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Abstract Traditional clinical prediction models focus on parameters of the individual patient. For

infectious diseases, sources external to the patient, including characteristics of prior patients and

seasonal factors, may improve predictive performance. We describe the development of a

predictive model that integrates multiple sources of data in a principled statistical framework using

a post-test odds formulation. Our method enables electronic real-time updating and flexibility, such

that components can be included or excluded according to data availability. We apply this method

to the prediction of etiology of pediatric diarrhea, where ’pre-test’ epidemiologic data may be

highly informative. Diarrhea has a high burden in low-resource settings, and antibiotics are often

over-prescribed. We demonstrate that our integrative method outperforms traditional prediction in

accurately identifying cases with a viral etiology, and show that its clinical application, especially

when used with an additional diagnostic test, could result in a 61% reduction in inappropriately

prescribed antibiotics.

Introduction
Healthcare providers use clinical decision support tools to assist with patient diagnosis, often to

improve accuracy of diagnosis, reduce cost by avoiding unnecessary laboratory tests, and in the case

of infectious diseases, deter the inappropriate prescription of antibiotics (Sintchenko et al., 2008).

Typically, data entered into these tools is related directly to the patient’s individual characteristics,

Brintz et al. eLife 2021;10:e63009. DOI: https://doi.org/10.7554/eLife.63009 1 of 18

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.63009
https://creativecommons.org/
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


but data sources external to the patient can be informative for diagnosis. For example, climate, sea-

sonality, and epidemiological data inform predictive models for communicable disease incidence

(Colwell, 1996, Chao et al., 2019 Fine et al., 2011). The emergence of advanced computing and

machine learning has enabled the incorporation of large data sources in the development of clinical

support tools (Shortliffe and Sepúlveda, 2018) such as SMART-COP for predicting the need for

intensive respiratory support for pneumonia (Charles et al., 2008) or the ALaRMS model for predict-

ing inpatient mortality (Tabak et al., 2014).

Clinical decision support tools rely on the availability of information sources and computing at the

time of patient encounter. Although increased availability of internet/mobile phones have increased

access to information and computing power in low-resource settings, there may be times when con-

nectivity, computing power, or data-collection infrastructure is unavailable. Thus, there is a need to

build clinical decision support tools which can flexibly include features of external sources when

available, or function without them if unavailable. Methods that enable the dynamic updating of pre-

dictive models are advantageous due to potential cyclical patterns of infectious etiologies. Further-

more, with the emergence of point-of-care (POC) tests for clinical decision-making (Price, 2001),

predictive models that are able to integrate results of such diagnostic testing could enhance their

usefulness.

We develop a novel method for diagnostic prediction which integrates multiple data sources by

utilizing a post-test odds formulation with proof-of-concept in antibiotic stewardship for pediatric

diarrhea. Our formulation first fits separate models from different sources of data, and then com-

bines the likelihood ratios from each of these independent models into a single prediction. This

method allows the multiple components to be flexibly included or excluded. We apply this method

to the prediction of diarrhea etiology with data from the Global Enteric Multicenter Study (GEMS)

(Kotloff et al., 2013) and assess the performance of this tool, including with the addition of a syn-

thetic diagnostic, using two forms of internal-validation and by showing its potential effect on reduc-

ing inappropriate antibiotic use.

Materials and methods
We present our approach to building and assessing a flexible multi-source clinical prediction tool

with (1) the data sources, (2) the individual prediction models, (3) the use of the likelihood ratio for

integrating predictive models, (4) validation of the method, (5) the impact of an additional diagnos-

tic, and (6) a simulation of conditionally dependent tests. We program our prediction tool using R

version 3.6.2 (R Project for Statistical Computing, RRID:SCR_001905).

Data sources
We apply our post-test odds model using clinical data from GEMS, a prospective, case-control study

from 2007 to 2011 which took place in seven countries in Africa and Asia. Methods for the GEMS

study have been described in detail (Kotloff et al., 2012). Briefly, 9439 children with moderate-to-

severe diarrhea were enrolled at local health care centers along with one to three matched control-

children. A fecal sample was taken from each child at enrollment to identify enteropathogens and

clinical information was collected, including demographic, anthropometric, and clinical history of the

child. We used the quantitative real-time PCR-based (qPCR) attribution models developed by

Liu et al., 2016 in order to best characterize the cause of diarrhea. Our dependent variable was

presence or absence of viral etiology, defined as a diarrhea episode with at least one viral pathogen

with an episode-specific attributable fraction (AFe � 0.5) and no bacterial or parasitic pathogens

with an episode-specific attributable fraction. Prediction of viral attribution is clinically meaningful

since it indicates that a patient would not benefit from antimicrobial therapy. We defined other

known etiologies as having a majority attribution of diarrhea episode by at least one other non-viral

pathogen. We exclude patients with unknown etiologies when fitting the model, though it has been

previously shown that these cases have a similar distribution of viral predictions using a model with

presenting patient information as those cases with known etiologies (Brintz et al., 2020).

