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Abstract Active DNA demethylation has emerged as an important regulatory process of plant

and mammalian immunity. However, very little is known about the mechanisms by which active

demethylation controls transcriptional immune reprogramming and disease resistance. Here, we

first show that the Arabidopsis active demethylase ROS1 promotes basal resistance towards

Pseudomonas syringae by antagonizing RNA-directed DNA methylation (RdDM). Furthermore, we

demonstrate that ROS1 facilitates the flagellin-triggered induction of the disease resistance gene

RMG1 by limiting RdDM at the 3’ boundary of a transposable element (TE)-derived repeat

embedded in its promoter. We further identify flagellin-responsive ROS1 putative primary targets

and show that at a subset of promoters, ROS1 erases methylation at discrete regions exhibiting

WRKY transcription factors (TFs) binding. In particular, we demonstrate that ROS1 removes

methylation at the orphan immune receptor RLP43 promoter, to ensure DNA binding of WRKY TFs.

Finally, we show that ROS1-directed demethylation of RMG1 and RLP43 promoters is causal for

both flagellin responsiveness of these genes and for basal resistance. Overall, these findings

significantly advance our understanding of how active demethylases shape transcriptional immune

reprogramming to enable antibacterial resistance.

Introduction
Plants are permanently exposed to microbes including pathogens and rely on potent active immune

responses to control infections. The first layer of the plant immune system involves the recognition

of pathogen- or microbe-associated molecular patterns (PAMPs or MAMPs), which are sensed by

surface-localized pattern-recognition receptors (PRRs) (Couto and Zipfel, 2016). Plant PRRs are

composed of receptor-like kinases (RLKs) and receptor-like proteins (RLPs), which are structurally

and functionally analogous to animal Toll-like receptors (TLRs) (Boutrot and Zipfel, 2017). Flagellin

Sensing 2 (FLS2) is a well-characterized RLK PRR, which recognizes a conserved 22 amino acids epi-

tope from the N-terminal part of the bacterial flagellin, named flg22 (Boller and Felix, 2009). Upon

ligand binding, FLS2 initiates a complex phosphorylation cascade at the PRR complex that leads to

early signalling events, which include production of reactive oxygen species (ROS), activation of

mitogen-activated protein kinases (MAPKs) and differential expression of thousands of genes, which

are in part regulated by WRKY transcription factors (TFs) (Navarro et al., 2004; Zipfel et al., 2004;

Birkenbihl et al., 2017). To enable disease, pathogens secrete effectors that suppress PTI. For

instance, the Gram-negative hemibiotrophic pathogenic bacterium Pseudomonas syringae pv.
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tomato strain DC3000 (Pto DC3000) injects 36 type-III effectors into plant cells to dampen PTI

(Wei et al., 2015). Plants have evolved disease resistance (R) proteins that can perceive the presence

of pathogen effectors and trigger a host counter-counter defence (Monteiro and Nishimura, 2018).

Most R proteins belong to the nucleotide binding (NB) leucine-rich repeat (LRR) NLR superfamily,

which is also present in animals (Jones et al., 2016). Plant NLRs contain N-terminal coiled-coil (CC)

or Toll-interleukine (TIR) domains, a central NB domain and a C-terminal LRR, and are thus referred

to as CNLs or TNLs, respectively (Monteiro and Nishimura, 2018). These immune receptors can

sense, directly or indirectly, pathogen effectors and mount effector-triggered immunity (ETI), a

potent immune response that significantly overlaps with PTI, although with a stronger amplitude

(Jones et al., 2016; Thomma et al., 2011). However, very little is known about the functional rele-

vance of NLRs in PTI and/or basal resistance towards phytopathogens (Roth et al., 2017).

Rapid and robust activation of plant immune responses is crucial to limit the spread and multipli-

cation of phytopathogens. On the other hand, their sustained induction often leads to cell death

and developmental defects. For instance, the constitutive expression of NLRs often triggers ectopic

cell death (Oldroyd and Staskawicz, 1998; Zhang et al., 2004; Swiderski et al., 2009;

Bernoux et al., 2011; Nishimura et al., 2017). A tight control of both plant immune receptors and

downstream signalling factors is therefore crucial and involves multi-layered transcriptional, post-

transcriptional and post-translational regulatory mechanisms (Zipfel et al., 2004; Halter and Nav-

arro, 2015; van Wersch et al., 2020; Deleris et al., 2016). The transcriptional control of defence

genes by DNA methylation and demethylation has emerged as a central regulatory process of the

plant immune system (López et al., 2011; Yu et al., 2013; Dowen et al., 2012; López Sánchez

et al., 2016; Le et al., 2014; Deleris et al., 2016; Kong et al., 2020).

DNA methylation is an epigenetic mark that negatively regulates the transcription and transposi-

tion of transposable elements (TEs). It can also trigger transcriptional silencing of some genes carry-

ing TEs/repeats in their vicinity (Matzke and Mosher, 2014). Homeostasis of DNA methylation relies

on the equilibrium between methylation and active demethylation pathways, and has been exten-

sively studied in Arabidopsis thaliana. In this model organism, DNA methylation is established by the

RNA-directed DNA methylation (RdDM) pathway, which is directed by short interfering RNAs

(siRNAs) (Matzke and Mosher, 2014). These siRNAs are mainly produced from PolIV-dependent

RNAs (P4RNAs) that are converted into double-stranded RNAs (dsRNAs) by RNA-DEPENDENT RNA

POLYMERASE 2 (RDR2) (Matzke and Mosher, 2014; Blevins et al., 2015; Zhai et al., 2015;

Yang et al., 2016). The resulting dsRNAs are predominantly processed by DICER-LIKE 3 (DCL3) into

23–24 siRNAs, but additionally, in some instances, by DCL2 and DCL4 into 22 nt and 21 nt siRNAs,

respectively, which are all competent for RdDM (Xie et al., 2004; Matzke and Mosher, 2014;

Panda et al., 2020). These siRNAs further direct ARGONAUTE 4 (AGO4) to TEs/repeats through

base pairing with transcripts generated by Pol V (Zilberman et al., 2004; Chan et al., 2004;

Qi et al., 2006; Wierzbicki et al., 2009). AGO4 then binds to DNA targets and recruits the de novo

methyltransferase DOMAIN REARRANGED METHYLTRANSFERASE 2 (DRM2) that catalyses methyl-

ation in all cytosine sequence contexts (CG, CHG and CHH, where H is any nucleotide but not G)

(Cao and Jacobsen, 2002; Cao et al., 2003; Lahmy et al., 2016). During DNA replication, symmet-

ric CG and CHG methylations are maintained by METHYLTRANSFERASE 1 (MET1) and CH

ROMOMETHYLASE 3 (CMT3), respectively, while asymmetric CHH methylation is either actively per-

petuated by RdDM or maintained by a siRNA-independent process mediated by CMT2 (Cao and

Jacobsen, 2002; Matzke and Mosher, 2014; Stroud et al., 2014). On the other hand, Arabidopsis

encodes four active demethylases with 5-methylcytosine DNA glycosylase/lyase activities, namely

DEMETER (DME), DME-Like 1 (DML1)/ROS1 (Repressor of Silencing 1), DML2 and DML3

(Zhang et al., 2018). Both ROS1 and DME actively remove DNA methylation in all methylated cyto-

sine contexts through a base excision repair (BER) mechanism (Gong et al., 2002; Mok et al.,

2010). ROS1 is the active demethylase that has been the most characterized in vegetative tissues

(Zhang et al., 2018). Mechanistically, ROS1 prunes siRNA-dependent or -independent DNA methyl-

ation at thousands of loci and this process often limits the spreading of DNA methylation at TE/

repeat boundaries (Tang et al., 2016). Importantly, ROS1-directed removal of DNA methylation at

specific promoters is critical to ensure a proper expression of genes required for developmental or

abiotic stress responses (Yamamuro et al., 2014; Gong et al., 2002; Kim et al., 2019).

Several studies have unveiled a major role for DNA methylation in susceptibility against non-viral

phytopathogens. For examples, DNA methylation-defective mutants of Arabidopsis are more
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resistant to Pto DC3000 and the obligate biotrophic oomycete pathogen Hyaloperonospora arabi-

dopsidis (Pavet et al., 2006; Yu et al., 2013; Dowen et al., 2012; López Sánchez et al., 2016).

Conversely, ros1 mutants display enhanced susceptibility towards Pto DC3000 and Hyaloperono-

spora arabidopsidis (Yu et al., 2013; López Sánchez et al., 2016), indicating that ROS1 promotes

basal resistance against those pathogens. Furthermore, ROS1, DML2, DML3, and DME act coopera-

tively to orchestrate resistance towards Fusarium oxysporum, a devastating hemibiotrophic vascular

fungal pathogen infecting a wide range of economically important crops (Le et al., 2014;

Schumann et al., 2019). Altogether, these studies suggest that immune-responsive genes are likely

to be regulated by DNA methylation and/or demethylation, which has been demonstrated at a sub-

set of pathogen-responsive genes (Yu et al., 2013; Le et al., 2014; López Sánchez et al., 2016;

Schumann et al., 2019; Kong et al., 2020). These findings also suggest that demethylation of

defence gene promoters might ensure the DNA/chromatin binding of TFs during pathogen infection

and/or elicitation, although this hypothesis has never been tested experimentally.

Here, we have characterized the Arabidopsis demethylase ROS1 in the context of antibacterial

immunity. We first demonstrate that ROS1 positively regulates basal resistance against Pto DC3000

by antagonizing RdDM activity. Consistent with this observation, we find that the TNL RESISTANCE

METHYLATED GENE 1 (RMG1) contributes to basal resistance against Pto DC3000, and that ROS1-

directed suppression of RdDM at RMG1 promoter ensures a proper induction of this gene during

PTI. Furthermore, we retrieve the whole set of flg22-responsive genes that are controlled by ROS1

and show that PAMP-triggered inducibility at two ROS1 targets, namely RMG1 and RLP43, depends

on the cis-effect of demethylation at their promoters. Furthermore, ROS1-directed demethylation at

a specific sequence of the RLP43 promoter, which carries a functional ‘W-box’ WRKY-binding site, is

critical for the DNA binding of PAMP-responsive WRKY TFs. Overall, this study reveals the extent to

which ROS1 orchestrates Arabidopsis transcriptional immune reprogramming and unveils a crucial

role for this demethylase in the regulation of WRKY-DNA binding at immune-responsive promoters.

