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Abstract SARS-CoV-2 is difficult to contain because many transmissions occur during pre-

symptomatic infection. Unlike influenza, most SARS-CoV-2-infected people do not transmit while a

small percentage infect large numbers of people. We designed mathematical models which link

observed viral loads with epidemiologic features of each virus, including distribution of

transmissions attributed to each infected person and duration between symptom onset in the

transmitter and secondarily infected person. We identify that people infected with SARS-CoV-2 or

influenza can be highly contagious for less than 1 day, congruent with peak viral load. SARS-CoV-2

super-spreader events occur when an infected person is shedding at a very high viral load and has

a high number of exposed contacts. The higher predisposition of SARS-CoV-2 toward super-

spreading events cannot be attributed to additional weeks of shedding relative to influenza.

Rather, a person infected with SARS-CoV-2 exposes more people within equivalent physical contact

networks, likely due to aerosolization.

Introduction
The SARS-CoV-2 pandemic is an ongoing tragedy that has caused nearly 2 million deaths and mas-

sively disrupted the global economy. The pandemic is rapidly expanding in the United States and is

re-emerging focally in many countries that had previous success in limiting its spread (https://corona-

virus.jhu.edu/map.html).

Two features have proven challenging in containing outbreaks. First, most transmissions occur

during the pre-symptomatic phase of infection (He et al., 2020; Moghadas et al., 2020;

Tindale et al., 2020). Underlying this observation is a highly variable incubation period, defined as

time between infection and symptom onset, which often extends beyond an infected person’s peak

viral shedding (Ganyani et al., 2020).

Second, there is substantial over-dispersion of the secondary infection distribution (individual R0)

for an individual infected with SARS-CoV-2 (Endo et al., 2020). An over-dispersed R0 means that

most infected people do not transmit at all (individual R0 = 0) while a minority of infected people are

super-spreaders (individual R0 >5). If the average population R0 is greater than 1, then exponential

growth of cases occurs in the absence of effective interventions (Lloyd-Smith et al., 2005). Overdis-

persion has been quantified: approximately 10–20% of infected people account for 80% of SARS-

CoV-2 transmissions (Endo et al., 2020; Bi et al., 2020). SARS-CoV-2 super-spreader events, in

which the duration of contact between a single transmitter and large number of secondarily infected

people is often limited to hours, are well documented (Hamner et al., 2020; Park et al., 2020).
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This pattern is not evident for influenza which has more homogeneous individual transmission

(Cowling et al., 2009; Brugger and Althaus, 2020). Differing viral load kinetics between the two

viruses might explain this distinction; SARS-CoV-2 is often present intermittently in the upper airways

for many weeks (Qi et al., 2020; Cao et al., 2020), while influenza is rarely shed for more than a

week (Pawelek et al., 2012). Alternatively, SARS-CoV-2 aerosolization may effectively increase the

number of people with true viral exposures given the same contact network. This means that a

SARS-CoV-2-infected person in a crowded indoor space could lead to more transmissions relative to

an influenza-infected person.

Viral load is recognized as a strong determinant of transmission risk (Watanabe et al., 2010). For

influenza, the dose of viral exposure is related to the probability of infection in human challenge

studies (Memoli et al., 2015) and early antiviral treatment reduces household transmission

(Pebody et al., 2011; Goldstein et al., 2010). Household shedding of human herpesvirus-6 is closely

linked to subsequent infection in newborns (Mayer et al., 2020) and infants shedding high levels of

cytomegalovirus in the oropharynx predictably transmit the virus back to their mothers

(Boucoiran et al., 2018). Studies in mice definitively demonstrated that viral exposure dose deter-

mines likelihood of SARS-CoV-1 infection, (Watanabe et al., 2010) and SARS-CoV-2 experiments in

golden hamsters are also highly suggestive of dose-dependent infection (Sia et al., 2020).

The epidemiology of viral infections can also be perturbed by biomedical interventions that lower

viral load at mucosal transmission surfaces. Reduction of genital herpes simplex virus-2 shedding

with antiviral treatments decreases probability of transmission (Corey et al., 2004). Suppressive anti-

retroviral therapy (ART) for HIV virtually eliminates the possibility of partner-to-partner sexual trans-

mission and has limited community transmission dramatically (Rodger et al., 2019; Cohen et al.,

2016).

SARS-CoV-2 overdispersion, aerosolization, and dose-dependent infection all require urgent

attention as possible avenues to understand and mitigate the pandemic as it continues to wreak

havoc. Early therapies that lower peak viral load may reduce the severity of COVID-19 but may also

decrease the probability of transmission and super-spreader events (Schiffer et al., 2020). Similarly,

the effectiveness of policies such as limiting mass gatherings, and enforcing mask use can be directly

evaluated by their ability to reduce exposure viral load and transmission risk (Leung et al., 2020).

Here, we developed a transmission simulation framework to capture the contribution of viral load to

observed epidemiologic transmission metrics for influenza and SARS-CoV-2 and used this approach

to explain why SARS-CoV-2 is predisposed to super-spreading events.

Results

Overall approach
We designed a series of steps to estimate the viral load required for SARS-CoV-2 and influenza

transmission, as well as conditions required to explain the observed over- dispersion of secondary

infections (individual R0) and frequent super-spreader events associated with SARS-CoV-2 but not

influenza. This process included within-host modeling of viral loads, simulations of exposures and

possible transmissions based on various transmission dose response curves, testing of various

parameter sets against epidemiologic data and exploratory analyses with the best fitting model (Fig-

ure 1, Figure 1—figure supplement 1).

Within-host mathematical model of SARS CoV-2 shedding
First, we used our previously developed within-host mathematical model (equations in the Materials

and methods), (Goyal et al., 2020) to generate plausible viral load patterns in the upper airway of

an infected person or transmitter who could potentially transmit the virus to others (Figure 1, Fig-

ure 1—figure supplement 2a). Briefly, the model captures observed upper airway viral kinetics from

25 people from four different countries (Wölfel et al., 2020; Lescure et al., 2020; Young et al.,

2020; Kim et al., 2020). Key observed features include an early viral peak followed by a decelerat-

ing viral clearance phase, which in turn leads to a temporary plateau at a lower viral load, ultimately

followed by rapid viral elimination. Our model captures these patterns by including a density-depen-

dent term for early infected cell elimination and a nonspecific acquired immune term for late

infected cell elimination.
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Figure 1. SARS-CoV-2 and influenza transmission model schematic. In the above cartoon, the transmitter has two exposure events at discrete

timepoints resulting in seven total exposure contacts and three secondary infections. Transmission is more likely at the first exposure event due to

higher exposure viral load. To model this process, the timing of exposure events and number of exposed contacts is governed by a random draw from

a gamma distribution which allows for heterogeneity in number of exposed contacts per day (Figure 1—figure supplement 3). Viral load is sampled at

the precise time of each exposure event. Probability of transmission is identified based on the product of two dose curves (Figure 1—figure

Figure 1 continued on next page
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One limitation of our model is that only half of study participants provided longitudinal viral load

data from the very early days of infection when COVID-19 is often pre-symptomatic. Therefore, the

model’s output is most reliable for later time points. In particular, we have somewhat limited infor-

mation on viral expansion rate and duration of peak shedding. To impute possible variability, we

generated a set of heterogeneous shedding curves in which the viral upslope, the downslope of viral

load after peak and the viral load during plateau phase were varied (Figure 1—figure supplement

2b). Overall, the model generated several distinct patterns of infection: rapid elimination after the

initial peak, a prolonged plateau phase with a low viral load, and a prolonged plateau phase with

higher viral load. We simulated the transmission model with and without imputed heterogeneity.

Transmission dose response curves
We defined an exposure event in very specific biologic terms as a discrete event consisting of suffi-

cient contact in time and space between a transmitter and one or more uninfected persons (expo-

sure contacts) to allow for the possibility of a successful transmission. An exposure contact is defined

as a susceptible person who is exposed to a SARS-CoV-2-infected person for a sufficient period of

time and at a close enough distance to allow for the possibility of a successful transmission, which is

then determined by the viral load of the infected person. The number of exposure contacts can in

theory be reduced by social distancing measures, quarantine, or masking.

