated adjacent areas. Management measures for threatened pelagic sharks, which specifically act
to mitigate the effects of ocean deoxygenation on catch rates, may be required as oceans continue
warming. Spatial management, such as high-seas large marine protected areas (LMPAs) around an
OMZ for example, may be a management option necessary to consider in the warmer deoxygenat-
ing oceans of the future in addition to the need for more effective existing catch control measures
to conserve shark populations.
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Materials and methods

Shark tagging
A total of 55 blue sharks (Prionace glauca) were tagged in oceanic locations between 2009 and 2017
with 56 transmitters; one shark (S1) was double tagged (Argos and PSAT tags; Supplementary file
1). Sharks were captured on commercial style baited longlines deployed and, either ( i) tagged at the
surface off an auxiliary fibreglass boat (off the Azores) or ( ii) brought alongside the vessel in the
gear-hauling phase, lifted and tagged (at North Atlantic oceanic locations). Pop-off satellite-linked
archival transmitter tags (PSATs) (Models PAT Mk10 and MiniPAT, Wildlife Computers, Redmond,
WA, USA) were rigged with a monofilament tether covered with silicone tubing and looped through
a small hole made in the base of the first dorsal fin. Depth, external temperature, and light-level
parameters were sampled at varying intervals (from 1 to 10 s) and stored as summary data over set
intervals of 6 hr, providing time-at-depth (TAD) and time-at-temperature histograms, as well as pro-
files of water temperature at depth. Argos-linked satellite tags (both Smart position-only tags ±
SPOT5, Wildlife Computers and KiwiSat K2F, Sirtrack Ltd., New Zealand) were attached to the first
dorsal fin with nylon threaded rods or stainless-steel bolts, neoprene and steel washers, and steel
screw-lock nuts. Tagging procedures were approved by the Marine Biological Association of the UK
(MBA) Animal Welfare Ethical Review Body (AWERB) and licensed by the UK Home Office through
Personal and Project Licences under the Animals (Scientific Procedures) Act 1986. Tagging proce-
dures undertaken off the Azores were performed according to national Portuguese laws for the use
of vertebrates in research, and the work and tagging protocol approved by the Azorean Directorate
of Sea Affairs of the Azores Autonomous region (SRAM 20.23.02/Of.5322/2009), which oversees and
issues permits for scientific activities.

Track processing
The movement of PSAT-tagged sharks was estimated using either satellite relayed data from each
tag or from archival data after the tags were physically recovered. Positions of each shark between
attachment and tag pop-up were reconstructed using software provided by the manufacturer (WC-
GPE, global position estimator program suite; Wildlife Computers, U.S.A.), where daily maximal
rate-of-change in light intensity was used to estimate local time of midnight or midday for longitude
calculations, and day-length estimation for determining latitude. Anomalous longitude estimates
resulting from dive-induced shifts in the estimated timings of dawn and dusk from light curves were
discarded from the data set using software provided by the manufacturer (WC-GPE). Latitude esti-
mates were subsequently calculated for the previously obtained longitudes. An integrated state-
space model (unscented Kalman filter ± UKFSST [Lam et al., 2008 ] using spatially complete NOAA
Optimum Interpolation Quarter Degree Daily SST Analysis data) was then applied to correct the raw
geolocation estimates and obtain the most probable track. A regular time-series of locations was
then estimated using a continuous-time correlated random walk Kalman filter, CTCRW
(Johnson et al., 2008 ) performed in R (crawl package). Location class (LC) Z data (failed attempt at
obtaining a position) were removed from the Argos-linked tag data set. The remaining raw position
estimates (LC 3, 2, 1, 0, A, and B) were analysed point-to-point with a 3 m s � 1 speed filter to remove
outlier locations. Subsequently, the CTCRW state-space model was applied to each individual track,
producing a single position estimate per day. Argos positions were parameterised with the K error
model parameters for longitude and latitude implemented in the crawl package (Johnson et al.,
2008 ).

To obtain unbiased estimates of shark space use, gaps between consecutive dates in the raw
tracking data were interpolated to one position per day. However, any tracks with gaps exceeding
20 days were split into segments prior to interpolation, thus avoiding the inclusion of unrepresenta-
tive location estimates ( Queiroz et al., 2016 ; Queiroz et al., 2019 ).

Oxygen concentration units
Fish tolerance to hypoxia is often measured in relation to the partial pressure of oxygen (pO 2) in the
blood ( Farrell and Richards, 2009 ; Mandic et al., 2009 ). Some authors highlight the importance of
using pO2 as a reference value for species tolerance to hypoxia rather than using an oxygen concen-
tration in the water ( Mislan et al., 2016 ). For conformity and ease of comparison with other
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investigations of large pelagic predators and environmental oxygen completed to date (e.g.
Stramma et al., 2012 ), and given that OMZs are oceanographic features defined by the concentra-
tion of oxygen dissolved in the water, we used ml O 2 l� 1 as the units of oxygen concentration in the
water. Conversions follow those given in Levin, 2018 . Nevertheless, we also analysed the diving
movements of blue sharks in relation to partial pressures of oxygen calculated from modelled sur-
face and at-depth DO, temperature, and salinity data and report these in the Results and discussion
and in Figure 4 and Figure 2Ðfigure supplement 1 . The partial pressure of oxygen in the water
was calculated using R library r̀MR', using temperature, salinity, and DO from CMEMS global ocean
biogeochemistry non-assimilative hindcast (PICES; 1998±2016) and global ocean physics reanalysis
(GLORYS12V1; 1993±2016) products, interpolated to matching depth levels for both products at
0.25Ê spatial resolution. Spatial geolocation error of shark tracking was taken into consideration by
averaging pO 2 for 1.25Ê in latitude and 0.75Ê in longitude around each shark position.