Results

Arabidopsis ROS1 promotes resistance towards Pto DC3000, mostly by
antagonizing DCL2 and/or DCL3 functions
We have previously reported that ros1 mutants exhibit enhanced spreading of Pto DC3000 in Arabi-

dopsis leaf secondary veins (Yu et al., 2013). This phenotype was further confirmed here when ros1-

3 and ros1-4 mutant leaves were wound-inoculated with a GFP-tagged Pto DC3000 (Pto DC3000-

GFP) (Figure 1A and B). In addition, an enhanced bacterial titre was observed in these ros1 alleles

dip-inoculated with Pto DC3000-GFP (Figure 1C). These data indicate that ROS1 positively regulates

basal resistance against Pto DC3000. It has been shown that ROS1 antagonizes methylation at thou-

sands of loci, which are methylated in a RdDM-dependent or -independent manner (Tang et al.,

2016). To determine whether ROS1 could promote basal resistance by counteracting RdDM, we

have performed the above assays in a ros1-3 dcl2-1 dcl3-1 triple mutant (ros1dcl23), in which the

biogenesis of 22 to 24 nt siRNAs is abolished. Interestingly, we found that both the enhanced vascu-

lar propagation and apoplastic growth of Pto DC3000-GFP detected in the ros1-3 mutant were

reduced in ros1dcl23 mutants, and almost comparable to the phenotypes of Col-0-infected plants

(Figure 1D–F). These data indicate that DCL2 and/or DCL3 are mainly responsible for the enhanced

susceptible phenotypes observed in ros1-3-infected mutants. They also suggest that some defence

genes are likely hypermethylated and silenced in the ros1-3 mutants through the action of, at least

in part, DCL2- and/or DCL3-dependent siRNAs.

The ROS1 target RMG1 is a functional disease resistance gene that
contributes to basal resistance towards Pto DC3000
ROS1 has previously been shown to ensure a proper flg22-triggered induction of RMG1, an orphan

TNL that is demethylated by ROS1 in its promoter (Yu et al., 2013). As a result, a strong reduction

in flg22-mediated inducibility of RMG1 is observed in the absence of ROS1 (Figure 2D and F;

Yu et al., 2013). To investigate the possible contribution of RMG1 in basal resistance against Pto

DC3000, we have isolated and characterized two independent T-DNA insertion lines, which lack

RMG1 mRNA in leaves treated with flg22 compared to Col-0 (Figure 2A, Figure 2—figure
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supplement 1). Both mutants exhibited elevated bacterial vascular propagation and apoplastic

growth compared to Col-0-infected plants (Figure 2B and C), indicating that RMG1 is a functional

disease resistance gene that contributes to basal resistance towards Pto DC3000. These data also

suggest that the heightened susceptibility of the ros1-infected mutants might be in part attributed

to the silencing of RMG1.

ROS1 limits the spreading of DNA methylation at the 3’ boundary of a
remnant RC/Helitron TE, which is embedded in the RMG1 promoter
RMG1 contains two remnant RC/Helitron TEs in its promoter: the distal repeat AtREP4

(At4TE29275) and the proximal repeat AtREP11 (At4TE29280) (Figure 2D). AtREP4 is targeted by

Figure 1. The enhanced Pto DC3000 disease susceptibility observed in ros1-infected mutants is mainly dependent on DCL2 and/or DCL3 functions. (A)

Increased Pto DC3000 vascular propagation in the two independent ros1 mutant alleles, ros1-3 and ros1-4. Secondary veins of 5-week-old Col-0, ros1-3

and ros1-4 mutants were inoculated with a virulent GFP-tagged Pto DC3000 strain (Pto DC3000-GFP) at 5 � 106 cfu ml�1 using the toothpick

inoculation method. Inoculation was done on six secondary veins per leaf and two sites of inoculation per vein. At least 10 leaves per experiment were

quantified. The number of Pto DC3000-GFP spreading events from the wound inoculation sites was quantified after 3 days under UV light using a

macrozoom. When the bacteria propagated away from any of the 12 inoculation sites, it was indexed as propagation with a possibility of maximum 18

propagations per leaf. The values from three independent experiments were considered for the comparative analysis. Statistical significance was

assessed using a one-way ANOVA test and Tukey’s multiple comparisons test. (B) Representative pictures of the GFP fluorescence observed at the

whole leaf level on the plants depicted in A. (C) Enhanced Pto DC3000 apoplastic growth in the two independent ros1 mutant alleles, ros1-3 and ros1-

4. Five-week-old plants of Col-0, ros1-3, and ros1-4 mutants were dip-inoculated with Pto DC3000-GFP at 5 � 107 cfu ml�1. Bacterial titres were

monitored at 3 days post-inoculation (dpi). Each data point represents bacterial titre at four leaf discs extracted from a single leaf. Two leaves out of

three plants per line per experiment, and from three independent experiments were considered for the comparative analysis. Statistical significance

was assessed using a one-way ANOVA test and Tukey’s multiple comparisons test. (D) Increased bacterial propagation in the vein observed in ros1-3 is

rescued in the ros1dcl23 triple mutant. Secondary veins of 5-week-old Col-0, ros1-3 and the triple ros1dcl23 mutants were inoculated as in A and the

results analysed as in A. (E) Representative pictures of the GFP fluorescence observed at the whole leaf level on the plants presented in D. (F) Enhanced

Pto DC3000 apoplastic growth in ros1 is partially rescued in the ros1dcl23 background. Five-week-old plants of Col-0, ros1-3, and ros1dcl23 were

inoculated as in C and the results were analysed as in C.

The online version of this article includes the following source data for figure 1:

Source data 1. Original data of bacterial propagation assays for Figure 1A,C,D, and F.
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Figure 2. The TNL gene RMG1 contributes to apoplastic and vascular resistance against Pto DC3000 and its flg22-triggered induction is negatively

regulated by RNA-directed DNA methylation (RdDM) in the absence of ROS1. (A) RMG1 mRNA levels in Col-0 and the two rmg1 mutant alleles,

namely rmg1-1 and rmg1-2, were monitored by RT-qPCR at 6 hr after syringe-infiltration of mock (water) or 1 mM of flg22 peptide. (B) RMG1 positively

regulates vascular resistance towards Pto DC3000. Secondary veins of 5-week-old Col-0, ros1-3, rmg1-1, and rmg1-2 plants were inoculated with Pto

DC3000-GFP at 5 � 106 cfu ml�1 using the toothpick inoculation method. Inoculation was done on six secondary veins per leaf and two sites of

inoculation per vein. At least 10 leaves per condition were quantified. The number of Pto DC3000-GFP spreading events from the wound inoculation

sites was quantified after 3 days under UV light using a macrozoom. When the Pto DC3000-GFP propagated away from any of the 12 inoculation sites,

it was indexed as propagation with a possibility of maximum 18 propagations per leaf. The values from three independent experiments were

Figure 2 continued on next page

Halter et al. eLife 2021;10:e62994. DOI: https://doi.org/10.7554/eLife.62994 5 of 27

Research article Genetics and Genomics Plant Biology

https://doi.org/10.7554/eLife.62994


23–24 nt siRNAs and methylated in the Arabidopsis reference accession Col-0, a regulatory process

that presumably maintains a low basal expression of this gene in untreated conditions (Yu et al.,

2013). By contrast, AtREP11 (At4TE29280), which is located 216 bp upstream of RMG1 start codon,

is unmethylated in Col-0 but hypermethylated in a ros1 mutant, as previously demonstrated by a tar-

geted bisulfite Sanger sequencing approach (Yu et al., 2013). These results were confirmed by using

a whole-genome bisulfite sequencing (BS-seq) approach in rosette leaves of untreated Col-0 and

ros1-3 mutants (Figure 2D). We found that the hyper differentially methylated region (hyperDMR)

detected at the AtREP11 repeat was particularly pronounced at the 3’ boundary of this remnant RC/

Helitron TE in the ros1-3 mutant, while this region was unmethylated in Col-0 plants (Figure 2D).

This result is consistent with a role of ROS1 in limiting the spreading of DNA methylation at TE

boundaries (Tang et al., 2016). To determine whether such hyperDMR could be directed by siRNAs,

we monitored the accumulation of siRNAs at the RMG1 promoter by analysing small RNA sequenc-

ing (sRNA-seq) datasets generated in rosette leaves of untreated Col-0, ros1-3 and ros1dcl23

mutants. While no siRNA was retrieved at the 3’ boundary of AtREP11 in Col-0 plants, we detected

the accumulation of siRNA species of different sizes in the ros1-3 mutant, ranging from low levels in

the 21–22 nt species to high levels in the 23–24 nt species (Figure 2D and E). All these siRNAs were

no longer produced in ros1dcl23 mutants, a molecular effect which was associated with an absence

of cytosine methylation at this ROS1-targeted region (Figure 2E). Collectively, these data indicate

that DCL2- and/or DCL3-dependent siRNAs direct RdDM predominantly at the 3’ boundary of

AtREP11 in the ros1-3 mutant. They also suggest that, in Col-0 plants, ROS1 counteracts the biogen-

esis of DCL2- and DCL3-dependent siRNAs at this RMG1 promoter region to restrict DNA methyla-

tion spreading at the 3’ boundary of AtREP11.

ROS1-directed suppression of siRNA biogenesis at the RMG1 promoter
is required for a proper induction of this gene during flg22 elicitation
We next assessed whether ROS1-directed suppression of RdDM at the AtREP11 and its 3’ boundary

could be required for the proper induction of RMG1 during flg22 elicitation. For this end, we chal-

lenged Col-0, ros1-3, dcl2-1 dcl3-1 (dcl23) and ros1dcl23 plants with either mock or flg22 for 6 hr

and further monitored the mRNA accumulation of RMG1. We found a compromised induction of

RMG1 in the ros1-3-elicited mutant that was not observed for Flg22-induced Receptor-like Kinase 1

(FRK1), which is not hypermethylated in ros1-3 mutants, and thus served as a control (Figure 2F, Fig-

ure 2—figure supplement 2, Figure 2—figure supplement 3). By contrast, a full restoration of

Figure 2 continued

considered for the comparative analysis. Statistical significance was assessed using a one-way ANOVA test. (C) RMG1 positively regulates apoplastic

resistance towards Pto DC3000. Five-week-old Col-0, ros1-3, rmg1-1, and rmg1-2 plants were dip-inoculated with Pto DC3000-GFP at 5 � 107 cfu ml�1.

Bacterial titres were monitored at 3 days post-infection (dpi). Each data point represents bacterial titre at four leaf discs extracted from two different

leaves. At least three leaves out of four plants per line per experiment and from three independent experiments were considered for the comparative

analysis. Statistical significance was assessed using a one-way ANOVA test. (D) Flg22-triggered induction of RMG1 is compromised in ros1-3-elicited

mutant and correlates with an increased DNA methylation and siRNA levels at the remnant RC/Helitron TE AtREP11, and particularly at its 3’ boundary.

