The allosteric modulation of Complement C5 by knob domain peptides

  1. Alex Macpherson  Is a corresponding author
  2. Maisem Laabei
  3. Zainab Ahdash
  4. Melissa A Graewert
  5. James R Birtley
  6. Monika-Sarah ED Schulze
  7. Susan Crennell
  8. Sarah A Robinson
  9. Ben Holmes
  10. Vladas Oleinikovas
  11. Per H Nilsson
  12. James Snowden
  13. Victoria Ellis
  14. Tom Eirik Mollnes
  15. Charlotte M Deane
  16. Dmitri Svergun
  17. Alastair DG Lawson
  18. Jean MH van den Elsen  Is a corresponding author
  1. University of Bath, United Kingdom
  2. UCB-Celltech, United Kingdom
  3. EMBL Hamburg, Germany
  4. University of Oxford, United Kingdom
  5. Oslo University hospital, Sweden
  6. University of Oslo, Norway
  7. EMBL/DESY, Germany

Abstract

Bovines have evolved a subset of antibodies with ultra-long CDRH3 regions that harbour cysteine-rich knob domains. To produce high affinity peptides, we previously isolated autonomous 3-6 kDa knob domains from bovine antibodies. Here, we show that binding of four knob domain peptides elicits a range of effects on the clinically validated drug target complement C5. Allosteric mechanisms predominated, with one peptide selectively inhibiting C5 cleavage by the alternative pathway C5 convertase, revealing a targetable mechanistic difference between the classical and alternative pathway C5 convertases. Taking a hybrid biophysical approach, we present C5-knob domain co-crystal structures and, by solution methods, observed allosteric effects propagating >50 Å from the binding sites. This study expands the therapeutic scope of C5, presents new inhibitors and introduces knob domains as new, low molecular weight antibody fragments, with therapeutic potential.

Data availability

Structural datasets presented in this study have been made publicly available in the Protein Data Bank (PDB) and Small Angle Scattering Biological Data Bank (SASBDB)

The following data sets were generated

Article and author information

Author details

  1. Alex Macpherson

    Biology & Biochemistry, University of Bath, Bath, United Kingdom
    For correspondence
    Alex.MacPherson@ucb.com
    Competing interests
    Alex Macpherson, employee of UCB and may hold shares and/or stock options.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4508-5322
  2. Maisem Laabei

    Biology and Biochemistry, University of Bath, Bath, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8425-3704
  3. Zainab Ahdash

    Immunology, UCB-Celltech, Slough, United Kingdom
    Competing interests
    Zainab Ahdash, employee of UCB and may hold shares and/or stock options.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4495-8689
  4. Melissa A Graewert

    Biological Small Angle Scattering, EMBL Hamburg, Hamburg, Germany
    Competing interests
    No competing interests declared.
  5. James R Birtley

    Immunology, UCB-Celltech, Slough, United Kingdom
    Competing interests
    James R Birtley, employee of UCB and may hold shares and/or stock options.
  6. Monika-Sarah ED Schulze

    Immunology, UCB-Celltech, Slough, United Kingdom
    Competing interests
    Monika-Sarah ED Schulze, employee of UCB and may hold shares and/or stock options.
  7. Susan Crennell

    Biology & Biochemistry, University of Bath, Bath, United Kingdom
    Competing interests
    No competing interests declared.
  8. Sarah A Robinson

    Statistics, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  9. Ben Holmes

    Immunology, UCB-Celltech, Slough, United Kingdom
    Competing interests
    Ben Holmes, employee of UCB and may hold shares and/or stock options.
  10. Vladas Oleinikovas

    Immunology, UCB-Celltech, Slough, United Kingdom
    Competing interests
    Vladas Oleinikovas, employee of UCB and may hold shares and/or stock options.
  11. Per H Nilsson

    Immunology, Oslo University hospital, Oslo, Sweden
    Competing interests
    No competing interests declared.
  12. James Snowden

    Immunology, UCB-Celltech, Slough, United Kingdom
    Competing interests
    James Snowden, employee of UCB and may hold shares and/or stock options.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4855-7329
  13. Victoria Ellis

    Immunology, UCB-Celltech, Slough, United Kingdom
    Competing interests
    Victoria Ellis, employee of UCB and may hold shares and/or stock options.
  14. Tom Eirik Mollnes