We obtained weather data local to each site’s health centers during the GEMS study using

NOAA’s Integrated Surface Database (Smith et al., 2011). The incidence of many pathogens, includ-

ing rotavirus (Cook et al., 1990), norovirus (Ahmed et al., 2013), cholera (Emch et al., 2008), and

Salmonella (Mohanty et al., 2006), are known to have seasonal patterns, and other analyses have
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established climatic factors to be associated with diarrheal diseases (Colwell, 1996, Chao et al.,

2019, Farrar et al., 2019). Stations near GEMS sites such as in The Gambia exhibit seasonal pat-

terns (Figure 1). We used daily temperature and rain data weighted most by those weather stations

closest to the GEMS sites (Appendix 1).

Construction of predictive models
We define each model using the features described in the below sub-sections in an additive logistic

regression model. Each model can be trained using a sample of data from a specific country, conti-

nent, or all available data.

Predictive model (A) presenting patient
The patient model derived from the GEMS data treats each enrolled patient as an observation and

uses their available patient data at presentation to predict viral only versus other etiology of their

infectious diarrhea. In order to make a parsimonious model, we used the previously published ran-

dom forests variable importance screening (Brintz et al., 2020). Using the screened variables

(Table 1), we fit a logistic regression including the top five variables that would be accessible to pro-

viders at the time of presentation. These include age, blood in stool, vomiting, breastfeeding status,

and mid-upper arm circumference (MUAC), an indicator of nutritional status. We note that while vari-

ables such as fever and diarrhea duration were shown to be important in previous studies

(Fontana et al., 1987), adding these variables did not improve performance. Additionally, we

excluded ’Season’, since variables representing it are included in the climate predictive model (dis-

cussed below), as well as ’Height-for-age Z-score’, another indicator of nutritional status, which

would require a less feasible calculation than measurement of MUAC.
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Figure 1. Temperature in The Gambia over study period with (blue) trend line from LOESS (locally estimated scatterplot smoothing).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. The black line represents a 2-week rolling average of daily viral etiology rates over time.

Figure supplement 2. The black line represents a 2-week rolling average of daily viral etiology rates over time.
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Predictive model (B) climate
We use an aggregate (mean) of the weighted (Appendix 1) local weather data over the prior 14 days

to create features that capture site-specific climatic drivers of etiology of infectious diarrhea. By tak-

ing an aggregate, we create a moving average that reflects the seasonality seen in Figure 1. An

example of the aggregate climate data from The Gambia is shown in Figure 1—figure supplement

1. From the figure, which also shows a moving average of the viral rate, We see that the periods of

higher viral cases of diarrhea tend to have low temperatures and less rain.

Predictive model (C) seasonality
We include a predictive model with sine and cosine functions as features as explored in

Stolwijk et al., 1999. Assuming a periodicity of 365.25 days, we have functions sinð 2pt
365:25

Þ and

cosð 2pt
365:25

Þ. We show that standardized seasonal sine and cosine curves correlate with a rolling aver-

age of daily viral etiology rates in The Gambia over time (Figure 1—figure supplement 2). These

functions can be used to model the country-specific seasonality of viral etiology rate.represent multi-

ple underlying processes that result in a seasonality of viral etiology.

Use of the likelihood ratio to integrate predictive models from multiple
data sources
We integrate predictive models from the multiple sources of data described above using the post-

test odds formulation. Using Bayes’ Theorem, PðAjBÞ ¼ PðBjAÞ�PðAÞ
PðBÞ , to construct the post-test odds of

having a viral etiology,

PðV ¼ 1jT1 ¼ t1;T2 ¼ t2; � � � ;Tk ¼ tkÞ

PðV ¼ 0jT1 ¼ t1;T2 ¼ t2; � � � ;Tk ¼ tkÞ
¼
PðV ¼ 1;T1 ¼ t1;T2 ¼ t2; � � � ;Tk ¼ tkÞ

PðV ¼ 0;T1 ¼ t1;T2 ¼ t2; � � � ;Tk ¼ tkÞ
(1)

¼
PðT1 ¼ t1;T2 ¼ t2; � � � ;Tk ¼ tkjV ¼ 1Þ �PðV ¼ 1Þ

PðT1 ¼ t1;T2 ¼ t2; � � � ;Tk ¼ tkjV ¼ 0Þ �PðV ¼ 0Þ
(2)

¼
PðV ¼ 1Þ

PðV ¼ 0Þ
�
Yk

j¼1

PðTj ¼ tjjV ¼ 1Þ

PðTj ¼ tjjV ¼ 0Þ
(3)

where V ¼ 1 represents a viral etiology and V ¼ 0 represents an other known etiology, T1;T2; � � � ;Tk
represent the k tests, the distribution of the predictions from one or more predictive models, used

Table 1. Rank of variable importance by average reduction in the mean squared prediction error of

the response using Random Forest regression.