IGV snapshots showing mRNA levels (mRNA-seq) after syringe-infiltration of mock (water) or 1 mM of flg22 peptide for Col-0 and ros1-3, and cytosine

DNA methylation levels (Bs-Seq) and siRNA levels (sRNA-seq) in 5-week-old untreated rosette leaves of Col-0 and ros1-3, at the RMG1 locus. The

hyperDMR is highlighted by the dotted box. (E) Levels of different siRNA species at the 3’ boundary of AtREP11. IGV snapshots representing the levels

of methylation (BS-seq), total siRNA species (siRNA-seq), and different size of siRNA species (21nt, 22nt, 23nt, and 24nt siRNAs) in 5-week-old rosette

leaves of Col-0, ros1-3, and ros1dcl23. (F) The flg22-triggered induction of RMG1 is fully restored in ros1dcl23-elicited triple mutants. RT-qPCR analysis

depicting RMG1 and FRK1 mRNA levels in Col-0, ros1-3, dcl23, and ros1dcl23 5-week-old rosette leaves treated with either mock (water) or 1 mM of

flg22 for 6 hr. The mRNA levels are relative to the level of UBQ transcripts. Statistical significance of flg22 treatment on expression was assessed using a

two-way ANOVA test and a Sidak’s multiple comparisons test. Asterisks indicate statistical significance (*: p<0.05, **: p<0.01, ***: p<0.001, ns: not

significant).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Original qRT-PCR data for Figure 2A and F, and bacterial propagation data for Figure 2B and C.

Figure supplement 1. Scheme representing T-DNA insertion sites at the RMG1 locus.

Figure supplement 2. FRK1 and bZIP60 promoters are not hypermethylated in ros1-3 mutants.

Figure supplement 3. The flg22-triggered induction of RMG1 and RBA1 is restored, while RLP43 remains in a repressed state, in the ros1dcl23-elicited

mutant.

Figure supplement 3—source data 1. Original qRT-PCR data for Figure 2—figure supplement 3.
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flg22-triggered inducibility of RMG1 was observed in the ros1dcl23-elicited mutant (Figure 2F, Fig-

ure 2—figure supplement 3). These data indicate that RdDM of AtREP11 and its 3’ boundary, which

is specifically detected in ros1-3 mutants, negatively regulates the flg22 inducibility of RMG1. They

also suggest that ROS1-directed demethylation of this RMG1 promoter region is crucial to ensure a

proper transcriptional activation of this gene during flg22 elicitation.

ROS1 directs promoter demethylation of flg22-induced ROS1 targets,
mostly by antagonizing DCL2 and/or DCL3 functions
To identify the whole set of immune-responsive genes that are regulated by ROS1, we further used

a RNA sequencing (RNA-seq) method and applied a statistical analysis that retrieved transcripts that

are differentially accumulated at 6 hr after flg22 treatment in Col-0 versus ros1-3 plants. Using this

approach, we identified 2076 differentially expressed genes, among which, 907 were less-induced

and 1169 less-repressed in flg22-treated ros1-3 mutants compared to Col-0 (Figure 3A). To identify

ROS1 putative primary targets, we next determined which of the 2943 hyperDMRs identified in

untreated ros1-3 plants were present in an interval covering the gene-body plus 2 Kb upstream and

downstream of the 2076 flg22-sensitive ROS1 targets. As a result of this analysis, 217 candidate

genes were recovered, representing ~10% of the whole flg22-responsive and ROS1 regulated genes.

Among them, 102 less-induced (promoter regions: 44 DMRs; gene bodies: 33; downstream regions:

25) and 115 less-repressed (promoter regions: 67 DMRs; gene bodies: 27; downstream regions: 21)

genes were recovered (Figure 3A, Supplementary File 1). To gain more insights into the regulatory

function of ROS1 during PTI, we focused subsequent analyses on flg22-induced ROS1 putative pri-

mary targets (Figure 3B, Figure 3—figure supplement 1). We found that the overall increase of

methylation levels at the 102 less-induced genes and at the whole 2943 ROS1 targets, in ros1-3 com-

pared to Col-0 plants, was almost exclusively observed in 2 Kb upstream sequence regions

(Figure 3C). An increase in siRNA accumulation was also detected at both the promoters of the

flg22-induced and overall ROS1 targets in ros1-3 versus Col-0 plants (Figure 3D, Figure 3—figure

supplement 2). By contrast, the overall enhanced DNA methylation and siRNA levels observed in

ros1-3 mutants at these loci were almost restored to Col-0 levels in ros1dcl23 mutants

(Figure 3C and D, Figure 3—figure supplement 2). The latter data suggest that ROS1 directs pro-

moter demethylation mostly by antagonizing DCL2 and/or DCL3 functions.

ROS1 facilitates the flg22-triggered induction of three distinct targets
by preventing hypermethylation at discrete regions in their promoters
We next selected, from our RNA-seq datasets, candidate genes that were strongly induced by flg22

in Col-0 plants and showing pronounced compromised flg22 inducibility in elicited ros1-3 mutants

(Figure 3B, Figure 3—figure supplement 1). These genes include the TIR-only resistance gene

RBA1 (AT1G47370), which was previously shown to be repressed by DNA methylation in Col-0 and

to recognize the bacterial effector HopBA1 in the Arabidopsis thaliana Ag-0 accession

(Nishimura et al., 2017), the orphan receptor-like protein 43 (RLP43) (AT3G28890), which presents

typical features of RLP PRRs (Steidele and Stam, 2020), and a phosphoglycerate mutase gene

(AT1G08940) (Figure 3B). We further monitored their mRNA accumulation in Col-0, ros1-3, dcl23

and ros1dcl23 challenged with either mock or flg22 for 6 hr. The expression pattern of the phospho-

glycerate mutase gene was similar to the one of RMG1: the compromised flg22 induction of this

gene was almost fully rescued in elicited ros1dcl23 mutants, which is consistent with a loss of siRNAs

and DNA methylation at its hyperDMR in untreated ros1dcl23 mutants (Figure 3E and G). The

flg22-triggered induction of RBA1 was restored in ros1dcl23 to levels similar to dcl23 mutants, but

not to the same extent as in elicited Col-0 plants (Figure 3G, Figure 2—figure supplement 3). Fur-

thermore, this effect was associated with a partial decrease in RBA1 promoter methylation at the

RBA1 hyperDMR, in ros1dcl23 compared to ros1-3 mutants (Figure 3E). By contrast, RLP43

remained fully silenced in the ros1dcl23-treated mutants, as in elicited ros1-3 mutants, which is con-

sistent with comparable levels of RLP43 promoter methylation in both untreated mutants (Figure 2—

figure supplement 3, Figure 3E, Figure 3G). It is noteworthy that the unaltered RLP43 hyperDMR

detected in the ros1dcl23 mutants was associated with a moderate remaining accumulation of

siRNAs, which was shifted from 23 to 24 nt siRNAs in ros1-3 to 21 nt siRNAs in ros1dcl23 mutants

(Figure 3E, Figure 3—figure supplement 3). It was also accompanied by the presence of longer
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Figure 3. Genome-wide identification of flg22-responsive ROS1 targets and characterisation of the role of RNA-directed DNA methylation (RdDM) in

the methylation status of these genes in the absence of ROS1. (A) Proportion of flg22-responsive genes that are regulated by ROS1. One hundred and

two flg22-responsive genes that are ‘less-induced’ and 115 flg22-responsive genes that are ‘less-repressed’ in ros1-3-elicited mutant exhibit

hypermethylated DMRs (hyperDMRs). Venn diagram representing the overlap of genes presenting hyperDMRs in the ros1 mutant (in orange) with

genes presenting a compromised induction (in red) or repression (in green) in ros1-3 compared to Col-0 treated with mock (water) or 1 mM of flg22 for

6 hr. (B) Heat map representing the relative expression of the 102 less-induced genes in Col-0 and ros1-3 treated with mock (water) or 1 mM of flg22 for

6 hr. Merged data from two independent biological replicates are presented. (C) Increased global DNA methylation levels observed in untreated ros1-3

compared to Col-0 at the whole set of genes exhibiting hyperDMRs (left panel) and at the 102 less-induced genes (right panel) are restored in the

ros1dcl23 triple mutant. Heatmap representing global DNA methylation levels within regions comprising 2 Kb upstream of the transcription start site

(TSS), the gene body, and 2 Kb downstream of the transcription end site (TES) of the whole set of genes exhibiting hyperDMRs in ros1-3 versus Col-0

Figure 3 continued on next page
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RNAs (25–29 nt), which exhibit a preference for having an A at their 5’ ends and that overlap with

siRNAs produced from the hyperDMR, as observed for typical P4RNA species (Figure 3—figure

supplement 3; Blevins et al., 2015; Zhai et al., 2015; Yang et al., 2016). Because PolIV-dependent

21 nt siRNAs and P4RNAs are competent for RdDM (Yang et al., 2016; Panda et al., 2020), the

above RNA entities might maintain RdDM at RLP43 promoter in the ros1dcl23 mutants, although

RNA-independent mechanism(s) might additionally contribute to this process. Collectively, these

data indicate that the flg22-triggered induction of these three genes is facilitated by ROS1, which

prevents hypermethylation at discrete regions in their promoters. They also indicate that their pro-

moter hypermethylation detected in ros1-3 mutants can be fully or partially altered upon concomi-

tant removal of DCL2 and DCL3, as found at the phosphoglycerate mutase and RBA1 genes,

respectively, or unchanged, as observed at the RLP43 locus.

