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Abstract Here, we describe the case of a COVID-19 patient who developed recurring ventilator-

associated pneumonia caused by Pseudomonas aeruginosa that acquired increasing levels of

antimicrobial resistance (AMR) in response to treatment. Metagenomic analysis revealed the AMR

genotype, while immunological analysis revealed massive and escalating levels of T-cell activation.

These were both SARS-CoV-2 and P. aeruginosa specific, and bystander activated, which may have

contributed to this patient’s persistent symptoms and radiological changes.

Introduction
The COVID-19 pandemic has brought with it the largest ever cohort of patients requiring mechanical

ventilation. Complications associated with such severe viral infections are many-fold, and include

increased susceptibility to secondary bacterial infections (Zhou et al., 2020; Langford et al., 2020),

as well as post-acute COVID-19, where patients experience symptoms extending beyond 3 weeks

from the onset of their first COVID-19 symptoms (Greenhalgh et al., 2020). The first report of sec-

ondary infections in COVID-19 patients was from Wuhan in March 2020, where 15% of hospitalized

patients developed secondary infections, and of those who did not survive their SARS-CoV-2 infec-

tion, 50% had a secondary bacterial infection (Zhou et al., 2020). Since then many COVID-19 studies

reporting secondary infections have been published, with a recent meta-analysis of 24 independent

studies that included 3338 patients from five countries reporting that 14.3% of hospitalized COVID-

19 patients developed a secondary bacterial infection, which is associated with significant morbidity,

mortality and the financial costs associated with prolonged hospitilisation (Langford et al., 2020).

The incidence of post-acute COVID-19 varies depending on the group of patients considered, with

approximately 10% of patients who have tested positive for SARS-CoV-2 virus remaining unwell
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beyond 3 weeks (Greenhalgh et al., 2020). However, this can be as high as 74% when hospitalised

patients are considered, where symptoms include breathlessness and excessive fatigue, with abnor-

mal radiological features reported in 12% of this cohort (Arnold et al., 2020).

The DISCOVER study (DIagnostic and Severity markers of COVID-19 to Enable Rapid triage, REC:

20/YH/0121) was established in March 2020 to collect and analyse longitudinal samples from

COVID-19 patients. One study participant, an otherwise healthy male between 45 and 55 years of

age presented to hospital with Type-1 respiratory failure (hypoxaemia), 20 days after he tested posi-

tive for SARS-CoV-2 by RT-PCR. At the time of testing he was asymptomatic (tested as a house-hold

contact of a health-care worker), and this represents Day one on the time-line presented in Figure 1.

He became symptomatic for COVID-19 13 days after this, which is within the incubation period for

SARS-CoV-2 as defined by the CDC of 14 days (COVID-19 (Coronavirus Disease), 2020), and his

health declined over the following week. Upon admission to hospital a chest X-ray was taken, and he

was admitted to the ICU where he was mechanically ventilated (Figure 1). An RT-PCR test on an

endotracheal sample collected at this time did not detect SARS-CoV-2 suggesting that he had

cleared the viral infection.

Once admitted to our intensive care unit he was assessed, as all our patients are daily, for signs

of additional infection through a process led by a consultant medical microbiologist along with

senior pharmacist. At these meetings, the clinical status of the patient, radiological features, oxygen

requirements, inflammatory indices (WCC, CRP, and procalcitonin) and any culture results are dis-

cussed. We had no concerns at the time of admission of this patient to the ICU that he had any infec-

tion other than that of SARS-CoV-2. Computerised tomography (CT) scans of the patient were

collected through his time in the ICU and the classic features of COVID-19, including ground-glass

opacities, were evident throughout (Figure 3—figure supplement 1).
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Figure 1. The development of a recurring ventilator-associated pneumonia (VAP) by a COVID-19 patient. A clinical time-line is presented from the

point at which the patient tested positive for SARS-CoV-2 (day 1), through to his discharge from the ICU (day 64). Noteworthy clinical features are

indicated in the yellow boxes below the time-line. The three x-rays taken during the patient’s time in the ICU are presented, as is a later follow-up x-ray

taken in an out-patient (OP) clinic 3 weeks after discharge. The time during which the antibiotics piperacillin and tazobactam (pip/taz) and meropenem

were administered to the patient to treat the VAP are indicated in blue. The points at which endotracheal tube aspirates (ETT) were collected and the