Environmental integration of movement data
Monthly modelled oxygen data (0.25Ê spatial resolution) were taken from the Copernicus Marine
Environment Monitoring Service (CMEMS, http://marine.copernicus.eu/ ) global ocean biogeochem-
istry non-assimilative hindcast (PICES; 1998±2016) product for the Atlantic Ocean, ranging from 60ÊN
to 70ÊS, 90ÊW to 30ÊE. DO concentration was extracted from the surface to 2000 m depth, and to
account for the spatial error around real individual geolocations, oxygen data was averaged for
1.25Ê in latitude and 0.75Ê in longitude (5� 3 pixel grid) around each shark position.

For the purpose of spatial analysis of blue shark horizontal movements, we defined the OMZ area
in the ETA as the waters above the OMZ having DO concentrations below 3.5 ml O 2 l� 1 at depths
shallower than 100 m (general depth of the thermocline in the ETA). This definition of the ETA OMZ
area was adopted here because it was used in previous studies as the DO level known to induce
stress in large tropical pelagic fishes (Prince et al., 2010 ; Stramma et al., 2012 ) and so was consid-
ered a reasonable proxy for the lower habitat boundary (hypoxia threshold) for blue sharks, an
assumption confirmed by our GAMM analysis. As such, tracked sharks were considered to be inside
the OMZ area when DO levels above 100 m decreased below 3.5 ml O 2 l� 1. TAD data were grouped
into eight depth classes (0±50, 50±100, 100±150, 150±200, 200±250, 250±400, 400±600, >600 m; in
2017 the depth classes were: 0±50, 50±100, 100±150, 150±200, 200±250, 250±300, 300±500, 500±
700, >700 m) that were calculated daily and aggregated into equal periods of time for sharks that
were inside/outside the OMZ area. Dive data for each shark on the day prior to entering the OMZ
area (`outside') were compared with data on the day following entry into the OMZ area (`inside').

Correlated random walk simulations
To test the hypothesis that waters above the core OMZ may represent preferable foraging habitat
for blue sharks, we used correlated random walks to compare the proportion of time (in days) spent
in the OMZ region (when sharks were in an area with <3.5 ml O 2 l� 1 above 100 m) between tracked
and model sharks (Figure 1Ðfigure supplement 1 ). Randomised tracks had the same characteristics
as the original tracks in terms of duration, length, and overall structure (or direction). Thus, each real
shark track was randomised to be able to compare the original movement pattern to a random pat-
tern having the same statistical distributions and overall structure (step lengths; path bearings). The
track to be randomised was first analysed to determine the step lengths (distances between turns)
and the bearing of each step. Each random track was started at the original start point (i.e. latitude
and longitude) and subsequent, randomised locations were computed by drawing a step length and
bearing randomly and independently from the real shark data. Using bearings, rather than turn
angles, constrained the randomised track to an overall structure that more closely matched the origi-
nal. Each randomised track had the same number of locations as the original track. For each tracked
shark that encountered the OMZ, a total of 100 correlated random walks were simulated and a pro-
portion test was performed ( Jaine et al., 2014 ) to examine whether sharks remained above hypoxic
regions longer than expected by chance ( Table 1).

Modelling shark behaviour and environment
A GAMM ( mgcv package in R; Wood, 2006 ) was used to relate the MDD depth of tracked blue
sharks to environmental variables. For each shark track day, maximum depths were retrieved from
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PSAT depth/temperature data and the following variables were extracted from CMEMS global
ocean biogeochemistry non-assimilative hindcast (PICES; 1998±2016) and global ocean physics
reanalysis (GLORYS12V1; 1993±2016) products for both the surface and at depth (100 m) variables
of salinity (PSU), DO concentration (ml O2 l� 1), water temperature (ÊC), chlorophyll a concentration
(mmol l � 1), phytoplankton concentration ( mmol l � 1), and net primary productivity (g l � 1 d � 1). Given
the importance of pO 2 in hypoxia tolerance studies, initial models included pO 2 as an independent
variable. However, the partial pressure of oxygen was calculated from modelled water temperature,
salinity, and DO, which resulted in high collinearity between the variables and, ultimately, in models
with low fit. As a result, this variable was removed from the model selection process.

Data exploration techniques were used to identify potential outliers and assess collinearity among
independent variables. The top 10% of MDD depth data (i.e. dives deeper than 736 m) were consid-
ered outliers and discarded from further analysis. In addition, most of the extreme deep dives
(89.8%) were performed outside the OMZ and were not therefore considered further in the MDD
depth analysis. GAMMs were fitted assuming a normal distribution with identity link functions, as
these outperformed models assuming a gamma distribution with identity and inverse link functions.
Individual sharks were considered an independent sampling unit and were thus included as random
effects. GAMMs were constructed by backward selection of individual smooth terms and previously
chosen two-dimensional tensor product smooths to allow for testing of biologically meaningful inter-
actions. The selected tensor product smooth terms were: ( i) surface temperature � DO at depth; ( ii)
net primary productivity at depth � DO at depth; and ( iii) surface temperature � primary productiv-
ity at depth. Model selection was based on Akaike Information Criterion (AIC), and at each stage of
the selection process, selected smooth terms were replaced with linear parametric terms to reduce
the chances of over-fitting, and nested models were additionally compared using significance testing
(Wood, 2006 ). Smooth splines were selected with significance testing through comparison with the
corresponding additive structures. Heteroscedasticity in the model residuals was accommodated by
including a varIdent weighted variance structure ( Zuur et al., 2009 ). Normal quantile±quantile plots
of deviance residuals were assessed for normality of model residuals and fit. Homoscedasticity,
model misspecification, and residual spatial auto-correlation were evaluated by inspecting plots of
response residuals against fitted values, candidate explanatory variables, and spatial coordinates
respectively. Spatial and temporal residual auto-correlation was further assessed by including
respective covariate structures and comparing the nested models using significance testing
(Zuur et al., 2009 ).