We next designed hundreds of dose response curves which separately predict contagiousness

(CD curves) and infectiousness (ID curves) at a certain viral dose given an exposure contact. Con-

tagiousness is defined as the viral-load-dependent probability of passage of virus-laden droplets or

airborne particles from the airways of a potential transmitter to the airway of an exposure contact.

Infectiousness is defined as the viral-load-dependent probability of transmission given direct airway

exposure to virus in an exposure contact. Transmission risk is the product of these two mechanistic

probabilities derived from the ID and CD curves and results is a transmission dose (TD) response

curve. Each CD or ID curve is defined by its ID50 (l) or viral load at which contagion or infection

probability is 50% (Figure 1—figure supplement 2c), as well as its slope (a) (Figure 1—figure sup-

plement 2d; Brouwer et al., 2017). The TD50 is defined as viral load at which there is 50% transmis-

sion probability. We assumed equivalent curves for contagiousness and infectiousness for model

fitting purposes. We also considered a simpler model with only a single TD curve (for infectiousness)

and obtained qualitatively similar results (Materials and methods). Of note, a null model in which

there is an assumed fixed probability of infection at all timepoints during infection poorly fit the

observed data.

Exposure contact rate simulations
We introduced heterogeneity of exposure contact rates among possible transmitters by randomly

selecting from a gamma distribution defined by mean number of exposure contacts per day (q) and

a scaling factor (�) that controls daily variability (Figure 1—figure supplement 3).

Transmission simulations
For each defined exposure contact, viral load in the transmitter was sampled and transmission risk

was then identified based on the product of the CD and ID curves, or the TD curve (Figure 1—fig-

ure supplement 2e,f; Figure 1). Based on these probabilities, we stochastically modeled whether a

Figure 1 continued

supplement 2c,d) which capture contagiousness (probability of viral passage to an exposure contact’s airway) and infectiousness (probability of

transmission given viral presence in the airway). Incubation period (Figure 1—figure supplement 4) of the transmitter and secondarily infected person

is an input into each simulation and is depicted graphically. Individual R0 is an output of each simulation and is defined as the number of secondary

infections generated by an infected individual. Serial interval is an output of each simulated transmission and is depicted graphically.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Mathematical model workflow.

Figure supplement 2. Mathematical model of SARS-CoV-2 transmission dynamics.

Figure supplement 3. Stochastic simulations of the number of exposure contacts over time for varying dispersion (r).

Figure supplement 4. Gamma distribution functions of incubation periods.
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transmission occurred for each exposure contact. This process was repeated when there were multi-

ple possible exposure events within a given discretized time interval and the total number of expo-

sures and transmissions within that interval was calculated.

For each successful transmission, we assumed that it takes t days for the first infected cell to pro-

duce virus. To inform simulated values of serial interval (SI or time between symptom onset in the

secondarily infected and transmitter), we randomly selected the incubation period (IP), for both the

transmitter and the newly infected person, from a gamma distribution based on existing data (Fig-

ure 1—figure supplement 4a). (Ganyani et al., 2020; Lauer et al., 2020) Incubation period was

defined as time from infection to the time of the onset of symptoms, where the mean incubation for

SARS-CoV-2 is 5.2 days compared to 2 days for influenza (Ganyani et al., 2020; Cowling et al.,

2009; Lauer et al., 2020).

Model fitting
In order to identify the parameter set that best recapitulated the observed data, we first performed

a grid search simulating 41,7792 parameter sets with 256 possible TD curves defined by ID50 and

CD50 (l) and slope (a), along with 408 combinations of the mean exposed contact rate per day (�)

and associated variance parameter (�), and values of t 2 0:5; 1; 2; 3½ � days. We aimed to identify

the parameter set that best recapitulated the following features of the observed epidemiologic and

individual-level data for SARS-CoV-2: mean R0 across individuals (R02[1.4, 2.5]), (Ganyani et al.,

2020; Endo et al., 2020; Bi et al., 2020; Du et al., 2020; World Health Organization, 2020) mean

serial interval across individuals (SI 2[4.0, 4.5]), (Ganyani et al., 2020; Du et al., 2020;

Nishiura et al., 2020) cumulative distribution functions of individual R0, (Endo et al., 2020; Bi et al.,

2020; Zhang et al., 2020; Dillon, 2020; Miller, 2020) and cumulative distribution functions of serial

intervals derived from SARS-CoV-2 transmission pair studies that were conducted early during the

pandemic (Du et al., 2020), prior to any confounding influence of social distancing measures with

the exception of likely post-symptomatic self-isolation behavior. Here, we define individual R0 as the

total number of secondary transmissions from the transmitter in a fully susceptible population (Mate-

rials and methods). Given that viral RNA is composed mostly of non-infectious material, we further

checked the closeness of the solved ID curve with the observed relationship between viral RNA and

probability of positive viral culture from a longitudinal cohort of infected people (van Kampen,

2020).

Influenza modeling
Next, we performed equivalent analyses for influenza (results detailed below and in Figures 6–8) to

explain the lower frequency of observed super-spreader events with this infection. Influenza viral

kinetics were modeled using a previously data-validated model (Baccam et al., 2006). Incubation

periods for influenza are lower and less variable than for SARS-CoV-2 and were randomly selected

for each simulation of the model using a gamma distribution (Figure 1—figure supplement 4b;

Lessler et al., 2009). We again fit the model to: mean R0 across individuals (R02[1.1, 1.5]),

(Opatowski et al., 2011; Cowling et al., 2010; Roberts and Nishiura, 2011) mean serial interval (SI

2[2.9, 4.3]), (Cowling et al., 2009) cumulative distribution functions of individual R0 corresponding

to the 2008–2009 influenza A H1N1 epidemic season with mean R0 = 1.26 and dispersion parame-

ter = 2.36 in the negative binomial distribution, and cumulative distribution functions of serial inter-

vals (Cowling et al., 2009; Brugger and Althaus, 2020; Opatowski et al., 2011).

Model-predicted individual R0 and serial intervals for SARS-CoV-2
infection
A single model parameter set ([a, l, t , �, �] = [0.8, 107, 0.5, 4, 40]) most closely reproduced empiri-

cally observed individual R0 and serial interval histograms (Figure 2a,c) and cumulative distribution

functions (Figure 2b,d).

The preciseness of the estimated parameter set was also independently confirmed with the use

of Approximate Bayesian Computation (ABC) rejection sampling method, (Liepe et al., 2014) and a

finer grid search in proximity to the aforementioned optimal solution (shown in Materials and meth-

ods). Despite assuming that each infected person sheds at a high viral load for a period of time (Fig-

ure 1, Figure 1—figure supplement 2b), the model captured the fact that ~75% of 10,000
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simulated transmitters do not infect any other people and that each increase in the number of indi-

vidual transmissions is associated with a lower probability (Figure 2a). Furthermore, we also fit the

model to a higher population R0 of 2.8-2.9 and arrived at a similar set of parameter values but with a

higher daily rate of exposure contacts ([a, l, t , �, �] = [0.8, 107.5, 0.5, 20, 30]) confirming the robust-

ness of the qualitative results of the model.