subsequent analysis of these also are indicated and described.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. CT scans of the patient at three time points during his stay in the ICU, Days 20, 28 and 40.
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After a week in the ICU he was diagnosed with ventilator-associated pneumonia (VAP) based on

the clinical, radiological, biochemical, and microbiological parameters described above. An antibiotic

susceptible Pseudomonas aeruginosa strain was cultured from an aspirate collected from his endo-

tracheal tube (ETT-1, Figure 1), (minimum inhibitory concentration (MIC) meropenem 0.5 mg/l;

piperacillin-tazobactam (pip/taz) 8 mg/l). He was prescribed a seven-day course of pip/taz (4.5 g

every 6 hr), and clinically recovered from this bacterial infection. Eight days after finishing this first

course of antibiotics his VAP recurred (diagnosed as described above), and a pip/taz resistant P. aer-

uginosa was cultured from ETT-2 (minimum inhibitory concentration (MIC) >16 mg/l). He was pre-

scribed a seven-day course of meropenem (1 g every 8 hr) and showed signs of clinical

improvement. There were no further concerns about a bacterial infection during his ICU stay (i.e. he

did not meet any of the clinical diagnostic criteria described above), although a third P. aeruginosa

was cultured from a sample (ETT-3) collected two days after he completed his course of meropenem

that was resistant to both pip/taz and meropenem (MICs > 16 mg/l and >8 mg/l respectively). His

health continued to improve, and he was discharged to the respiratory ward a week later. The

patient attended a follow-up clinic 3 weeks after hospital discharge where he reported on-going

symptoms such as breathlessness and myalgia, and there was a significant drop in his oxygen satura-

tions after mild exertion to 84%. Eight months following his positive test he is still reporting breath-

lessness and fatigue, common symptoms of the newly defined ‘Long COVID’ condition.

To understand the cellular and molecular dynamics of this post-acute COVID-19 case from the

perspective of both the pathogen and patient’s immune response, longitudinal respiratory and

blood samples were collected and analysed with a view to identifying early diagnostic biomarkers of

infection onset and potential opportunities for immunotherapeutic intervention.

Results
Metagenomics was used to characterise in depth the composition and genomic features of the bac-

teria present in this patient’s lower respiratory tract from when he first developed VAP (ETT-1, Fig-

ure 1) to when he had recovered from his second VAP (ETT-3, Figure 1). ETT-2 collected during his

second bout of VAP was unfortunately not available for sequencing. We extracted the entire genetic

material from 500 ml of ETTs 1 and 3 with no bacterial enrichment or human DNA depletion steps,

and to ensure data for the bacterial component of the samples was generated, these were

sequenced on a PromethION (Oxford Nanopore technology). The bacterial DNA from ETT-1 was

entirely that of P. aeruginosa corresponding to multi-locus sequence type ST253 (Jolley et al.,

2018), a world-wide clone frequently associated with AMR epidemics (Treepong et al., 2018; Fig-

ure 2). There was a greater diversity of bacterial DNA in ETT-3, as the patient recovered from his

SARS-CoV-2 and P. aeruginosa infections (Figure 2b), and we were able to construct a whole

genome of the P. aeruginosa strain from within this, which again corresponded to multi-locus

sequence type ST253. P. aeruginosa is a ubiquitous environmental bacterium, and while it can be

found as a commensal in the respiratory tract of some individuals, this is typically only when they

have some underlying chronic suppurative lung disease such as bronchiectasis. Prior to his COVID-

19 diagnosis this relatively young patient was healthy with no prior medical issues, which suggests

the P. aeruginosa infections were hospital or ICU acquired.

Resistance to beta-lactam antibiotics by P. aeruginosa can be multifactorial and includes the

acquisition of single nucleotide polymorphisms (SNPs) in efflux and porin genes that affect the pas-

sage of the antibiotic into and out of the bacterial cell (Blair et al., 2015). Analysis of the sequence

data from ETT-3 generated a whole genome for P. aeruginosa, again corresponding to ST253, that

aligned with >99% identify to the genome from ETT-1. There were however two noteworthy SNPs in

this later sample that explain the increased AMR of this isolate. The multi-drug efflux pump, MexAB,

is transcriptionally regulated by the translated product of the mexR gene, MexR. We found a SNP in

mexR that converts a key amino-acid (Arg91-Gln) in the DNA-binding domain of the MexR protein,

that would likely result in the de-repression of this efflux system (Saito et al., 2003). A second SNP

was found that introduced a premature stop codon (Tyr120-stop) in the gene encoding the outer

membrane protein OprD, a protein with a well-established role in the entry of meropenem into the

bacterial cell (Quale et al., 2006). The two P. aeruginosa strains could represent a parent strain that

acquired resistance upon exposure to antibiotics, that wasn’t fully cleared and so re-emerged; or a
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new infection or colonisation event with a closely related AMR strain circulating within the ICU.