Modelled shark MDD depth in relation to present day SST, DO, and net primary productivity at
depth in the OMZ region (FAO area 34) was used to predict shark MDD depths spatially. CMEMS
environmental data between 2009 and 2016 was averaged to 1Ê spatial resolution. The fitted GAMM
was then applied to 2009±2016 environmental conditions to predict the present shark MDD depth in
547 grid cells covering the OMZ in FAO area 34. The MLD above the thermocline is well oxygenated
(close to 100% saturation for most oceanic regions) and the OMZ expansion is driven by the shoaling
of the tropical and subtropical thermocline depth ( Schmidtko et al., 2017 ). Therefore, the predicted
MDD depth of blue sharks was limited to the maximum depth of the mixed layer. The predicted
blue shark MDD depths from modelled relationships with DO, SST, and NPP were mapped to indi-
cate potential areas where shark habitat compression may be occurring in the OMZ region.

Vessel monitoring system data
Vessel monitoring system (VMS) data from 322 Spanish and Portuguese longliners (>15 m length)
operating in the Atlantic Ocean from January 2003 to December 2011 were obtained from the
respective official national fisheries monitoring centres. Each record contained the Global Position-
ing System (GPS) position of the vessel (accurate to <500 m), time stamp, and a vessel identification
number. All records were anonymous with respect to the vessel registration number, dimensions,
and administrative ports. To determine actual fishing locations where individual longlines were
deployed, we used an algorithm ( Queiroz et al., 2016 ) that detected sharp turning angles (>130Ê)
that were considered to be the point between longline deployment and retrieval (see Figure 8Ðfig-
ure supplement 1 in Queiroz et al., 2016 ). Briefly, the algorithm proceeds by determining when a
possible turn point is found, then the inbound leg is retraced until the distance travelled exceeds the
longline length (between 80 and 100 km); the prior point is then taken as the start of deployment
and the outbound leg is traced until the end-of-deployment point is determined in a similar fashion
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(Queiroz et al., 2016 ). The algorithm undertakes a further check to determine if the endpoints are
within a short distance of each other to confirm that a proper `V' shape is defined ( Queiroz et al.,
2016 ). Algorithm-determined fishing locations were validated visually for individual vessel tracks
selected at random and found to identify longline deployments accurately in all cases. Therefore, in
this study, all movements between fishing locations were ignored (including trips to and from fishing
ports), retaining only data pertaining to fishing activity (locations with gear deployed). To estimate
fishing effort (number of days fishing with gear deployed), fishing data were first normalised by cal-
culating daily centroids per individual vessel and then fishing days summed for each 1Ê � 1Ê grid cell.
Fishing data were further analysed to identify areas of restricted search, or spatial clusters of longline
deployment locations (termed fishing intensity) ( Queiroz et al., 2016 ). Briefly, when searching for
fish species, longliners move away from and back to the start position in three distinct phases: line
deployment, soak time, and line retrieval. However, when sufficient numbers of target fish are found,
the vessel remains stationary during soak time, thus allowing the longliners to target the same areas
repeatedly, which results in (i) higher spatial concentration of active fishing locations (data points),
(ii) a higher number of turn points per grid cell, and ( iii) increased number of hours between turn
points, which were identified by the filtering algorithm as area-restricted spatial (ARS) clusters. Fish-
ing intensity was thus calculated as the number of fishing locations that were identified as ARS fish-
ing activity divided by the total number of active fishing locations at a spatial resolution of 1Ê.
Therefore, a fishing intensity value of 1 means that all active fishing locations were classified as ARS
fishing locations and not as broad-scale searching locations (where fishing locations become linear
across sets and not spatially clustered). Since both fishing effort and intensity were not normally dis-
tributed (Shapiro±Wilk test, p<0.05), metrics were compared between major Atlantic Food and Agri-
culture Organisation of the United Nations (FAO) fishing areas using a Kruskal±Wallis one-way
analysis of variance on ranks. Further analysis focused on major fishing areas that encompass perma-
nent OMZs, namely FAO34 (eastern North Atlantic) and FAO47 (eastern South Atlantic). For both
areas, monthly oxygen concentration data (at 100 m) was averaged for the time period considered
in the study (2003±2011) and fishing metrics inside and outside the OMZs were compared using
Mann±Whitney rank sum tests (a <0.05) since data was not normally distributed (Shapiro±Wilk test,
p<0.05).

Analysis of blue shark catch data
Data on the magnitude and distribution of blue shark catches made in the Atlantic Ocean were
obtained from the logbooks of Spanish pelagic longline vessels ( n = 133) that recorded the spatially
referenced biomass (kg) of blue sharks caught on each longline deployed (termed a longline set)
(years: 2013±2018). Longlines were deployed at a depth of ~100 m in the OMZ area. Within each 1Ê�
1Ê grid cell we calculated the blue shark mean CPUE as the sum of the total biomass of blue shark
caught within a grid cell divided by the sum of sets (days) of fishing effort in that grid cell. For these
fleets, one longline set ( ~100 km long with ~1200 baited hooks) is deployed once per day, hence one
set deployed is equivalent to 1 day of fishing effort. We related mean CPUE to the modelled DO con-
centration at 100 m (a proxy to indicate the degree of shoaling of the OMZ) within each grid cell along
six data transects (at latitudes 20.5, 15.5, 12.5, 11.5, 10.5, and 9.5ÊN) spanning 15.5±46.5ÊW of the
west African OMZ area and adjacent areas further west. These latitudes and longitudes were selected
to encompass the range of CPUE values observed in the western African OMZ. To examine how the
magnitude of blue shark CPUE changed with the shoaling OMZ (decreasing DO concentrations at 100
m) we calculated cumulative mean CPUE across each transect from west to east. To estimate the DO
concentration at 100 m coincident with peak blue shark CPUE we fitted quadratic models to the distri-
bution of log 10(CPUE) (y axis) against DO at 100 m (ml O2 l� 1) (x axis) for data along the 20.5ÊN tran-
sect, and for all transect data combined (Minitab 18, Minitab Inc).

