Regulation of RUVBL1-RUVBL2 AAA-ATPases by the nonsense-mediated mRNA decay factor DHX34, as evidenced by Cryo-EM
Abstract
Nonsense-mediated mRNA decay (NMD) is a surveillance pathway that degrades aberrant mRNAs and also regulates the expression of a wide range of physiological transcripts. RUVBL1 and RUVBL2 AAA-ATPases form an hetero-hexameric ring that is part of several macromolecular complexes such as INO80, SWR1 and R2TP. Interestingly, RUVBL1-RUVBL2 ATPase activity is required for NMD activation by an unknown mechanism. Here, we show that DHX34, an RNA helicase regulating NMD initiation, directly interacts with RUVBL1-RUVBL2 in vitro and in cells. Cryo-EM reveals that DHX34 induces extensive changes in the N-termini of every RUVBL2 subunit in the complex, stabilizing a conformation that does not bind nucleotide and thereby down-regulates ATP hydrolysis of the complex. Using ATPase-deficient mutants, we find that DHX34 acts exclusively on the RUVBL2 subunits. We propose a model, where DHX34 acts to couple RUVBL1-RUVBL2 ATPase activity to the assembly of factors required to initiate the NMD response.
Data availability
The cryo-EM maps of the RUVBL1-RUVBL2-DHX34 complex and the RUVBL1-RUVBL2 ring have been deposited in the EM database with accession codes EMD-11788 and EMD-11789 respectively. The structure of RUVBL1-RUVBL2 heterohexameric ring after binding of RNA helicase DHX34 has been deposited as PDB ID 7AHO.
Article and author information
Author details
Funding
Spanish Ministry of Science and Innovation (SAF2017-82632-P)
- Andrés López-Perrote
- Carlos F Rodríguez
- Marina Serna
- Oscar Llorca
Autonomous Government of Madrid (Y2018/BIO4747)
- Ana González-Corpas
- Oscar Llorca
Autonomous Government of Madrid (P2018/NMT4443)
- Ana González-Corpas
- Oscar Llorca
Core funding to the MRC Human Genetics Unit
- Javier F Caceres
Spanish Ministry of Science and Innovation (BES-2015-071348)
- Carlos F Rodríguez
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2020, López-Perrote et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 14
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 14
- citations for umbrella DOI https://doi.org/10.7554/eLife.63042