Unfortunately, we are unable to tell which of these scenario is more likely from these data.

Having recovered from both a viral and a recurring bacterial infection, we also sought to analyse

the kinetics of the patient’s innate and adaptive immune response across his time in the ICU (at days

23, 28, 38, 45, and 58 from testing positive for SARS-CoV2, Figure 1), as previous work has demon-

strated striking immunological features associated with COVID-19 patients (Mathew et al., 2020).

Robust activation of a broad range of immune cell subsets was revealed by flow cytometry, when

compared to healthy controls. What was particularly striking was the level of activation and prolifera-

tion of CD4+, CD8+, and TCR-gd T-cells, that appeared to wane between days 23–28 but were sub-

sequently boosted after day 28, concomitant with the onset of the secondary bacterial infection

(Figure 3a–c and Figure 3e–g, gating strategies in Figure 3—figure supplement 1). Similar levels

of activation of T-cells has been reported for subsets of COVID-19 patients in other studies

(Mathew et al., 2020). From day 28 a robust and steady increase in the activation and proliferation

of conventional and TCR-gd-T-cells was evident with approximately 20% and 40% of total CD4+ and

CD8+ T-cells co-expressing the activation markers HLA-DR and CD38, respectively by day 58. A sim-

ilar steady increase in activation levels, albeit at lower magnitudes, was observed for Natural Killer

(NK) CD56dim and CD56bright cells (Figure 3d and h, gating strategies in Figure 3—figure supple-

ment 1). Similar perturbations in the frequency and activation phenotypes of monocytes, blood

monocyte-derived macrophages as well as neutrophils could be detected from day 28 onwards (Fig-

ure 3—figure supplement 2a–e). A robust IgG response to both SARS-CoV-2 and P. aeruginosa

antigen was also detected in this patient (Figure 3—figure supplement 3).

Given the scale of the cellular response of this patient, we investigated whether the large expan-

sions of CD4+ and CD8+ T-cells were due to a T-cell response targeting SARS-CoV-2, the secondary

bacterial infection or to bystander T-cell activation (Sandalova et al., 2010; Rivino et al., 2015). We

included the analysis of bystander activation, which is T-cell receptor-independent and cytokine-
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Figure 2. Direct metagenomic analysis of respiratory samples from a COVID-19 patient who developed a recurring VAP. (a) The sequence data were

aligned to the genome of a P. aeruginosa reference strain PA14 (inner ring). The P. aeruginosa genomes from both ETT-1 (middle ring) and ETT-3

(outer ring) had 99% identify to the PA14 reference genome and greater than 99% to each other. The position of the AMR conferring SNPs in the P.

aeruginosa from ETT-3 are indicated by red arrows. (b) Assembled contigs were taxonomically classified using Kraken two with % of total contigs

assigned to each species shown for ETT-1 and ETT-3. Species with only one contig (0.68% of total contigs) were grouped as ‘other’.
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mediated, as it is known to occur during other types of acute viral infection (Sandalova et al., 2010;

Rivino et al., 2015). The role of this type of bystander activated T-cells in the recovery of patients

remains largely unclear, as these cells can participate in protective immunity towards the virus but

can also contribute to tissue damage (Sandalova et al., 2010; Rivino et al., 2015; Kim and Shin,

2019; Maini et al., 2000). We performed a brief stimulation of the patient’s peripheral blood mono-

nuclear cells (PBMCs), with or without overlapping peptides spanning the sequences of SARS-CoV-2

proteins (spike, membrane (M) and nucleoprotein (N)); of an immunodominant P. aeruginosa antigen

(OprF); as well as an immunodominant human Cytomegalovirus protein (HCMV pp65) as an indica-

tion of non-T-cell receptor (TCR) driven bystander activation. This was followed by intracellular cyto-

kine staining to detect production of IFN-g and TNF-a by the specific T cells. Following the

encounter with specific peptides we observed a robust CD4+ T-cell response to SARS-CoV-2 which

decreased from day 23 to day 58, and a more modest SARS-CoV-2-specific CD8+ T-cell response.