Acknowledgements
Funding was provided by the UK Natural Environment Research Council (NERC) (NE/R00997/X/1),
European Research Council (ERC-AdG-2019 883583 OCEAN DEOXYFISH), NERC Oceans 2025 Stra-
tegic Programme (all to DWS), the Save Our Seas Foundation (DWS, NQ), FundacËaÄo para a CieÃ ncia
e a Tecnologia (FCT) under PTDC/BIA/28855/2017 and COMPETE POCI-01±0145-FEDER-028855
(NQ, DWS), and MARINFO±NORTE-01±0145-FEDER-000031 (funded by Norte Portugal Regional

Vedor et al. eLife 2021;10:e62508. DOI: https://doi.org/10.7554/eLife.62508 23 of 29

Research article Ecology



Operational Program [NORTE2020], under the PORTUGAL 2020 Partnership Agreement, through
the European Regional Development Fund±ERDF), and Xunta de Galicia Spain under the Isabel Bar-
reto Program 2009±2012 (GM). FCT supported NQ (CEECIND/02857/2018), MV (PTDC/BIA-COM/
28855/2017), GM (PTDC/MAR-BIO/4458/2012), FV (CEECIND/03469/2017), and JF (through the
strategic project UID/MAR/04292/2013 to MARE). DireccËaÄo Regional de CieÃ ncia e Tecnologia
(DRCT) also supported JF (M3.1a/F/062/2016). DWS was supported by a Marine Biological Associa-
tion Senior Research Fellowship. This research is part of the Global Shark Movement Project
(globalsharkmovement.org ).

Additional information

Funding
Funder Grant reference number Author

Natural Environment Research
Council

NE/R00997/X/1 David W Sims

Fundacao para a Ciencia e a
Tecnologia

CEECIND/02857/2018 Nuno Queiroz

European Research Council 883583 David W Sims

Save Our Seas Foundation 308 Nuno Queiroz
David W Sims

FundacËaÄo para a CieÃncia e a
Tecnologia

PTDC/BIA/28855/2017 Nuno Queiroz
David W Sims

FundacËaÄo para a CieÃncia e a
Tecnologia

COMPETE POCI-01±0145-
FEDER028855

Nuno Queiroz
David W Sims

Norte Portugal Regional Op-
erational Program

MARINFO±NORTE-01±
0145-FEDER-000031

Gonzalo Mucientes

Xunta de Galicia sabel Barreto Program
2009±2012

Gonzalo Mucientes

FCT PTDC/BIA-COM/28855/
2017

Marisa Vedor

FCT PTDC/MAR-BIO/4458/2012 Gonzalo Mucientes

FCT CEECIND/03469/2017 Frederic Vandeperre

FCT UID/MAR/04292/2013 Jorge Fontes

DRCT M3.1a/F/062/2016 Jorge Fontes

Marine Biological Association Senior Research Fellowship David W Sims

The funders had no role in study design, data collection and interpretation, or the
decision to submit the work for publication.

Author contributions
Marisa Vedor, Formal analysis, Validation, Investigation, Methodology, Writing - original draft, Writ-
ing - review and editing; Nuno Queiroz, Conceptualization, Data curation, Software, Formal analysis,
Supervision, Funding acquisition, Validation, Investigation, Visualization, Methodology, Writing -
original draft, Project administration, Writing - review and editing; Gonzalo Mucientes, Ana Couto,
Investigation, Methodology, Writing - review and editing; Ivo da Costa, Software, Formal analysis,
Validation, Methodology, Writing - review and editing; AntoÂ nio dos Santos, Software, Supervision,
Writing - review and editing; Frederic Vandeperre, Resources, Software, Formal analysis, Validation,
Investigation, Writing - review and editing; Jorge Fontes, Resources, Formal analysis, Validation,
Investigation, Methodology, Writing - review and editing; Pedro Afonso, Resources, Data curation,
Supervision, Funding acquisition, Investigation, Methodology, Writing - review and editing; Rui Rosa,
Resources, Supervision, Funding acquisition, Writing - review and editing; Nicolas E Humphries, Soft-
ware, Formal analysis, Validation, Investigation, Methodology, Writing - review and editing; David W
Sims, Conceptualization, Data curation, Formal analysis, Supervision, Funding acquisition, Validation,

Vedor et al. eLife 2021;10:e62508. DOI: https://doi.org/10.7554/eLife.62508 24 of 29

Research article Ecology



Investigation, Methodology, Writing - original draft, Project administration, Writing - review and
editing

Author ORCIDs
Marisa Vedor https://orcid.org/0000-0001-7336-3732

Nuno Queiroz https://orcid.org/0000-0002-3860-7356

Gonzalo Mucientes http://orcid.org/0000-0001-6650-3020

Rui Rosa http://orcid.org/0000-0003-2801-5178

Nicolas E Humphries http://orcid.org/0000-0003-3741-1594

David W Sims https://orcid.org/0000-0002-0916-7363

Ethics
Animal experimentation: Tagging procedures were approved by the Marine Biological Association
of the UK (MBA) Animal Welfare Ethical Review Body (AWERB) and licensed by the UK Home Office
through Personal and Project Licences under the Animals (Scientific Procedures) Act 1986. Tagging
procedures undertaken off the Azores were performed according to national Portuguese laws for
the use of vertebrates in research, and the work and tagging protocol approved by the Azorean
Directorate of Sea Affairs of the Azores Autonomous region (SRAM 20.23.02/Of.5322/2009), which
oversees and issues permits for scientific activities.

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.62508.sa1

Author response https://doi.org/10.7554/eLife.62508.sa2

Additional files
Supplementary files
. Supplementary file 1. Summary data for satellite-tagged blue sharks. F, female; M, male. Shaded
rows indicate colour-coded shark numbers in Figures 1 and 2; DNR, did not report.

. Supplementary file 2. Testing habitat selection of blue sharks above the eastern tropical Atlantic
(ETA) oxygen minimum zone (OMZ). Real blue shark movements were compared to correlated ran-
dom walk models for those sharks tagged in the Azores that encountered the ETA OMZ off western
Africa. Proportion test described in Jaine et al., 2014 ; ns, non-significance.

