Genetic surveillance in the Greater Mekong subregion and South Asia to support malaria control and elimination

  1. Christopher G Jacob
  2. Nguyen Thuy-Nhien
  3. Mayfong Mayxay
  4. Richard J Maude
  5. Huynh Hong Quang
  6. Bouasy Hongvanthong
  7. Viengxay Vanisaveth
  8. Thang Ngo Duc
  9. Huy Rekol
  10. Rob van der Pluijm
  11. Lorenz von Seidlein
  12. Rick Fairhurst
  13. François Nosten
  14. Md Amir Hossain
  15. Naomi Park
  16. Scott Goodwin
  17. Pascal Ringwald
  18. Keobouphaphone Chindavongsa
  19. Paul Newton
  20. Elizabeth Ashley
  21. Sonexay Phalivong
  22. Rapeephan Maude
  23. Rithea Leang
  24. Cheah Huch
  25. Le Thanh Dong
  26. Kim-Tuyen Nguyen
  27. Tran Minh Nhat
  28. Tran Tinh Hien
  29. Hoa Nguyen
  30. Nicole Zdrojewski
  31. Sara Canavati
  32. Abdullah Abu Sayeed
  33. Didar Uddin
  34. Caroline Buckee
  35. Caterina I Fanello
  36. Marie Onyamboko
  37. Thomas Peto
  38. Rupam Tripura
  39. Chanaki Amaratunga
  40. Aung Myint Thu
  41. Gilles Delmas
  42. Jordi Landier
  43. Daniel M Parker
  44. Nguyen Hoang Chau
  45. Dysoley Lek
  46. Seila Suon
  47. James Callery
  48. Podjanee Jittamala
  49. Borimas Hanboonkunupakarn
  50. Sasithon Pukrittayakamee
  51. Aung Pyae Phyo
  52. Frank Smithuis
  53. Khin Lin
  54. Myo Thant
  55. Tin Maung Hlaing
  56. Parthasarathi Satpathi
  57. Sanghamitra Satpathi
  58. Prativa K Behera
  59. Amar Tripura
  60. Subrata Baidya
  61. Neena Valecha
  62. Anupkumar R Anvikar
  63. Akhter Ul Islam
  64. Abul Faiz
  65. Chanon Kunasol
  66. Eleanor Drury
  67. Mihir Kekre
  68. Mozam Ali
  69. Katie Love
  70. Shavanthi Rajatileka
  71. Anna E Jeffreys
  72. Kate Rowlands
  73. Christina S Hubbart
  74. Mehul Dhorda
  75. Ranitha Vongpromek
  76. Namfon Kotanan
  77. Phrutsamon Wongnak
  78. Jacob Almagro Garcia
  79. Richard D Pearson
  80. Cristina V Ariani
  81. Thanat Chookajorn
  82. Cinzia Malangone
  83. T Nguyen
  84. Jim Stalker
  85. Ben Jeffery
  86. Jonathan Keatley
  87. Kimberly J Johnson
  88. Dawn Muddyman
  89. Xin Hui S Chan
  90. John Sillitoe
  91. Roberto Amato
  92. Victoria Simpson
  93. Sonia Gonçalves
  94. Kirk Rockett
  95. Nicholas P Day
  96. Arjen M Dondorp
  97. Dominic P Kwiatkowski
  98. Olivo Miotto  Is a corresponding author
  1. Wellcome Sanger Institute, United Kingdom
  2. Oxford University Clinical Research Unit, Viet Nam
  3. Lao-Oxford-Mahosot Hospital-Wellcome Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Lao People's Democratic Republic
  4. Institute of Research and Education Development (IRED), University of Health Sciences, Ministry of Health, Lao People's Democratic Republic
  5. Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom
  6. Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Thailand
  7. Harvard TH Chan School of Public Health, Harvard University, United States
  8. Institute of Malariology, Parasitology and Entomology (IMPE-QN), Viet Nam
  9. Centre of Malariology, Parasitology, and Entomology, Lao People's Democratic Republic
  10. National Institute of Malariology, Parasitology and Entomology (NIMPE), Viet Nam
  11. National Center for Parasitology, Entomology, and Malaria Control, Cambodia
  12. National Institute of Allergy and Infectious Diseases, National Institutes of Health, United States
  13. Shoklo Malaria Research Unit, Thailand
  14. Chittagong Medical College Hospital, Bangladesh
  15. World Health Organization, Switzerland
  16. Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Thailand
  17. Institute of Malariology, Parasitology and Entomology (IMPEHCM), Viet Nam
  18. Vysnova Partners Inc, Viet Nam
  19. Kinshasa School of Public Health, University of Kinshasa, Democratic Republic of the Congo
  20. Aix-Marseille Université, INSERM, IRD, SESSTIM, Aix Marseille Institute of Public Health, ISSPAM, France
  21. Susan and Henry Samueli College of Health Sciences, University of California, Irvine, United States
  22. Faculty of Tropical Medicine, Mahidol University, Thailand
  23. The Royal Society of Thailand, Thailand
  24. Myanmar-Oxford Clinical Research Unit, Myanmar
  25. Department of Medical Research, Myanmar
  26. Defence Services Medical Research Centre, Myanmar
  27. Midnapore Medical College, India
  28. Ispat General Hospital, India
  29. Agartala Medical College, India
  30. National Institute of Malaria Research, Indian Council of Medical Research, India
  31. Ramu Upazila Health Complex, Bangladesh
  32. Malaria Research Group and Dev Care Foundation, Bangladesh
  33. Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
  34. Worldwide Antimalarial Resistance Network (WWARN), Asia Regional Centre, Thailand
  35. MRC Centre for Genomics and Global Health, Big Data Institute, Oxford University, United Kingdom
5 figures, 3 tables and 4 additional files