This is in line with published work, suggesting higher magnitudes of SARS-CoV-2-specific CD4+ ver-

sus CD8+ T-cells in severe COVID-19 patients (Peng et al., 2020), as well as consistent detection of

virus-specific CD4+ T cells in recovered patients (Grifoni et al., 2020; Figure 4a–c and Figure 4—
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Figure 3. Kinetics of the adaptive and innate immune response in a COVID-19 patient during ICU treatment. (a–d) Representative flow cytometry plots

showing the expression of activation and proliferation markers on CD4+ and CD8+ T cells (top and bottom panels, respectively in a, b), TCR-gd T cells

(c) and NK cells (d: plots shown for NK CD56dim cells) in a healthy control and the COVID-19 patient (at days 23 and 58). (e-f) Immune activation and

proliferation levels are summarized for healthy controls (HC, n = 7) and five longitudinal time points of the COVID-19 patient and are assessed as co-

expression of HLA-DR and CD38 (e) and expression of Ki67 (f) in CD4+ and CD8+ T cells, co-expression of CD38 and Ki67 by TCR-gd T cells (g), and co-

expression of HLA-DR and CD38 in NK CD56dim cells (h). Gating strategies for each population are included in Figure 3—figure supplement 1. All

data is obtained by flow cytometry and samples were acquired on a Becton Dickinson LSR Fortessa X-20.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. The gating strategies and flow cytometry plots are shown for each immune population.

Figure supplement 2. Kinetics of the innate immune response in the COVID-19 patient.

Figure supplement 3. Antibody response towards Pseudomonas aeruginosa and SARS-CoV-2.

Gregorova, Morse, Brignoli, et al. eLife 2020;9:e63430. DOI: https://doi.org/10.7554/eLife.63430 5 of 13

Short report Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.63430


CMV Spike 1

0

10

20

30

40

%
 H

L
A

-D
R

+
C

D
3
8
+

 c
e
ll
s

CMV Spike 1

0

10

20

30

40

%
 K

i-
6
7
+

 c
e
ll
s

!
CMV

M/N

PA

Spike

!"#$%&

HC 23 38 58
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Days from RT-PCR+ve
%

 C
y
to

k
in

e
+

 c
e
ll
s

"
!"'$%&

HC 23 38 58
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Days from RT-PCR+ve

%
 C

y
to

k
in

e
+

 c
e
ll
s CMV

M/N

PA

Spike

!"#$%

!"#&%

!"'!%

!"#(%

!"#$%&'()$*+,

#")*%

!"+(%

-.%/*,0 -.%/*,1

#"&*%

!"+(%

234 56

!",&%

!"'!%

789:

78;:

5263<="=

#*"!%

$)"!%

#")+%

!"#(%

72>
#$

<?4@γ

A
4
?
@B

%$

72> -.%/*,0
&$

C
D
6
@8
E

78F;

72> -.%/*,0'

7
7
E
G

72>

7
7
E
G

789:

78;:

72> -.%/*,0
(

?
-
7
@6

H%IG

-.%/*,072>

?
-
7
@6@

-.%/*,0

+"'(%'"(%

)+"(% !",,%

#",$%+("+%

&+"+% !"+&%

(",*%#"+*%

+*",% ('%

'"+(%+"#,%

+$"#% (*"$%

#!",%

,!")%

("!*%

+&"*%

72> -.%/*,0

$"&$% '",+%

++"&% +&%

CD4+

CD8+

CD4+

CD8+

)$ * +$

CMV Spike 1

0

20

40

60

80

100

%
 C

D
4
+

 T
 c

e
ll
 s

u
b

s
e
ts

 

NAIVE

TCM

TEM

TEMRA

CMV Spike 1

0

20

40

60

80

%
 C

D
8
+

 T
 c

e
ll
 s

u
b

s
e
ts

NAIVE

TCM

TEM

TEMRA

789JE6

Figure 4. Frequency and phenotype of antigen-specific T cells. (a) Representative flow cytometry plots showing IFN-g and TNF-a production by CD4+

and CD8+ T cells from the COVID-19 patient (day 23) as assessed by intracellular cytokine staining after a brief stimulation of PBMCs with HCMV pp65

