Stable transplantation of human mitochondrial DNA by high-throughput, pressurized isolated mitochondrial delivery

  1. Alexander J Sercel
  2. Alexander N Patananan
  3. Tianxing Man
  4. Ting-Hsiang Wu
  5. Amy K Yu
  6. Garret W Guyot
  7. Shahrooz Rabizadeh
  8. Kayvan R Niazi
  9. Pei-Yu Chiou
  10. Michael A Teitell  Is a corresponding author
  1. UCLA, United States
  2. NanoCav, LLC, NantBio, Inc, and ImmunityBio, Inc, United States
  3. NanoCav, LLC, NantBio, Inc, and ImmunityBio, Inc, and NantOmics, LLC, United States

Abstract

Generating mammalian cells with specific mtDNA-nDNA combinations is desirable but difficult to achieve and would be enabling for studies of mitochondrial-nuclear communication and coordination in controlling cell fates and functions. We developed 'MitoPunch', a pressure-driven mitochondrial transfer device, to deliver isolated mitochondria into numerous target mammalian cells simultaneously. MitoPunch and MitoCeption, a previously described force-based mitochondrial transfer approach, both yield stable isolated mitochondrial recipient (SIMR) cells that permanently retain exogenous mtDNA, whereas coincubation of mitochondria with cells does not yield SIMR cells. Although a typical MitoPunch or MitoCeption delivery results in dozens of immortalized SIMR clones with restored oxidative phosphorylation, only MitoPunch can produce replication-limited, non-immortal human SIMR clones. The MitoPunch device is versatile, inexpensive to assemble, and easy to use for engineering mtDNA-nDNA combinations to enable fundamental studies and potential translational applications.

Data availability

Figure 1-source data 1. Numerical simulation of MitoPunch pressure generation during mitochondrial delivery. Cited in the legend of Figure 1.

Article and author information

Author details

  1. Alexander J Sercel

    Molecular Biology Institute Interdepartmental Program, UCLA, Los Angeles, United States
    Competing interests
    No competing interests declared.
  2. Alexander N Patananan

    Pathology and Laboratory Medicine, UCLA, Los Angeles, United States
    Competing interests
    No competing interests declared.
  3. Tianxing Man

    Mechanical and Aerospace Engineering, UCLA, Los Angeles, United States
    Competing interests
    No competing interests declared.
  4. Ting-Hsiang Wu

    NanoCav, LLC, NantBio, Inc, and ImmunityBio, Inc, Culver City, United States
    Competing interests
    Ting-Hsiang Wu, T.-H.W. was an employee of NanoCav, LLC, and is currently employed by NantBio, Inc and ImmunityBio, Inc..
  5. Amy K Yu

    Molecular Biology Institute Interdepartmental Program, UCLA, Los Angeles, United States
    Competing interests
    No competing interests declared.
  6. Garret W Guyot

    Pathology and Laboratory Medicine, UCLA, Los Angeles, United States
    Competing interests
    No competing interests declared.
  7. Shahrooz Rabizadeh

    NanoCav, LLC, NantBio, Inc, and ImmunityBio, Inc, and NantOmics, LLC, Culver City, United States
    Competing interests
    Shahrooz Rabizadeh, S.R. is a board member of NanoCav, LLC, and employed by NantBio, Inc, ImmunityBio, Inc, and NantOmics, LLC..
  8. Kayvan R Niazi

    NanoCav, LLC, NantBio, Inc, and ImmunityBio, Inc, Culver City, United States
    Competing interests
    Kayvan R Niazi, K.R.N. is a board member of NanoCav, LLC, and employed by NantBio, Inc and ImmunityBio, Inc..
  9. Pei-Yu Chiou

    Mechanical and Aerospace Engineering, UCLA, Los Angeles, United States
    Competing interests
    Pei-Yu Chiou, P.-Y.C. is a co-founder, board member, shareholder, and consultant for NanoCav, LLC, a private start-up company working on mitochondrial transfer techniques and applications..
  10. Michael A Teitell

    Pathology and Laboratory Medicine, UCLA, Los Angeles, United States
    For correspondence
    mteitell@mednet.ucla.edu
    Competing interests
    Michael A Teitell, M.A.T. is a co-founder, board member, shareholder, and consultant for NanoCav, LLC, a private start-up company working on mitochondrial transfer techniques and applications..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4495-8750

Funding

National Institutes of Health (T32CA009120)

  • Alexander J Sercel
  • Alexander N Patananan

National Institutes of Health (R21CA227480)

  • Michael A Teitell

National Institutes of Health (P30CA016042)

