Tuning self-renewal in the Arabidopsis stomatal lineage by hormone and nutrient regulation of asymmetric cell division

  1. Yan Gong
  2. Julien Alassimone
  3. Rachel Varnau
  4. Nidhi Sharma
  5. Lily S Cheung
  6. Dominique C Bergmann  Is a corresponding author
  1. Stanford University, United States
  2. Georgia Institute of Technology, United States

Abstract

Asymmetric and self-renewing divisions build and pattern tissues. In the Arabidopsis stomatal lineage, asymmetric cell divisions, guided by polarly localized cortical proteins, generate most cells on the leaf surface. Systemic and environmental signals modify tissue development, but the mechanisms by which plants incorporate such cues to regulate asymmetric divisions are elusive. In a screen for modulators of cell polarity, we identified CONSTITUTIVE TRIPLE RESPONSE1, a negative regulator of ethylene signaling. We subsequently revealed antagonistic impacts of ethylene and glucose signaling on the self-renewing capacity of stomatal lineage stem-cells. Quantitative analysis of cell polarity and fate dynamics showed that developmental information may be encoded in both the spatial and temporal asymmetries of polarity proteins. These results provide a framework for a mechanistic understanding of how nutritional status and environmental factors tune stem-cell behavior in the stomatal lineage, ultimately enabling flexibility in leaf size and cell-type composition.

Data availability

All data generated on analyzed during this study are include in the manuscript and supporting files.

Article and author information

Author details

  1. Yan Gong

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  2. Julien Alassimone

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  3. Rachel Varnau

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  4. Nidhi Sharma

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9725-5338
  5. Lily S Cheung

    School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, United States
    Competing interests
    No competing interests declared.
  6. Dominique C Bergmann

    Department of Biology, Stanford University, Stanford, United States
    For correspondence
    bergmann@stanford.edu
    Competing interests
    Dominique C Bergmann, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0873-3543

Funding

Howard Hughes Medical Institute

  • Dominique C Bergmann

Swiss national science foundation (EPM-PBLAP3-142757)

  • Julien Alassimone

European Molecular Biology Organization (ALTF-878-2013)

  • Julien Alassimone

Howard Hughes Medical Institute

  • Yan Gong

Howard Hughes Medical Institute

  • Nidhi Sharma

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Hao Yu, National University of Singapore & Temasek Life Sciences Laboratory, Singapore

Version history

  1. Received: September 22, 2020
  2. Accepted: March 18, 2021
  3. Accepted Manuscript published: March 19, 2021 (version 1)
  4. Version of Record published: March 30, 2021 (version 2)

Copyright

© 2021, Gong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,464
    Page views
  • 454
    Downloads
  • 19
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yan Gong
  2. Julien Alassimone
  3. Rachel Varnau
  4. Nidhi Sharma
  5. Lily S Cheung
  6. Dominique C Bergmann
(2021)
Tuning self-renewal in the Arabidopsis stomatal lineage by hormone and nutrient regulation of asymmetric cell division
eLife 10:e63335.
https://doi.org/10.7554/eLife.63335

Further reading

    1. Microbiology and Infectious Disease
    2. Plant Biology
    Christopher Kesten, Valentin Leitner ... Clara Sanchez-Rodriguez
    Research Article

    Purinergic signaling activated by extracellular nucleotides and their derivative nucleosides trigger sophisticated signaling networks. The outcome of these pathways determine the capacity of the organism to survive under challenging conditions. Both extracellular ATP (eATP) and Adenosine (eAdo) act as primary messengers in mammals, essential for immunosuppressive responses. Despite the clear role of eATP as a plant damage-associated molecular pattern, the function of its nucleoside, eAdo, and of the eAdo/eATP balance in plant stress response remain to be fully elucidated. This is particularly relevant in the context of plant-microbe interaction, where the intruder manipulates the extracellular matrix. Here, we identify Ado as a main molecule secreted by the vascular fungus Fusarium oxysporum. We show that eAdo modulates the plant's susceptibility to fungal colonization by altering the eATP-mediated apoplastic pH homeostasis, an essential physiological player during the infection of this pathogen. Our work indicates that plant pathogens actively imbalance the apoplastic eAdo/eATP levels as a virulence mechanism.

    1. Plant Biology
    2. Structural Biology and Molecular Biophysics
    Jinping Lu, Ingo Dreyer ... Rainer Hedrich
    Research Article

    To fire action-potential-like electrical signals, the vacuole membrane requires the two-pore channel TPC1, formerly called SV channel. The TPC1/SV channel functions as a depolarization-stimulated, non-selective cation channel that is inhibited by luminal Ca2+. In our search for species-dependent functional TPC1 channel variants with different luminal Ca2+ sensitivity, we found in total three acidic residues present in Ca2+ sensor sites 2 and 3 of the Ca2+-sensitive AtTPC1 channel from Arabidopsis thaliana that were neutral in its Vicia faba ortholog and also in those of many other Fabaceae. When expressed in the Arabidopsis AtTPC1-loss-of-function background, wild-type VfTPC1 was hypersensitive to vacuole depolarization and only weakly sensitive to blocking luminal Ca2+. When AtTPC1 was mutated for these VfTPC1-homologous polymorphic residues, two neutral substitutions in Ca2+ sensor site 3 alone were already sufficient for the Arabidopsis At-VfTPC1 channel mutant to gain VfTPC1-like voltage and luminal Ca2+ sensitivity that together rendered vacuoles hyperexcitable. Thus, natural TPC1 channel variants exist in plant families which may fine-tune vacuole excitability and adapt it to environmental settings of the particular ecological niche.