. Supplementary file 3. Fishing activity information for the different major fishing areas in the Atlan-
tic. Shaded rows denote FAO area encompassing a permanent oxygen minimum zone.

. Transparent reporting form

Data availability
All data needed to assess the conclusions are available in the main paper and Supporting Data. The
data files are available to download from GitHub: https://github.com/GlobalSharkMovement/Blue-
SharkOMZ/ (copy archived at https://archive.softwareheritage.org/swh:1:rev:
b302fc919ad48114322570cae3e7dd63eaba5764/ ) The data files made available with the paper on
GitHub are: (1) Raw summary shark dive data both inside and outside the OMZ area (shark_dive_
data.csv); (2) Figure 1. Raster of DO at 100m used in shark movement/dive analysis at 0.25� 0.25Ê
(do_av2009-2016_100m.csv); (3) Figure 6D. Raster of the shark MDD depth for present-day at 1 � 1Ê
for the area analysed (shark_MDD_prst_fao.csv); (4) Figure 7. Raster of vessel monitoring system
(VMS) fishing effort data at 1 � 1Ê(VMS_f-effort.csv); (5) Raster of vessel monitoring system (VMS) fish-
ing intensity data at 1 � 1Ê(VMS_f-intens.csv); (6) Figure 8A. Raster of Spanish longline logbook
catch-per-unit-effort data at 1 � 1Êfor the area analysed (cpue_spanishLL.csv). The blue shark is listed
as Near Threatened in the IUCN Red List, therefore the raw, detailed location data are considered
sensitive information and, consequently, the raw tracks are not freely available so as not to encour-
age further fisheries interactions. Raw VMS data are owned by the Spanish and Portuguese govern-
ments and written request to them for access is usually required.

Vedor et al. eLife 2021;10:e62508. DOI: https://doi.org/10.7554/eLife.62508 25 of 29

Research article Ecology



The following dataset was generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Sims DW, Afonso P,
Queiroz N

2020 Effects of ocean hypoxia and
fishing on blue sharks

https://github.com/Glo-
balSharkMovement/Blue-
SharkOMZ/

GitHub, BlueShark

References
Abascal FJ, Quintans M, Ramos-Cartelle A, Mejuto J. 2011. Movements and environmental preferences of the

shortfin mako, Isurus oxyrinchus, in the southeastern pacific ocean. Marine Biology 158:1175±1184.
DOI: https://doi.org/10.1007/s00227-011-1639-1

Bailleul F , Vacquie-Garcia J, Guinet C. 2015. Dissolved oxygen sensor in Animal-Borne instruments: an innovation
for monitoring the health of oceans and investigating the functioning of marine ecosystems. PLOS ONE10:
e0132681. DOI: https://doi.org/10.1371/journal.pone.0132681 , PMID: 26200780

Baum JK, Myers RA, Kehler DG, Worm B, Harley SJ, Doherty PA. 2003. Collapse and conservation of shark
populations in the northwest Atlantic. Science299:389±392. DOI: https://doi.org/10.1126/science.1079777 ,
PMID: 12532016

Biton-Porsmogeur S . 2017. Compared diet of two pelagic shark species in the North-eastern Atlantic ocean. Vie
Et Milieu 67:21±25.

Breitburg D , Levin LA, Oschlies A, GreÂ goire M, Chavez FP, Conley DJ, GarcËon V, Gilbert D, GutieÂ rrez D, Isensee
K, Jacinto GS, Limburg KE, Montes I, Naqvi SWA, Pitcher GC, Rabalais NN, Roman MR, Rose KA, Seibel BA,
Telszewski M, et al. 2018. Declining oxygen in the global ocean and coastal waters. Science359:eaam7240.
DOI: https://doi.org/10.1126/science.aam7240 , PMID: 29301986

Campana SE. 2016. Transboundary movements, unmonitored fishing mortality, and ineffective international
fisheries management pose risks for pelagic sharks in the northwest atlantic. Canadian Journal of Fisheries and
Aquatic Sciences 73:1599±1607. DOI: https://doi.org/10.1139/cjfas-2015-0502

CayreÂP, Marsac F. 1993. Modelling the yellowfin tuna ( Thunnus albacares)vertical distribution using sonic
tagging results and local environmental parameters . Aquatic Living Resources 6:1±14. DOI: https://doi.org/10.
1051/alr:1993001

Childress JJ , Seibel BA. 1998. Life at stable low oxygen levels: adaptations of animals to oceanic oxygen
minimum layers. Journal of Experimental Biology 201:1223±1232.

Coffey DM , Carlisle AB, Hazen EL, Block BA. 2017. Oceanographic drivers of the vertical distribution of a highly
migratory, endothermic shark. Scientific Reports 7:10434. DOI: https://doi.org/10.1038/s41598-017-11059-6 ,
PMID: 28874881

Coffey DM , Royer MA, Meyer CG, Holland KN. 2020. Diel patterns in swimming behavior of a vertically
migrating deepwater shark, the bluntnose sixgill ( Hexanchus griseus). PLOS ONE15:e0228253. DOI: https://
doi.org/10.1371/journal.pone.0228253 , PMID: 31978204

Coffey DM , Holland KN. 2015. First autonomous recording of in situ dissolved oxygen from free-ranging fish.
Animal Biotelemetry 3:e47. DOI: https://doi.org/10.1186/s40317-015-0088-x

Craig JK . 2012. Aggregation on the edge: effects of hypoxia avoidance on the spatial distribution of Brown
shrimp and demersal fishes in the northern gulf of Mexico. Marine Ecology Progress Series445:75±95.
DOI: https://doi.org/10.3354/meps09437

Crear DP, Brill RW, Bushnell PG, Latour RJ, Schwieterman GD, Steffen RM, Weng KC. 2019. The impacts of
warming and hypoxia on the performance of an obligate ram ventilator. Conservation Physiology 7:coz026.
DOI: https://doi.org/10.1093/conphys/coz026 , PMID: 31384467