(CMV), SARS-CoV-2 membrane, nucleoprotein (M/N respectively), spike 1, spike 2, and Pseudomonas aeruginosa OprF (PA) peptides. PMA/ionomycin

and unstimulated conditions represent positive and negative controls. (b-c) Summarized are T-cell responses shown as % of IFN-g and/or TNF-a+ cells

in CD4+ or CD8+ T cells after subtraction of the negative controls in the COVID-19 patient at three longitudinal time points and in an age-matched

Figure 4 continued on next page
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figure supplement 1a–b). CD4+ and CD8+ T-cell responses targeting P. aeruginosa peptides could

also be detected, and increased over time concomitant with the onset of the recurring bacterial

infection (Figure 4b–c).

The number of T-cells responding specifically to SARS-CoV-2 and P. aeruginosa represent only a

fraction of those activated, which suggests that many of those detected in the patient’s blood may

be bystander activated. In support of this we detected an increased magnitude of CMV-specific

T-cell responses over time, particularly in the CD8+ compartment (Figure 3b–c). We therefore con-

sidered whether CMV-specific T-cells were activated and proliferating in the blood of the COVID-19

patient. To test this we performed a brief stimulation of PBMCs with or without HCMV pp65 peptide

(CMV) or SARS-CoV-2 spike 1 one peptide pools (the predominant SARS-CoV-2 target in this

patient, within those tested) or with a positive control, and assessed the expression of the activation

and proliferation markers HLA-DR, CD38 and Ki67 by the cytokine-producing cells that were

responding to the peptide pools. Peptide stimulations and negative controls were performed in

duplicate wells (Figure 4—figure supplement 1a–b). Both CMV and spike-1-specific CD8+ T-cells

showed increased co-expression of HLA-DR and CD38 and of Ki67, indicating that these cells were

activated and proliferating ex vivo, while this was less evident for their CD4+ T-cell counterparts

(Figure 4d–e and g–h). This observation is in line with previous reports of bystander T-cell activation

for CMV-specific CD8+ T-cell populations (Sandalova et al., 2010; Rivino et al., 2015). We further-

more analysed the phenotype of CMV and spike 1-specific T-cells on the basis of expression of

CCR7 and CD45RA, which identifies naı̈ve (CCR7+ CD45RA+), central memory (TCM: CCR7+

CD45RA-), effector memory (TEM: CCR7- CD45RA-) and effector memory re-expressing RA T-cells

(TEMRA: CCR7-CD45RA+). CMV and spike 1-specific CD4+ T cells were mainly contained respec-

tively within the TEM and the TEM/TCM subsets, while CMV and spike 1-specific CD8+ T cells were

mainly contained respectively within the TEMRA and the TEM subsets. The predominant TEMRA

phenotype of SARS-CoV-2 specific CD8+ T-cells in convalescent COVID patients is in line with recent

work (Neidleman et al., 2020). The presence of a large proportion of CD8+ TEMRA within the CMV

and spike 1-specific CD8+ T cell populations also supports the notion that these cells are stimulated

through cytokine receptors rather than through the TCR, as TEMRA cells are believed to arise follow-

ing antigen withdrawal and cytokine-mediated stimulation (for e.g. IL-15), as TCR ligation downregu-

lates CD45RA expression both in vitro and during responses in vivo (Henson et al., 2012).

In summary, the immune profiles show robust innate and adaptive immune activation in a COVID-

19 patient experiencing a secondary bacterial infection, and a detectable T-cell and IgG response

targeting both SARS-CoV-2 and P. aeruginosa. Furthermore, we show that CD8+ T-cells targeting

viral antigens from SARS-CoV-2 and from the persistent virus HCMV display expression of markers

of activation and proliferation and are predominantly TEMRA and TEM cells. Although it is a chal-

lenging task to demonstrate that these cells have not encountered their cognate viral antigens in

vivo, the TEMRA phenotype of these cells makes it unlikely and suggests that these cells may be

proliferating in a bystander way through the action of cytokines present in the inflammatory milieu.