WRKY TFs bind to a single W-box element embedded in the middle of
the demethylated promoter region of RLP43, thereby ensuring a
proper flg22-triggered induction of this gene
Given that the ROS1-directed demethylation of a subset of defence gene promoters was required

for their flg22-triggered induction (Figure 3), we hypothesized that these demethylated promoter

sequences might contain functional binding sites for PAMP-responsive TFs. To test this possibility,

we selected 26 flg22-induced ROS1 targets exhibiting discrete and dense hypermethylated regions

in ros1-3 mutants, along with a strong impaired induction in ros1-3-elicited mutants, and subjected

their hyperDMR sequences to Genome Association Tester (GAT) (Figure 3—figure supplement 1;

Heger et al., 2013). This approach interrogates DNA affinity purification sequencing (DAP-seq)

data sets of whole-genome Arabidopsis TF factor binding sites and assesses whether any DAP-seq

peak would overlap more with the input DNA sequence than expected by chance (O’Malley et al.,

2016). By using this analysis, we found in vitro DNA binding of WRKY TFs at 14 out of 26 promoter-

derived sequences tested (Figure 4A, Figure 4—figure supplement 1). By contrast, only 2 out of

28 less-repressed stringent targets displayed WRKY TFs enrichment at their demethylated promoter

regions (Figure 4—figure supplement 2). Among the 14 less-induced candidates, we retrieved

RMG1, RBA1, and RLP43, which exhibit in vitro DNA binding of several WRKYs in their promoter

regions subjected to ROS1-directed demethylation (Figure 4A and B, Figure 4—figure supplement

1, Figure 4—figure supplement 3, Figure 4—figure supplement 4). Five out of these 14 candidate

Figure 3 continued

(left panel) and of the 102 less-induced genes (right panel). These heatmaps were generated from BS-seq data sets obtained from 5-week-old rosette

leaves of Col-0, ros1-3, and ros1dcl23 mutants. (D) Increased 24 nt siRNA levels in ros1-3 at the whole set of genes exhibiting hyperDMRs in ros1-3

versus Col-0 (left panel) and at the 102 less-induced genes (right panel) are restored in the ros1dcl23 triple mutant. Heatmap representing 24-nt siRNA

levels within regions comprising 2 Kb upstream of the TSS, the gene body, and 2 Kb downstream of the TES of the whole set of genes exhibiting

hyperDMRs in ros1-3 versus Col-0 (left panel) and of the 102 less-induced genes (right panel). These heatmaps were generated from sRNA-seq datasets

obtained from 5-week-old rosette leaves of untreated Col-0, ros1-3 and ros1dcl23 mutants. Average of the two replicates is represented. (E)

Methylation levels are restored at AT1G08940 and partially restored at RBA1 in ros1dcl23 whereas RLP43 retains methylation levels similar to

methylation levels observed in the single ros1-3 mutant. IGV snapshots showing siRNA levels and methylation levels at the DMRs of AT1G08940, RBA1,

and RLP43 in Col-0, ros1-3, and ros1dcl23. (F) IGV snapshots depicting mRNA-seq data in Col-0 and ros1-3 mutant in mock- and flg22-treated

conditions as well as BS-seq and sRNA-seq of untreated Col-0 and ros1-3 plants. (G) AT1G08940 gene induction is restored and RBA1 gene induction is

partially restored whereas RLP43 remains in a repressed state in ros1dcl23. RT-qPCR analyses from 5-week-old rosette leaves of Col-0, ros1-3, dcl23,

and ros1dcl23 treated with either mock (water) or 1 mM of flg22 for 6 hr. The mRNA levels are relative to the level of UBQ transcripts. Statistical

significance of flg22 treatment on expression was assessed using a two-way ANOVA test and a Sidak’s multiple comparisons test. Asterisks indicate

statistical significance (*: p<0.05, **: p<0.01, ***: p<0.001, ns: not significant).

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Original qRT-PCR data for Figure 3G.

Source data 2. Original transcriptomic data used for the heatmap presented in Figure 3B.

Figure supplement 1. RNA sequencing experiment in 5-week-old rosette leaves of Col-0 and ros1-3 syringe-infiltrated with either mock or flg22 for 6

hr.

Figure supplement 2. Analysis of 23–24 nt siRNA levels for the groups of 102 less-induced genes and 2943 genes carrying hyperDMRs in the ros1-3

mutant background.

Figure supplement 3. Gain of 21-nt siRNAs and P4RNAs at the RLP43 promoter in the ros1dcl23 background might contribute to the maintenance of

DNA methylation levels in this triple mutant.
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Figure 4. Several WRKY transcription factors bind to the demethylated region of the RLP43 promoter, which contains a functional and flg22-responsive

W-box cis-element. (A) A subgroup of the ROS1 targets exhibits an over-representation of WRKY DNA binding at the promoter regions corresponding

to the hyperDMRs that were retrieved in ros1-3. GAT analysis performed on publicly available DNA affinity purification sequencing (DAP-seq) data

(O’Malley et al., 2016) identified WRKY TFs with significant enrichment in the regions corresponding to the hyperDMRs observed in ros1-3 for the 14

stringent ROS1 primary targets. (B) Several WRKY TFs specifically bind to the region that is demethylated by ROS1 in the RLP43 promoter. Snapshots

Figure 4 continued on next page
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promoters also exhibit in vivo binding of the AtWRKY18 and AtWRKY40 based on chromatin immu-

noprecipitation sequencing (ChIP-seq) data sets generated in flg22-challenged transgenic seedlings

(Figure 4—figure supplement 5; Birkenbihl et al., 2017). Importantly, the chromatin association of

these PAMP-responsive WRKYs was specifically detected during flg22 treatment, indicating that PTI

signalling is required for this chromatin-based regulatory process (Figure 4—figure supplement 5).

For example, the in vivo binding of AtWRKY40 at the RLP43 promoter specifically occurs during

flg22 elicitation and at the demethylated promoter region, which contains a single W-box cis-regula-

tory element (Figure 4B and C; Birkenbihl et al., 2017). This observation prompted us to character-

ize this W-box in the context of PTI. For this end, we generated transcriptional reporters by fusing

either the WT or the W-box point mutant upstream sequences of RLP43 with the b-glucuronidase

GUS reporter gene (Figure 4D). We found a strong reduction in GUS staining and mRNA levels in

flg22-challenged leaves of primary transformants expressing the W-box mutant- versus the WT-ver-

sions of the RLP43 transcriptional reporters (Figure 4E and F). These results imply that this W-box

cis-element is functional and essential for the flg22-triggered transcriptional activation of RLP43.

Nevertheless, the remaining GUS staining detected in the leaf vasculature of flg22-treated plants

expressing the W-box mutant transgene suggests that other TFs must additionally contribute to the

flg22-triggered transcriptional activation of RLP43 in these tissues (Figure 4F). Collectively, these

data indicate that the W-box cis-element located in the demethylated region of the RLP43 promoter

is the site for WRKY TF binding. They also suggest that the flg22-triggered recruitment of WRKYs at

the RLP43 promoter is critical for the transcriptional activation of this gene during PTI.

ROS1-directed removal of DNA methylation at the RLP43 promoter is
necessary for DNA binding of AtWRKY18 and AtWRKY40
DNA methylation has previously been shown to inhibit, in some instances, TF-DNA binding

(Watt and Molloy, 1988; Iguchi-Ariga and Schaffner, 1989; Tate and Bird, 1993; O’Malley et al.,

2016). For example, a DAP-seq study performed with Col-0 genomic DNA revealed that ~75% of

Arabidopsis TFs are sensitive to DNA methylation (O’Malley et al., 2016). This was notably the case

of several WRKY TFs used in their analysis (Figure 5A; O’Malley et al., 2016). This observation,

along with the fact that the ros1-3 mutation alters the flg22 induction of RLP43 (Figures 3 and

4), suggests that the hypermethylation at its promoter observed in ros1-3 mutants might interfere

with WRKY TF-DNA binding. To test this hypothesis, we have used a DAP approach coupled with a

Figure 4 continued

representing, from top to bottom, mRNA-seq (Rep1), BS-seq (Rep1), and DAP-seq data (O’Malley et al., 2016) at the RLP43 locus. To better

appreciate the overlap between the promoter region of RLP43 subjected to ROS1-directed demethylation and the region where WRKY TFs bind to

DNA, a zoom in is depicted at the level of the hyperDMR (box on the right panel) and the position of the W-box is highlighted by the vertical dashed

line. (C) A hemagglutinin (HA) epitope-tagged version of WRKY40 binds in vivo to the ROS1-targeted region of the RLP43 promoter in a flg22-

dependent manner. Snapshots depicting bisulfite sequencing data from 5-week-old rosette leaves of Col-0 and ros1-3 mutant (Rep1) and ChIP-seq

data performed on seedlings of wrky40 mutants (SLAT collection of dSpm insertion line; Shen et al., 2007) complemented with WRKY40-HA treated

with either mock (medium without flg22) or flg22 (medium supplemented with flg22) for 2 hr, at RLP43 (Birkenbihl et al., 2017). (D) Scheme

representing the RLP43 transcriptional GUS fusion constructs containing the WT W-box sequence (RLP43p::GUS) and the mutated W-box sequence

(RLP43p mut::GUS). (E) The W-box cis-element at the RLP43 promoter is functional and responsive to flg22. RT-qPCR analyses were performed to

monitor the GUS mRNA levels in primary T1 transformants expressing either the RLP43p::GUS or RLP43p mut::GUS transgenes. For each individual, two

leaves were syringe-infiltrated with mock (water) and two other leaves were treated the same way with flg22 at a concentration of 1 mM for 6 hr. The

GUS mRNA levels are relative to the level of UBQ transcripts. Statistical significance was assessed using a one-way ANOVA test and a Tukey’s multiple

comparisons test. (F) The flg22-induced GUS activity is impaired in RLP43p mut::GUS-elicited plants. GUS-staining of 5-week-old rosette leaves of

RLP43p::GUS or RLP43pmut::GUS primary transformants that were syringe-infiltrated with either mock or 1 mM of flg22 for 24 hr. Representative pictures

are shown.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Original qRT-PCR data of GUS transcript quantification for Figure 4E.

Figure supplement 1. GAT analysis of all the transcription factor classes binding to the 26 stringent less-induced ROS1 target promoters.

Figure supplement 2. GAT analysis of all the transcription factor classes binding to the 28 stringent less-repressed ROS1 target promoters.

Figure supplement 3. WRKY DNA binding peaks are present at the RMG1 promoter region that is subjected to ROS1-directed demethylation.

Figure supplement 4. Position of WRKY DNA binding peaks at the 11 flg22-induced ROS1 targets.

Figure supplement 5. Flg22-triggered chromatin association of WRKY18-HA and WRKY40-HA at the promoters of five less-induced ROS1 targets and

at the promoter of the positive control bZIP60.
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quantitative PCR (DAP-qPCR) analysis. More specifically, we have expressed in bacteria Glutathione

S-transferase (GST)-tagged AtWRKY18 and AtWRKY40, two well-characterized Arabidopsis WRKYs

that are PAMP-responsive (Birkenbihl et al., 2017). Affinity-purified WRKYs were subsequently incu-

bated with sheared genomic DNA from either Col-0 or ros1-3 mutants and we further monitored

WRKY DNA binding by qPCR analysis at the RLP43 promoter. The rationale for using RLP43 pro-

moter for this specific analysis was based on (1) previous DAP-seq and ChiP-seq data showing robust

binding of different WRKY TFs at the ROS1-directed demethylated RLP43 promoter (Figure 4A–C,

Figure 4—figure supplement 1), (2) the presence of a single W-box cis-element located right in the

middle of this genomic region (Figure 4B and C), and (3) the central role of this W-box in the flg22-

responsiveness of the RLP43 promoter (Figure 4D–F). As a positive control for WRKY binding, we

also amplified a promoter region of bZIP60, which is unmethylated in ros1-3 mutants and bound by

different PAMP-responsive WRKY TFs (Figure 2—figure supplement 2, Figure 4—figure supple-

ment 5; Birkenbihl et al., 2017). Using this DAP-qPCR approach, we found that both WRKY TFs

exhibit strong and comparable enrichment at the RLP43 and bZIP60 promoters in the presence of

Col-0 genomic DNA (Figure 5B, Figure 5—figure supplement 1), while no binding was found with

GST alone (Figure 5B, Figure 5—figure supplement 1). By contrast, the DNA binding of these Ara-

bidopsis WRKY TFs was almost fully abolished at the RLP43 promoter with genomic DNA from ros1-

3 mutants, while it remained unaltered at the bZIP60 promoter in the same conditions (Figure 5B,

Figure 5. ROS1-directed demethylation is crucial for the DNA binding of WRKY18 and WRKY40 at the RLP43 promoter. (A) DAP-seq data from

O’Malley et al., 2016 showing that WRKY family members are generally sensitive to DNA methylation. Graph representing ratio of binding capacity in

DAP versus ampDAP data at regions methylated in Col-0 and for the different transcription factor family members used in this study. (B) The ability of

WRKY18 and WRKY40 to bind DNA corresponding to the demethylated region of the RLP43 promoter is abolished in the ros1-3 mutant background.

