Regulation of RUVBL1-RUVBL2 AAA-ATPases by the nonsense-mediated mRNA decay factor DHX34, as evidenced by Cryo-EM

  1. Andrés López-Perrote
  2. Nele Hug
  3. Ana González-Corpas
  4. Carlos F RodrĂ­guez
  5. Marina Serna
  6. Carmen GarcĂ­a-MartĂ­n
  7. Jasminka Boskovic
  8. Rafael Fernandez-Leiro
  9. Javier F Caceres
  10. Oscar Llorca  Is a corresponding author
  1. Spanish National Cancer Research Center, CNIO, Spain
  2. MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, United Kingdom

Abstract

Nonsense-mediated mRNA decay (NMD) is a surveillance pathway that degrades aberrant mRNAs and also regulates the expression of a wide range of physiological transcripts. RUVBL1 and RUVBL2 AAA-ATPases form an hetero-hexameric ring that is part of several macromolecular complexes such as INO80, SWR1 and R2TP. Interestingly, RUVBL1-RUVBL2 ATPase activity is required for NMD activation by an unknown mechanism. Here, we show that DHX34, an RNA helicase regulating NMD initiation, directly interacts with RUVBL1-RUVBL2 in vitro and in cells. Cryo-EM reveals that DHX34 induces extensive changes in the N-termini of every RUVBL2 subunit in the complex, stabilizing a conformation that does not bind nucleotide and thereby down-regulates ATP hydrolysis of the complex. Using ATPase-deficient mutants, we find that DHX34 acts exclusively on the RUVBL2 subunits. We propose a model, where DHX34 acts to couple RUVBL1-RUVBL2 ATPase activity to the assembly of factors required to initiate the NMD response.

Data availability

The cryo-EM maps of the RUVBL1-RUVBL2-DHX34 complex and the RUVBL1-RUVBL2 ring have been deposited in the EM database with accession codes EMD-11788 and EMD-11789 respectively. The structure of RUVBL1-RUVBL2 heterohexameric ring after binding of RNA helicase DHX34 has been deposited as PDB ID 7AHO.

The following data sets were generated

Article and author information

Author details

  1. Andrés López-Perrote

    Structural Biology Programme, Spanish National Cancer Research Center, CNIO, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Nele Hug

    Genome Regulation Section, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Ana González-Corpas

    Structural Biology Programme, Spanish National Cancer Research Center, CNIO, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Carlos F RodrĂ­guez

    Structural Biology Programme, Spanish National Cancer Research Center, CNIO, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Marina Serna

    Structural Biology Programme, Spanish National Cancer Research Center, CNIO, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Carmen GarcĂ­a-MartĂ­n

    Structural Biology Programme, Spanish National Cancer Research Center, CNIO, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Jasminka Boskovic

    Structural Biology and Biocomputing Programme, Electron Microscopy Unit, Spanish National Cancer Research Center, CNIO, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Rafael Fernandez-Leiro

    Structural Biology Programme, Spanish National Cancer Research Center, CNIO, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. Javier F Caceres

    Genome Regulation Section, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8025-6169
  10. Oscar Llorca

    Structural Biology Programme, Spanish National Cancer Research Center, CNIO, Madrid, Spain
    For correspondence
    ollorca@cnio.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5705-0699

Funding

Spanish Ministry of Science and Innovation (SAF2017-82632-P)

  • AndrĂ©s LĂłpez-Perrote
  • Carlos F RodrĂ­guez
  • Marina Serna
  • Oscar Llorca

Autonomous Government of Madrid (Y2018/BIO4747)

  • Ana González-Corpas
  • Oscar Llorca

Autonomous Government of Madrid (P2018/NMT4443)

  • Ana González-Corpas
  • Oscar Llorca

Core funding to the MRC Human Genetics Unit

  • Javier F Caceres

Spanish Ministry of Science and Innovation (BES-2015-071348)