Figure 4 continued

healthy control (spike and M/N). (d-f) Representative flow cytometry plots showing T-cell expression of activation, proliferation and memory markers in

CMV-specific and spike1-specific T cells in the COVID-19 patient (day 38), as assessed after a brief stimulation of PBMCs with CMV or spike 1 peptides

followed by staining with antibodies targeting the relevant markers. Plots are gated on cytokine-producing cells (TNF-a and/or IFN-g ) in CD4+ or CD8+

T cells (top and bottom panels, respectively). (g-h) T-cell activation and proliferation assessed as co-expression of HLA-DR and CD38, and expression of

Ki67 are shown for CD4+ and CD8+ CMV and spike 1-specific T cells (g and h, respectively). (i-j) Percentage of CMV and spike 1-specific T cells

contained within each subset identified by expression of CCR7 and CD45RA is shown for CD4+ and CD8+ T cells (i and j, respectively). Naı̈ve: CCR7

+CD45RA+; central memory (TCM): CCR7+CD45RA-; T effector memory (TEM):CCR7-CD45RA- and T effector memory RA re-expressing (TEMRA):

CCR7-CD45RA+. Columns represent mean +/- SD of the experimental duplicates. All data is obtained by flow cytometry and samples were acquired on

a Becton Dickinson LSR Fortessa X-20.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Experimental duplicates of intracellular cytokine staining data.
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Discussion
In this case report we demonstrate the potential of the application of multidisciplinary technologies

to longitudinally-collected patient samples to define the complex dynamics of patient-pathogen-

therapy interactions in real-time. Metagenomics directly applied to respiratory samples facilitated

the identification of the SNPs responsible for the AMR phenotype of the later P. aeruginosa isolate.

However, the most striking feature of this COVID-19 case was the escalating number of circulating

activated T-cells more than two months after testing positive for SARS-CoV-2, and 6 weeks after

clearing the viral infection. While we could attribute some of this to the recurring bacterial infection,

the scale of the activation considered alongside our evidence of increased frequencies of T-cells spe-

cific for unrelated antigens, suggests there may be a significant amount of bystander activation.

Studies on large COVID-19 patient cohorts have shown that the period of the peak of T-cell acti-

vation in COVID-19 is prolonged compared to other acute viral infections or after vaccination with

live attenuated viruses (Mathew et al., 2020), which may be due to the inability of the immune sys-

tem to downregulate its response. Here, we speculate that due to SARS-CoV2 infection the patient

displays a heightened immune system, which was further stimulated by the recurring P. aeruginosa

infections, which led to bystander activation of T cells specific for antigens unrelated to either SARS-

CoV2 or P. aeruginosa. Bystander T-cell activation could have played a critical role in the severity of

illness and the longer-term complications associated with the development of post-acute COVID-19

experienced by this patient (Grifoni et al., 2020). Given the recent appreciation for the role of corti-

costeroids in reducing the risk of death following SARS-CoV-2 infection by 20% (Sterne et al.,

2020), this case suggests that targeting its use to patients with immunological responses as

described here, may also improve their long-term recovery.

Materials and methods

Patient recruitment
The patient was enrolled onto the DISCOVER study (Diagnostic and Severity markers of COVID-19

to Enable Rapid triage study), a single centre prospective study recruiting consecutive patients

admitted with COVID-19, from 30.03.2020 until present (Ethics approval via South Yorkshire REC:

20/YH/0121, CRN approval no: 45469). Blood/serum samples from pre-pandemic healthy controls

and asymptomatic healthy controls were obtained under the Bristol Biobank (NHS Research Ethics

Committee approval ref 14/WA/1253).

Clinical microbiology
All ETT samples were processed in the Severn Infection Services laboratory as per standard operat-

ing procedures. Antibiotic susceptibility testing was performed by either disk diffusion (according to

EUCAST version nine guidance EUCAST, 2019) or on a VITEK two machine (BioMeriux, France).

SARS-CoV-2 test
SARS-CoV-2 test was performed by an in-house RT-PCR at the regional South West Public Health

England Regional Virology laboratory, utilising a PHE approved assay at the time of testing.

DNA extractions
DNA from the endotrachaeal aspirates were extracted using the CTAB/Phenol:Chloroform:Isoamyl

alcohol and bead-beating approach of Griffiths et al., 2000 with modifications of DeAngelis et al.,

2009. Phase lock gel tubes (ThermoFisher) and linear polyacrylamide (Sigma) were included to

increase nucleic acid yields and total DNA was resuspended in 50 ml of DNase/RNase free water

before storage at �20˚C.