DAP-qPCR analysis at the RLP43 promoter upon pull-down of Col-0 or ros1-3 genomic DNA by GST (negative control), WRKY18-GST or WRKY40-GST.

UBQ and bZIP60 served as negative and positive controls, respectively.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Original DAP-qPCR data for Figure 5B.

Figure supplement 1. ROS1-directed demethylation is crucial for the binding of WRKY18 and WRKY40 at the RLP43 promoter.

Figure supplement 1—source data 1. Original DAP-qPCR data for Figure 5—figure supplement 1.
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Figure 5—figure supplement 1). Collectively, these data provide evidence that the hypermethyla-

tion observed in ros1-3 mutants at the RLP43 promoter directly repels DNA binding of WRKY TFs.

ROS1-directed demethylation of RMG1 and RLP43 promoter-regulatory
regions is causal for both flg22-triggered gene inducibility as well as
basal resistance against Pto DC3000
The fact that the demethylation of a discrete RLP43 promoter region, carrying a functional W-box

cis-element, is required for WRKY TF DNA binding, suggests that the ROS1-directed suppression of

promoter hypermethylation must be causal for flg22-triggered gene inducibility. To test this hypoth-

esis, we generated Arabidopsis transgenic lines expressing a chimeric inverted repeat transgene

bearing sequence identity to the RMG1 and RLP43 promoter regions that are subjected to ROS1-

dependent demethylation (Figure 6A). By using this approach, we aimed to assess whether artificial

siRNAs in Col-0 would override the dominance of ROS1 over RdDM, thereby triggering hypermethy-

lation at these promoter regions, which carry W-box cis-elements and DNA binding site of WRKY

TFs (Figure 4, Figure 4—figure supplement 3). Molecular characterization by northern blot and

McrBC-qPCR analyses, respectively, revealed levels of siRNA accumulation and of methylation at

these promoter regions that were comparable to the ones detected in ros1-3 mutants (Figure 6B,

Figure 6—figure supplement 1), thereby validating our experimental strategy. We next challenged

two independent IR-RMG1p/RLP43p transgenic lines with flg22 and monitored the levels of RMG1

and RLP43 mRNAs at 6 hr post-treatment. Significantly, we found that the induction of these genes

was strongly altered in the two IR-RMG1p/RLP43p independent transgenic lines, almost to the same

extent as in the ros1-elicited mutant background (Figure 6C, Figure 6—figure supplement 1C). By

contrast, the flg22-triggered induction of RBA1 and FRK1 was comparable in Col-0 and IR-RMG1p/

RLP43p transgenic lines (Figure 6D, Figure 6—figure supplement 1B), supporting a specific tran-

scriptional silencing effect towards RMG1 and RLP43. In addition, we found that IR-RMG1p/RLP43p

lines displayed enhanced Pto DC3000 titres compared to Col-0-infected plants (Figure 6E), a pheno-

type resembling the one observed in rmg1-infected plants (Figure 2C). Collectively, these data dem-

onstrate that hypermethylation of these RMG1 and RLP43 discrete promoter regions is causal for

the compromised flg22 induction of these genes and for increased susceptibility towards Pto

DC3000. We conclude that ROS1-directed demethylation of these promoter regulatory sequences is

critical for both flg22-triggered gene inducibility and antibacterial resistance.

Discussion
Active demethylation has emerged as a key regulatory mechanism of plant disease resistance. For

examples, an enhanced susceptibility towards Pto DC3000 and Hyaloperonospora arabidopsidis was

reported in ros1 mutants (Yu et al., 2013; López Sánchez et al., 2016). A heightened disease sus-

ceptibility towards Fusarium oxysporum was also found in the Arabidopsis ros1 dml2 dml3 (rdd)

mutant, and this phenotype was exacerbated by knocking-down DME in this background (Le et al.,

2014; Schumann et al., 2019). Although these data indicate that demethylases promote basal resis-

tance against unrelated phytopathogens, very little is known about the mechanisms involved in this

process. Here, we showed that Arabidopsis ros1 mutants exhibited enhanced growth and vascular

propagation of Pto DC3000, two phenotypes which were almost fully rescued in ros1dcl23-infected

mutants (Figure 1). Therefore, ROS1 promotes basal resistance against Pto DC3000 mainly by

antagonizing DCL2 and/or DCL3 functions.

We further found that the reprogramming of more than 2000 genes was altered in ros1-elicited

mutants, supporting a major role for ROS1 in controlling PAMP-triggered gene expression changes.

Among these genes, only ~10% exhibited hyperDMRs in ros1 mutants and were thus potentially

directly regulated by ROS1. This is congruent with a previous transcriptome study conducted in ros1

mutants infected with Hyaloperonospora arabidopsidis (López Sánchez et al., 2016) and suggests

that the majority of biotic stress-responsive genes are ROS1 secondary targets. This phenomenon is

likely explained by the fact that ROS1 directly controls the expression of a subset of central regula-

tory components of immune responses, such as plant immune receptors, which have large impact on

downstream signalling events.

In addition, we found that a similar proportion of ROS1 putative primary targets were up-regu-

lated (102 genes) and down-regulated (115 genes) in response to flg22. These results suggest that
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Figure 6. The artificial siRNA-directed targeting of remethylation at the RMG1 and RLP43 promoters impairs the flg22-triggered inducibility of these

genes and enhances susceptibility towards Pto DC3000. (A) Scheme depicting the chimeric inverted repeat (IR) construct designed to simultaneously

direct DNA remethylation at the RMG1 and RLP43 promoter regions. The IR-RMG1p/RLP43p contains the sequences corresponding exactly to the

promoter sequence regions of RMG1 (blue) and RLP43 (orange) that are subjected to ROS1-directed demethylation in Col-0 and hypermethylated in

Figure 6 continued on next page

Halter et al. eLife 2021;10:e62994. DOI: https://doi.org/10.7554/eLife.62994 14 of 27

Research article Genetics and Genomics Plant Biology

https://doi.org/10.7554/eLife.62994


ROS1 is equally capable of promoting the induction and repression of genes during flg22 elicitation.

Some of these repressed targets might act as plant defence repressors or, alternatively, as modula-

tors of plant developmental or physiological processes, possibly to redirect resources towards immu-

nity and away from growth. It is noteworthy that the role of active demethylation in promoting

repression of genes has previously been reported in the context of fruit ripening, whereby the

tomato ROS1 homolog SlDML2 was found to repress hundreds of ripening-related genes

(Lang et al., 2017). Further studies are needed to determine whether this feature of active demethy-

lases could occur in the context of other biological processes.

We also performed a detailed analysis of the flg22-induced ROS1 putative primary targets. Most

of these genes exhibited hypermethylation at their promoters, an effect that was almost abolished in

ros1dcl23 mutants (Figure 3C and D). These data suggest that ROS1 antagonizes RdDM at these

promoters, presumably to facilitate their transcriptional activation during plant defence signalling.

Consistent with this hypothesis, we found that the impaired induction of RMG1, RBA1 and of the

phosphoglycerate mutase genes observed in ros1-elicited plants was either fully or partially restored

in ros1dcl23-elicited mutants (Figures 2 and 3). This was, however, not the case of RLP43, which

remained fully silenced in ros1dcl23-elicited mutants, a phenotype that was associated with a moder-

ate gain of 21 nt siRNAs at the RLP43 hyperDMR in ros1dcl23 mutants (Figure 3, Figure 3—figure

supplement 3). This observation suggests that DCL4 and/or DCL1 might compensate for the lack of

DCL2 and DCL3 in the ros1 mutants to maintain RdDM at the RLP43 promoter. This would be con-

sistent with recent findings showing that PolIV-dependent 21nt siRNA species, which are produced

by DCL4, can trigger RdDM (Panda et al., 2020). The longer RNAs detected at the RLP43

hyperDMR in the ros1dcl23 mutants (Figure 3, Figure 3—figure supplement 3), and which exhib-

ited classical features of P4RNAs (Figure 3—figure supplement 3; Blevins et al., 2015; Zhai et al.,

2015), might also contribute to this phenomenon. The latter hypothesis is supported by the fact that

P4RNA species can efficiently direct DNA methylation at a large set of RdDM targets in the absence

of DCL-dependent siRNAs (Yang et al., 2016). Alternatively, and/or additionally, some yet-unknown

RNA-independent mechanism(s) might ensure the maintenance of DNA methylation at this locus in

the absence of ROS1, DCL2, and DCL3 factors.