SARS-CoV-2 viral load was recently measured with viral RNA levels and mapped to concurrent

probability of positive viral culture in a Dutch cohort (van Kampen, 2020). Our model output dem-

onstrated a nearly equivalent infectious dose response curve if we multiplied modeled viral RNA

Figure 2. SARS-CoV-2 transmission model fit. (A) Simulated and actual frequency histograms of individual R0 values, (Endo et al., 2020) (B) Simulated

and actual cumulative distribution of individual R0 values. (C) Simulated and actual frequency histograms of individual serial intervals, (Du et al., 2020)

(D) Simulated and actual cumulative distribution of individual serial intervals. (E) Frequency distribution of simulated generation times.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Mathematical model recapitulation of relationship between SARS-CoV-2 viral load and viral culture.
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levels by 25 (Figure 2—figure supplement 1): this adjustment was likely necessary because viral

loads in the Dutch study participants were notably higher than those in German, Singaporean,

Korean, and French participants used in our intra-host model fitting, perhaps due to different sam-

pling technique or primers used in PCR assays (Wölfel et al., 2020; Lescure et al., 2020;

Young et al., 2020; Kim et al., 2020; van Kampen, 2020).

The model also generated super-spreader events with 10,000 simulated transmissions

(Figure 2b). If super-spreaders are defined as those who produce at least five secondary infections,

we estimate that ~10% of all infected people and ~35% of all transmitters are super-spreaders. If

super-spreaders are defined as those who produce at least 10 secondary infections, we estimate

that ~6% of all infected people and ~25% of all transmitters are super-spreaders. If super-spreaders

are defined as those who produce at least 20 secondary infections, we estimate that ~2.5% of all

infected people and ~10% of all transmitters are super-spreaders. If super-spreaders are defined as

those producing �5, �10, or �20 secondary infections, the contribution to all secondary infections is

estimated at ~85%, ~70%, or ~44%, respectively (Table 1).

The model also recapitulated the high variance of the serial interval observed within SARS-CoV-2

transmission pairs, including negative values observed in the data (Figure 2c,d). We next projected

generation time, defined as the period between when an individual becomes infected and when

they transmit the virus, for all transmission pairs and identified that the mean serial interval (4.4 days)

provides an accurate approximation of mean generation time. However, the variance of generation

time was considerably lower and by definition does not include negative values. A majority of gener-

ation times fell between 4 and 7 days, compared to �5 to 12 days for the serial interval (Figure 2e).

Viral load thresholds for SARS-CoV-2 transmission
The optimized ID curve has an ID50 of 107 viral RNA copies and a moderately steep slope

(Figure 3a). The TD50 for SARS-CoV-2 was slightly higher at 107.5 viral RNA copies (Figure 3a). To

assess the impact of these parameters on transmission, we performed simulations with 10,000 trans-

mitters and concluded that transmission is very unlikely (~0.00005%) given an exposure to an

infected person with an upper airway viral load of <104 SARS-CoV-2 RNA copies, and unlikely

(~0.002%) given an exposure to an infected person with a viral load of <105 SARS-CoV-2 RNA cop-

ies. On the other hand, transmission is much more likely (39%) given an exposure to an infected per-

son who is shedding >107 SARS-CoV-2 RNA copies, and 75% given an exposure to an infected

person with a viral load of >108 SARS-CoV-2 RNA copies. We obtain similar results (not shown)

when we solve our model using the assumption of homogeneous viral load trajectories (according to

viral take off time, peak viral load and first phase decline) as in Figure 1—figure supplement 2a.

Narrow duration of high infectivity during SARS-CoV-2 infection
We next plotted the probability of infection given an exposure to a transmitter. Under multiple shed-

ding scenarios, the window of high probability transmission is limited to time points around peak

viral load, and some heterogeneity in regard to peak infectivity is noted between people

(Figure 3b–d). In general, infected persons are likely to be most infectious (i.e., above TD50) for a

~0.5–1.0 day period between days 2 and 6 after infection. We therefore conclude that the observed

wide variance in serial interval (Figure 2c) results primarily from the possibility of highly discrepant

Table 1. Prevalence of super-spreaders among transmitters, and contribution of super-spreading events to all SARS-CoV-2 and

influenza transmissions.

Estimates are from 10,000 simulations.

Super-spreader
definitions

SARS-CoV-2 Influenza

All infected
people

All
transmitters

Contribution of super-spreaders
to transmissions

All infected
people

All
transmitters

Contribution of super-spreaders
to transmissions

Individual R0 � 5 ~10% ~35% ~85% ~2% ~3% ~10%

Individual R0 � 10 ~6% ~25% ~70% ~0% ~0% ~0%

Individual R0 � 20 ~2.5% ~10% ~44% ~0% ~0% ~0%
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incubation periods between the transmitter and infected person, rather than wide variability in shed-

ding patterns across transmitters.

Requirements for SARS CoV-2 super-spreader events
The solved value for exposed contact network heterogeneity (r) is 40 indicating high variability in

day-to-day exposure contact rates (Figure 1—figure supplement 3d) with an average number of

exposed contacts per day (q = 4). We generated a heat map from our TD curve to identify conditions

required for super-spreader events which included viral load exceeding 107 SARS CoV-2 RNA copies

and a high number of exposure contacts on that day. We observed an inflection point between 106

and 107 SARS CoV-2 RNA copies, after which large increases in the number of daily exposure con-

tacts prominently increases the number of transmissions from a single person (Figure 4a). The expo-

sure contact network occasionally resulted in days with �150 exposure contacts per day, which may

allow an extremely high number of secondary infections from a single person (Figure 4a).

We next plotted transmission events simulated on a daily basis over 30 days since infection, from

10,000 transmitters, according to viral load at exposure and number of exposure contacts on that

Figure 3. SARS-CoV-2 transmission probability as a function of shedding. (A) Optimal infectious dose (ID) response curve (infection risk = Pt) and

transmission dose (TD) response curve (transmission risk = Pt * Pt) curves for SARS-CoV-2. Transmission probability is a product of two probabilities,

contagiousness and infectiousness (Figure 1). (B-D) Three simulated viral shedding curves. Heat maps represent risk of transmission at each shedding

timepoint given an exposed contact with an uninfected person at that time.
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day (Figure 4b). Secondary transmissions to only 1–3 people occurred almost exclusively with daily

numbers of exposure contacts below 10 with any exposure viral load exceeding 106 RNA copies or

with higher numbers of exposure contacts per day and viral loads exceeding 105 RNA copies. Mas-

sive super-spreader events with over 50 infected people almost always occurred at viral loads

exceeding 107 RNA copies with high levels of concurrent exposure contacts (Figure 4b).

We next identified that over 50% of simulated secondary infections were associated with a trans-

mitter who has a high number of exposed contacts (11–100 per day) and a viral load exceeding 106

RNA copies (Figure 4c), which is the mechanistic underpinning of why ~70% of all simulated second-

ary infections arose from transmitters who produced more than 10 secondary infections (Table 1).

Longer duration of infectivity during the earliest phase of the pandemic
in Wuhan
The serial interval was reported to be longer during the initial stages of the pandemic in Wuhan

(before January 22, 2020, termed as pre-lockdown) possibly because infected people were initially

less likely to self-isolate after developing symptoms (Li et al., 2020; Ali et al., 2020). Therefore, we

refit our model to this data with mean serial interval of ~7.5 days, mean R0 2 2:2; 2:5½ � and the indi-

vidual R0 distribution as shown in Figure 1a. The new parameter estimates ([a, l, t , �, �] = [0.6,

105.0, 0.5, 0.7, 40]) yields good fits to the distribution of individual R0 as well as serial interval

(Figure 5a–b). Importantly, the optimized ID curve has an ID50 of 105 viral RNA copies during the

early phase of the pandemic (pre-lockdown), ~100-fold lower than post-lockdown (Figure 3a). Keep-

ing in mind that ID50 is an average measure, we propose that ID50 estimates leading to more pro-

longed and intimate exposure contacts that were of higher risk given an equivalent viral load,

whereas estimates from later in the pandemic (Figure 3) reflect greater social distancing and higher

use of masking. This is also evident in the longer duration of infectivity during pre-lockdown

(Figure 5d). The predicted exposure contact network in Wuhan is highly dispersed and resembles

Figure 1—figure supplement 3d.

