A cross-sectional study of functional and metabolic changes during aging through the lifespan in male mice.

  1. Michael A Petr
  2. Irene Alfaras
  3. Melissa Krawcyzk
  4. Woei-Nan Bair
  5. Sarah J Mitchell
  6. Christopher H Morrell
  7. Stephanie A Studenski
  8. Nathan L Price
  9. Kenneth W Fishbein
  10. Richard G Spencer
  11. Morten Scheibye-Knudsen
  12. Edward G Lakatta
  13. Luigi Ferrucci
  14. Miguel A Aon
  15. Michel Bernier
  16. Rafael de Cabo  Is a corresponding author
  1. University of Copenhagen, Denmark
  2. University of Pittsburgh, United States
  3. National Institute on Aging, NIH, United States
  4. University of Sciences, United States
  5. ETH Zürich, Switzerland
  6. Yale University, United States

Abstract

Aging is associated with distinct phenotypical, physiological, and functional changes, leading to disease and death. The progression of aging-related traits varies widely among individuals, influenced by their environment, lifestyle, and genetics. In this study, we conducted physiologic and functional tests cross-sectionally throughout the entire lifespan of male C57BL/6N mice. In parallel, metabolomics analyses in serum, brain, liver, heart, and skeletal muscle were also performed to identify signatures associated with frailty and age-dependent functional decline. Our findings indicate that declines in gait speed as a function of age and frailty are associated with a dramatic increase in the energetic cost of physical activity and decreases in working capacity. Aging and functional decline prompt organs to rewire their metabolism and substrate selection and towards redox-related pathways, mainly in liver and heart. Collectively, the data provide a framework to further understand and characterize processes of aging at the individual organism and organ levels.

Data availability

This study did not generate datasets or code. However, we are citing one of our previously published raw microarray datasets that was deposited to the NCBI GeneExpressionOmnibus database under accession number GSE81959.

The following previously published data sets were used

Article and author information

Author details

  1. Michael A Petr

    Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  2. Irene Alfaras

    Aging Institute, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Melissa Krawcyzk

    Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Woei-Nan Bair

    Department of Physical Therapy, University of Sciences, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sarah J Mitchell

    Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Christopher H Morrell

    Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Stephanie A Studenski

    Department of Medicine, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Nathan L Price

    Department of Comparative Medicine, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Kenneth W Fishbein

    Laboratory of Clinical Investigator, National Institute on Aging, NIH, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Richard G Spencer

    Laboratory Clinical Investigation, National Institute on Aging, NIH, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Morten Scheibye-Knudsen

    Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  12. Edward G Lakatta

    Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Luigi Ferrucci

    Intramural Research Program, National Institute on Aging, NIH, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6273-1613
  14. Miguel A Aon

    Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Michel Bernier

    Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Rafael de Cabo

    Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, United States
    For correspondence
    decabora@grc.nia.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2830-5693

Funding

National Institute on Aging (AG000335-04)

  • Rafael de Cabo

The research was supported by the Intramural Research Program of the National Institute on Aging

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (ACUC) protocol of the National Institute on Aging (Protocol Number: TGB-277-2022)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 5,511
    views
  • 846
    downloads
  • 60
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael A Petr
  2. Irene Alfaras
  3. Melissa Krawcyzk
  4. Woei-Nan Bair
  5. Sarah J Mitchell
  6. Christopher H Morrell
  7. Stephanie A Studenski
  8. Nathan L Price
  9. Kenneth W Fishbein
  10. Richard G Spencer
  11. Morten Scheibye-Knudsen
  12. Edward G Lakatta
  13. Luigi Ferrucci
  14. Miguel A Aon
  15. Michel Bernier
  16. Rafael de Cabo
(2021)
A cross-sectional study of functional and metabolic changes during aging through the lifespan in male mice.
eLife 10:e62952.
https://doi.org/10.7554/eLife.62952

Share this article

https://doi.org/10.7554/eLife.62952

Further reading

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Natanael Spisak, Gabriel Athènes ... Aleksandra M Walczak
    Tools and Resources Updated

    B-cell repertoires are characterized by a diverse set of receptors of distinct specificities generated through two processes of somatic diversification: V(D)J recombination and somatic hypermutations. B-cell clonal families stem from the same V(D)J recombination event, but differ in their hypermutations. Clonal families identification is key to understanding B-cell repertoire function, evolution, and dynamics. We present HILARy (high-precision inference of lineages in antibody repertoires), an efficient, fast, and precise method to identify clonal families from single- or paired-chain repertoire sequencing datasets. HILARy combines probabilistic models that capture the receptor generation and selection statistics with adapted clustering methods to achieve consistently high inference accuracy. It automatically leverages the phylogenetic signal of shared mutations in difficult repertoire subsets. Exploiting the high sensitivity of the method, we find the statistics of evolutionary properties such as the site frequency spectrum and dN/dS ratio do not depend on the junction length. We also identify a broad range of selection pressures spanning two orders of magnitude.

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Ritwik Maity, Xuepei Zhang ... Javier Sancho
    Research Article

    Antimicrobial resistance is responsible for an alarming number of deaths, estimated at 5 million per year. To combat priority pathogens, like Helicobacter pylori, the development of novel therapies is of utmost importance. Understanding the molecular alterations induced by medications is critical for the design of multi-targeting treatments capable of eradicating the infection and mitigating its pathogenicity. However, the application of bulk omics approaches for unraveling drug molecular mechanisms of action is limited by their inability to discriminate between target-specific modifications and off-target effects. This study introduces a multi-omics method to overcome the existing limitation. For the first time, the Proteome Integral Solubility Alteration (PISA) assay is utilized in bacteria in the PISA-Express format to link proteome solubility with different and potentially immediate responses to drug treatment, enabling us the resolution to understand target-specific modifications and off-target effects. This study introduces a comprehensive method for understanding drug mechanisms and optimizing the development of multi-targeting antimicrobial therapies.