Interestingly, our work demonstrated that the dominance of ROS1 over RdDM at two immune-

responsive gene promoters can be alleviated by artificially producing siRNAs against these genomic

regions (Figure 6). In particular, we showed that the stable expression of an inverted repeat

Figure 6 continued

ros1 mutants. This inverted repeat transgene is driven by the constitutive 35S promoter, hence hypothesized to constitutively produce two populations

of siRNA species designed to force remethylation of the RMG1 and RLP43 promoter regions that are normally demethylated by ROS1 in Col-0. (B) The

RMG1 and RLP43 promoters exhibit hypermethylation in IR-RMG1p/RLP43p lines such as in ros1-3 mutants. Genomic DNAs from Col-0, ros1-3, and two

independent IR-RMG1p/RLP43p lines (two biological replicates per line) were digested using McrBC and further analysed by qPCR. Ratio between

digested DNA and undigested DNA was quantified to assess the proportion of methylation. (C) The flg22-triggered induction of RMG1 and RLP43 is

impaired in the two independent IR-RMG1p/RLP43p lines. Five-week old rosette leaves of Col-0, ros1-3, and two independent IR-RMG1p/RLP43p lines

were syringe-infiltrated with either mock (water) or 1 mM of flg22 for 6 hr, and the mRNA levels of RMG1 and RLP43 were monitored by RT-qPCR

analyses. The mRNA levels are relative to the level of UBQ transcripts. Statistical significance of flg22 treatment on expression was assessed using a

two-way ANOVA test and a Sidak’s multiple comparisons test. Asterisks indicate statistical significance (*: p<0.05, **: p<0.01, ***: p<0.001, ns: not

significant). (D) The flg22-triggered induction of RBA1 and FRK1 is not affected in the two independent IR-RMG1p/RLP43p lines. Five-week old rosette

leaves of Col-0, ros1-3, and two independent IR-RMG1p/RLP43p lines were syringe-infiltrated with either mock (water) or 1 mM of flg22 for 6 hr, and the

mRNA levels of RBA1 and FRK1 were monitored by RT-qPCR analyses. The mRNA levels are relative to the level of UBQ transcripts. Statistical

significance of flg22 treatment on expression was assessed using a two-way ANOVA test and a Sidak’s multiple comparisons test. Asterisks indicate

statistical significance (*: p<0.05, **: p<0.01, ***: p<0.001, ns: not significant). (E) IR-RMG1p/RLP43p lines exhibit increased Pto DC3000 titre. Five-week-

old plants of Col-0, ros1-3, and two independent IR-RMG1p/RLP43p lines were dip-inoculated with Pto DC3000-GFP at 5 � 107 cfu ml�1. Bacterial titres

were monitored at 3 days post-infection (dpi). Each data point represents bacterial titre extracted from a single leaf. Three leaves out of four plants per

line and from three independent experiments were considered for the comparative analysis. Statistical significance was assessed using a one-way

ANOVA test and Tukey’s multiple comparisons test.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Original McrBC-qPCR, qRT-PCR, and bacterial propagation data for Figure 6B–E.

Figure supplement 1. Artificial siRNA-directed remethylation of RMG1 and RLP43 promoters in the Col-0 background limits flg22-triggered induction

of these genes.

Figure supplement 1—source data 1. Original qRT-PCR data for Figure 6—figure supplement 1.
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transgene bearing sequence homologies to the ROS1 targeted regions of RMG1 and RLP43 pro-

moters, resulted in their hypermethylation along with a compromised flg22-triggered induction of

these genes (Figure 6). Furthermore, we found that these transgenic lines exhibited an enhanced

susceptibility towards Pto DC3000, indicating that the silencing of these genes is sufficient to

dampen basal resistance (Figure 6). We are anticipating that this approach will be extensively used

in the future to assess the regulatory function of demethylases over any target(s) of interest. This

strategy could also be exploited to transmit, and possibly maintain, epialleles at specific demethy-

lase target(s), and perhaps even when the transgene is segregated away (if the intrinsic features of

the targeted sequences are prone to form stable epialleles) (Catoni et al., 2017; Li et al., 2020).

Such an epi-editing strategy would be particularly relevant in crops to prevent the unwanted expres-

sion of demethylase target(s) having negative effects on desirable trait(s).

Although the inactivation of demethylases is known to dampen resistance towards unrelated phy-

topathogens (Yu et al., 2013; López Sánchez et al., 2016; Le et al., 2014; Schumann et al., 2019),

the functional relevance of individual demethylase targets in basal resistance remains ill-defined.

Here, we have conducted an in-depth characterization of the ROS1 target RMG1, an orphan TNL

gene containing two remnant RC/Helitron TEs in its promoter. The AtREP4 distal repeat was found

highly methylated in all cytosine sequence contexts, a methylation pattern that was required to

maintain a low basal expression of this gene (possibly to prevent trade-off effects caused by its over-

expression) (Yu et al., 2013; Deleris et al., 2016). The AtREP11 proximal repeat was, conversely,

unmethylated in Col-0 plants and gained high levels of methylation in ros1 mutants, particularly at

the 3’ boundary of the AtREP11 repeat, which contains W-box cis-elements and displays DNA bind-

ing of WRKY TFs (Figure 2, Figure 4—figure supplement 4; Yu et al., 2013). Significantly, both the

accumulation of siRNAs and the hypermethylation observed in ros1 mutant at this promoter region

were found abolished in the ros1dcl23 mutant background (Figure 2). Furthermore, a full restoration

of flg22-triggered inducibility of RMG1 was observed in ros1dcl23-elicited mutants, indicating that

siRNAs limit the induction of this gene in the ros1-elicited mutant background (Figure 2). Impor-

tantly, we found that mutations in RMG1 enhanced disease susceptibility towards Pto DC3000,

highlighting a major role of this TNL in basal resistance towards this bacterium (Figure 2). These

data support previous findings showing that NLRs are not solely required for race-specific resistance

but can also contribute to basal resistance, possibly by orchestrating PTI signalling and/or by mount-

ing a weak ETI response through the recognition of virulence factors (Boccara et al., 2014; Canto-

Pastor et al., 2019; Roth et al., 2017). Although RMG1 is a functional ROS1 target, the concomi-

tant silencing of several other defence genes in ros1 must additionally account for the increased dis-

ease susceptibility phenotypes observed in this mutant background.

DNA methylation has been shown to block DNA binding of some TFs in vitro (Watt and Molloy,

1988; Iguchi-Ariga and Schaffner, 1989; Tate and Bird, 1993; O’Malley et al., 2016). However,

recent mechanistic studies at the promoters and/or enhancers of mammalian genes have highlighted

a more complex picture, whereby TFs are either sensitive to DNA methylation or, alternatively, bind

to methylated regions and in turn trigger their demethylation (Domcke et al., 2015; Schüb-

eler, 2015; Yin et al., 2017). In human cells, earlier studies suggested a role for active demethyla-

tion in modulating the chromatin accessibility of TFs in the context of bacterial elicitation or infection

(Pacis et al., 2015). For example, a large set of genomic regions were found demethylated in human

dendritic cells infected with Mycobacterium tuberculosis, leading to chromatin relaxation at

enhancers carrying stress-responsive cis-elements (Pacis et al., 2015). Nevertheless, a recent study

suggests that demethylation at these immune-responsive enhancers is unlikely required for the chro-

matin-based recruitment of TFs in these conditions, but is more probably occurring as a conse-

quence of TFs binding at these genomic regions (Pacis et al., 2019). However, the exact role that

demethylation could play in the DNA/chromatin accessibility for TFs remains ambiguous, because

this work has not been conducted in human cells lacking individual demethylases. Here, we have

exploited the genetically tractable model organism Arabidopsis thaliana to investigate this question

at immune-responsive gene promoters. Interestingly, we found that the flg22-induced ROS1 primary

targets exhibit an over-representation of in vitro WRKY TFs binding at discrete demethylated pro-

moter regions (Figure 4, Figure 4—figure supplement 1). Some of these W-box elements are likely

functional because in vivo recruitment of WRKYs was additionally observed at a subset of promoter

regions in flg22-treated seedlings (Figure 4, Figure 4—figure supplement 5; Birkenbihl et al.,

2017). By using a transcriptional fusion reporter approach, we also provided evidence that a single
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W-box element, centred in the RLP43 promoter region that is demethylated by ROS1, was essential

for flg22-triggered induction of this gene (Figure 4). Furthermore, we demonstrated that ROS1-

directed demethylation of this RLP43 promoter region facilitated DNA binding of the PAMP-respon-

sive AtWRKY40 and AtWRKY18 (Figure 5, Figure 5—figure supplement 1; Birkenbihl et al., 2017).

Based on these findings, we propose that ROS1 cis-regulates a subset of defence genes by ensuring

binding of WRKY TFs at promoter-regulatory regions, thereby allowing their rapid and pervasive

transcription during PTI. Consistent with this cis-effect model, we observed a compromised flg22-

triggered inducibility of RLP43 and RMG1 by forcing methylation at discrete promoter-regulatory

regions, which are normally demethylated by ROS1, and that carry W-box elements (Figure 4, Fig-

ure 6, Figure 6—figure supplement 1). ROS1-directed demethylation of defence gene promoters

therefore likely provides a chromatin environment that is permissive for WRKY TFs binding, render-

ing these genes poised for transcriptional activation during plant defence signalling. It is noteworthy

that the proposed mechanism might also hold true for other TF families, which exhibit in vitro bind-

ing at the demethylated promoter regions of flg22-induced ROS1 targets (Figure 4—figure supple-

ment 1). Furthermore, this phenomenon might contribute to the down-regulation of genes during

PTI, by facilitating the recruitment of repressive TFs at their promoters. Consistent with this hypothe-

sis, different classes of TFs were found to preferentially bind to demethylated promoter regions of a

subset of flg22-repressed ROS1 targets (Figure 4—figure supplement 2).

Plants and animals have evolved sophisticated epigenetic reprogramming prior and after fertiliza-

tion. In mammals, two waves of global demethylation and remethylation occur during germ cell

development and embryogenesis, which tightly control transgenerational epigenetic inheritance

(Heard and Martienssen, 2014). In plants, epigenetic reprogramming during sexual reproduction is

less robust than in mammals, rendering epiallele transmission more possible through generations.

This is supported by the description of multiple artificial and natural epialleles, recovered from vari-

ous plant species (Weigel and Colot, 2012; Heard and Martienssen, 2014). In Arabidopsis, the

dynamics and mechanisms of epigenetic reprogramming have been extensively characterized during

the last decade. While high levels of CG methylation are observed in male meiocytes, microspores,

and sperm cells, a substantial erasure of CHH methylation occurs in the male germline

(Calarco et al., 2012; Ibarra et al., 2012; Walker et al., 2018), which is regained during embryo-

genesis through RdDM (Bouyer et al., 2017; Kawakatsu et al., 2017). The latter phenomenon is

accompanied by a restoration of active demethylation, which orchestrates removal of DNA methyla-

tion at incoming TEs/repeats and imprinted genes that display CG hypermethylation in the sperm

cells, as a result of ROS1/DMLs repression in these cell types. Similarly, ROS1/DMLs might restore

demethylation at defence gene promoters in the embryo, notably to ensure the reestablishment of

poised W-box elements in the offspring (Deleris et al., 2016). Conversely, enhanced accumulation

of endogenous siRNAs at these regulatory sequences is predicted to overcome demethylase reprog-

ramming, as observed upon artificial production of siRNAs against RMG1 and RLP43 promoter

regions carrying W-box cis-elements (Figure 3, Figure 6, Figure 6—figure supplement 1), and

would likewise favour epiallele formation. Investigating whether such hypothetical mechanism could

occur in nature and contribute to the emergence of immune-responsive expression variants will be

essential to unravel the mechanisms by which environmental constraints drive the selection of new

phenotypes during plant evolution and adaptation.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation

Source or
reference Identifiers Additional information

Gene
(Arabidopsis thaliana)

ROS1 Arabidopsis.org AT2G36490

Gene
(Arabidopsis thaliana)

DCL2 Arabidopsis.org AT3G03300

Gene
(Arabidopsis thaliana)

DCL3 Arabidopsis.org AT3G43920

Continued on next page
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Continued

Reagent type
(species) or resource Designation

Source or
reference Identifiers Additional information

Gene
(Arabidopsis thaliana)

RMG1 Arabidopsis.org AT4G11170

Gene
(Arabidopsis thaliana)

RLP43 Arabidopsis.org AT3G28890

Strain, strain
background
(Pseudomonas syringae
pv. tomato)

Pto DC3000-GFP Gift from Pr. Sheng
Yang He (Duke
University, US).