    Department of Immunology, University of Oslo, Oslo, Norway
    Competing interests
    Tom Eirik Mollnes, T.E.M is a Board member of Ra Pharmaceuticals, Inc.
  15. Charlotte M Deane

    Department of Statistics, University of Oxford, Oxford, United Kingdom
    Competing interests
    Charlotte M Deane, Reviewing editor, eLife.
  16. Dmitri Svergun

    Biological Small Angle Scattering, EMBL/DESY, Hamburg, Germany
    Competing interests
    No competing interests declared.
  17. Alastair DG Lawson

    Immunology, UCB-Celltech, Slough, United Kingdom
    Competing interests
    Alastair DG Lawson, employee of UCB and may hold shares and/or stock options.
  18. Jean MH van den Elsen

    Biology & Biochemistry, University of Bath, Bath, United Kingdom
    For correspondence
    bssjmhve@bath.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0367-1956

Funding

No specific external funding was received for this work.

Copyright

© 2021, Macpherson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,827
    views
  • 435
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alex Macpherson
  2. Maisem Laabei
  3. Zainab Ahdash
  4. Melissa A Graewert
  5. James R Birtley
  6. Monika-Sarah ED Schulze
  7. Susan Crennell
  8. Sarah A Robinson
  9. Ben Holmes
  10. Vladas Oleinikovas
  11. Per H Nilsson
  12. James Snowden
  13. Victoria Ellis
  14. Tom Eirik Mollnes
  15. Charlotte M Deane
  16. Dmitri Svergun
  17. Alastair DG Lawson
  18. Jean MH van den Elsen
(2021)
The allosteric modulation of Complement C5 by knob domain peptides
eLife 10:e63586.
https://doi.org/10.7554/eLife.63586

Share this article

https://doi.org/10.7554/eLife.63586

Further reading

    1. Immunology and Inflammation
    Yue Yang, Bin Huang ... Fangfang Zhang
    Research Article Updated

    Adipose tissue inflammation is now considered to be a key process underlying metabolic diseases in obese individuals. However, it remains unclear how adipose inflammation is initiated and maintained or the mechanism by which inflammation develops. We found that microRNA-802 (Mir802) expression in adipose tissue is progressively increased with the development of dietary obesity in obese mice and humans. The increasing trend of Mir802 preceded the accumulation of macrophages. Adipose tissue-specific knockout of Mir802 lowered macrophage infiltration and ameliorated systemic insulin resistance. Conversely, the specific overexpression of Mir802 in adipose tissue aggravated adipose inflammation in mice fed a high-fat diet. Mechanistically, Mir802 activates noncanonical and canonical NF-κB pathways by targeting its negative regulator, TRAF3. Next, NF-κB orchestrated the expression of chemokines and SREBP1, leading to strong recruitment and M1-like polarization of macrophages. Our findings indicate that Mir802 endows adipose tissue with the ability to recruit and polarize macrophages, which underscores Mir802 as an innovative and attractive candidate for miRNA-based immune therapy for adipose inflammation.

    1. Immunology and Inflammation
    Somen K Mistri, Brianna M Hilton ... Jonathan E Boyson
    Research Article

    During thymic development, most γδ T cells acquire innate-like characteristics that are critical for their function in tumor surveillance, infectious disease, and tissue repair. The mechanisms, however, that regulate γδ T cell developmental programming remain unclear. Recently, we demonstrated that the SLAM/SAP signaling pathway regulates the development and function of multiple innate-like γδ T cell subsets. Here, we used a single-cell proteogenomics approach to identify SAP-dependent developmental checkpoints and to define the SAP-dependent γδ TCR repertoire in mice. SAP deficiency resulted in both a significant loss of an immature Gzma+Blk+Etv5+Tox2+ γδT17 precursor population and a significant increase in Cd4+Cd8+Rorc+Ptcra+Rag1+ thymic γδ T cells. SAP-dependent diversion of embryonic day 17 thymic γδ T cell clonotypes into the αβ T cell developmental pathway was associated with a decreased frequency of mature clonotypes in neonatal thymus, and an altered γδ TCR repertoire in the periphery. Finally, we identify TRGV4/TRAV13-4(DV7)-expressing T cells as a novel, SAP-dependent Vγ4 γδT1 subset. Together, the data support a model in which SAP-dependent γδ/αβ T cell lineage commitment regulates γδ T cell developmental programming and shapes the γδ TCR repertoire.