Figures

Figure 1 with 2 supplements
Map of GenRe-Mekong sample collection sites in Asia.

Sites markers are colored by country. One site in Kinshasa (DR Congo) not shown.

Figure 1—figure supplement 1
Number of samples collected prospectively by month in each country.
Figure 1—figure supplement 2
Trends in sample collections over time.

Numbers of samples collected prospectively each year by surveillance projects (blue) and research studies (orange) are compared. Sample counts submitted retrospectively by research projects (green) are also shown.

Neighbor-joining tree using barcode data to show genetic differentiation between parasites in the Thai-Myanmar and Thai-Cambodian border regions.

The tree was derived from a matrix distance matrix, computed by comparing the genetic barcodes of samples. The branch length separating each pair of parasites represents the amount of genetic differentiation between them: individuals separated by shorter branches are more similar to each other. Samples from provinces/states of Myanmar, Thailand, and Cambodia near to the borders were included. Each circular marker represents a sample, colored by the province/state of origin.

Figure 3 with 5 supplements
Map of the spread of (A) artemisinin resistance (ART-R) and (B) dihydroartemisinin-piperaquine resistance (DHA-PPQ-R) in Asian countries.

Marker text and color indicate the proportion of sample classified as resistant in each province/state/division surveyed. A total of 6762 samples were included in (A) and 3395 samples in (B), after excluding samples with undetermined phenotype prediction. The results are summarized in Table 3.

Figure 3—source data 1

Proportions of parasites predicted to be resistant to artemisinin and to the DHA-PPQ combination therapy in each province/state/division.

https://cdn.elifesciences.org/articles/62997/elife-62997-fig3-data1-v1.xlsx
Figure 3—figure supplement 1
kelch13 allele diversity in Asian countries.

We show a pie chart for each province/state/division surveyed, indicating the relative proportion of different nonsynonymous mutations found in the resistance domains of kelch13. A total of 6758 samples were included in this analysis, after excluding samples where the kelch13 genotype could not be called, and those with undetermined ART-R phenotype prediction. For display clarity, mutations that we only found in singleton samples are also excluded (n=18).

Figure 3—figure supplement 1—source data 1

Sample frequencies for different kelch13 alleles at each province/state/division.

https://cdn.elifesciences.org/articles/62997/elife-62997-fig3-figsupp1-data1-v1.xlsx
Figure 3—figure supplement 2
Map of Piperaquine Resistance (PPQ-R) in Asian countries.

Marker text and color indicate the proportion of sample classified as resistant in each province/state/division surveyed. A total of 3552 samples were included in this analysis, after excluding samples where plasmepsin 2/3 copy number could not be determined. The results are summarized in Table 3.