Genetic reagent
(Arabidopsis thaliana)

ros1-3 Penterman et al.,
2007

Genetic reagent
(Arabidopsis thaliana)

ros1-4 Nottingham
Arabidopsis
stock center (NASC)

N682295

Genetic reagent
(Arabidopsis thaliana)

dcl2-1 dcl3-1 Xie et al., 2004

Genetic reagent
(Arabidopsis thaliana)

ros1-3 dcl2-1 dcl3-1 This study

Genetic reagent
(Arabidopsis thaliana)

rmg1-1 Nottingham
Arabidopsis
stock center (NASC)

N678063

Genetic reagent
(Arabidopsis thaliana)

rmg1-2 Nottingham
Arabidopsis
stock center (NASC)

N674117

Commercial
assay or kit

MagneGST Pull-
Down System

Promega V8870

Commercial
assay or kit

McrBC New England
Biolab (NEB)

M0272

Plant material and growth conditions
Arabidopsis plants were grown in short day condition (8 hr light at 22.5˚C, 16 hr dark at 19.5˚C) and

all experiments were performed on 5-week-old rosette leaves.

Mutant lines
Besides WT Col-0, the single mutants ros1-3 (Penterman et al., 2007), ros1-4 (SALK_045303), rmg1-

1 (SALK_007034) and rmg1-2 (SALK_023944), the double dcl2-1 dcl3-1 (dcl23) (Xie et al., 2004),

and the triple ros1-3 dcl2-1 dcl3-1 (ros1dcl23) mutants were used in this study.

Plasmids and constructs
The WRKY-GST constructs
The pGEX-2TM-WRKY18 and pGEX-2TM-WRKY40 plasmids allow bacterial expression of the N-ter

GST-tagged version of full-length WRKY18 and WRKY40 (gift from Pr. Imre Somssich, MPI, Cologne,

Germany). Full-length cDNAs of each WRKYs were amplified and cloned into Gateway compatible

entry vectors and subsequently recombined into the pGEX-2TM-GW destination vector.

The IR-RMG1p/RLP43p inverted repeat construct
The IR-RMG1p/RLP43p construct is a chimeric inverted repeat construct composed in each arm of

the 180 bp and 137 bp sequences that are demethylated by ROS1 at the RMG1 and RLP43 pro-

moters, respectively (with the intron of the petunia chalcone synthase gene CHSA in between). The

IR-RMG1p/RLP43p was synthesized and inserted by restriction enzyme digestion into the modified

pDON221-P5-P2 vector by GenScript. A double recombination of this vector together with the

pDON221-P1-P5r plasmid carrying the Cauliflower Mosaic Virus (CaMV) 35S promoter sequence in

the pB7WG Gateway destination vector was performed to obtain the destination plasmid containing

the 35Sp::IR-RMG1p/RLP43p construct. The plasmid was further introduced into the Agrobacterium
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tumefaciens C58C1 strain, which was then used for Agrobacterium-mediated plant transformation

(Clough and Bent, 1998).

RLP43p::GUS and RLP43pmut::GUS
The 1.5 Kb sequence located upstream of the start codon of RLP43 was cloned in the pENTR/D-

TOPO vector and recombined in the pBGWFS7 binary destination vector, containing the GUS

reporter gene. Site-directed mutagenesis was performed with primers GAACGCCTCGTAGG

TTCAAGCTGTGTTGGAAT and ATTCCAACACAGCTTGAACCTACGAGGCGTTC to mutate the

W-box from GGTCAA to GTTCAA. Both RLP43p::GUS and RLP43pmut::GUS constructs were trans-

formed in the Col-0 accession by Agrobacterium-mediated method (Clough and Bent, 1998). Pri-

mary transformants were selected with Basta herbicide (10 mg/mL). GUS staining as well as RT-qPCR

analysis on GUS transcripts were performed on at least 16 individual primary transformants for WT

and mutated constructs. The primary transformants were infiltrated with either mock (water) or 1 mM

of flg22 during 6 hr for the qRT-PCR and 24 hr for the GUS staining.

Bacterial secondary leaf vein inoculation and quantification of the
bacterial spreading phenotypes
Bacterial propagation in the secondary veins was assessed as described previously (Yu et al., 2013).

About 12 leaves from three plants per condition were inoculated with a toothpick that was previ-

ously dipped in an inoculum of GFP-tagged Pto DC3000 at a concentration of 5 � 106 cfu/ml (OD600

of 0.2 corresponds to 10 8cfu/ml). Inoculation was done on six secondary veins per leaf and two sites

of inoculation per vein. The number of bacterial spreading events from the wound inoculation sites

was quantified after 3 days under UV light using a macrozoom (Olympus MVX10). When the bacteria

propagated away from any of the 12 inoculation sites, it was indexed as propagation with a possibil-

ity of maximum 18 propagations per leaf. The values from three independent experiments were con-

sidered for the comparative analysis. Statistical significance was assessed using a one-way ANOVA

test and Tukey’s multiple comparisons test.

Bacterial growth assays
Four plants per condition were dip-inoculated using Pto DC3000 at 5 � 107 cfu/ml supplemented

with 0.02% Silwet L-77, and immediately placed in chambers with high humidity. Bacterial growth

was determined 3 days post-infection. For the quantification, infected leaves were harvested,

washed for 1 min in 70% (v/v) EtOH, and 1 min in water. Leaf discs with a diameter of 4 mm were

excised, grinded, and homogenized in 100 ml of water. Each data point consists of four-leaf discs.

Fifteen microliters of each homogenate were then plated undiluted and at different dilutions. Bacte-

rial growth was determined after 36 hr of incubation at 28˚C by colony counting. The values from

three independent experiments were considered for the comparative analysis. Statistical significance

was assessed using a one-way ANOVA test and Tukey’s multiple comparisons test.

Quantitative RT-PCR (RT-qPCR) analyses
Total Arabidopsis RNAs from two leaves per individual plant per condition were extracted using

Nucleospin RNA plant kit (Macherey Nagel). Five hundred nanograms of DNase-treated RNA were

reverse transcribed using qScript cDNA Supermix (Quanta Biosciences). cDNA was then amplified

by real time PCR reactions using Takyon SYBR Green Supermix (Eurogentec) and gene specific pri-

mers. Expression was normalized to that of the Arabidopsis housekeeping gene Ubiquitin. Sequen-

ces of the primers are listed in Supplementary file 2.

McrBC digestion followed by qPCR
McrBC digestion was performed as described previously (Bond and Baulcombe, 2015) on 200 ng of

DNA. The reaction buffer was composed of 1� NEB Buffer 2, 20 mg BSA, 1 mM GTP in a final vol-

ume of 100 ml. Then, each sample was split in two tubes. One hundred nanograms of DNA were

digested at 37˚C overnight with 10 U of McrBC (New England Biolabs) in one tube, while the enzyme

was not added in the control tube. The reactions were inactivated at 65˚C during 20 min. Six nano-

grams of DNA were then amplified by real time PCR reactions using Takyon SYBR Green Supermix
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(Eurogentec) and gene-specific primers, and the ratio between digested DNA and undigested DNA

was quantified to assess the proportion of methylation (Bond and Baulcombe, 2015).

DAP followed by qPCR analysis
DAP followed by qPCR was performed following a protocol modified from Bartlett et al., 2017.

DNA preparation
For each condition, genomic DNA was extracted from leaves of three independent 5-week-old

plants using the CTAB (hexadecyl trimethyl-ammonium bromide) protocol (Doyle and Doyle, 1990).

Then, 5 mg of genomic DNA were sonicated to obtain DNA fragments of around 200–300 bp long.

Sonicated DNA was then precipitated and resuspended in EB buffer (10 mM Tris-HCl, pH = 8.5).

Protein expression
For each TF or control expressing GST alone, 200 ml cultures of E. coli Rosetta strains, carrying

pGEX-TW-WRKY or empty vector for the GST alone, at a OD600nm = 0.3–0.6 were induced with 1

mM IPTG during 1 hr at 37˚C. Expression of the WRKYs was then confirmed on a Coomassie gel.

DNA-affinity purification
Bacterial pellets were lysed and sonicated for 10 cycles of 10 s. The supernatants containing

expressed proteins were incubated with washed MagneGST beads (Promega) (25 ml per TF and per

DNA sample tested) during 1 hr at room temperature with gentle rotation. After five steps of wash-

ing with 1� PBS + NP40 (0.005%) and three steps with 1� PBS, beads bound with GST-WRKYs were

mixed with 200 ng of sonicated DNAs and incubated 1 hr at room temperature with gentle rotation.

Samples were then washed five times with 1� PBS + NP40 (0.005%) and two times with 1� PBS.

Beads were then resuspended in 25 ml EB (10 mM Tris-HCl, pH = 8.5) and the samples heated during

10 min at 98˚C. Supernatant was kept for further qPCR analysis.

qPCR following DAP
The equivalent of 1 ml of immunoprecipitated DNA was then amplified by real time PCR reactions

using Takyon SYBR Green Supermix (Eurogentec) and gene specific primers, and normalized to the

input DNA.

Northern blot
Accumulation of low molecular weight RNAs was assessed by low molecular weight northern blot

analysis as previously described (Navarro et al., 2008). Total RNAs were extracted from three inde-

pendent plants per genotype using TRIzol reagent and stabilized in 50% formamide, and 30 mg of

total RNAs were used. To generate specific 32P-radiolabelled probes, regions of 150–300 bp were

amplified from the plasmids using gene specific primers listed in Supplementary file 2, and the

amplicons were labelled by random priming (Prime-a-Gene Labeling System, Promega). U6 was

used as an equal loading control.

GUS staining assay
GUS staining was performed as described previously (Zervudacki et al., 2018). The staining was

performed on at least 16 individual T1 plants. Two leaves per plant were infiltrated either with mock

(water) or with 1 mM flg22 for 24 hr.