Greyed rows are variables that would be accessible for providers in LMICs at the time of presentation.

Table 1 is reproduced from Brintz et al., 2020, PLoS Negl Trop Dis., published under the Creative

Commons Attribution 4.0 International Public License (CC BY 4.0; https://creativecommons.org/

licenses/by/4.0/).

Viral etiology

Variable name Variance reduction

Age 51.6

Season 29.0

Blood in stool 26.1

Height-for-age Z-score 24.7

Vomiting 23.0

Breastfeeding 22.0

Mid-upper arm circumference 20.9

Respiratory rate 18.5

Wealth index 18.3

Body Temperature 16.7
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to obtain the post-test odds, and PðV¼1Þ
PðV¼0Þ is the pre-test odds. Note that going from line (2) to line (3)

requires conditional independence between the tests, that is, that PðTi ¼ ti;Tj ¼ tjjV ¼ 1Þ =

PðTi ¼ tijV ¼ 1Þ �PðTj ¼ tjjV ¼ 1Þ and PðTi ¼ ti;Tj ¼ tjjV ¼ 0Þ ¼ PðTi ¼ tijV ¼ 0Þ �PðTj ¼ tjjV ¼ 0Þ for all i and

j. We test for conditional independence to assess the necessity of making higher-dimensional kernel

density estimates using the ci:test function from the fbnlearng package in R (Scutari, 2010). We

derive each PðTj ¼ tjjV ¼ 1Þ and PðTj ¼ tjjV ¼ 0Þ using Gaussian kernel density estimates on condi-

tional predictions from a logistic regression model fit on the training set (Silverman, 1986). The dis-

tribution of PðTjjVÞ is derived using the kernel density estimator f ðtjÞ ¼
1

nh

Pn
i¼1

Kð
tj�xi
h
Þ where, in our

case, KðxÞ ¼fðxÞ, the standard normal density function, and the bandwidth, h, is Silverman’s ’rule of

thumb’ and the default chosen in the density function in R (Parzen, 1962).

Figure 2 shows an example of the frequency of predictions from a logistic regression model con-

ditional on the viral-only status (V = 0 and V = 1) determined from attributable fractions. Addition-

ally, we overlaid the estimated one-dimensional kernel density. To obtain the value of
PðTj¼tj jV¼1Þ
PðTj¼tj jV¼0Þ, the

predicted odds, from a model’s prediction, we divide the kernel density estimate from the V ¼ 1 set

(right) by the kernel density estimate from the V ¼ 0 set (left). It is feasible to estimate a multi-dimen-

sional kernel density so that it is not necessary to make the conditional independence assumption to

move from line 2 to line 3 in the equation above. Figure 2—figure supplement 1 shows an example

two-dimensional contour plot for kernel density estimates of predicted values obtained from logistic

regression on GEMS seasonality and climate data in Mali which we will discuss further below. The

density was created using R function kde2d (Venables and Ripley, 2002).

Pre-test odds from historical data
We calculated pre-test odds using historical rates of viral diarrhea by site and date. We utilize avail-

able diarrhea etiology data for a given date, regardless of year, and site using a moving average

such that pre-test probability pd for date d is

V=0 V=1
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Figure 2. Histograms with overlaid estimated kernel densities (dashed lines) of predicted values obtained from logistic regression on patient training

data. The left graph represent other known etiologies and the right graph represent viral etiologies. The dashed lines do not represent standardized

density heights so the heights for V = 0 and V = 1 should not be compared from this graph.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Contour plots of two-dimensional kernel densities of predicted values obtained from logistic regression on GEMS climate and

seasonality data in Mali.
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pd ¼
Dd�n þDd�nþ1 þ �� �þDd þ� � �þDdþn�1 þDdþn

kd�nþ kd�nþ1þ �� �þ kd þ�� �þ kdþn�1þ kdþn

Dd ¼ S
kd
i¼1

Ddi

where kd is the number of observed patients on date d, Ddi is 1 if the etiology of the patients’ diar-

rhea is viral and 0 otherwise, and n is the number of days included on both sides of the moving aver-

age. We would expect pd to represent a pre-test probability of observing a viral diarrhea etiology

on date d. Given that this rate information will likely be unavailable in new sites without established

etiology studies, we provide an alternative formula based on recent patients’ presentations (Appen-

dix 2). Additionally, we include a sensitivity analysis by calculating pre-test odds using conventional

diagnostic methods data as qPCR data are unlikely to be available in high-burden settings.

