Stable transplantation of human mitochondrial DNA by high-throughput, pressurized isolated mitochondrial delivery

  1. Alexander J Sercel
  2. Alexander N Patananan
  3. Tianxing Man
  4. Ting-Hsiang Wu
  5. Amy K Yu
  6. Garret W Guyot
  7. Shahrooz Rabizadeh
  8. Kayvan R Niazi
  9. Pei-Yu Chiou
  10. Michael A Teitell  Is a corresponding author
  1. UCLA, United States
  2. NanoCav, LLC, NantBio, Inc, and ImmunityBio, Inc, United States
  3. NanoCav, LLC, NantBio, Inc, and ImmunityBio, Inc, and NantOmics, LLC, United States

Abstract

Generating mammalian cells with specific mtDNA-nDNA combinations is desirable but difficult to achieve and would be enabling for studies of mitochondrial-nuclear communication and coordination in controlling cell fates and functions. We developed 'MitoPunch', a pressure-driven mitochondrial transfer device, to deliver isolated mitochondria into numerous target mammalian cells simultaneously. MitoPunch and MitoCeption, a previously described force-based mitochondrial transfer approach, both yield stable isolated mitochondrial recipient (SIMR) cells that permanently retain exogenous mtDNA, whereas coincubation of mitochondria with cells does not yield SIMR cells. Although a typical MitoPunch or MitoCeption delivery results in dozens of immortalized SIMR clones with restored oxidative phosphorylation, only MitoPunch can produce replication-limited, non-immortal human SIMR clones. The MitoPunch device is versatile, inexpensive to assemble, and easy to use for engineering mtDNA-nDNA combinations to enable fundamental studies and potential translational applications.

Data availability

Figure 1-source data 1. Numerical simulation of MitoPunch pressure generation during mitochondrial delivery. Cited in the legend of Figure 1.

Article and author information

Author details

  1. Alexander J Sercel

    Molecular Biology Institute Interdepartmental Program, UCLA, Los Angeles, United States
    Competing interests
    No competing interests declared.
  2. Alexander N Patananan

    Pathology and Laboratory Medicine, UCLA, Los Angeles, United States
    Competing interests
    No competing interests declared.
  3. Tianxing Man

    Mechanical and Aerospace Engineering, UCLA, Los Angeles, United States
    Competing interests
    No competing interests declared.
  4. Ting-Hsiang Wu

    NanoCav, LLC, NantBio, Inc, and ImmunityBio, Inc, Culver City, United States
    Competing interests
    Ting-Hsiang Wu, T.-H.W. was an employee of NanoCav, LLC, and is currently employed by NantBio, Inc and ImmunityBio, Inc..
  5. Amy K Yu

    Molecular Biology Institute Interdepartmental Program, UCLA, Los Angeles, United States
    Competing interests
    No competing interests declared.
  6. Garret W Guyot

    Pathology and Laboratory Medicine, UCLA, Los Angeles, United States
    Competing interests
    No competing interests declared.
  7. Shahrooz Rabizadeh

    NanoCav, LLC, NantBio, Inc, and ImmunityBio, Inc, and NantOmics, LLC, Culver City, United States
    Competing interests
    Shahrooz Rabizadeh, S.R. is a board member of NanoCav, LLC, and employed by NantBio, Inc, ImmunityBio, Inc, and NantOmics, LLC..
  8. Kayvan R Niazi

    NanoCav, LLC, NantBio, Inc, and ImmunityBio, Inc, Culver City, United States
    Competing interests
    Kayvan R Niazi, K.R.N. is a board member of NanoCav, LLC, and employed by NantBio, Inc and ImmunityBio, Inc..
  9. Pei-Yu Chiou

    Mechanical and Aerospace Engineering, UCLA, Los Angeles, United States
    Competing interests
    Pei-Yu Chiou, P.-Y.C. is a co-founder, board member, shareholder, and consultant for NanoCav, LLC, a private start-up company working on mitochondrial transfer techniques and applications..
  10. Michael A Teitell

    Pathology and Laboratory Medicine, UCLA, Los Angeles, United States
    For correspondence
    mteitell@mednet.ucla.edu
    Competing interests
    Michael A Teitell, M.A.T. is a co-founder, board member, shareholder, and consultant for NanoCav, LLC, a private start-up company working on mitochondrial transfer techniques and applications..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4495-8750