Deutsch C, Ferrel A, Seibel B, PoÈrtner HO, Huey RB. 2015. Ecophysiology climate change tightens a metabolic
constraint on marine habitats. Science348:1132±1135. DOI: https://doi.org/10.1126/science.aaa1605 ,
PMID: 26045435

Ekau W, Auel H, PoÈrtner H-O, Gilbert D. 2010. Impacts of hypoxia on the structure and processes in pelagic
communities (zooplankton, macro-invertebrates and fish). Biogeosciences 7:1669±1699. DOI: https://doi.org/
10.5194/bg-7-1669-2010

Farrell A , Richards J. 2009. Defining hypoxia: an integrative synthesis of the responses of fish to hypoxia. Fish
Physiology 27:487±503. DOI: https://doi.org/10.1016/S1546-5098(08)00011-3

Ferretti F , Worm B, Britten GL, Heithaus MR, Lotze HK. 2010. Patterns and ecosystem consequences of shark
declines in the ocean. Ecology Letters 92:1055±1071. DOI: https://doi.org/10.1111/j.1461-0248.2010.01489.x

Fields AT , Fischer GA, Shea SKH, Zhang H, Abercrombie DL, Feldheim KA, Babcock EA, Chapman DD. 2018.
Species composition of the international shark fin trade assessed through a retail-market survey in Hong Kong.
Conservation Biology 32:376±389. DOI: https://doi.org/10.1111/cobi.13043 , PMID: 29077226

Garcia HE. 2005. On the variability of dissolved oxygen and apparent oxygen utilization content for the upper
world ocean: 1955 to 1998. Geophysical Research Letters32:LO9604. DOI: https://doi.org/10.1029/
2004GL022286

Gilly WF , Beman JM, Litvin SY, Robison BH. 2013. Oceanographic and biological effects of shoaling of the
oxygen minimum zone. Annual Review of Marine Science 5:393±420. DOI: https://doi.org/10.1146/annurev-
marine-120710-100849, PMID: 22809177

Vedor et al. eLife 2021;10:e62508. DOI: https://doi.org/10.7554/eLife.62508 26 of 29

Research article Ecology



Gooding RG , Neil WH, Dizon AE. 1981. Respiration rates and low-oxygen tolerance limits of skipjack tuna,
Katsowonus pelamis. Fishery Bulletin U.S79:31±47.

Grantham BA , Chan F, Nielsen KJ, Fox DS, Barth JA, Huyer A, Lubchenco J, Menge BA. 2004. Upwelling-driven
nearshore hypoxia signals ecosystem and oceanographic changes in the northeast pacific. Nature 429:749±754.
DOI: https://doi.org/10.1038/nature02605 , PMID: 15201908

Hammerschlag N , Schmitz OJ, Flecker AS, Lafferty KD, Sih A, Atwood TB, Gallagher AJ, Irschick DJ, Skubel R,
Cooke SJ. 2019. Ecosystem function and services of aquatic predators in the anthropocene. Trends in Ecology
& Evolution 34:369±383. DOI: https://doi.org/10.1016/j.tree.2019.01.005

Howell P , Simpson D. 1994. Abundance of marine resources in relation to dissolved oxygen in long island sound.
Estuaries17:394±402. DOI: https://doi.org/10.2307/1352672

Howey LA , Wetherbee BM, Tolentino ER, Shivji MS. 2017. Biogeophysical and physiological processes drive
movement patterns in a marine predator. Movement Ecology 5:16. DOI: https://doi.org/10.1186/s40462-017-
0107-z, PMID: 28725435

International Commission for the Conservation of Atlantic Tunas . 2017a. Report of the Standing Committee
on Research and Statistics (SCRS), Doc. No. PLE 104/2017 (Madrid, Spain, 2017): ICCAT. https://www.iccat.int/
Documents/Meetings/Docs/2017_SCRS_REP_ENG.pdf.

International Commission for the Conservation of Atlantic Tunas . 2017b. Report of the 2017 ICCAT Shortfin
Mako Data Preparatory Meeting (Madrid, Spain, 2017) : ICCAT. https://www.iccat.int/Documents/Meetings/
Docs/2017_SMA_DATA_PREP_ENG.pdf.

International Commission for the Conservation of Atlantic Tunas . 2019. Report of the Standing Committee on
Research and Statistics (SCRS) (Madrid, Spain, 2019): ICCAT. https://www.iccat.int/Documents/Meetings/Docs/
2019/REPORTS/2019_SCRS_ENG.pdf.

Jaine FRA, Rohner CA, Weeks SJ, Couturier LIE, Bennett MB, Townsend KA, Richardson AJ. 2014. Movements
and habitat use of reef Manta rays off eastern Australia: offshore excursions, deep diving and eddy affinity
revealed by satellite telemetry. Marine Ecology Progress Series510:73±86. DOI: https://doi.org/10.3354/
meps10910

Johnson DS, London JM, Lea MA, Durban JW. 2008. Continuous-time correlated random walk model for animal
telemetry data. Ecology 89:1208±1215. DOI: https://doi.org/10.1890/07-1032.1 , PMID: 18543615

Jorgensen SJ, Klimley AP, Muhlia-Melo AF. 2009. Scalloped hammerhead shark Sphyrna lewini, utilizes deep-
water, hypoxic zone in the gulf of California. Journal of Fish Biology 74:1682±1687. DOI: https://doi.org/10.
1111/j.1095-8649.2009.02230.x, PMID: 20735666

Karstensen J , Fiedler B, SchuÈtte F, Brandt P, KoÈrtzinger A, Fischer G, Zantopp R, Hahn J, Visbeck M, Wallace D.
2015. Open ocean dead zones in the tropical north Atlantic ocean. Biogeosciences 12:2597±2605. DOI: https://
doi.org/10.5194/bg-12-2597-2015