Validating the method
Given the temporal nature of some of the tests we developed, we estimate model performance

using within rolling-origin-recalibration evaluation. This method evaluates a model by sequentially

moving values from a test set to a training set and re-training the model on all of the training set

(Bergmeir and Benı́tez, 2012); for example, we train on the first 70% of the data and test on the

remaining 30%, then train on the first 80% of the data and test on the remaining 20%. No data from

the training set is used as part of the prediction for the test set. In each iteration of evaluation, pre-

dictions on the test set are produced and corresponding measures of performance obtained: the

receiver operating characteristic (ROC) curve, and area under the ROC curve (AUC), also known as

the C-statistic, along with AUC confidence intervals (LeDell et al., 2015). Figure 3 depicts one itera-

tion of within rolling-origin-recalibration evaluation.

We additionally include a joint density for the climate and seasonal data in which we estimate a

two-dimensional kernel density (not shown in Figure 3). This model is called ”Joint’ in the results to

follow. To assess how this model might generalize to a site that was not used for model training, we

used a leave-one-site-out validation. By excluding a site and training the model’s tests at a higher

level, such as on the entire continent, we get an idea of performance at a new site within one of the

continents for which we have data. Lastly, we define a threshold for the predicted odds ratio based

on the desired specificity of the model. We use this threshold to evaluate the effect of the model on

prescription or treatment of patients with antibiotics in the GEMS data.

Modeling the impact of an additional diagnostic test
We include a theoretical diagnostic which indicates viral versus other etiology with a given sensitivity

and specificity specifically to show the effect of an additional diagnostic-type test, such as a host bio-

marker-based point-of-care stool testpoint-of-care stool test, on the performance of our integrated

post-test odds model. We include three scenarios: (1) 70% sensitivity and 95% specificity, (2) 90%

sensitivity and 95% specificity, and (3) 70% sensitivity and 70% specificity. In order to estimate the

performance of an additional diagnostic test, for each patient in each of 500 bootstrapped samples

of our test data, we randomly simulated a test result based on the sensitivity or specificity of the

diagnostic test. From the simulated test result, we derive the likelihood ratio of the component

directly from the specified sensitivity and specificity of the test. A positive test results in a compo-

nent likelihood ratio of sensitivity

1�specificity
and a negative test results in a component likelihood ratio of

1�sensitivy

specificity
. We then take an average the measure of performance of the bootstrapped samples.

Simulation of conditionally dependent tests
We demonstrate the utility of the two-dimensional kernel density estimate through simulation. In

each iteration of the simulation (100 iterations), we generate 3366 responses from a random Ber-

noulli variable Z with a 1

3
probability of success (the approximate proportion of GEMS cases with a

viral etiology). Then, conditioned on Z we generate predictive variables X and Y such that:

X ¼ Zþs (4)

Y ¼ g _XþZþs (5)

where s is a random draw from the standard normal distribution and values of g ranging from �10
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to 10 determine the level of conditional dependence between the two predictors conditional on the

value of Z. g¼ 0 indicates conditional independence. Using an 80% training set, we derive the kernel

density estimate for the likelihood ratio (no pre-test odds included) using X and Y as two separate

tests and as a single two-dimensional test and calculate the AUC from the 20% test set.

Determination of appropriate antibiotic prescription
We demonstrate the clinical usefulness of our models by applying them directly to the prescription

of antibiotics. For each version of the model, we determined the threshold of prediction that would

amount to attaining a model specificity of 0.90 and 0.95. Since the prediction of a viral only etiology

of diarrhea indicates that antibiotics should not be prescribed, we chose these high specificities due

to the potential harm or even death that could occur if a patient who needed antibiotics did not

receive them. Using the thresholds, we determine which patients our models would correctly predict

a viral only etiology of their diarrhea (true positives) as well as patients our model would incorrectly

predict a viral only etiology of their diarrhea (false positives).