Model predicted individual R0 and serial intervals for influenza infection
A single model parameter set most closely reproduced empirically observed histograms and cumula-

tive distribution functions for individual R0 and serial intervals for influenza: (a, l, t , �, �) = (0.7,

105.5, 0-0.5, 4, 1). ID50 values for influenza were lower than SARS-CoV-2, but a direct comparison

cannot be made because tissue culture infectious dose (TCID) has been more commonly used for

measurements of influenza viral load, whereas viral RNA is used for SARS-CoV-2. Nevertheless, TCID

Figure 4. Conditional requirements for SARS-CoV-2 superspreading events. (A) Heatmap demonstrating the maximum number of feasible secondary

infections per day from a transmitter given an exposure viral load on log10 scale (x-axis) and number of exposed contacts per day (y-axis). The exposed

contact network governed by the gamma distribution allows for a range of values between 0–200 per day with values > 200/day outside of the 99.99%

quantile. Such high exposure contacts per day are sufficient for multiple transmissions from a single person per day. (B) 10,000 simulated transmitters

followed for 30 days. The white space is a parameter space with no transmissions. Each dot represents the number of secondary transmissions from a

transmitter per day. Input variables are log10 SARS-CoV-2 on the start of that day and number of contact exposures per day for the transmitter. There

were 1,154,001 total simulated exposure contacts and 15,992 total infections. (C) 10,000 simulated transmitters with percent of infections due to

exposure viral load binned in intervals of 0.5 intervals on log10 scale (x-axis) and number of exposed contacts (y-axis).
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is a closer measure of infectious virus and it is thus reasonable that ID50 based on TCID for influenza

would be ~30-fold lower than ID50 based on total viral RNA (infectious and non-infectious virus) for

SARS-CoV-2 (van Kampen, 2020).

The other notable difference was a considerably lower � value for influenza (Figure 1—figure

supplement 3b), denoting much less heterogeneity in the number of exposure contacts per person

while the average daily exposure contact was the same for both viruses (4 per day). The model cap-

tures the fact that 40% of people in this influenza infected cohort do not transmit to anyone else and

that each increase in the number of individual transmissions is associated with a lower probability

(Figure 6a). In keeping with the observed data, our model simulations predicted that relative to

SARS-CoV-2, super-spreader events involving five or more people were ~5-fold less common overall

and 10-fold less common among transmitters (~2% of all infected people and ~3% of transmitters)

(Figure 6b, Table 1). Super-spreaders defined as those infecting �5 individuals contributed to only

~10% to all transmissions (Table 1).

The model also recapitulated the lower variance of serial interval for influenza relative to SARS-

CoV-2 (Figure 6c,d). We next identified that the mean and variance of the serial interval provide

Figure 5. SARS-CoV-2 transmission model fit during the early phase of the pandemic in Wuhan. (A) Simulated and observed frequency histograms of

individual R0 values (Endo et al., 2020). (B) Simulated and actual frequency histograms of individual serial intervals (Li et al., 2020). (C) Optimal

infectious dose (ID) response curve (infection risk = Pt) and transmission dose (TD) response curve (transmission risk = Pt * Pt) curves for SARS-CoV-2. (D)

Boxplots of duration of time spent above TD10, TD25, TD50, TD75 and TD90 for 10,000 simulated SARS-CoV-2 infection during the early phase of

pandemic (termed as pre-lockdown, before January 22, 2020) and post-lockdown (after January 22, 2020). TD10, TD25, TD50, TD75, and TD90 are viral

loads at which transmission probability is 10%, 25%, 50%, 75%, and 90% respectively. The midlines are median values, boxes are interquartile ranges

(IQR), and datapoints are outliers.
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good approximations of the mean and variance for generation time. A majority of generation times

fell between 2 and 6 days (Figure 6e).

Viral load thresholds for influenza transmission
Based on the optimized TD curve for influenza (Figure 7a), we next plotted the probability of infec-

tion given an exposure to an infected person. The TD50 for influenza was 106.1 TCID/mL. Under vari-

ous shedding scenarios, the window of high probability transmission was limited to time points

around peak viral load (Figure 7b–d). In general, infected persons were likely to be most infectious

(i.e., above TD50) for a ~ 0.5–1.0 day period. The observed low variance in serial interval (Figure 6c)

Figure 6. Influenza transmission model fit. (A) Simulated and actual frequency histograms of individual R0 values (Brugger and Althaus, 2020). (B)

Simulated and actual cumulative distribution of individual R0 values. (C) Simulated and actual frequency histograms of individual serial intervals

(Cowling et al., 2009). (D) Simulated and actual cumulative distribution of individual serial intervals. (E) Frequency distribution of simulated generation

times.
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primarily results from the low variance in incubation period (Figure 1—figure supplement 4b) and

the limited variability in timing of peak viral loads across transmitters.

Determinants of influenza individual R0

We generated a heat map from our TD curve to identify conditions governing influenza transmission

to multiple people including viral load exceeding 106 influenza TCID and a high number of exposure

contacts per day. The contact network never resulted in days with more than 15 exposure contacts

per day, which severely limited the possible number of transmissions from a single person relative to

SARS-CoV-2 (Figure 8a, Figure 1—figure supplement 3b).

We plotted transmission events simulated on a daily basis over 30 days since infection from

10,000 transmitters according to viral load at exposure and number of exposure contacts on that

day (Figure 8b). Secondary transmissions to fewer than five people accounted for 90% of infections

(Table 1) and occurred with fewer than 10 daily exposure contacts and exposure viral loads

Figure 7. Influenza transmission probability as a function of shedding. (A) Optimal infectious dose (ID) response curve (infection risk = Pt) and

transmission dose (TD) response curve (transmission risk = Pt * Pt) curves for influenza. Transmission probability is a product of two probabilities,

contagiousness and infectiousness (Figure 1). (B-D) Three simulated viral shedding curves. Heat maps represent risk of transmission at each shedding

timepoint given an exposed contact with an uninfected person at that time.
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exceeding 104 TCID. Small scale super-spreader events with 5–10 infected people almost always

occurred at viral loads exceeding 105 TCID with 5–10 concurrent exposure contacts (Figure 8b).

We next identified that over 50% of infections were associated with a transmitter who had fewer

than 10 exposure contacts per day and a viral load exceeding 104.5 TCID (Figure 8c), which is why

no infected person ever transmitted to more than 10 other people (Table 1).

Differing exposed contact distributions, rather than viral kinetics,
explain SARS CoV-2 super-spreader events
We sought to explain why SARS-CoV-2 has a more over-dispersed distribution of individual R0 rela-

tive to influenza. To assess viral kinetics as a potential factor, we comparatively plotted transmission

risk per exposure contact as a function of time since infection in 10,000 transmitters for each virus.

The median per contact transmission risk among simulated transmitters was slightly higher for influ-

enza; however, the upper bounds of 75% and 95% percentile of transmission risks among simulated

transmitters were marginally higher for SARS-CoV-2 compared to influenza along with a longer tail

of low transmission risk beyond 7 days after exposure (Figure 9a). The transmission risk was consid-

erably higher for the 25% of simulated SARS-CoV-2 infections with the highest viral loads, suggest-

ing that a substantial subset of infected people may be more pre-disposed to super-spreading.

When plotted as time since onset of symptoms, the variability in the time at which transmissions

take place relative to symptom onset was considerably larger for persons with high SARS-CoV-2 viral

load, owing to the variable incubation period of this virus (Figure 9b).

The median duration of shedding over infectivity thresholds was short and nearly equivalent for

both viruses. For SARS-CoV-2 and influenza, median [range] time above ID10 was 2.7 [0, 7] and 2.4

[1.6, 3.7] days, respectively; median time above ID25 was 1.7 [0, 3] and 1.5 [0, 2.2] days, respectively;

median time above ID50 was 0.8 [0, 1.3] and 0 [0, 1.3] days, respectively; median time above ID75

was 0 [0, 0.4] and 0 [0, 0] days, respectively; median time above ID90 was 0 [0, 0] and 0 [0, 0] days,

respectively. ID10, ID25 and ID50 values were more variable across SARS-CoV-2 simulations due to

more heterogeneous viral kinetics among simulated infected people.