Figure 3—figure supplement 2—source data 1

Proportions of parasites predicted to be resistant to piperaquine in each province/state/division.

https://cdn.elifesciences.org/articles/62997/elife-62997-fig3-figsupp2-data1-v1.xlsx
Figure 3—figure supplement 3
Map of Chloroquine Resistance (CQ-R) in Asian countries.

Marker text and color indicate the proportion of sample classified as resistant in each province/state/division surveyed. A total of 6458 samples were included in this analysis, after excluding samples where the crt core haplotype could not predict a phenotype. The results are summarized in Table 3.

Figure 3—figure supplement 3—source data 1

Proportions of parasites predicted to be resistant to chloroquine in each province/state/division.

https://cdn.elifesciences.org/articles/62997/elife-62997-fig3-figsupp3-data1-v1.xlsx
Figure 3—figure supplement 4
Map of Pyrimethamine Resistance (PYR-R) in Asian countries.

Marker text and color indicate the proportion of sample classified as resistant in each province/state/division surveyed. A total of 7208 samples were included in this analysis, after excluding samples where the dhfr core haplotype could not predict a phenotype. The results are summarized in Table 3.

Figure 3—figure supplement 4—source data 1

Proportions of parasites predicted to be resistant to pyrimethamine in each province/state/division.

https://cdn.elifesciences.org/articles/62997/elife-62997-fig3-figsupp4-data1-v1.xlsx
Figure 3—figure supplement 5
Map of Sulfadoxine Resistance (SD-R) in Asian countries.

Marker text and color indicate the proportion of sample classified as resistant in each province/state/division surveyed. A total of 7095 samples were included in this analysis, after excluding samples where the dhps core haplotype could not predict a phenotype.

Figure 3—figure supplement 5—source data 1

Proportions of parasites predicted to be resistant to sulfadoxine in each province/state/division.

https://cdn.elifesciences.org/articles/62997/elife-62997-fig3-figsupp5-data1-v1.xlsx
Figure 4 with 2 supplements
Longitudinal sample counts and proportions of DHA-PPQ-R parasites in three provinces of Central Vietnam.

The same geographical area (Gia Lai, Dak Lak, and Dak Nong provinces) is shown for two malaria seasons: 2017/18 (12 months from May 2017, n=523) and 2018/2019 (the following 12 months, n=455). Districts are represented by markers whose size is proportional to the number of samples, and whose color indicates the frequency of samples carrying both the kelch13 C580Y mutation and the plasmepsin2/3 amplification, and thus predicted to be DHA-PPQ-R. Marker labels show district name, resistant parasite frequency, and sample count.

Figure 4—source data 1

Proportions of samples predicted to be resistant to DHA-PPQ in districts of Vietnam, in the seasones 2017/18 and 2018/19.

https://cdn.elifesciences.org/articles/62997/elife-62997-fig4-data1-v1.xlsx
Figure 4—figure supplement 1
Frequencies of ART-R and PPQ-R parasites in Vietnam.

The three maps show frequencies of predicted resistance to artemisinin (A, n=1543), piperaquine (B, n=1380), and DHA-piperaquine (C, n=1372). Samples are aggregated by district, represented by a marker; estimates are shown only for districts with more than 10 collected samples. Marker text and color indicate the proportion of sample classified as resistant in each district. Labels show the names of the seven provinces where samples were collected.

Figure 4—figure supplement 1—source data 1

Counts and proportions of samples predicted to be resistant to artemisinin, piperaquine and DHA-PPQ in provinces of Vietnam.

https://cdn.elifesciences.org/articles/62997/elife-62997-fig4-figsupp1-data1-v1.xlsx
Figure 4—figure supplement 2
Distribution of kelch13 alleles in seven provinces of Vietnam.

Each pie chart shows the proportions of kelch13 alleles in samples collected in each province. Numbers by each pie slice indicate the actual number of samples carrying that allele. Samples with heterozygous kelch13 calls were disregarded. A total of 1567 samples with kelch13 genotypes were analyzed.

Figure 4—figure supplement 2—source data 1

Sample frequencies for different kelch13 alleles in provinces of Vietnam.

https://cdn.elifesciences.org/articles/62997/elife-62997-fig4-figsupp2-data1-v1.xlsx
Figure 5 with 2 supplements
Proportions of ART-R and KEL1/PLA1 parasites in southern Laos districts.

