The allosteric modulation of Complement C5 by knob domain peptides

  1. Alex Macpherson  Is a corresponding author
  2. Maisem Laabei
  3. Zainab Ahdash
  4. Melissa A Graewert
  5. James R Birtley
  6. Monika-Sarah ED Schulze
  7. Susan Crennell
  8. Sarah A Robinson
  9. Ben Holmes
  10. Vladas Oleinikovas
  11. Per H Nilsson
  12. James Snowden
  13. Victoria Ellis
  14. Tom Eirik Mollnes
  15. Charlotte M Deane
  16. Dmitri Svergun
  17. Alastair DG Lawson
  18. Jean MH van den Elsen  Is a corresponding author
  1. University of Bath, United Kingdom
  2. UCB-Celltech, United Kingdom
  3. EMBL Hamburg, Germany
  4. University of Oxford, United Kingdom
  5. Oslo University hospital, Sweden
  6. University of Oslo, Norway
  7. EMBL/DESY, Germany

Abstract

Bovines have evolved a subset of antibodies with ultra-long CDRH3 regions that harbour cysteine-rich knob domains. To produce high affinity peptides, we previously isolated autonomous 3-6 kDa knob domains from bovine antibodies. Here, we show that binding of four knob domain peptides elicits a range of effects on the clinically validated drug target complement C5. Allosteric mechanisms predominated, with one peptide selectively inhibiting C5 cleavage by the alternative pathway C5 convertase, revealing a targetable mechanistic difference between the classical and alternative pathway C5 convertases. Taking a hybrid biophysical approach, we present C5-knob domain co-crystal structures and, by solution methods, observed allosteric effects propagating >50 Å from the binding sites. This study expands the therapeutic scope of C5, presents new inhibitors and introduces knob domains as new, low molecular weight antibody fragments, with therapeutic potential.

Data availability

Structural datasets presented in this study have been made publicly available in the Protein Data Bank (PDB) and Small Angle Scattering Biological Data Bank (SASBDB)

The following data sets were generated

Article and author information

Author details

  1. Alex Macpherson

    Biology & Biochemistry, University of Bath, Bath, United Kingdom
    For correspondence
    Alex.MacPherson@ucb.com
    Competing interests
    Alex Macpherson, employee of UCB and may hold shares and/or stock options.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4508-5322
  2. Maisem Laabei

    Biology and Biochemistry, University of Bath, Bath, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8425-3704
  3. Zainab Ahdash

    Immunology, UCB-Celltech, Slough, United Kingdom
    Competing interests
    Zainab Ahdash, employee of UCB and may hold shares and/or stock options.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4495-8689
  4. Melissa A Graewert

    Biological Small Angle Scattering, EMBL Hamburg, Hamburg, Germany
    Competing interests
    No competing interests declared.
  5. James R Birtley

    Immunology, UCB-Celltech, Slough, United Kingdom
    Competing interests
    James R Birtley, employee of UCB and may hold shares and/or stock options.
  6. Monika-Sarah ED Schulze

    Immunology, UCB-Celltech, Slough, United Kingdom
    Competing interests
    Monika-Sarah ED Schulze, employee of UCB and may hold shares and/or stock options.
  7. Susan Crennell

    Biology & Biochemistry, University of Bath, Bath, United Kingdom
    Competing interests
    No competing interests declared.
  8. Sarah A Robinson

    Statistics, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  9. Ben Holmes

    Immunology, UCB-Celltech, Slough, United Kingdom
    Competing interests
    Ben Holmes, employee of UCB and may hold shares and/or stock options.
  10. Vladas Oleinikovas

    Immunology, UCB-Celltech, Slough, United Kingdom
    Competing interests
    Vladas Oleinikovas, employee of UCB and may hold shares and/or stock options.
  11. Per H Nilsson

    Immunology, Oslo University hospital, Oslo, Sweden
    Competing interests
    No competing interests declared.
  12. James Snowden

    Immunology, UCB-Celltech, Slough, United Kingdom
    Competing interests
    James Snowden, employee of UCB and may hold shares and/or stock options.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4855-7329
  13. Victoria Ellis

    Immunology, UCB-Celltech, Slough, United Kingdom
    Competing interests
    Victoria Ellis, employee of UCB and may hold shares and/or stock options.
  14. Tom Eirik Mollnes