Funding

National Institutes of Health (T32CA009120)

  • Alexander J Sercel
  • Alexander N Patananan

National Institutes of Health (R21CA227480)

  • Michael A Teitell

National Institutes of Health (P30CA016042)

  • Michael A Teitell

CIRM (RT3-07678)

  • Michael A Teitell

National Institutes of Health (T32GM007185)

  • Alexander J Sercel

American Heart Association (18POST34080342)

  • Alexander N Patananan

National Institutes of Health (T32GM008042)

  • Amy K Yu

National Science Foundation (CBET 1404080)

  • Pei-Yu Chiou

National Institutes of Health (R01GM114188)

  • Pei-Yu Chiou
  • Michael A Teitell

Air Force Office of Scientific Research (FA9550-15-1-0406)

  • Pei-Yu Chiou
  • Michael A Teitell

National Institutes of Health (R01GM073981)

  • Michael A Teitell

National Institutes of Health (R01CA185189)

  • Michael A Teitell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Sercel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,065
    views
  • 470
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexander J Sercel
  2. Alexander N Patananan
  3. Tianxing Man
  4. Ting-Hsiang Wu
  5. Amy K Yu
  6. Garret W Guyot
  7. Shahrooz Rabizadeh
  8. Kayvan R Niazi
  9. Pei-Yu Chiou
  10. Michael A Teitell
(2021)
Stable transplantation of human mitochondrial DNA by high-throughput, pressurized isolated mitochondrial delivery
eLife 10:e63102.
https://doi.org/10.7554/eLife.63102

Share this article

https://doi.org/10.7554/eLife.63102

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    Sarah De Beuckeleer, Tim Van De Looverbosch ... Winnok H De Vos
    Research Article

    Induced pluripotent stem cell (iPSC) technology is revolutionizing cell biology. However, the variability between individual iPSC lines and the lack of efficient technology to comprehensively characterize iPSC-derived cell types hinder its adoption in routine preclinical screening settings. To facilitate the validation of iPSC-derived cell culture composition, we have implemented an imaging assay based on cell painting and convolutional neural networks to recognize cell types in dense and mixed cultures with high fidelity. We have benchmarked our approach using pure and mixed cultures of neuroblastoma and astrocytoma cell lines and attained a classification accuracy above 96%. Through iterative data erosion, we found that inputs containing the nuclear region of interest and its close environment, allow achieving equally high classification accuracy as inputs containing the whole cell for semi-confluent cultures and preserved prediction accuracy even in very dense cultures. We then applied this regionally restricted cell profiling approach to evaluate the differentiation status of iPSC-derived neural cultures, by determining the ratio of postmitotic neurons and neural progenitors. We found that the cell-based prediction significantly outperformed an approach in which the population-level time in culture was used as a classification criterion (96% vs 86%, respectively). In mixed iPSC-derived neuronal cultures, microglia could be unequivocally discriminated from neurons, regardless of their reactivity state, and a tiered strategy allowed for further distinguishing activated from non-activated cell states, albeit with lower accuracy. Thus, morphological single-cell profiling provides a means to quantify cell composition in complex mixed neural cultures and holds promise for use in the quality control of iPSC-derived cell culture models.

    1. Cell Biology
    Joan Chang, Adam Pickard ... Karl E Kadler
    Research Article

    Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis. Cells lacking VPS33B secrete soluble collagen-I protomers but were deficient in fibril formation, thus secretion and assembly are separately controlled. Overexpression of VPS33B led to loss of fibril rhythmicity and overabundance of fibrils, which was mediated through integrin α11β1. Endocytic recycling of collagen-I was enhanced in human fibroblasts isolated from idiopathic pulmonary fibrosis, where VPS33B and integrin α11 subunit were overexpressed at the fibrogenic front; this correlation between VPS33B, integrin α11 subunit, and abnormal collagen deposition was also observed in samples from patients with chronic skin wounds. In conclusion, our study showed that circadian-regulated endocytic recycling is central to homeostatic assembly of collagen fibrils and is disrupted in diseases.