For SARS-CoV-2 and influenza, median [range] time above TD10 was 1.4 [0, 2.5] and 1.2 [0, 2.0]

days, respectively; median time above TD25 was 0.8 [0, 1.3] and 0.3 [0, 1.3] days, respectively;

median time above TD50 was 0 [0, 0.5] and 0 [0, 0.4] days, respectively; median time above TD75

was 0 [0, 0] and 0 [0, 0] days, respectively. TD10, TD25 and TD50 values were more variable across

SARS-CoV-2 simulations due to a minority of trajectories with prolonged moderate viral loads

(Figure 9c).

We next plotted the frequency of exposure contacts per day for both viruses and noted a higher

frequency of days with no exposed contacts (Figure 9d), but also a higher frequency of days with

Figure 8. Conditional requirements for influenza super spreading events. (A) Heatmap demonstrating the maximum number of secondary infections

per day feasible from a transmitter given an exposure viral load on log10 scale (x-axis) and number of exposed contacts per day (y-axis). (B) 10,000

simulated transmitters followed for 30 days. The white space is a parameter space with no transmissions. Each dot represents the number of secondary

transmissions from a transmitter per day. Input variables are log10 influenza TCID on the start of that day and number of contact exposures per day for

the transmitter. There are 1,239,984 total exposure contacts and 11,141 total infections. (C) 10,000 simulated infections with percent of infections due to

exposure viral load binned in intervals of 0.5 intervals on log10 scale (x-axis) and number of exposed contacts (y-axis).
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Figure 9. Differing transmission contact distributions, rather than viral kinetics explain SARS CoV-2 super spreader events. (A) Simulated transmission

risk dynamics for 10,000 infected persons with SARS-CoV-2 and influenza. Solid line is median transmission risk. Dark, dotted line is transmission risk of

75th percentile viral loads, and light dotted line is transmission risk of 95th percentile viral loads. (B) Same as A but plotted as transmission risk since

onset of symptoms. Highest transmission risk for SARS-Co-V-2 is pre-symptoms and for influenza is post symptoms. (C) Boxplots of duration of time

Figure 9 continued on next page
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more than 10 exposure contacts (Figure 9e) for SARS-CoV-2 relative to influenza, despite an equiva-

lent mean number of daily exposure contacts. To confirm that this distribution drives the different

observed distributions of individual R0 values (Figure 9f), we simulated SARS-CoV-2 infection with

an assumed �=1 (low dispersion of exposure contacts) and generated a distribution of individual R0

similar to that of influenza (Figure 9—figure supplement 1a). Similarly, we simulated influenza infec-

tion with an assumed �=40 (high dispersion of exposure contacts) and generated a distribution of

individual R0 similar to that of SARS-CoV-2 (Figure 9—figure supplement 1b.). Under all scenarios,

predicted distributions of serial interval (Figure 9g, Figure 9—figure supplement 1) and generation

time (Figure 9h, Figure 9—figure supplement 1) were unchanged by shifts in the exposed contact

network.

In summary, we conclude that despite differing viral shedding kinetics (Figure 10a, top), the

kinetics of infectivity are extremely similar between influenza and SARS-CoV-2 (Figure 10a, bottom).

Figure 9 continued

spent above TD10, TD25, TD50, TD75, and TD90 for 10,000 simulated SARS-CoV-2 and influenza shedding episodes. TD10, TD25, TD50, TD75, and

TD90 are viral loads at which transmission probability is 10%, 25%, 50%, 75%, and 90%, respectively. The midlines are median values, boxes are

interquartile ranges (IQR), and datapoints are outliers. Superimposed probability distributions of: (D and E) number of exposure contacts per day, (F)

individual R0, (G) serial interval and (H) generation time for influenza and SARS-CoV-2.

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. Impact of changes in contact network heterogeneity on individual R0, serial interval, and generation time.

Figure 10. Wider dispersion of virus is the most likely explanation for SARS-CoV-2 super-spreader events. (A) Despite differing shedding kinetics, our

model projects very similar kinetics of infectivity between influenza and SARS-CoV-2 (Figure 9a,c) but (B) higher number of exposure contacts based on

wider and / or more prolonged dispersal of virus creating potentialsws for super-spreader events.

The online version of this article includes the following figure supplement(s) for figure 10:

Figure supplement 1. Potential impact of population physical distancing on SARS-Co-V2 epidemiology.

Figure supplement 2. Potential impact of enhanced physical distancing only within high exposure contact networks on SARS-CoV-2 epidemiology.

Figure supplement 3. Sensitivity analysis of transmission curve parameter for model fit to SARS-CoV-2 data.

Figure supplement 4. Sensitivity analysis of contact network structure for model fit to SARS-CoV-2 data.

Figure supplement 5. Histograms of four estimated parameters (a, l, �, and �) using Approximate Bayesian Computation rejection sampling method.
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Over-dispersed contact networks, likely due to wider airborne dispersal of virus in equivalent

crowded environments, explain the ability of SARS-CoV-2 to initiate super-spreader events

(Figure 10b).

Projections of targeted physical distancing
Physical distancing is a strategy to decrease R0. We simulated a decrease in the contact rate uni-

formly across the population and noted a decrease in population R0 (Figure 10—figure supplement

1a) as well the percent of infected people who will transmit (Figure 10—figure supplement 1b) and

become super-spreaders (Figure 10—figure supplement 1c–d). An approximately 40% decrease in

the average exposed contact rate lowered R0 below 1 (Figure 10—figure supplement 1a). We fur-

ther investigated whether lowering contact rate among larger groups only, in particular by banning

exposure events with a high number of exposure contacts, could control the epidemic. We identified

that limiting exposure contacts to no more than five per day is nearly equivalent to limiting exposure

contacts altogether and that only a small decrease in mean exposure contact rate can achieve R0 < 1

if exposure events with more than 20 contacts are eliminated (Figure 10—figure supplement 2).

Pre-symptomatic transmission and super-spreading risk
Much of the highest transmission risk for SARS-CoV-2 exists in the pre-symptomatic phase

(Figure 9b) which explains why 62% of simulated transmissions occurred in the pre-symptomatic

phase for SARS-CoV-2, compared to 10% for influenza. Similarly, 62% and 21% of SARS-CoV-2 and

influenza super-spreader events with secondary transmissions � 5, and 39% of SARS-CoV-2 super-

spreader events with secondary transmissions � 10 fell exclusively in the pre-symptomatic period.

Discussion
Our model provides a plausible link between SARS-CoV-2 shedding kinetics and the virus’ most fun-

damental epidemiologic properties. First, we identify a transmission dose response curve which

specifies that a nasal viral load below a certain threshold (conservatively ~104 RNA copies) is unlikely

to result in transmission – consistent with the overall rarity of positive cultures at these levels

(van Kampen, 2020). We also predict a relatively steep TD curve such that transmission becomes

much more likely when a susceptible person contacts an infected person shedding above 108 viral

RNA copies. The amount of viral RNA can be roughly converted to the probability of a positive viral

culture which approximates infectiousness, and this simulated relationship qualitatively matches the

dose response observed in formal dose challenge experiments performed with SARS-CoV-1 in mice

(Watanabe et al., 2010).

Our results may have relevance for dosing of SARS-CoV-2 in human challenge experiments that

are being conducted for testing vaccines and therapies. However, we emphasize that it would first

be valuable to test the model’s predictions with graded challenge models of infection in non-human

primates or golden hamsters (Chandrashekar et al., 2020). Our estimates for viral load transmission

thresholds are inherently imprecise based on the fact that there is no international standard for PCR

or clinical sampling site (saliva versus nasopharyngeal swab). Indeed, viral loads have varied consider-

ably across studies and average transmission dose may have increased as social distancing measures

were implemented across the globe, because higher viral load may be required to achieve transmis-

sion across larger distances and over shorter periods of time.

