Stable transplantation of human mitochondrial DNA by high-throughput, pressurized isolated mitochondrial delivery

  1. Alexander J Sercel
  2. Alexander N Patananan
  3. Tianxing Man
  4. Ting-Hsiang Wu
  5. Amy K Yu
  6. Garret W Guyot
  7. Shahrooz Rabizadeh
  8. Kayvan R Niazi
  9. Pei-Yu Chiou
  10. Michael A Teitell  Is a corresponding author
  1. UCLA, United States
  2. NanoCav, LLC, NantBio, Inc, and ImmunityBio, Inc, United States
  3. NanoCav, LLC, NantBio, Inc, and ImmunityBio, Inc, and NantOmics, LLC, United States

Abstract

Generating mammalian cells with specific mtDNA-nDNA combinations is desirable but difficult to achieve and would be enabling for studies of mitochondrial-nuclear communication and coordination in controlling cell fates and functions. We developed 'MitoPunch', a pressure-driven mitochondrial transfer device, to deliver isolated mitochondria into numerous target mammalian cells simultaneously. MitoPunch and MitoCeption, a previously described force-based mitochondrial transfer approach, both yield stable isolated mitochondrial recipient (SIMR) cells that permanently retain exogenous mtDNA, whereas coincubation of mitochondria with cells does not yield SIMR cells. Although a typical MitoPunch or MitoCeption delivery results in dozens of immortalized SIMR clones with restored oxidative phosphorylation, only MitoPunch can produce replication-limited, non-immortal human SIMR clones. The MitoPunch device is versatile, inexpensive to assemble, and easy to use for engineering mtDNA-nDNA combinations to enable fundamental studies and potential translational applications.

Data availability

Figure 1-source data 1. Numerical simulation of MitoPunch pressure generation during mitochondrial delivery. Cited in the legend of Figure 1.

Article and author information

Author details

  1. Alexander J Sercel

    Molecular Biology Institute Interdepartmental Program, UCLA, Los Angeles, United States
    Competing interests
    No competing interests declared.
  2. Alexander N Patananan

    Pathology and Laboratory Medicine, UCLA, Los Angeles, United States
    Competing interests
    No competing interests declared.
  3. Tianxing Man

    Mechanical and Aerospace Engineering, UCLA, Los Angeles, United States
    Competing interests
    No competing interests declared.
  4. Ting-Hsiang Wu

    NanoCav, LLC, NantBio, Inc, and ImmunityBio, Inc, Culver City, United States
    Competing interests
    Ting-Hsiang Wu, T.-H.W. was an employee of NanoCav, LLC, and is currently employed by NantBio, Inc and ImmunityBio, Inc..
  5. Amy K Yu

    Molecular Biology Institute Interdepartmental Program, UCLA, Los Angeles, United States
    Competing interests
    No competing interests declared.
  6. Garret W Guyot

    Pathology and Laboratory Medicine, UCLA, Los Angeles, United States
    Competing interests
    No competing interests declared.
  7. Shahrooz Rabizadeh

    NanoCav, LLC, NantBio, Inc, and ImmunityBio, Inc, and NantOmics, LLC, Culver City, United States
    Competing interests
    Shahrooz Rabizadeh, S.R. is a board member of NanoCav, LLC, and employed by NantBio, Inc, ImmunityBio, Inc, and NantOmics, LLC..
  8. Kayvan R Niazi

    NanoCav, LLC, NantBio, Inc, and ImmunityBio, Inc, Culver City, United States
    Competing interests
    Kayvan R Niazi, K.R.N. is a board member of NanoCav, LLC, and employed by NantBio, Inc and ImmunityBio, Inc..
  9. Pei-Yu Chiou

    Mechanical and Aerospace Engineering, UCLA, Los Angeles, United States
    Competing interests
    Pei-Yu Chiou, P.-Y.C. is a co-founder, board member, shareholder, and consultant for NanoCav, LLC, a private start-up company working on mitochondrial transfer techniques and applications..
  10. Michael A Teitell

    Pathology and Laboratory Medicine, UCLA, Los Angeles, United States
    For correspondence
    mteitell@mednet.ucla.edu
    Competing interests
    Michael A Teitell, M.A.T. is a co-founder, board member, shareholder, and consultant for NanoCav, LLC, a private start-up company working on mitochondrial transfer techniques and applications..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4495-8750