  • Michael A Teitell

CIRM (RT3-07678)

  • Michael A Teitell

National Institutes of Health (T32GM007185)

  • Alexander J Sercel

American Heart Association (18POST34080342)

  • Alexander N Patananan

National Institutes of Health (T32GM008042)

  • Amy K Yu

National Science Foundation (CBET 1404080)

  • Pei-Yu Chiou

National Institutes of Health (R01GM114188)

  • Pei-Yu Chiou
  • Michael A Teitell

Air Force Office of Scientific Research (FA9550-15-1-0406)

  • Pei-Yu Chiou
  • Michael A Teitell

National Institutes of Health (R01GM073981)

  • Michael A Teitell

National Institutes of Health (R01CA185189)

  • Michael A Teitell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Simon C Johnson, University of Washington, United States

Version history

  1. Received: September 15, 2020
  2. Accepted: January 12, 2021
  3. Accepted Manuscript published: January 13, 2021 (version 1)
  4. Version of Record published: February 5, 2021 (version 2)

Copyright

© 2021, Sercel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,808
    views
  • 435
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexander J Sercel
  2. Alexander N Patananan
  3. Tianxing Man
  4. Ting-Hsiang Wu
  5. Amy K Yu
  6. Garret W Guyot
  7. Shahrooz Rabizadeh
  8. Kayvan R Niazi
  9. Pei-Yu Chiou
  10. Michael A Teitell
(2021)
Stable transplantation of human mitochondrial DNA by high-throughput, pressurized isolated mitochondrial delivery
eLife 10:e63102.
https://doi.org/10.7554/eLife.63102

Share this article

https://doi.org/10.7554/eLife.63102

Further reading

    1. Cell Biology
    Ang Li, Jianxun Yi ... Jingsong Zhou
    Research Article

    Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disorder characterized by progressive weakness of almost all skeletal muscles, whereas extraocular muscles (EOMs) are comparatively spared. While hindlimb and diaphragm muscles of end-stage SOD1G93A (G93A) mice (a familial ALS mouse model) exhibit severe denervation and depletion of Pax7+satellite cells (SCs), we found that the pool of SCs and the integrity of neuromuscular junctions (NMJs) are maintained in EOMs. In cell sorting profiles, SCs derived from hindlimb and diaphragm muscles of G93A mice exhibit denervation-related activation, whereas SCs from EOMs of G93A mice display spontaneous (non-denervation-related) activation, similar to SCs from wild-type mice. Specifically, cultured EOM SCs contain more abundant transcripts of axon guidance molecules, including Cxcl12, along with more sustainable renewability than the diaphragm and hindlimb counterparts under differentiation pressure. In neuromuscular co-culture assays, AAV-delivery of Cxcl12 to G93A-hindlimb SC-derived myotubes enhances motor neuron axon extension and innervation, recapitulating the innervation capacity of EOM SC-derived myotubes. G93A mice fed with sodium butyrate (NaBu) supplementation exhibited less NMJ loss in hindlimb and diaphragm muscles. Additionally, SCs derived from G93A hindlimb and diaphragm muscles displayed elevated expression of Cxcl12 and improved renewability following NaBu treatment in vitro. Thus, the NaBu-induced transcriptomic changes resembling the patterns of EOM SCs may contribute to the beneficial effects observed in G93A mice. More broadly, the distinct transcriptomic profile of EOM SCs may offer novel therapeutic targets to slow progressive neuromuscular functional decay in ALS and provide possible ‘response biomarkers’ in pre-clinical and clinical studies.

    1. Cell Biology
    Simona Bolamperti, Hiroaki Saito ... Hanna Taipaleenmäki
    Research Article

    Osteoblast adherence to bone surfaces is important for remodeling bone tissue. This study demonstrates that deficiency of TG-interacting factor 1 (Tgif1) in osteoblasts results in altered cell morphology, reduced adherence to collagen type I-coated surfaces, and impaired migration capacity. Tgif1 is essential for osteoblasts to adapt a regular cell morphology and to efficiently adhere and migrate on collagen type I-rich matrices in vitro. Furthermore, Tgif1 acts as a transcriptional repressor of p21-activated kinase 3 (Pak3), an important regulator of focal adhesion formation and osteoblast spreading. Absence of Tgif1 leads to increased Pak3 expression, which impairs osteoblast spreading. Additionally, Tgif1 is implicated in osteoblast recruitment and activation of bone surfaces in the context of bone regeneration and in response to parathyroid hormone 1–34 (PTH 1–34) treatment in vivo in mice. These findings provide important novel insights in the regulation of the cytoskeletal architecture of osteoblasts.