Districts in five provinces of southern Laos are represented by markers whose color and label indicates the frequency of samples classified as ART-R (A) and as DHA-PPQ-R, i.e. possessing markers of resistance to both artemisinin and piperaquine (B). Only districts with more than 10 samples with valid genotypes are shown. In panel (B), a dashed line denotes a hypothetical demarcation line between a Lower Zone, where DHA-PPQ-R strains have spread, and an Upper Zone, where they are absent and ART-R parasites belong to different strains.

Figure 5—source data 1

Counts and proportions of samples predicted to be resistant to artemisinin and DHA-PPQ in districts of Laos.

https://cdn.elifesciences.org/articles/62997/elife-62997-fig5-data1-v1.xlsx
Figure 5—figure supplement 1
Frequencies Distribution of kelch13 alleles in five provinces of Laos.

Each pie chart shows the proportions of kelch13 alleles in samples collected in each province. Numbers by each pie slice indicate the actual number of samples carrying that allele. Samples with heterozygous kelch13 calls were disregarded. A total of 1303 samples with kelch13 genotypes were analyzed.

Figure 5—figure supplement 1—source data 1

Sample frequencies for different kelch13 alleles in provinces of Laos.

https://cdn.elifesciences.org/articles/62997/elife-62997-fig5-figsupp1-data1-v1.xlsx
Figure 5—figure supplement 2
Neighbour-joining tree using barcode data to show genetic differentiation between groups of parasites collected in Southern Laos.

The tree was derived from a genetic distance matrix, computed by comparing the genetic barcodes of samples collected in the Lao PDR (n=1332). Each marker represents a parasite sample, coloured by province. The branch length separating each pair of parasites represents the amount of genetic differentiation between them: individuals separated by shorter branches are more similar to each other. Thicker marker borders indicate parasites carrying thekelch13C580Y mutation, while square markers indicate samples withplasmepsin2/3amplification. Orange circular callouts show notable features of this tree. (A) Shows a large cluster of parasites from the Lower Zone (Attapeu and Champasak provinces) carrying both C580Y andplasmepsin2/3amplification (DHA-PPQ-R). (B) Indicates that C580Y mutants from the Upper Zone (Savannakhet and Salavan provinces) are genetically distinct from the DHA-PPQ-R strains, but also from Upper Zone wild-type parasites.

Tables

Table 1
Participating studies in GenRe-Mekong.

For each study, we list the NMCP and Research partners involved, the type of study, the geographical region covered and the number of collection sites. In the last two columns, we show the total number of samples submitted, and the number included in the final set of quality-filtered samples used in epidemiology analyses.