Figure 3. The steps for fitting prediction models and calculating the post-test odds for within rolling-origin-recalibration evaluation.
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Results

Integrative post-test odds models outperformed traditional models for
prediction of diarrhea etiology
Of the 3366 patients in GEMS with an attributable identified pathogen, 1049 cases were attributable

to viral only etiology. We first examined whether our integrative post-test odds model can better

discriminate between patients with diarrhea of viral-only etiology and patients with other etiologies

than a traditional prediction model which includes only the presenting patient’s information. We

found that the best integrative model with an AUC of 0.839 (0.808–0.870) had a statistically better

performance than the traditional model with an AUC of 0.809 (0.776–0.842) with a p-value of 0.01

(DeLong, two-sided). Overall, using the AUC as a discrimination metric, the integrative models

(AUC: 0.837 (0.806–0.869)) outperformed the traditional model (AUC: 0.809 (0.776–0.842)). Overall,

the best performing models were ones in which either the seasonal sine and cosine curves, or the

prior patient pre-test component alone was added to the presenting patient information with AUC’s

of 0.830 and 0.839 (with 80% training data), respectively (Figure 4). Including additional compo-

nents, especially including both climate and seasonality (although not as a joint density), appears to

reduce the performance. As expected, a reduced testing set increases the AUC but also increases

the variance of the estimate (Figure 4—figure supplement 1). Using conventional diagnostic meth-

ods data data to calculate pre-test odds instead of qPCR data reduces AUC slightly from 0.839 to

0.829 (0.798–0.860).

To assess our model’s performance more granularly, we then examine performance of the top

two predictive models by individual sites. We found that the AUC, with 80% training and 20% test-

ing, varied greatly by site, ranging from 0.63 in Kenya to 0.95 in Bangladesh (Table 2). Of note, the

Figure 4. AUC’s and confidence intervals for post-test odds used in the 80% training and 20% testing iteration. ’PresPtnt’ refers to the predictive model

using the presenting patient’s information. ’Pre-test’ refers tot he use of pre-test odds based on prior patients’ predictive models. ’Climate’ refers to

the predictive model using aggregate local weather data. ’Seasonal’ refers to the predictive model based on seasonal sine and cosine curves. ’Joint’

refers to the two-dimensional kernel density estimate from the Seasonal and Climate predictive models.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. AUC’s and confidence intervals for post-test odds used in the 80%training and 20%testing iteration.

Figure supplement 1. AUC’s and confidence intervals for tests used in within rolling-origin-recalibration evaluation.

Figure supplement 2. AUC’s and confidence intervals for tests used in the leave-one-site-out evaluation.
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African sites have fewer patients in their testing and training sets than the Asian countries due to a

combination of fewer patients enrolled at those sites and proportionately fewer patients with known

etiologies. In leave-one-site-out validation testing, we found that the climate test tends to outper-

form the seasonality test, and that there were notable differences in c-statistics between sites with

the order of performance similar to within rolling-origin-recalibration evaluation (Figure 4—figure

supplement 2).

Addition of a diagnostic test to integrative models improves discrimination
Emerging efforts to develop diagnostic devices, including laboratory assays as well POC tests, have

focused on the performance of the test used in isolation. Here, we consider the use of a diagnostic

device in combination with clinical predictive models. We used the integrative model to examine the

impact that an additional diagnostic would have on discrimination of two of the best performing

models. We show that an additional diagnostic, with varying sensitivity and specificity, would

improve the cross-validated AUC as expected (Table 3). An additional test with a 70% sensitivity

and 70% specificity increases the AUC by 3–5%, while a more specific test could increase the AUC

by 10%.

We next examined ROC curves, which visually demonstrate the effect of additional diagnostics

with varying levels of sensitivity and specificity (Figure 5). We show that a similar level of sensitivity

and specificity is achievable by the model with the pre-test information versus the model with sea-

sonal information. Additionally, the additional diagnostics result in improved overall sensitivity and

specificity corresponding to sensitivity and specificity of the diagnostic. The overall sensitivity and

specificity of each model is greater than the diagnostic alone.

Table 2. AUC results by site using 80% of data for training and 20% of data for testing of the top

two models.

PresPtnt refers to the model fit using presenting patient information.

Country Test set size Formula AUC (95% CI)

Kenya 79 Pre-test * PresPtnt 0.65 (0.53–0.77)

PresPtnt * Seasonal 0.66 (0.54–0.78)

PresPtnt 0.63 (0.51–0.75)

Mali 88 Pre-test * PresPtnt 0.74 (0.61–0.86)

PresPtnt * Seasonal 0.78 (0.66–0.89)

PresPtnt 0.75 (0.62–0.87)

Pakistan 108 Pre-test * PresPtnt 0.81 (0.72–0.89)

PresPtnt * Seasonal 0.8 (0.72–0.88)

PresPtnt 0.81 (0.73–0.89)

India 119 Pre-test * PresPtnt 0.84 (0.76–0.91)

PresPtnt * Seasonal 0.85 (0.78–0.92)

PresPtnt 0.81 (0.74–0.89)

The Gambia 80 Pre-test * PresPtnt 0.89 (0.82–0.96)