Keeling RE, KoÈrtzinger A, Gruber N. 2010. Ocean deoxygenation in a warming world. Annual Review of Marine
Science2:199±229. DOI: https://doi.org/10.1146/annurev.marine.010908.163855 , PMID: 21141663

Laffoley D , Baxter JM. 2019. Ocean Deoxygenation ± Everyone's Problem: Causes, Impacts, Consequences and
Solutions. IUCN. DOI: https://doi.org/10.2305/IUCN.CH.2019.13.en

Lam CH, Nielsen A, Sibert JR. 2008. Improving light and temperature based geolocation by unscented Kalman
filtering. Fisheries Research91:15±25. DOI: https://doi.org/10.1016/j.fishres.2007.11.002

Leung S, Mislan KAS, Muhling B, Brill R. 2019. The significance of ocean deoxygenation for open ocean tunas
and billfishes . In: Baxter J. M, Laffoley D (Eds). Ocean Deoxygenation ± Everyone's Problem: Causes, Impacts,
Consequences and Solutions. IUCN . p. 277±308.

Levin LA . 2018. Manifestation, drivers, and emergence of open ocean deoxygenation. Annual Review of Marine
Science10:229±260. DOI: https://doi.org/10.1146/annurev-marine-121916-063359 , PMID: 28961073

Levin LA , Le Bris N. 2015. The deep ocean under climate change. Science350:766±768. DOI: https://doi.org/10.
1126/science.aad0126, PMID: 26564845

Lowe TE, Brill RW, Cousins KL. 2000. Blood oxygen-binding characteristics of bigeye tuna ( Thunnus obesus), a
high-energy-demand teleost that is tolerant of low ambient oxygen. Marine Biology 136:1087±1098.
DOI: https://doi.org/10.1007/s002270000255

Mandic M , Todgham AE, Richards JG. 2009. Mechanisms and evolution of hypoxia tolerance in fish. Proceedings
of the Royal Society B: Biological Sciences276:735±744. DOI: https://doi.org/10.1098/rspb.2008.1235

McCormick LR , Levin LA. 2017. Physiological and ecological implications of ocean deoxygenation for vision in
marine organisms. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences375:20160322. DOI: https://doi.org/10.1098/rsta.2016.0322

Mislan KAS , Dunne JP, Sarmiento JL. 2016. The fundamental niche of blood oxygen binding in the pelagic
ocean. Oikos 125:938±949. DOI: https://doi.org/10.1111/oik.02650

Nasby-Lucas N, Dewar H, Lam CH, Goldman KJ, Domeier ML. 2009. White shark offshore habitat: a behavioral
and environmental characterization of the eastern pacific shared offshore foraging area. PLOS ONE 4:e8163.
DOI: https://doi.org/10.1371/journal.pone.0008163 , PMID: 20011032

Oliver S , Braccini M, Newman SJ, Harvey ES. 2015. Global patterns in the bycatch of sharks and rays.Marine
Policy 54:86±97. DOI: https://doi.org/10.1016/j.marpol.2014.12.017

Payne NL, Snelling EP, Fitzpatrick R, Seymour J, Courtney R, Barnett A, Watanabe YY, Sims DW, Squire L,
Semmens JM. 2015. A new method for resolving uncertainty of energy requirements in large water breathers:
the `mega-flume' seagoing swim -tunnel respirometer. Methods in Ecology and Evolution 6:668±677.
DOI: https://doi.org/10.1111/2041-210X.12358

Vedor et al. eLife 2021;10:e62508. DOI: https://doi.org/10.7554/eLife.62508 27 of 29

Research article Ecology



Penn JL, Deutsch C, Payne JL, Sperling EA. 2018. Temperature-dependent hypoxia explains biogeography and
severity of end-Permian marine mass extinction. Science362:eaat1327. DOI: https://doi.org/10.1126/science.
aat1327, PMID: 30523082

Potier M , Bach P, MeÂ nard F, Marsac F. 2014. Influence of mesoscale features on micronekton and large pelagic
fish communities in the Mozambique channel. Deep Sea Research Part II: Topical Studies in Oceanography
100:184±199. DOI: https://doi.org/10.1016/j.dsr2.2013.10.026

Prince ED, Luo J, Phillip goodyear C, Hoolihan JP, Snodgrass D, Orbesen ES, Serafy JE, Ortiz M, Schirripa MJ.
2010. Ocean scale hypoxia-based habitat compression of Atlantic istiophorid billfishes. Fisheries Oceanography
19:448±462. DOI: https://doi.org/10.1111/j.1365-2419.2010.00556.x

Prince ED, Goodyear CP. 2006. Hypoxia-based habitat compression of tropical pelagic fishes. Fisheries
Oceanography 15:451±464. DOI: https://doi.org/10.1111/j.1365-2419.2005.00393.x

Queiroz N , Humphries NE, Noble LR, Santos AM, Sims DW. 2012. Spatial dynamics and expanded vertical niche
of blue sharks in oceanographic fronts reveal habitat targets for conservation. PLOS ONE7:e32374.
DOI: https://doi.org/10.1371/journal.pone.0032374

Queiroz N , Humphries NE, Mucientes G, Hammerschlag N, Lima FP, Scales KL, Miller PI, Sousa LL, Seabra R,
Sims DW. 2016. Ocean-wide tracking of pelagic sharks reveals extent of overlap with longline fishing hotspots.
PNAS 113:1582±1587. DOI: https://doi.org/10.1073/pnas.1510090113 , PMID: 26811467

Queiroz N , Vila-Pouca C, Couto A, Southall EJ, Mucientes G, Humphries NE, Sims DW. 2017. Convergent
foraging tactics of marine predators with different feeding strategies across heterogeneous ocean
environments. Frontiers in Marine Science 4:239. DOI: https://doi.org/10.3389/fmars.2017.00239