While the duration of shedding for SARS-CoV-2 is often three weeks or longer, (Qi et al., 2020;

Cao et al., 2020) our model predicts a short period—averaging less than two days—of high trans-

mission risk. We note that our model was fit to pandemic settings where self-isolation upon develop-

ment of symptoms was normative, and this high-risk window increases to 2–3 days when fit to pre-

lockdown conditions in Wuhan. This duration of infectivity is predicted to be comparable to that of

influenza. Our model predicts that transmission after the first week of infection is quite rare. Output

is also consistent with the observation that transmissions commonly but not always occurs during the

pre-symptomatic phase of infection (He et al., 2020; Moghadas et al., 2020; Tindale et al., 2020).

This variability is attributed less to timing of peak viral load and more to the variable incubation

period of the virus.

The observed high heterogeneity in serial interval is attributable almost entirely to the variable

nature of the incubation period, rather than transmission occurring extremely late after infection.
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While our estimate for mean generation time is equivalent to that of mean serial interval, it is notable

that the range of SARS-CoV-2 serial intervals is much wider than the range of generation times. This

result is evident even though we extended heterogeneity of viral shedding curves beyond that

observed in the somewhat limited existing shedding data.

The finding of limited duration of SARS-CoV-2 infectivity has practical implications. First, consider-

able resources are being used in hospitals and skilled nursing facilities to isolate patients with persis-

tent SARS-CoV-2 shedding. Our model suggests that a low nasal viral load, particularly during late

infection, may not require full patient isolation procedures in the absence of aerosolizing proce-

dures. Experimental verification would be required before the implementation of such policies. If

true, substantial hospital resources and valuable isolation beds might be gained for subsequent

waves of infection. Similarly, employees would be able to return to work sooner after infection, sav-

ing lost labor and wages. Our results also suggest that time since first positive test may be predictive

of lack of contagion, although more viral load kinetic studies will be needed to confirm the existing

observation that viral loads after a week of infection are usually low and associated with negative

viral cultures (van Kampen, 2020). Finally, our conclusions are generally supportive of rapid, less

sensitive assays which are more likely to detect infection at periods of contagion (Larremore, 2020).

Many of these conclusions, including specific viral load thresholds for transmission, a steep dose

response curve and a maximum 2 day duration of high contagion within an infected individual are

equally relevant for influenza infection. One important difference is that incubation periods for influ-

enza are far less variable, which means that at the individual level the serial interval is much more

likely to be predictive of the generation time.

Another finding is that SARS-CoV-2 super-spreading events are dependent on a large number of

exposure contacts during the relatively narrow 1–2 days peak infectivity window. Because we predict

that super-spreader potential may be a signature property of infection, rather than a characteristic

of a tiny subset of infected people, this result also has practical implications. A common experience

during the pandemic has been early identification of a small cluster of infected people within a spe-

cific confined environment such as a senior living home, crowded work environment, athletic team,

or restaurant. Our results demonstrate that newly diagnosed people within small clusters may be

past the peak of their super-spreading potential. At this stage, many more infections have often

been established and drastic quarantine procedures should be considered. Other undiagnosed, pre-

symptomatic infected people may have super-spreader potential, while the known infected person is

no longer contagious, highlighting the importance of effective contact tracing.

At the prevention level, school opening and work opening strategies should focus on severely

limiting the possible number of exposure contacts per day. Where large numbers of exposure con-

tacts are unavoidable, rigorous masking policies should be considered, perhaps with N95 masks that

may more significantly lower exposure viral loads (Leung et al., 2020).

Influenza infection is much less predisposed to super-spreader events than SARS-CoV-2. Yet,

influenza shedding at levels above those required for a high probability of transmission occurs with

only slightly lower frequency. Therefore, viral kinetics are unlikely to drive the markedly different

probability of super-spreader events between the two viruses—despite the fact that the overall dura-

tion of SARS-CoV-2 shedding exceeds duration of influenza shedding often by more than 2 weeks.

Rather, our analysis suggests that the exposure contact networks of SARS-CoV-2 transmitters are

highly dispersed relative to those of influenza. This observation is unlikely to relate to different socie-

tal contact matrices as both viruses share the respiratory transmission route, with demonstrated abil-

ity to spread in schools, homes, workplaces. and other crowded environments. The most likely

explanation underlying differing exposure contact networks is that SARS-CoV-2 is more predisposed

to airborne transmission than influenza (van Doremalen et al., 2020). Here, our precise definition of

an exposure contact (sufficient contact between a transmitter and an uninfected person to poten-

tially allow transmission) is of high relevance. Our result suggests that a SARS-CoV-2-infected person

in a crowded poorly ventilated room will generate more exposure contacts than an influenza

infected person in the exact same room, likely based on wider dispersal and / or longer airborne sur-

vival of the virus. Thus, airborne transmission of SARS-CoV-2 has a significant downstream effect on

epidemiology. This prediction reinforces current public health recommendation to avoid crowded

indoor spaces with poor air recirculation.

On the other hand, a much higher proportion of SARS-CoV-2-infected people than influenza

infected people do not transmit at all. This result lacks a clear mechanistic explanation but may imply
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that aerosolization occurs only in a subset of infected people. One theoretical explanation is that

high viral load shedding in the pre-symptomatic phase is defined by lack of cough or sneeze leading

to limited spatial diffusion of virus. Alternatively, it is also possible that a proportion of infected peo-

ple never shed virus at high enough viral loads to allow efficient transmission. This possibility speaks

to the need for more quantitative viral load data gathered during the initial stages of infection

(Kissler, 2020).

Age cohort structure differs between the two infections, with a lower proportion of observed

pediatric infections for SARS-CoV-2. If adults have more high exposure events than children, then

this could also explain super-spreader events. We are less enthusiastic about this hypothesis. First,

SARS-CoV-2 super-spreader events have occurred in schools and camps and would likely be more

common in the absence of widespread global school closures in high prevalence regions. Second, a

sufficient proportion of influenza cases occur in adults to rule out the presence of frequent large

super-spreading events in this population.

Our analysis has important limitations. First, exposure contacts were assumed to be homoge-

neous and we do not capture the volume of the exposing aerosol or droplet. If a large-volume drop-

let contains 10 times more viral particles than an aerosol droplet, then the exposure could be

dictated by this volume as well as the viral load of the potential transmitter. It is possible that under

rare circumstances with extremely high-volume exposures, even persons with extremely low viral

loads may transmit.

Second, based on the quality of available data, we fit our models for SARS-CoV-2 and influenza

to viral RNA and viral culture, respectively. This might impact the quantitative results but is unlikely

to affect qualitative predictions of the model. Existing data suggest that kinetics of viral RNA and

culture are similar during both infections, with culture having lower sensitivity to detect virus

(van Kampen, 2020).

Third, data during early SARS-CoV-2 infection is fairly limited such that we may be underestimat-

ing variance of initial viral growth rates. We accounted for this by imputing additional heterogeneity

in viral kinetic characteristics and obtained similar results regarding mechanisms of transmission.

Nevertheless, it is possible that viral shedding kinetics among infected people may be more variable

than observed to date. Importantly, we cannot rule out the possibility that a small minority of

infected people shed at sufficient levels for transmission for much longer than has been observed to

date. We also assume that viral load does not change substantially over the course of the subse-

quent day when simulating transmission which may allow for slight misclassification of exposure viral

load.

Fourth, our intra-host model of SARS-CoV-2 was fit to heterogeneous data from different conti-

nents and with different sampling techniques and PCR assays (Goyal et al., 2020). Similarly, R0 esti-

mates for SARS-CoV-2 have varied temporally and spatially across the globe and the same is likely

true for influenza. Social interaction matrices are very likely to differ among countries and between

urban and rural areas. For these reasons, our estimates of TD50 are necessarily imprecise based on

available data and should serve only as a conservative benchmark. Regarding overdispersion of indi-

vidual R0, we do not capture the fact that social interaction networks in certain municipalities may

predispose to more frequent and severe super-spreader events. Nevertheless, we are confident that

differing aerosolization properties of the two viruses underly the observed overdispersion of individ-

ual R0 for SARS-CoV-2 relative to influenza, regardless of geographic location.