PresPtnt * Seasonal 0.87 (0.79–0.94)

PresPtnt 0.78 (0.67–0.88)

Mozambique 66 Pre-test * PresPtnt 0.88 (0.79–0.97)

PresPtnt * Seasonal 0.9 (0.82–0.98)

PresPtnt 0.77 (0.66–0.89)

Bangladesh 141 Pre-test * PresPtnt 0.91 (0.82–1)

PresPtnt * Seasonal 0.93 (0.88–0.99)

PresPtnt 0.95 (0.92–0.99)
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Breaking the conditional independence assumption can be addressed
using 2-D Kernel density estimates
Our integrative post-test odds method assumes the conditional independence of its component

tests, and thus we performed simulation of increasingly conditionally dependent components to

assess the performance of the method when the assumption is broken. We showed that the AUC of

the post-test odds model deteriorates quickly as the conditional independence assumption is vio-

lated (Table 4). With no conditional dependence between predictions from models X and Y, the

result using one-dimensional kernel density is comparable to the result with two-dimensional kernel

density model. However, as the conditional correlation between the tests increase to �0.90, the

one-dimensional AUC decreases by about 11% while the post-test odds with the two-dimensional

test performs consistently across this range of conditional correlation.

Clinician use of an integrative predictive model for diarrhea etiology
could result in large reductions in inappropriate antibiotic prescriptions
Given that one potential application of an integrative predictive model for diarrhea etiology would

be as support for clinical decision making for antibiotic use (i.e. antibiotic stewardship), we then

examined the impact that the top predictive model would have on prescription of antibiotics by clini-

cians in GEMS. Of the 3366 patients included in our study, 2653 (79%) were treated with or pre-

scribed antibiotics, 806 (30%) of whom were prescribed to those with a viral-only etiology as

determined by qPCR. Here, we examined how use of integrative predictive model could have

altered antibiotic use in our sample. Of the 681 patients in the 20% test set, 540 (79%) were pre-

scribed antibiotics, including 166 (30%) with a viral-only etiology. Of those prescribed/given antibiot-

ics the model with pre-test odds, with threshold chosen for an overall specificity of 0.90, identified

88 (53%) viral cases as viral, and 29 non-viral cases as viral. With an additional diagnostic with a sensi-

tivity and specificity of 0.70, the same model would on average identify 102 (61%) viral cases as viral

with the same 31 non-viral cases identified as viral. Assuming that clinicians would not prescribe anti-

biotics for those cases identified by the predictive model with the additional diagnostic as viral, we

would avoid 88 (53%) and 102 (61%) of inappropriate antibiotic prescriptions in the two scenarios

described. The majority of the false positives (29 and 30 in the two scenarios) were episodes majority

attributed to Shigella, ST-ETEC, and combinations of rotavirus with a non-viral pathogen (Table 3—

Table 3. AUC and 95% confidence intervals from 80% training set after adding an additional point-of-care diagnostic test with

specified sensitivities (Se.) and specificities (Sp.) to the current patient test and pre-test odds.

Additionally, + and - refer to our model indicating a true positive or false positive, respectively, based on the threshold for each model

which achieves a 0.90 or 0.95 specificity. Only patients who were prescribed/given antibiotics are included in the count.

Specificity=0.90 Specificity=0.95

Model Addl. diag. (Se.,Sp.) Auc (95% CI) True + False + True + False +

Pre-test * PresPtnt None 0.839 (0.809–0.869) 88 29 60 16

(0.7, 0.7) 0.876 (0.849–0.902) 102 31 78 16

(0.7, 0.95) 0.933 (0.914–0.952) 132 31 123 16

(0.9, 0.95) 0.972 (0.960–0.984) 154 34 147 18

PresPtnt * Seasonal None 0.830 (0.798–0.861) 70 25 54 11

(0.7, 0.7) 0.870 (0.842–0.897) 101 27 68 14

(0.7, 0.95) 0.931 (0.912–0.951) 130 27 121 16

(0.9, 0.95) 0.971 (0.959–0.984) 154 30 149 18

PresPtnt None 0.809 (0.776–0.842) 66 31 41 15

(0.7, 0.7) 0.857 (0.827–0.886) 98 33 68 16

(0.7, 0.95) 0.925 (0.904–0.946) 129 33 117 18

(0.9, 0.95) 0.968 (0.955–0.981) 153 34 149 18

The online version of this article includes the following source data for Table 3:

Source data 1. Frequency table of pathogens in which the post-test odds formulation with varying specifity (Sp.) chosen have false positives.