Whole genome bisulfite, mRNA and small RNA sequencing, and
bioinformatic datamining
Small RNA reads processing
Total RNAs from 5-week-old leaves of Col-0, ros1-3 and ros1dcl23 mutants were used for small RNA

deep-sequencing (two independent biological replicates were used for this analysis). Custom librar-

ies for ~16–40 nt RNAs were constructed and sequenced by Fasteris. We filtered all six libraries

based on base-call quality of Q20 (99% base call accuracy). We then selected a subset of read sizes

comprised between 16 and 29 nt for further analyses. Reads were mapped to TAIR10 genome using
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bowtie (Langmead et al., 2009), allowing zero mismatches, and further normalized using a Reads

Per Kilobase Million (RPKM) approach. A strong uphill correlation was observed between replicates:

0.79 between Col-0 replicates, 0.81 between ros1-3 replicates, and 0.77 between ros1dcl23

replicates.

Identification of flg22 differentially expressed genes
Total RNAs were extracted from 5-week-old leaves of Col-0 and ros1-3 mutants syringe-infiltrated

with either mock (water) or 1 mM of flg22 for 6 hr, and mRNA-seq experiments further carried out

(two independent biological replicates were used for this analysis). Reads were mapped to the

TAIR10 genome using TopHat (v2.0.8b) (Kim et al., 2013) and allowing two mismatches. In this anal-

ysis, reads reporting multiple alignments were tolerated. The score was divided by the total number

of hits. Using the stranded mRNA protocol, read counts were reported separately for sense and anti-

sense transcripts. Uninformative annotations were filtered out by keeping only annotations showing

at least one count per million (CPM) in two samples simultaneously. After count per million computa-

tions, if a gene had only one read reported in only one sample, it was discarded. But if it had one

read mapped in at least two samples, it was kept. This step is performed to eliminate non-expressed

and non-informative genes that tend to produce noise and ultimately bias internal variance estima-

tions, needed for further steps. Trimmed mean of M-values (TMM) normalization was performed fol-

lowed by a likelihood ratio test. The resulting p-values were adjusted using Benjamini and

Hochberg’s approach (Benjamini and Hochberg, 1995). An annotation was considered differentially

expressed when a log2 fold-change >0 and a p-value <0.05 were observed in ‘flg22’ vs ‘mock’

comparison.

Identification of flg22 differentially expressed genes that are regulated by
ROS1
We identified differentially expressed genes separately for Col-0 and ros1-3 samples in elicited vs

mock conditions. For each gene, we kept the information of the type of regulation: ‘induced’ when

the p-value after correction is �0.05 and the log2 fold-change >0, ‘repressed’, when the p-value

after correction is �0.05 and the log2 fold-change <0, or ‘none’ for the rest of the genes.

In the following analysis, we considered four cases. If there is an induction in Col-0 and there is

no regulation in ros1-3 or the regulation in ros1-3 is at least two times less important than that of

Col-0 (based on fold-change), the gene will be considered as ‘less-induced’. Likewise, a ‘repressed’

gene in Col-0 will be considered as ‘less-repressed’ if its repression is at least two times less impor-

tant or if there is no regulation in ros1-3.

Bisulfite-sequencing (Bs-Seq) data mining
Genomic DNAs from 5-week-old leaves of Col-0, ros1-3 and ros1dcl23 were extracted using DNeasy

plant mini kit (Qiagen) and used for bisulfite sequencing (Bs-Seq) analyses (two independent biologi-

cal replicates were used for this analysis). We filtered-out low quality reads using trim galore and

aligned to TAIR10 genome using Bismark (Krueger and Andrews, 2011). Mapping steps were fol-

lowed by a cytosine methylation call.

Identification of DMRs
The methodology was conducted as previously reported (Qian et al., 2012) and performed for each

biological replicate separately. For differentially methylated cytosines (DMCs) call, we kept cytosines

having a read coverage of at least two and less than 100 in both the wild-type and mutant samples.

A cytosine was considered differentially methylated when the p-value from the two-tailed fisher’s

test was <0.05, hypermethylated if the level of methylation in the mutant was greater than the WT

and hypomethylated in the opposite case. DMRs were retrieved using a sliding windows strategy.

We divided the genome into 1000 bp regions with a sliding window of 500 bp. We kept the regions

which contained at least 5 DMCs and we redefined the coordinates as the first and last DMCs of

that region. When the distance between two regions was less than 100 bp with at least 10 DMCs,

they were concatenated into one window. Regions with ambiguous hypermethylated and hypome-

thylated DMCs were discarded. Finally, we only kept regions that overlapped in both replicates with
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at least 10 DMCs and a 10% methylation level shift in one of the three cytosine contexts when com-

paring Col-0 to ros1-3.

Cross-referencing mRNA-Seq and bisulfite-Seq data
For this analysis, we focused on protein-coding genes having a hyper-DMR ‘within 2 Kb’ (i.e. the

region covering the gene-body plus 2 Kb upstream and downstream). Using this method, we

selected 2943 protein coding genes. This list was then crossed with the list of ‘less-induced genes’,

which allowed us to retrieve 102 candidates for further analyses.

Meta-analyses of ‘less-induced genes’ having a hyper-DMR ‘within 2 Kb’
We used deeptools (Ramı́rez et al., 2016) with sliding genomic windows of 100 bp to visualize aver-

age methylation levels of 102 candidates in Col-0, ros1-3 and ros1dcl23 samples. The rest of 2943

genes having a hyper-DMR within 2 kb were used as control. With the same approach we compared

families of small RNAs in all three backgrounds. An analysis was performed for 21-22nt and 23-24nt

families separately after a read-per-million normalization.

GAT analysis conducted on promoter sequence regions from stringent
flg22-induced ROS1 targets
To assess whether Arabidopsis TFs could bind to the DNA promoter regions from flg22-induced

ROS1 targets, we first selected a subset of 30 stringent ROS1 targets (exhibiting dense hyperDMR

in their promoter regions and which are strongly impaired in their induction in the ros1-elicited

mutant background). We used the Genomic Association Tester (GAT) (Heger et al., 2013) to find

significant association between DMRs and experimentally validated TF binding sites from previously

published DAP-seq data (O’Malley et al., 2016). A TF was kept when its p-value and fold-change of

association were respectively <0.05 and >1. K means analysis was performed to see which genes

group together when we take the WRKY binding profile as criterion. The distance tree displayed on

top of the heatmap was obtained using the GAT scores to perform a hierarchical clustering; here we

computed a one minus Pearson correlation to draw distances. The size of the circle represents the

log2-fold-change of GAT analysis (a higher log2-fold-change, corresponding to a bigger circle,

means the TF binds more often to this particular promoter than in 1000 simulations of randomly

assigned genomic intervals of the same size).
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cytosine methylation on DNA binding specificities of human transcription factors. Science 356:eaaj2239.
DOI: https://doi.org/10.1126/science.aaj2239, PMID: 28473536

Yu A, Lepère G, Jay F, Wang J, Bapaume L, Wang Y, Abraham AL, Penterman J, Fischer RL, Voinnet O, Navarro L.
2013. Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. PNAS 110:
2389–2394. DOI: https://doi.org/10.1073/pnas.1211757110, PMID: 23335630

Zervudacki J, Yu A, Amesefe D, Wang J, Drouaud J, Navarro L, Deleris A. 2018. Transcriptional control and
exploitation of an immune-responsive family of plant retrotransposons. The EMBO Journal 37:e98482.
DOI: https://doi.org/10.15252/embj.201798482, PMID: 29871888

Zhai J, Bischof S, Wang H, Feng S, Lee T, Teng C, Chen X, Park SY, Liu L, Gallego-Bartolome J, Liu W,
Henderson IR, Meyers BC, Ausin I, Jacobsen SE. 2015. A One Precursor One siRNA Model for Pol IV-
Dependent siRNA Biogenesis. Cell 163:445–455. DOI: https://doi.org/10.1016/j.cell.2015.09.032

Zhang Y, Dorey S, Swiderski M, Jones JD. 2004. Expression of RPS4 in tobacco induces an AvrRps4-independent
HR that requires EDS1, SGT1 and HSP90. The Plant Journal 40:213–224. DOI: https://doi.org/10.1111/j.1365-
313X.2004.02201.x, PMID: 15447648

Zhang H, Lang Z, Zhu JK. 2018. Dynamics and function of DNA methylation in plants. Nature Reviews Molecular
Cell Biology 19:489–506. DOI: https://doi.org/10.1038/s41580-018-0016-z, PMID: 29784956

Zilberman D, Cao X, Johansen LK, Xie Z, Carrington JC, Jacobsen SE. 2004. Role of Arabidopsis ARGONAUTE4
in RNA-directed DNA methylation triggered by inverted repeats. Current Biology 14:1214–1220. DOI: https://
doi.org/10.1016/j.cub.2004.06.055, PMID: 15242620

Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD, Felix G, Boller T. 2004. Bacterial disease resistance in
Arabidopsis through flagellin perception. Nature 428:764–767. DOI: https://doi.org/10.1038/nature02485,
PMID: 15085136

Halter et al. eLife 2021;10:e62994. DOI: https://doi.org/10.7554/eLife.62994 27 of 27

Research article Genetics and Genomics Plant Biology

https://doi.org/10.1371/journal.pbio.0020104
https://doi.org/10.1371/journal.pbio.0020104
http://www.ncbi.nlm.nih.gov/pubmed/15024409
https://doi.org/10.1038/ncomms5062
http://www.ncbi.nlm.nih.gov/pubmed/24898766
https://doi.org/10.1038/cr.2015.145
http://www.ncbi.nlm.nih.gov/pubmed/26642813
https://doi.org/10.1126/science.aaj2239
http://www.ncbi.nlm.nih.gov/pubmed/28473536
https://doi.org/10.1073/pnas.1211757110
http://www.ncbi.nlm.nih.gov/pubmed/23335630
https://doi.org/10.15252/embj.201798482
http://www.ncbi.nlm.nih.gov/pubmed/29871888
https://doi.org/10.1016/j.cell.2015.09.032
https://doi.org/10.1111/j.1365-313X.2004.02201.x
https://doi.org/10.1111/j.1365-313X.2004.02201.x
http://www.ncbi.nlm.nih.gov/pubmed/15447648
https://doi.org/10.1038/s41580-018-0016-z
http://www.ncbi.nlm.nih.gov/pubmed/29784956
https://doi.org/10.1016/j.cub.2004.06.055
https://doi.org/10.1016/j.cub.2004.06.055
http://www.ncbi.nlm.nih.gov/pubmed/15242620
https://doi.org/10.1038/nature02485
http://www.ncbi.nlm.nih.gov/pubmed/15085136
https://doi.org/10.7554/eLife.62994