Queiroz N , Humphries NE, Couto A, Vedor M, da Costa I, Sequeira AMM, Mucientes G, Santos AM, Abascal FJ,
Abercrombie DL, Abrantes K, AcunÄa-Marrero D, Afonso AS, Afonso P, Anders D, Araujo G, Arauz R, Bach P,
Barnett A, Bernal D, et al. 2019. Global spatial risk assessment of sharks under the footprint of fisheries. Nature
572:461±466. DOI: https://doi.org/10.1038/s41586-019-1444-4 , PMID: 31340216

Richard WB. 1994. A review of temperature and oxygen tolerance studies of tunas pertinent to fisheries
oceanography, movement models and stock assessments. Fisheries Oceanography 3:204±216. DOI: https://doi.
org/10.1111/j.1365-2419.1994.tb00098.x

Rogers NJ , Urbina MA, Reardon EE, McKenzie DJ, Wilson RW. 2016. A new analysis of hypoxia tolerance in
fishes using a database of critical oxygen level (Pcrit). Conservation Physiology 4:cow012. DOI: https://doi.org/
10.1093/conphys/cow012 , PMID: 27293760

Schmidtko S , Stramma L, Visbeck M. 2017. Decline in global oceanic oxygen content during the past five
decades. Nature 542:335±339. DOI: https://doi.org/10.1038/nature21399 , PMID: 28202958

Sims DW, Southall EJ, Richardson AJ, Reid PC, Metcalfe JD. 2003. Seasonal movements and behaviour of
basking sharks from archival tagging: no evidence of winter hibernation. Marine Ecology Progress Series248:
187±196. DOI: https://doi.org/10.3354/meps248187

Sims DW, Mucientes G, Queiroz N. 2018. Shortfin mako sharks threatened by inaction. Science359:1342.
DOI: https://doi.org/10.1126/science.aat0315 , PMID: 29567698

Sims DW. 2019. The significance of ocean deoxygenation for elasmobranchs. In: Laffoley D, Baxter J. M (Eds).
Ocean Deoxygenation ± Everyone's Problem: Causes, Impacts, Consequences and Solutions. Gland,
Switzerland: IUCN. p. 451±468.

Song L, Zhou J, Zhou Y, Nishida T, Jiang W, Wang J. 2009. Environmental preferences of bigeye tuna, Thunnus
obesus, in the Indian ocean: an application to a longline fishery. Environmental Biology of Fishes 85:153±171.
DOI: https://doi.org/10.1007/s10641-009-9474-7

Stevens JD, Bradford RW, West GJ. 2010. Satellite tagging of blue sharks ( Prionace glauca) and other pelagic
sharks off eastern Australia: depth behaviour, temperature experience and movements. Marine Biology 157:
575±591. DOI: https://doi.org/10.1007/s00227-009-1343-6

Stewart JS , Field JC, Markaida U, Gilly WF. 2013. Behavioral ecology of jumbo squid ( Dosidicus gigas) in relation
to oxygen minimum zones. Deep Sea Research Part II: Topical Studies in Oceanography95:197±208.
DOI: https://doi.org/10.1016/j.dsr2.2012.06.005

Stramma L , Johnson GC, Sprintall J, Mohrholz V. 2008. Expanding oxygen-minimum zones in the tropical
oceans. Science320:655±658. DOI: https://doi.org/10.1126/science.1153847 , PMID: 18451300

Stramma L , Prince ED, Schmidtko S, Luo J, Hoolihan JP, Visbeck M, Wallace DWR, Brandt P, KoÈrtzinger A. 2012.
Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nature Climate
Change 2:33±37. DOI: https://doi.org/10.1038/nclimate1304

Stramma L , Schmidtko S. 2019. Global evidence of ocean deoxygenation. In: Laffoley D, Baxter J. M (Eds).
Ocean Deoxygenation ± Everyone's Problem: Causes, Impacts, Consequences and Solutions. Gland,
Switzerland: IUCN. p. 25±36.

Tromans D. 1998. Oxygen solubility modeling in inorganic solutions: concentration, temperature and pressure
effects. Hydrometallurgy 50:279±296. DOI: https://doi.org/10.1016/S0304-386X(98)00060-7

Vandeperre F , Aires-da-Silva A, Fontes J, Santos M, SerraÄo Santos R, Afonso P. 2014. Movements of blue sharks
(Prionace glauca) across their life history. PLOS ONE 9:e103538. DOI: https://doi.org/10.1371/journal.pone.
0103538, PMID: 25119716

Vaquer-Sunyer R , Duarte CM. 2008. Thresholds of hypoxia for marine biodiversity. PNAS 105:15452±15457.
DOI: https://doi.org/10.1073/pnas.0803833105 , PMID: 18824689

Vetter R . 2008. Predatory interactions and niche overlap between mako shark, Isurus oxyrinchus, and jumbo
squid, Dosidicus gigas, in the California current. CalCOFI Reports 49:142±156.

Vedor et al. eLife 2021;10:e62508. DOI: https://doi.org/10.7554/eLife.62508 28 of 29

Research article Ecology



Watson AJ . 2016. Climate change: oceans on the edge of Anoxia. Science354:1529±1530. DOI: https://doi.org/
10.1126/science.aaj2321

Wood SN . 2006. Low-rank scale-invariant tensor product smooths for generalized additive mixed models.
Biometrics 62:1025±1036. DOI: https://doi.org/10.1111/j.1541-0420.2006.00574.x , PMID: 17156276

Worm B , Davis B, Kettemer L, Ward-Paige CA, Chapman D, Heithaus MR, Kessel ST, Gruber SH. 2013. Global
catches, exploitation rates, and rebuilding options for sharks. Marine Policy 40:194±204. DOI: https://doi.org/
10.1016/j.marpol.2012.12.034

Zuur AF , Ieno EN, Walker NJ, Saveliev AA, Smith GM. 2009. Mixed Effects Models and Extensions in Ecology
with R. Berlin: Springer. DOI: https://doi.org/10.1007/978-0-387-87458-6

Vedor et al. eLife 2021;10:e62508. DOI: https://doi.org/10.7554/eLife.62508 29 of 29

Research article Ecology