Brintz et al. eLife 2021;10:e63009. DOI: https://doi.org/10.7554/eLife.63009 10 of 18

Research article Epidemiology and Global Health

https://doi.org/10.7554/eLife.63009


Figure 5. ROC curves from validation from 80% training set. Curves shown for three models with additional diagnostics.

Table 4. Average AUC’s from one-dimensional and two-dimensional kernel density estimates (KDE)

when the post-test odds conditional independence assumption is broken.

The table shows the factor (g) used to simulate induced conditional dependence between two covari-

ates and their average conditional correlation. Additionally, it shows the average AUC resulting from

a post-test odds model where a one-dimensional kernel density estimate (conditional independence

assumed) is generated for each covariate, and a post-test odds model where a two-dimensional joint

kernel density estimate is derived for the two covariates.

AUC

g corðX;YkZÞ 1D-KDE 2D-KDE

-2.000 �0.894 0.725 0.830

-1.000 �0.709 0.758 0.828

-0.500 �0.446 0.824 0.838

0.000 0.002 0.838 0.836

0.500 0.448 0.836 0.836

1.000 0.708 0.831 0.840

2.000 0.894 0.810 0.836
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source data 1). All of these false positive, with exception of 1 case, had non-bloody diarrhea, and

thus would have been deemed as not requiring antibiotics by WHO IMCI guidelines.

Discussion
The management of illness in much of the world relies on clinical decisions made in the absence of

laboratory diagnostics. Such empirical decision-making, including decisions to use antibiotics, are

informed by variable degrees of clinical and demographic data gathered by the clinician. Traditional

clinical prediction rules focus on the clinical data from the presenting patient alone. In this analysis,

we present a method that allows flexible integration of multiple data sources, including climate data

and clinical or historical information from prior patients, resulting in improved predictive perfor-

mance over traditional predictive models utilizing a single source of data. Using this formulation, if

certain sources of data such as climate or previous patient information are not available (e.g. due to

a lack of internet connection or data infrastructure), the prediction can still be made using current

patient information or seasonality, as appropriatethe other sources. A mobile phone application is

an ideal platform for a decision support tool implemented in low-resource settings. Through internet

access by wifi or cellular data, a smartphone platform could automatically download recent patient

or climate data, while its portability would facilitate clinicians in entering current patient clinical infor-

mation. We show that application of such a predictive model, especially with an additional diagnos-

tic test, may translate to reductions in inappropriate antibiotic prescriptions for pediatric viral

diarrhea.

The global burden of acute infectious diarrhea is highest in low- and middle-income countries

(LMICs) in southeast Asia and Africa (Walker et al., 2013), where there is limited access to diagnos-

tic testing. The care of children in these regions could greatly benefit from an accurate and flexible

decision making tool. Decisions for treatment are often empiric and antibiotics are over-prescribed

(Rogawski et al., 2017), although the majority of cases of diarrhea do not benefit from antibiotic

use and also many instances of acute watery diarrhea are self-limiting . For example, 2653 (79%) of

the 3366 patients in our study were treated with or prescribed antibiotics. Of these 806 (30%) were

prescribed to those with a viral-only etiology. Unnecessary antibiotic use exposes children to signifi-

cant adverse events including serious allergic reactions (Logan et al., 2016, Marra et al., 2009) and

clostridium difficile infection (Jernberg et al., 2010), and contributes to increased antimicrobial

resistance. We show that a predictive model can be used to discriminate between those with and

without a viral-only etiology and that the inappropriate use of antibiotics can be avoided in 54%

cases using our model with no additional diagnostics.

We found using within rolling-origin-recalibration evaluation that models which include either the

pre-test odds calculated historical rates or the seasonal test were the best at discriminating between

viral etiologies and other etiologies, a finding that held true across training and testing set sizes.

However, in the leave-one-out validation, models which included the alternate pre-test odds and cli-

mate tended to perform the best. This difference is likely due to the generalizeability of the individ-

ual tests, i.e, the leave-one-out tests are trained at the continental level and the effect of climate on

etiology is intuitively more generalizeable than seasonal curves which are very specific to each loca-

tion. We found that our integrative model with only the historical (pre-test) information included