Fifth, contagiousness could have different dose response dynamics than viral load dependent

infectiousness and may require investigation in the future upon the availability of epidemiologically

relevant additional data.

Overall, the model is intended to capture a universal property of SARS-CoV-2 infection but is not

specific for local epidemics. Nevertheless, it is extremely clear that super-spreader events are a glob-

ally generalizable feature of SARS-CoV-2 epidemiology.

In conclusion, fundamental epidemiologic features of SARS-CoV-2 and influenza infections can be

directly related to viral shedding patterns in the upper airway as well as the nature of exposure con-

tact networks. We contend that this information should be leveraged for more nuanced public health

practice in the next phase of the pandemic.
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Materials and methods

SARS-CoV-2 within-host model
To simulate SARS-CoV-2 shedding dynamics, we employed our previously described viral infection

model (Goyal et al., 2020). In this model, susceptible cells (S) after coming into contact with SARS-

CoV-2 (V) become infected at rate bVS. The infected cells (I) produce new virus at a per-capita rate

p. The model also includes the clearance of infected cells in two ways: (1) by an innate response with

density dependent rate dIk; and (2) an acquired response with rate mEr

Erþfr mediated by SARS-CoV-2-

specific effector cells (E). The clearance mediated by innate immunity depends on the infected cell

density and is controlled by the exponent k. The Hill coefficient r parameterizes the nonlinearity of

the second response and allows for rapid saturation of the killing. Parameter f defines the effector

cell level by which killing of infected cells by E is half maximal.

In the model, SARS-CoV-2-specific effector cells rise after two stages from precursors cells (M1

and M2). The first precursor cell compartment (M1) proliferates in the presence of infection with rate

!IM1 and differentiates into the effector cell at a per capita rate q during the next intermediate

stage. Finally, effector cells die at rate dE. The model is expressed as a system of ordinary differential

equations:

dS

dt
¼�bVS

dI

dt
¼ bVS� dIkI�m

Er

Er þfr I

dV

dt
¼ pI�gV

dM1

dt
¼ !IM1 � qM1

dM2

dt
¼ q M1 �M2ð Þ

dE

dt
¼ qM2 � dEE

We assumed S 0ð Þ ¼ 10
7 cells/mL, I 0ð Þ ¼ 1 cells/mL, V 0ð Þ ¼ pI 0ð Þ

c
copies/mL, M1 0ð Þ ¼ 1, M2 0ð Þ ¼ 0 and

E0 ¼ 0.

When we introduce simulated heterogeneity in cases of SARS-CoV-2 (by increasing the standard

deviation of the random effects of parameters b by 20, d by 2, k by 2, and p by 5 in the original dis-

tribution from Goyal et al., 2020), some of the viral shedding curves suggest that viral shedding

could continue for long period (over 6 weeks). Indeed, while median viral shedding duration has

been estimated at 12–20 days, shedding for many months is also observed commonly

(Widders et al., 2020). We assumed that viral loads after day 20 drop to a exposure-level viral load

level (i.e. V 0ð Þ) as most viral shedding observed after this point is transient and at an extremely low

viral load (Huang, 2020). The population distribution of parameters to simulate artificial SARS-CoV-2

viral shedding dynamics is provided in Table 2.

Influenza within-host model
To simulate viral shedding dynamics of influenza viral, we employ a model (Baccam et al., 2006)

that is a simplified version of the viral dynamics model presented for SARS-CoV-2. This model

assumes k ¼ 0 and m ¼ 0 and can be expressed as a system of ordinary differential equations:

Table 2. Population parameter estimates for simulated SARS-CoV-2 viral shedding dynamics.

Parameters are from (doi: https://doi.org/10.1101/2020.04.10.20061325). The top row is the fixed effects (mean) and the bottom row is

the standard deviation of the random effects. We also fixed r = 10, dE = 1/day, q = 2.4 � 10–5/day, and c = 15/day.

Log10b
(virions�1 day�1)

d
(day�1 cells-k)

k
(-)

Log10p
(log10 day�1)

m
(day�1 cells�1)

Log10w
(day�1 cells�1)

�7.23 3.13 0.08 2.59 3.21 �4.55

0.2 0.02 0.02 0.05 0.33 0.01
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dS

dt
¼�bVS

dI

dt
¼ bVS� dI

dV

dt
¼pI�gV

Following this model, (Baccam et al., 2006) we assumed S 0ð Þ ¼ 4� 10
8 cells/mL, I 0ð Þ ¼ 1 cells/mL,

V 0ð Þ ¼ pI 0ð Þ
c

copies/mL. To simulate artificial influenza viral shedding dynamics, we assumed the popu-

lation distribution of parameters Log10 bð Þ, Log10 pð Þ, Log10 gð Þ and Log10 dð Þ are -4.56 (0.17), -1.98

(0.14), 0.47 (0.03), and 0.60 (0.06), respectively.

Dose-response model
For both viruses, to estimate the infectiousness Pt V tð Þ½ � based on viral loads V tð Þ, we employed the

function, Pt V tð Þ½ � ¼ V tð Þa
laþV tð Þa. Here, l is the infectivity parameter that represents the viral load that cor-

responds to 50% infectiousness and 50% contagiousness, and a is the Hill coefficient that controls

the slope of the dose-response curve.

Transmission model and reproduction number
Our transmission model assumes that only some contacts of an infected individual with viral load

dependent infectiousness are physically exposed to the virus (defined as exposure contacts), that

only some exposure contacts have virus passaged to their airways (contagiousness) and that only

some exposed contacts with virus in their airways become secondarily infected (successful secondary

infection). Contagiousness and infectiousness are then treated as viral load dependent multiplicative

probabilities with transmission risk for a single exposure contact being the product. Contagiousness

is considered to be viral load dependent based on the concept that a transmitter’s dispersal cloud

of virus is more likely to prove contagious at higher viral load, which is entirely separate from viral

infectivity within the airway once a virus contacts the surface of susceptible cells.

We next assume that the total exposed contacts within a time step hDt

� �

is gamma distributed,

that is, hDt
~G �

�
; �

� �

Dt, using the average daily contact rates �ð Þ and the dispersion parameter �ð Þ. To
obtain the true number of exposure contacts with airway exposure to virus, we simply multiply the

contagiousness of the transmitter with the total exposed contacts within a time step (i.e., zt ¼ hDt
Pt).

Transmissions within a time step are simulated stochastically using time-dependent viral load to

determine infectiousness (Pt). Successful transmission is modeled stochastically by drawing a random

uniform variable (U 0; 1ð Þ) and comparing it with infectiousness of the transmitter. In the case of suc-

cessful transmission, the number of secondary infections within that time step TDt
ð Þ is obtained by

the product of the infectiousness (Pt) and the number of exposure contacts drawn from the gamma

distribution ztð Þ. In other words, the number of secondary infections for a time step is

TDt
¼ Ber Ptð ÞPthDt

. If we disregard contagiousness by assuming Pt ¼ 1 in zt, we identify that there are

little to no differences on overall results other than the emergent TD curve and optimal parameter

set describing dose-response curve and exposed contact network, which no longer agrees as closely

with in vitro probability of positive virus culture (Figure 2—figure supplement 1; van Kampen,

2020).

We obtain the number of secondary infections from a transmitter on a daily basis assuming that

viral load, and subsequent risk, does not change substantially within a day. We then summed up the

number of secondary infections over 30 days since the time of exposure to obtain the individual

reproduction number, that is, R0 ¼
P

Dt
TDt

.