    Department of Immunology, University of Oslo, Oslo, Norway
    Competing interests
    Tom Eirik Mollnes, T.E.M is a Board member of Ra Pharmaceuticals, Inc.
  15. Charlotte M Deane

    Department of Statistics, University of Oxford, Oxford, United Kingdom
    Competing interests
    Charlotte M Deane, Reviewing editor, eLife.
  16. Dmitri Svergun

    Biological Small Angle Scattering, EMBL/DESY, Hamburg, Germany
    Competing interests
    No competing interests declared.
  17. Alastair DG Lawson

    Immunology, UCB-Celltech, Slough, United Kingdom
    Competing interests
    Alastair DG Lawson, employee of UCB and may hold shares and/or stock options.
  18. Jean MH van den Elsen

    Biology & Biochemistry, University of Bath, Bath, United Kingdom
    For correspondence
    bssjmhve@bath.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0367-1956

Funding

No specific external funding was received for this work.

Copyright

© 2021, Macpherson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,802
    views
  • 432
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alex Macpherson
  2. Maisem Laabei
  3. Zainab Ahdash
  4. Melissa A Graewert
  5. James R Birtley
  6. Monika-Sarah ED Schulze
  7. Susan Crennell
  8. Sarah A Robinson
  9. Ben Holmes
  10. Vladas Oleinikovas
  11. Per H Nilsson
  12. James Snowden
  13. Victoria Ellis
  14. Tom Eirik Mollnes
  15. Charlotte M Deane
  16. Dmitri Svergun
  17. Alastair DG Lawson
  18. Jean MH van den Elsen
(2021)
The allosteric modulation of Complement C5 by knob domain peptides
eLife 10:e63586.
https://doi.org/10.7554/eLife.63586

Share this article

https://doi.org/10.7554/eLife.63586

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Megan E Amason, Cole J Beatty ... Edward A Miao
    Research Article

    Granulomas are defined by the presence of organized layers of immune cells that include macrophages. Granulomas are often characterized as a way for the immune system to contain an infection and prevent its dissemination. We recently established a mouse infection model where Chromobacterium violaceum induces the innate immune system to form granulomas in the liver. This response successfully eradicates the bacteria and returns the liver to homeostasis. Here, we sought to characterize the chemokines involved in directing immune cells to form the distinct layers of a granuloma. We use spatial transcriptomics to investigate the spatial and temporal expression of all CC and CXC chemokines and their receptors within this granuloma response. The expression profiles change dynamically over space and time as the granuloma matures and then resolves. To investigate the importance of monocyte-derived macrophages in this immune response, we studied the role of CCR2 during C. violaceum infection. Ccr2–/– mice had negligible numbers of macrophages, but large numbers of neutrophils, in the C. violaceum-infected lesions. In addition, lesions had abnormal architecture resulting in loss of bacterial containment. Without CCR2, bacteria disseminated and the mice succumbed to the infection. This indicates that macrophages are critical to form a successful innate granuloma in response to C. violaceum.

    1. Immunology and Inflammation
    Shijie Wen, Hiroshi Arakawa ... Ikumi Tamai
    Research Article

    Excessive elevation or reduction of soluble uric acid (sUA) levels has been linked to some of pathological states, raising another subject that sUA at physiological levels may be essential for the maintenance of health. Yet, the fundamental physiological functions and molecular targets of sUA remain largely unknown. Using enzyme assays and in vitro and in vivo metabolic assays, we demonstrate that sUA directly inhibits the hydrolase and cyclase activities of CD38 via a reversible non-competitive mechanism, thereby limiting nicotinamide adenine dinucleotide (NAD+) degradation. CD38 inhibition is restricted to sUA in purine metabolism, and a structural comparison using methyl analogs of sUA such as caffeine metabolites shows that 1,3-dihydroimidazol-2-one is the main functional group. Moreover, sUA at physiological levels prevents crude lipopolysaccharide (cLPS)-induced systemic inflammation and monosodium urate (MSU) crystal-induced peritonitis in mice by interacting with CD38. Together, this study unveils an unexpected physiological role for sUA in controlling NAD+ availability and innate immunity through CD38 inhibition, providing a new perspective on sUA homeostasis and purine metabolism.