(without additional diagnostics) would have identified a viral-only etiology in 88 (53%) patients who

received antibiotics. We then show that even the use of an additional diagnostic test with modest

performance (70% sensitivity and specificity) would further decrease inappropriate antibiotic use by

another 14 (for a total of 102, or 61% of) patients. In the context of calls by the WHO for the devel-

opment of affordable rapid diagnostic tools (RDTs) for antibiotic stewardship (Declaration, 2017),

our findings suggest that development and evaluation of novel RDTs should not be performed in iso-

lation. Potential for integration of rapid diagnostic tests into clinical prediction algorithms should be

considered, although this needs to be balanced with the additional time and resources needed. The

incremental improvement in discriminative performance achieved by the addition of an RDT to a clin-

ical prediction algorithm may not be cost-effective in lower resourced settings. Finally, providing this

model in the form of a decision support tool to the clinician could translate to reductions in inappro-

priate use of antibiotics, although further research needs to be done to explore the degrees of cer-

tainty that clinicians require to alter treatment decisions.
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The novel use of kernel density estimates to derive the conditional tests when calculating the

post-test odds enabled a flexibility in model input. While kernel density estimates have been used

for conditional feature distributions in Naı̈ve Bayes classifiers (John and Langley, 1995,

Murakami and Mizuguchi, 2010), here we show that they can be used to derive conditional likeli-

hoods for diagnostic tests constituting one or more features, stressing the effect of the overall test

on the post-test odds and not individual features. As such, complicated machine learning models

can be combined with simple diagnostics as part of the post-test odds. For example, we could have

fit neural networks in lieu of logistic regression models, and in addition to these more complicated

models, it is possible to incorporate the result of an RDT that make results available to the clinician

at the point-of-care. Additionally, our method of using two-dimensional kernel density estimates can

also be used to overcome the conditional independence assumption for tests based on potentially

interrelated diagnostic information. Densities with higher than two dimensions can be considered,

though, computational limitations are likely in both speed and, we expect, accuracy, as the dimen-

sions increase.

Our study has a number of limitations. First, a robust training set of both cases and non-cases is

required to adequately build the conditional kernel densities. Second, the post-test odds calculation,

at the time of prediction, lacks interpretation on a feature level like a logistic regression or decision

tree. Although, we do observe the effect of a test on an observation, we cannot see which features

caused that effect without diving deeper into the training of the diagnostic tests.Thirdly, the predic-

tion algorithm generated by the post-test odds model using GEMS data was only validated inter-

nally, and further studies are need for external validation and field implementation. Fourth, our

estimation of antibiotic use reduction used data from a clinical research study, which may have

biases inherent to such studies. Last, our study uses the AFe cut-off of greater than or equal to 0.5

to assign etiology from the qPCR data. This cutoff was selected based on expert elicitation, but the

effect of using this cut-off has not been explored. Bacterial cases with AFe¡0.5 were excluded in our

analysis, but may still benefit from antibiotic treatment.

In conclusion, we have developed a clinical prediction model that integrates multiple sources

external to the presenting patient, through use of a post-test odds framework and showed that it

improved diagnostic performance. When applied to the etiological diagnosis of pediatric diarrhea,

we demonstrate its potential for reducing inappropriate antibiotic use. The flexible inclusion or

exclusion of output from its components makes it ideal for decision support in lower resourced set-

tings, when only certain data may be available due to limitations in information computation or con-

nectivity. Additionally, the ability to incorporate new training data in real-time to update decisions

allows the model to improve as more data is collected. Such a predictive model has the potential to

improve the management of pediatric diarrhea, including the rational use of antibiotics in

lower resourced settings.
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Appendix 1

Weighted weather station data
Daily local weather information was constructed based on data from weather stations within 200 km

of the site of interest. We chose 200 km because one our sites, Mozambique, does not have any sta-

tions nearer than 180 km. We then collect the temperature and rain info from the top five closest

weather stations and take a weighted average where they are weighted inversely by distance so that

the closer weather stations will have more effect on the average. For instance, for temperature on

day d across the five closest weather stations: Td� ¼

P
5

i¼1
Tdi�d

�1

iP
5

i¼1
d�1

i

where Tdi is the average temperature

for weather station i on day d and di is the distance from weather station i.
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Appendix 2

Pre-test odds from prior patient predictions for prediction in new sites
We calculated pre-test odds by combining past predictions from predictive model A, the presenting

patient model. By taking a weighted average of the recently predicted odds of viral etiology, we

attempt to capture recent local trends in diarrhea pathogens, such as localized outbreaks. This is

similar to heuristic decision making historically used by clinicians. We aggregated the odds calcu-

lated from the presenting patient model on their probability scale for each site over the past d days

such that pre-test probability pd for day d is

pd ¼
Pd�nþ1 �w1 þPd�nþ2 �w2 þ �� �þPd �wn

w1 þw2þ �� �þwn

Pd ¼
1

k
S
k
i¼1

Pdi

where Pdi are the i¼ 1; � � � ;k current patient predictions converted from the odds scale to the proba-

bility scale on day d and n is the number of prior days included in the calculation. Provided the

greatest weights are put on the most recent predictions, we would expect an influx of certain symp-

toms related to a viral etiology to be represented by pd.
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