  • Carlos F RodrĂ­guez

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andreas Martin, University of California, Berkeley, United States

Version history

  1. Received: September 12, 2020
  2. Accepted: November 12, 2020
  3. Accepted Manuscript published: November 18, 2020 (version 1)
  4. Version of Record published: December 1, 2020 (version 2)

Copyright

© 2020, López-Perrote et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,014
    Page views
  • 316
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrés López-Perrote
  2. Nele Hug
  3. Ana González-Corpas
  4. Carlos F RodrĂ­guez
  5. Marina Serna
  6. Carmen GarcĂ­a-MartĂ­n
  7. Jasminka Boskovic
  8. Rafael Fernandez-Leiro
  9. Javier F Caceres
  10. Oscar Llorca
(2020)
Regulation of RUVBL1-RUVBL2 AAA-ATPases by the nonsense-mediated mRNA decay factor DHX34, as evidenced by Cryo-EM
eLife 9:e63042.
https://doi.org/10.7554/eLife.63042

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Elliott L Paine, Jack J Skalicky ... Wesley I Sundquist
    Research Advance

    The Endosomal Sorting Complexes Required for Transport (ESCRT) machinery mediates the membrane fission step that completes cytokinetic abscission and separates dividing cells. Filaments composed of ESCRT-III subunits constrict membranes of the intercellular bridge midbody to the abscission point. These filaments also bind and recruit cofactors whose activities help execute abscission and/or delay abscission timing in response to mitotic errors via the NoCut/Abscission checkpoint. We previously showed that the ESCRT-III subunit IST1 binds the cysteine protease CAPN7 (Calpain-7) and that CAPN7 is required for both efficient abscission and NoCut checkpoint maintenance (Wenzel et al., 2022). Here, we report biochemical and crystallographic studies showing that the tandem MIT domains of CAPN7 bind simultaneously to two distinct IST1 MIT interaction motifs. Structure-guided point mutations in either CAPN7 MIT domain disrupted IST1 binding in vitro and in cells, and depletion/rescue experiments showed that the CAPN7-IST1 interaction is required for: 1) CAPN7 recruitment to midbodies, 2) efficient abscission, and 3) NoCut checkpoint arrest. CAPN7 proteolytic activity is also required for abscission and checkpoint maintenance. Hence, IST1 recruits CAPN7 to midbodies, where its proteolytic activity is required to regulate and complete abscission.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Nina Gubensäk, Theo Sagmeister ... Tea Pavkov-Keller
    Research Article

    The seventh pandemic of the diarrheal cholera disease, which began in 1960, is caused by the Gram-negative bacterium Vibrio cholerae. Its environmental persistence provoking recurring sudden outbreaks is enabled by V. cholerae's rapid adaption to changing environments involving sensory proteins like ToxR and ToxS. Located at the inner membrane, ToxR and ToxS react to environmental stimuli like bile acid, thereby inducing survival strategies e.g. bile resistance and virulence regulation. The presented crystal structure of the sensory domains of ToxR and ToxS in combination with multiple bile acid interaction studies, reveals that a bile binding pocket of ToxS is only properly folded upon binding to ToxR. Our data proposes an interdependent functionality between ToxR transcriptional activity and ToxS sensory function. These findings support the previously suggested link between ToxRS and VtrAC-like co-component systems. Besides VtrAC, ToxRS is now the only experimentally determined structure within this recently defined superfamily, further emphasizing its significance. In-depth analysis of the ToxRS complex reveals its remarkable conservation across various Vibrio species, underlining the significance of conserved residues in the ToxS barrel and the more diverse ToxR sensory domain. Unravelling the intricate mechanisms governing ToxRS's environmental sensing capabilities, provides a promising tool for disruption of this vital interaction, ultimately inhibiting Vibrio's survival and virulence. Our findings hold far-reaching implications for all Vibrio strains that rely on the ToxRS system as a shared sensory cornerstone for adapting to their surroundings.