DNA sequencing
Samples were prepared for sequencing using SQK-LSK109 kit (Oxford Nanopore) with 1 mg DNA

starting input as per manufacture’s protocol. Briefly 1 mg of DNA was end repaired and a tailed

using NEBNext Ultra II module E7546 (3.5 ml End Repair Buffer, 2 ul FFPE repair mix, 3.5 ml Ultra II

end-prep reaction buffer and 3 ml of Ultra II end-prep enzyme mix to 1 mg DNA in a total of reaction
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volume of 60 ml). This was incubated at 20˚C for 5 min followed by 65˚C for 5 min. Clean-up was per-

formed using AMPure XP beads (Beckman Coulter) in a 1X ratio. Adaptors were ligated by adding 5

ml adaptor mix (Oxford Nanopore) 25 ml ligation buffer (Oxford Nanopore) and 10 ml Quick T4 ligase

(NEB Module MO202). Following a 20 min incubation at room temperature the adaptor ligated

DNA was cleaned using AMPure beads in a 0.8 X ratio and washed using Long Fragment Buffer

(Oxford Nanopore) before eluting in 25 ml of elution buffer (Oxford Nanopore). Final quantification

by fluorometry (Qubit) was performed and 300 ng DNA prepared for sequencing according to the

manufacturer’s instructions (Oxford Nanopore). Sequencing was performed on a PromethION R9.4.1

flow cell (FLO-PRO002) and run for 48 hr using live basecalling, files were outputted in Fast5 and

Fastq format. Human-filtered sequencing data for this study have been deposited in the European

Nucleotide Archive (ENA) at EMBL-EBI under accession PRJEB40239.

Bioinformatics
Bioinformatics was orchestrated using reticulatus (https://github.com/SamStudio8/reticulatus/

Köster and Rahmann, 2012) with configuration: Flye (v2.6) metagenomic assembly

(Kolmogorov et al., 2019), Racon polishing (v1.4.9 + GPU, two rounds) (Vaser et al., 2017) and

Medaka polishing (v0.8.0 + GPU, one round). Contigs were assigned to a taxon by Kraken 2

(Wood et al., 2019). SNP differences between the P. aeruginosa contigs for ETT-1 and ETT-3 was

determined using Mauve (Darling et al., 2004). Contigs were loaded into BRIG (v0.95)

(Alikhan et al., 2011) as concentric rings and compared against the PA14 or JCSC1435 reference

genomes using blastn (ncbi-blast 2.10.1+) (Alikhan et al., 2011). MLST types were identified by

mapping contigs against P. aeruginosa or S. haemolyticus according to the schemes held in the

pubmlst databases (Arnold et al., 2020).

PBMC isolation
Blood samples were collected from the COVID-19 patient in EDTA vacutainer tubes and PBMCs iso-

lated from peripheral blood by Ficoll gradient purification and cryopreserved. Healthy donor PBMCs

were obtained from Bristol Biobank (REC: 14/WA/1253).

Synthetic peptides
15-mer peptides overlapping by 10 amino acids and spanning the sequences of SARS-CoV-2 spike

(Accession Number: NC_045512.2, Protein ID: YP_009724390.1) and HCMV pp65 (AD169 strain)

were purchased from Mimotopes (Australia). The purity of the peptides was >80% (Spike) or >70%

(pp65) and peptides were dissolved as described previously (Rivino et al., 2015). SARS-CoV-2 M

and N Peptivator peptide pools were purchased from Miltenyi. An OprF (PA1777) peptide library

comprising 20-mer peptides overlapping by 10 amino acids was synthesized by GL Biochem Ltd.,

Shanghai, China (Quigley et al., 2015).