Funding

National Institutes of Health (T32CA009120)

  • Alexander J Sercel
  • Alexander N Patananan

National Institutes of Health (R21CA227480)

  • Michael A Teitell

National Institutes of Health (P30CA016042)

  • Michael A Teitell

CIRM (RT3-07678)

  • Michael A Teitell

National Institutes of Health (T32GM007185)

  • Alexander J Sercel

American Heart Association (18POST34080342)

  • Alexander N Patananan

National Institutes of Health (T32GM008042)

  • Amy K Yu

National Science Foundation (CBET 1404080)

  • Pei-Yu Chiou

National Institutes of Health (R01GM114188)

  • Pei-Yu Chiou
  • Michael A Teitell

Air Force Office of Scientific Research (FA9550-15-1-0406)

  • Pei-Yu Chiou
  • Michael A Teitell

National Institutes of Health (R01GM073981)

  • Michael A Teitell

National Institutes of Health (R01CA185189)

  • Michael A Teitell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Sercel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,124
    views
  • 478
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexander J Sercel
  2. Alexander N Patananan
  3. Tianxing Man
  4. Ting-Hsiang Wu
  5. Amy K Yu
  6. Garret W Guyot
  7. Shahrooz Rabizadeh
  8. Kayvan R Niazi
  9. Pei-Yu Chiou
  10. Michael A Teitell
(2021)
Stable transplantation of human mitochondrial DNA by high-throughput, pressurized isolated mitochondrial delivery
eLife 10:e63102.
https://doi.org/10.7554/eLife.63102

Share this article

https://doi.org/10.7554/eLife.63102

Further reading

    1. Cell Biology
    Kaili Du, Hongyu Chen ... Dan Li
    Research Article

    Niemann–Pick disease type C (NPC) is a devastating lysosomal storage disease characterized by abnormal cholesterol accumulation in lysosomes. Currently, there is no treatment for NPC. Transcription factor EB (TFEB), a member of the microphthalmia transcription factors (MiTF), has emerged as a master regulator of lysosomal function and promoted the clearance of substrates stored in cells. However, it is not known whether TFEB plays a role in cholesterol clearance in NPC disease. Here, we show that transgenic overexpression of TFEB, but not TFE3 (another member of MiTF family) facilitates cholesterol clearance in various NPC1 cell models. Pharmacological activation of TFEB by sulforaphane (SFN), a previously identified natural small-molecule TFEB agonist by us, can dramatically ameliorate cholesterol accumulation in human and mouse NPC1 cell models. In NPC1 cells, SFN induces TFEB nuclear translocation via a ROS-Ca2+-calcineurin-dependent but MTOR-independent pathway and upregulates the expression of TFEB-downstream genes, promoting lysosomal exocytosis and biogenesis. While genetic inhibition of TFEB abolishes the cholesterol clearance and exocytosis effect by SFN. In the NPC1 mouse model, SFN dephosphorylates/activates TFEB in the brain and exhibits potent efficacy of rescuing the loss of Purkinje cells and body weight. Hence, pharmacological upregulating lysosome machinery via targeting TFEB represents a promising approach to treat NPC and related lysosomal storage diseases, and provides the possibility of TFEB agonists, that is, SFN as potential NPC therapeutic candidates.

    1. Cell Biology
    Yan Song, Linda J Fothergill ... Gene W Yeo
    Research Article

    Dynamic interactions between gut mucosal cells and the external environment are essential to maintain gut homeostasis. Enterochromaffin (EC) cells transduce both chemical and mechanical signals and produce 5-hydroxytryptamine to mediate disparate physiological responses. However, the molecular and cellular basis for functional diversity of ECs remains to be adequately defined. Here, we integrated single-cell transcriptomics with spatial image analysis to identify 14 EC clusters that are topographically organized along the gut. Subtypes predicted to be sensitive to the chemical environment and mechanical forces were identified that express distinct transcription factors and hormones. A Piezo2+ population in the distal colon was endowed with a distinctive neuronal signature. Using a combination of genetic, chemogenetic, and pharmacological approaches, we demonstrated Piezo2+ ECs are required for normal colon motility. Our study constructs a molecular map for ECs and offers a framework for deconvoluting EC cells with pleiotropic functions.