NMCP partnerResearch / technical partnerStudy typeRegions surveyedSitesSubmitted
samples
Filtered samples
Center for Malaria Parasitology and Entomology of Lao PDR (CMPE)Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), VientianeGenetic SurveillanceSouth Laos
(five provinces)
5115551387
Institute of Malariology, Parasitology, and Entomology Quy Nhon (IMPE-QN), VietnamOxford University Clinical Research Unit (OUCRU), Ho Chi Minh CityGenetic SurveillanceCentral Vietnam
(seven provinces)
5116321492
National Institute of Malariology, Parasitology, and Entomology (NIMPE), VietnamVysnova Partners, Mahidol-Oxford Research Unit (MORU)Epidemiological StudySouth Vietnam
(three provinces)
19292265
National Center for Parasitology, Entomology, and Malaria Control (CNM), CambodiaGenetic SurveillanceNortheast Cambodia
(two provinces)
19182174
Bangladesh National Malaria Control ProgrammeMahidol-Oxford Research Unit (MORU)Epidemiological StudyBangladesh
(Chittagong Division)
5520551575
-Mahidol-Oxford Research Unit (MORU)Clinical Efficacy StudyCambodia, Vietnam, Thailand, Lao PDR, Myanmar, Bangladesh, India, DR Congo1718751123
-National Institutes of Health (NIH)Clinical Efficacy StudyCambodia3592502
-Oxford University Clinical Research Unit (OUCRU)Epidemiological StudySouth Vietnam4184175
-Mahidol-Oxford Research Unit (MORU)Elimination StudyWest Cambodia16932
-Mahidol-Oxford Research Unit (MORU)Epidemiological StudyNortheast Thailand78760
-Shoklo Malaria Research Unit (SMRU)Clinical Efficacy StudyThailand
(Tak province)
42928
-Shoklo Malaria Research Unit (SMRU)Elimination StudyMyanmar (Kayin State)511071813
Total96237626
Table 2
Drug resistance-related SNPs genotyped by GenRe-Mekong (excludes kelch13).
ChromosomePositionGene IdGene DescriptionMutationReferenceAlternate
Pf3D7_04_v3748239PF3D7_0417200dhfr
(bifunctional dihydrofolate reductase-thymidylate synthase)
N51IAT
Pf3D7_04_v3748262C59R/YTC
Pf3D7_04_v3748263C59R/YGA
Pf3D7_04_v3748410S108N/TGAC
Pf3D7_04_v3748577I164LAT
Pf3D7_05_v3958145PF3D7_052300mdr1
(multidrug resistance protein 1)
N86YAT
Pf3D7_05_v3958440Y184FAT
Pf3D7_05_v3961625D1246YGT
Pf3D7_07_v3403623PF3D7_0709000crt
(chloroquine resistance transporter)
N75D/ETA
Pf3D7_07_v3403625K76TAC
Pf3D7_07_v3405362N326SAG
Pf3D7_07_v3405600I356TTC
Pf3D7_08_v3549681PF3D7_0810800dhps
(dihydropteroate synthetase)
S436A/Y/F/GTGC
Pf3D7_08_v3549682S436A/Y/F/GCTAG
Pf3D7_08_v3549685A437GGC
Pf3D7_08_v3549993K540E/NAGT
Pf3D7_08_v3549995K540E/NATG
Pf3D7_08_v3550117A581GCG
Pf3D7_08_v3550212A613S/TGTA
Pf3D7_13_v3748395PF3D7_1318100fd (ferredoxin)D193YCA
Pf3D7_13_v32504560PF3D7_1362500exo (exonuclease)E415GAG
Pf3D7_14_v3-PF3D7_1408000 and PF3D7_1408100pm23 (plasmepsin 2 and plasmepsin 3)Breakpoint--
Pf3D7_14_v31956225PF3D7_1447900mdr2
(multidrug resistance protein 2)
T484IGA
Pf3D7_14_v32481070PF3D7_1460900arps10
(apicoplast ribosomal protein S10)
V127MGA
Pf3D7_14_v32481073D128Y/HGTC
Table 3
Frequencies of resistant parasites in provinces/states/divisions surveyed, for different antimalarials.
CountryProvince, State, or DivisionART-RPPQ-RDHA-PPQ-RCQ-RPYR-RSD-RSP-RSP-R (IPTp)
IndiaOdisha0%0%0%18%57%6%1%0%
West Bengal0%0%0%47%71%14%5%0%
Tripura0%0%0%85%100%99%55%0%
BangladeshChittagong0%0%0%97%100%87%46%16%
MyanmarRakhine0%0%0%71%100%100%51%26%
Bago1%0%0%88%100%100%91%74%
Mandalay29%0%0%96%98%98%29%24%
Kayin54%2%0%100%100%56%73%27%
ThailandTak61%-0%100%100%96%100%88%
Sisakhet100%90%90%100%100%100%100%100%
Ubon Ratchathani80%75%56%100%100%85%100%17%
CambodiaPailin93%97%90%100%100%100%100%56%
Battambang100%100%100%100%100%88%100%29%
Pursat88%98%67%100%100%92%98%44%
Preah Vihear61%100%11%100%100%94%98%21%
Steung Treng93%75%70%100%100%97%100%0%
Ratanakiri49%79%42%99%100%76%90%5%
LaosChampasak66%75%56%100%100%88%94%12%
Attapeu46%43%31%100%100%82%100%18%
Sekong26%6%0%100%100%91%74%5%
Salavan17%2%1%89%97%28%38%1%
Savannakhet10%1%0%87%96%21%41%2%
VietnamBinh Phuoc92%93%83%100%100%100%100%14%
Dak Nong94%92%88%100%100%97%96%22%
Dak Lak96%90%86%100%100%100%99%15%
Gia Lai84%83%76%99%100%98%95%4%
Khanh Hoa22%5%2%95%100%97%74%2%
Ninh Thuan13%18%0%28%100%98%75%0%
Quang Tri16%9%0%75%76%59%26%5%
Congo PDRKinshasa0%0%0%58%98%72%88%0%