Flow cytometry staining and PBMC stimulation
PBMCs were thawed and either stained ex vivo or stimulated in AIMV 2% FCS with or without pep-

tide pools from SARS-CoV2 spike, M, N, HCMV pp65 (all 1 mg/ml), OrpF PA (10 mg/ml) or with

PMA/iono (PMA 10 ng/ml, Iono 100 ng/ml, Sigma Aldrich) for 5 hr at 37˚C in the presence of brefel-

din A (BD, 5 mg/ml). To assess degranulation, CD107a FITC antibody was added to the cells at the

beginning of the stimulation. Cells were stained with a viability dye Zombie Aqua (Biolegend) for 10

min at room temperature and with antibodies targeting surface markers (20 min 4˚C, diluted in PBS

(HyClone) 1% BSA (Sigma Aldrich)). Cells were fixed for 45 min/overnight in eBioscience Foxp3/Tran-

scription factor fixation/permeabilization buffer (Invitrogen) and intracellular staining was performed

using eBioscience Foxp3/Transcription factor permeabilization buffer (Invitrogen) for Ki67 or intracel-

lular cytokines (30 min on ice). Cells were acquired on a BD Fortessa X20 and data analysed using

FlowJo software v10.7. A complete list of antibodies is included in Supplementary file 1.

Antibody quantification
a. Pseudomonas Aeruginosa: The PA antigen OprF was diluted in coating buffer, added to the wells

of MaxiSorp flat-bottom 96-Well immunoplates (Thermo Fisher Scientific, USA) and incubated for 2

hr at 37˚C. Immunoplates were blocked with 1% BSA/PBS for 1 hr at 37˚C. Sera from each sample
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were diluted and added to the immunoplates in triplicate and incubated at 4˚C overnight. Biotin

mouse anti-human IgG (BD Pharmingen, USA) was added to the plate and incubated for 1 hr at RT.

Streptavidin-HRP (R and D Systems, UK) was added and incubated for 30 mins at RT. ELISAs were

developed using TMB substrate. Results were recorded using a Multiskan GO Microplate Spectro-

photometer (Thermo Scientific, USA) and absorbance values (OD 450) were converted to ELISA

units. OprF antigen was produced using the recombinant vector pSUMO-OprF as described previ-

ously (Quigley et al., 2015). b. ELISA methods were based on the protocols for measuring SARS-

CoV-2 seroconversion (Amanat et al., 2020; Stadlbauer et al., 2020) with some modifications. A

full-length trimeric stabilized version of the SARS-CoV-2 Spike protein was expressed in insect cells

using the MultiBac baculovirus expression system and affinity purified, whereas the SARS-CoV-2 N

protein was expressed in, and purified from, E. coli. High-binding plates (MaxiSorp, NUNC) were

coated with either 10 mg/ml Spike or 20 mg/ml N protein in PBS and left overnight at 4˚C followed

by blocking for 1 hr (3% BSA/0.1% Tween/PBS). Dilution buffer (1% BSA/0.1% Tween/PBS) contain-

ing patient plasma samples collected at different time points, or serum controls, were added to wells

either in duplicate (for patient, pre-pandemic (PP) or pooled serum standard (PS)) or in single wells

(healthy controls, HC) at a final dilution of 1 in 450 (adjusting for dilution of plasma if obtained via

PBMC collection) and left for 2 hr at RT. Goat anti-human IgG-HRP (Southern Biotech) was added at

1 in 25,000 in dilution buffer for 1 hr, followed by development with OPD solution (Sigma) as per the

manufacturer’s instructions. Development was quenched after 30 min using 3M HCl and absorbance

measured at 492 and 620 nm using a BMG FLUOstar Omega Spectrophotometer. Plots show mean

and standard deviation where samples were run in duplicate.

Control samples: Serum from n = 6 adult pre-pandemic donors recruited in 2008 for a vaccine

trial were obtained from the Bristol Biobank (NHS REC 14/WA/1253) and were used as known-nega-

tive controls on the same plate as the COVID19 case samples, in duplicate. In addition, we have

included the OD values from the healthy control donor samples which were used as controls for the

T cell assays; these donors were collected during the pandemic but reporting no exposure or symp-

toms prior to sampling (also obtained via the Biobank as explained in the manuscript methods sec-

tion). These samples were run in single wells on different plates to the COVID19 case samples;

however, all plates included a pooled serum (PS) standard control, in duplicate, to assess for inter-

plate variability. The PS average ODs across six plates are therefore shown. The PS, HC and PP sam-

ples used in this experiment were heat inactivated at 56˚C for 30 min, while the patient plasma were

not (after testing negative for SARS-CoV-2). Despite the difference in sample type and handling, we

are confident these do not impact on antibody levels or ELISA signal from our own in-house compar-

isons (data not shown) as well as data from others (Amanat et al., 2020).
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