Structural basis for effector transmembrane domain recognition by type VI secretion system chaperones

  1. Shehryar Ahmad
  2. Kara L Tsang
  3. Kartik Sachar
  4. Dennis Quentin
  5. Tahmid M Tashin
  6. Nathan P Bullen
  7. Stefan Raunser
  8. Andrew G McArthur
  9. Gerd Prehna  Is a corresponding author
  10. John C Whitney  Is a corresponding author
  1. McMaster University, Canada
  2. University of Manitoba, Canada
  3. Max Planck Institute of Molecular Physiology, Germany

Abstract

Type VI secretion systems (T6SSs) deliver antibacterial effector proteins between neighbouring bacteria. Many effectors harbor N-terminal transmembrane domains (TMDs) implicated in effector translocation across target cell membranes. However, the distribution of these TMD-containing effectors remains unknown. Here we discover prePAAR, a conserved motif found in over 6,000 putative TMD-containing effectors encoded predominantly by 15 genera of Proteobacteria. Based on differing numbers of TMDs, effectors group into two distinct classes that both require a member of the Eag family of T6SS chaperones for export. Co-crystal structures of class I and class II effector TMD-chaperone complexes from Salmonella Typhimurium and Pseudomonas aeruginosa, respectively, reveals that Eag chaperones mimic transmembrane helical packing to stabilize effector TMDs. In addition to participating in the chaperone-TMD interface, we find that prePAAR residues mediate effector-VgrG spike interactions. Taken together, our findings reveal mechanisms of chaperone-mediated stabilization and secretion of two distinct families of T6SS membrane protein effectors.

Data availability

X-ray diffraction data for the SciW, SciW:Rhs1 complex, and Tse6:EagT6 complex have been deposited in the PDB under the accession codes 6XRB, 6XRR and 6XRF, respectively.

Article and author information

Author details

  1. Shehryar Ahmad

    Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Kara L Tsang

    Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Kartik Sachar

    Microbiology, University of Manitoba, Winnipeg, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Dennis Quentin

    Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3825-7066
  5. Tahmid M Tashin

    Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Nathan P Bullen

    Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Stefan Raunser

    Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9373-3016
  8. Andrew G McArthur

    M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Gerd Prehna

    Microbiology, University of Manitoba, Winnipeg, Canada
    For correspondence
    gerd.prehna@umanitoba.ca
    Competing interests
    The authors declare that no competing interests exist.
  10. John C Whitney

    Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
    For correspondence
    jwhitney@mcmaster.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4423-658X

Funding

Canadian Institutes of Health Research (PJT-156129)

  • John C Whitney

Natural Sciences and Engineering Research Council of Canada (RGPIN-2017-05350)

  • John C Whitney

Natural Sciences and Engineering Research Council of Canada (RGPIN-2018-04968)

  • Gerd Prehna

Canadian Institutes of Health Research (PJT156214)

  • Andrew G McArthur

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Rajan Sankaranarayanan, CSIR-Centre for Cellular and Molecular Biology, India

Publication history

  1. Received: September 4, 2020
  2. Accepted: December 14, 2020
  3. Accepted Manuscript published: December 15, 2020 (version 1)
  4. Accepted Manuscript updated: December 17, 2020 (version 2)
  5. Version of Record published: December 30, 2020 (version 3)

Copyright

© 2020, Ahmad et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,888
    Page views
  • 359
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shehryar Ahmad
  2. Kara L Tsang
  3. Kartik Sachar
  4. Dennis Quentin
  5. Tahmid M Tashin
  6. Nathan P Bullen
  7. Stefan Raunser
  8. Andrew G McArthur
  9. Gerd Prehna
  10. John C Whitney
(2020)
Structural basis for effector transmembrane domain recognition by type VI secretion system chaperones
eLife 9:e62816.
https://doi.org/10.7554/eLife.62816

Further reading

    1. Microbiology and Infectious Disease
    Pengge Qian et al.
    Research Article

    Malaria is caused by infection of the erythrocytes by the parasites Plasmodium. Inside the erythrocytes, the parasites multiply via schizogony, an unconventional cell division mode. The Inner Membrane Complex (IMC), an organelle located beneath the parasite plasma membrane, serving as the platform for protein anchorage, is essential for schizogony. So far, complete repertoire of IMC proteins and their localization determinants remain unclear. Here we used biotin ligase (TurboID)-based proximity labelling to compile the proteome of the schizont IMC of rodent malaria parasite Plasmodium yoelii. In total, 300 TurboID-interacting proteins were identified. 18 of 21 selected candidates were confirmed to localize in the IMC, indicating good reliability. In light of the existing palmitome of Plasmodium falciparum, 83 proteins of the P. yoelii IMC proteome are potentially palmitoylated. We further identified DHHC2 as the major resident palmitoyl-acyl-transferase of the IMC. Depletion of DHHC2 led to defective schizont segmentation and growth arrest both in vitro and in vivo. DHHC2 was found to palmitoylate two critical IMC proteins CDPK1 and GAP45 for their IMC localization. In summary, this study reports an inventory of new IMC proteins and demonstrates a central role of DHHC2 in governing IMC localization of proteins during the schizont development.

    1. Microbiology and Infectious Disease
    Claudia A Vera-Arias et al.
    Research Article Updated

    Most rapid diagnostic tests for Plasmodium falciparum malaria target the Histidine-Rich Proteins 2 and 3 (HRP2 and HRP3). Deletions of the hrp2 and hrp3 genes result in false-negative tests and are a threat for malaria control. A novel assay for molecular surveillance of hrp2/hrp3 deletions was developed based on droplet digital PCR (ddPCR). The assay quantifies hrp2, hrp3, and a control gene with very high accuracy. The theoretical limit of detection was 0.33 parasites/µl. The deletion was reliably detected in mixed infections with wild-type and hrp2-deleted parasites at a density of >100 parasites/reaction. For a side-by-side comparison with the conventional nested PCR (nPCR) assay, 248 samples were screened in triplicate by ddPCR and nPCR. No deletions were observed by ddPCR, while by nPCR hrp2 deletion was observed in 8% of samples. The ddPCR assay was applied to screen 830 samples from Kenya, Zanzibar/Tanzania, Ghana, Ethiopia, Brazil, and Ecuador. Pronounced differences in the prevalence of deletions were observed among sites, with more hrp3 than hrp2 deletions. In conclusion, the novel ddPCR assay minimizes the risk of false-negative results (i.e., hrp2 deletion observed when the sample is wild type), increases sensitivity, and greatly reduces the number of reactions that need to be run.