Additional files

Supplementary file 1

Geographical breakdown by year of samples processed by GenRe-Mekong.

https://cdn.elifesciences.org/articles/62997/elife-62997-supp1-v1.xlsx
Supplementary file 2

Counts of processed samples, by province/state/division of origin.

https://cdn.elifesciences.org/articles/62997/elife-62997-supp2-v1.xlsx
Supplementary file 3

Number of samples carrying mutations in the resistance domains of kelch13 by province/state/division.

https://cdn.elifesciences.org/articles/62997/elife-62997-supp3-v1.xlsx
Transparent reporting form
https://cdn.elifesciences.org/articles/62997/elife-62997-transrepform-v1.docx

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christopher G Jacob
  2. Nguyen Thuy-Nhien
  3. Mayfong Mayxay
  4. Richard J Maude
  5. Huynh Hong Quang
  6. Bouasy Hongvanthong
  7. Viengxay Vanisaveth
  8. Thang Ngo Duc
  9. Huy Rekol
  10. Rob van der Pluijm
  11. Lorenz von Seidlein
  12. Rick Fairhurst
  13. François Nosten
  14. Md Amir Hossain
  15. Naomi Park
  16. Scott Goodwin
  17. Pascal Ringwald
  18. Keobouphaphone Chindavongsa
  19. Paul Newton
  20. Elizabeth Ashley
  21. Sonexay Phalivong
  22. Rapeephan Maude
  23. Rithea Leang
  24. Cheah Huch
  25. Le Thanh Dong
  26. Kim-Tuyen Nguyen
  27. Tran Minh Nhat
  28. Tran Tinh Hien
  29. Hoa Nguyen
  30. Nicole Zdrojewski
  31. Sara Canavati
  32. Abdullah Abu Sayeed
  33. Didar Uddin
  34. Caroline Buckee
  35. Caterina I Fanello
  36. Marie Onyamboko
  37. Thomas Peto
  38. Rupam Tripura
  39. Chanaki Amaratunga
  40. Aung Myint Thu
  41. Gilles Delmas
  42. Jordi Landier
  43. Daniel M Parker
  44. Nguyen Hoang Chau
  45. Dysoley Lek
  46. Seila Suon
  47. James Callery
  48. Podjanee Jittamala
  49. Borimas Hanboonkunupakarn
  50. Sasithon Pukrittayakamee
  51. Aung Pyae Phyo
  52. Frank Smithuis
  53. Khin Lin
  54. Myo Thant
  55. Tin Maung Hlaing
  56. Parthasarathi Satpathi
  57. Sanghamitra Satpathi
  58. Prativa K Behera
  59. Amar Tripura
  60. Subrata Baidya
  61. Neena Valecha
  62. Anupkumar R Anvikar
  63. Akhter Ul Islam
  64. Abul Faiz
  65. Chanon Kunasol
  66. Eleanor Drury
  67. Mihir Kekre
  68. Mozam Ali
  69. Katie Love
  70. Shavanthi Rajatileka
  71. Anna E Jeffreys
  72. Kate Rowlands
  73. Christina S Hubbart
  74. Mehul Dhorda
  75. Ranitha Vongpromek
  76. Namfon Kotanan
  77. Phrutsamon Wongnak
  78. Jacob Almagro Garcia
  79. Richard D Pearson
  80. Cristina V Ariani
  81. Thanat Chookajorn
  82. Cinzia Malangone
  83. T Nguyen
  84. Jim Stalker
  85. Ben Jeffery
  86. Jonathan Keatley
  87. Kimberly J Johnson
  88. Dawn Muddyman
  89. Xin Hui S Chan
  90. John Sillitoe
  91. Roberto Amato
  92. Victoria Simpson
  93. Sonia Gonçalves
  94. Kirk Rockett
  95. Nicholas P Day
  96. Arjen M Dondorp
  97. Dominic P Kwiatkowski
  98. Olivo Miotto
(2021)
Genetic surveillance in the Greater Mekong subregion and South Asia to support malaria control and elimination
eLife 10:e62997.
https://doi.org/10.7554/eLife.62997