Serial interval and generation time
We further assume that upon successful infection, it takes t days for the virus to move within-host,

reach infection site and produce the first infected cell.
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To calculate serial interval (time between the onset of symptoms of transmitter and secondarily

infected person), we sample the incubation period in the transmitter and in the secondarily infected

person from a gamma distribution with a shape described in Figure 1—figure supplement 4

(Ganyani et al., 2020; Lauer et al., 2020). In cases in which symptom onset in the newly infected

person precedes symptom onset in the transmitter, the serial interval is negative; otherwise, serial

interval is non-negative. We calculate generation time as the difference between the time of infec-

tion of transmitter and the time of infection of secondarily infected person.

Individual R0 and serial interval data for model fitting
There is abundance of data confirming over-dispersed R0 for SARS-CoV-2. From contact tracing of

391 SARS-CoV-2 cases in Shenzhen, China, 1286 close contacts were identified: the distribution of

individual R0 values in this cohort was highly over-dispersed, with 80% of secondary infections being

caused by 8–9% of infected people (Bi et al., 2020). In another study, authors analyzed the contact/

travel history of 135 infected cases in Tianjin, China and determined heterogeneity in the individual

R0. (Zhang et al., 2020) Another contract tracing study also identified and characterized SARS-CoV-

2 clusters in Hong Kong and estimated that 20% of cases were responsible for 80% of local transmis-

sion (Dillon, 2020).

A modeling study that simulated observed outbreak sizes in ~40 affected countries during the

early phase of epidemics also confirmed that ~80% of secondary transmissions may have been

caused by a small fraction of infectious individuals (~10%) (Endo et al., 2020). The latter study pro-

vided the distribution of individual R0 (Figure 2a) that we employed for fitting purposes. Using the

data on 468 COVID-19 transmission events reported in mainland China, Du et al. estimated the

mean serial interval as well as the distribution of serial interval (Figure 2c). (Du et al., 2020) We

employed this data for fitting purposes. Alternatively, we also fit to the mean serial interval as well

as the distribution of serial interval formulated from data of 162 transmission pairs that were

observed before January 22, 2020 (termed as pre-lockdown) during the initial stages of the pan-

demic in Wuhan (Ganyani et al., 2020).

The cumulative distribution function of individual R0 for influenza was obtained from a modeling

study that simulated the transmission dynamics of seasonal influenza in Switzerland from 2003 to

2015 (Brugger and Althaus, 2020). We picked the parameters mean R0 = 1.26 and dispersion

parameter = 2.36 in the negative binomial distribution that corresponded to the 2008–2009 influ-

enza A H1N1 epidemic season (Brugger and Althaus, 2020). Another modeling study that simu-

lated the age-specific cumulative incidence of 2009 H1N1 influenza in eight Southern Hemisphere

Countries yielded similar results (Opatowski et al., 2011). By following the household members of

index cases, a study estimated the cumulative distribution of serial interval based on symptom-onset

times from 14 transmission pairs (Cowling et al., 2009). We employed these cumulative distribution

functions of individual R0 and serial interval of influenza for fitting purposes.

Fitting procedure
To estimate the values of unknown parameters in cases of SARS-CoV-2, we performed a grid search

comprehensively exploring a total of 417,792 combinations of 5 parameters taking the following

values:

i. t 2 [0.5, 1, 2, 3] days,
ii. a 2 [0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 3.0, 4.0, 5.0, 10.0]
iii. l 2 [100, 100.5, 101.0. . ., 108]
iv. � 2 [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 3.0, 4.0, 5.0, 10.0, 20.0, 50.0].
v. � 2 [0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 5.0, 10.0, 20.0, 30.0,

40.0, 50.0, 75.0, 100, 200, 500].

The parameter sets of (l; t ; a; �; �) were simulated for 1000 infected individuals to determine

how well each set generates the summary statistics of mean R0, mean SI and the R0 histograms by

following a procedure explained in Figure 1—figure supplement 1 and below:

Step A

1. Simulate viral load V tð Þ of 1000 simulated infected individuals using the differential equation
for virus described for SARS-CoV-2 and influenza above:
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2. For each combination of (l; t ; a; �; �)
a. For each time step Dt

i. Compute Pt V tð Þ; l;a½ �
ii. Draw hDt

~G �
�
; �

� �

Dt

iii. Calculate TDt
¼ Ber Ptð ÞPthDt

b. Calculate R0 ¼
P

Dt
TDt

i. Check if calculated mean R0 is in the range: (Ganyani et al., 2020; Du et al., 2020)
c. Calculate Serial Interval based on t and incubation period

i. Check if calculated SI is in the range in: (Ganyani et al., 2020; Du et al., 2020;
Nishiura et al., 2020)

Step B

1. If the parameter combination in Step A satisfy the criteria, then
i. Compute residual sum of squares (RSS) for the obtained R0 and histogram from:

(Endo et al., 2020; Bi et al., 2020; Zhang et al., 2020; Miller, 2020)

We visually checked whether our dose-response curve matched the observed probability of posi-

tive virus culture (van Kampen, 2020). We assumed that viral loads derived from positive culture

(van Kampen, 2020) can be considered equivalent to viral loads in the within-host model if divided

by a positive integer. We identified an integer of 25 to provide closest fit to the empirical data (Fig-

ure 2—figure supplement 1).

We performed a global sensitivity analysis to identify which parameter variability accounted for fit

to different components of the data. Only narrow ranges of l permitted close fit to the mean of R0

and distribution functions of individual R0 (Figure 10—figure supplement 3), while a specific value

for a was necessary to fit to mean serial interval and distribution functions of individual R0 (Fig-

ure 10—figure supplement 3). Only narrow ranges of q permitted close fit to the mean of R0 and

distribution functions of individual R0 (Figure 10—figure supplement 4), while a specific value for r

was necessary to fit to distribution functions of individual R0 (Figure 10—figure supplement 4).

To obtain TD50 (lTÞ based on ID50 (l), we use the following relation for real positive values of a,

1

10l

V

� �aþ1
� �2

¼ 1

10lT

V

� �aTþ1
¼ 0:5

From solving the second half ( 1

10
lT
V

� �aT þ1

¼ 0:5), we get

V ¼ 10
lT

Substituting V ¼ 10
lT in the first-half, we have,

1

10l

10lT

� �aþ1
� �2

¼ 0:5

Or;
10

l

10lT

� �a

þ1

� �2

¼ 2

Or;
10

l

10lT

� �a

¼
ffiffiffi

2

p
� 1

Or; 10lTa ¼ 10
la

ffiffiffi

2
p

� 1

Or; lT ¼ lþ 0:38

a
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Alternative fitting procedures
To further confirm the validity and robustness of our results, particularly in relation to the estimated

parameter values, we alternatively employed Approximate Bayesian Computation (ABC) rejection-

sampling method to estimate 1000 combinations of four parameters (a; l; �; �) with an error

threshold of 0.1 while assuming t ¼ 0:5 days. We assumed uniform prior distribution of each param-

eter with ranges described in the previous section. This approach yields a parameter distribution for

all parameters except the parameter a that is centered at parameter values generated by the grid

search method (Figure 10—figure supplement 5). The value for the parameter a can be further nar-

rowed by the use of additional fitting to the data of the probability of positive virus culture in vitro.

Furthermore, we also employed a narrow grid search close to the solution yielded by both the

extensive grid search in the previous section and ABC. In this procedure, we searched a total of

~8000 parameter combinations varying, a from 0.5 to 0.1 at intervals of 0.05; l from 6.5 to 7.5 at

intervals of 0.1; � from 3 to 5 at intervals of 0.2, and � from 30 to 50 at intervals of 5 while keeping t

fixed at 0.5 days. This process yielded most likely parameter estimates (with the lowest error thresh-

old of 0.02) with median l, �, � and a taking values 6.9, 3.8, 45, and 0.9, respectively. We have not

visually represented the results as the figure looks very similar to Figure 10—figure supplement 3

and Figure 10—figure supplement 4 but on a narrow range of parameter values.

Overall, these two alternative approaches confirm that our parameter estimates obtained for our

model using the grid search method in the previous section are the most likely parameter values

given the features of the COVID-19 pandemic.
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