
*For correspondence:

lucasg@alleninstitute.org (LTG);

peter.skene@alleninstitute.org

(PJS)

Present address:
†GlaxoSmithKline, Collegeville,

United States; ‡Department of

Biomedical Informatics and

Medical Education, University of

Washington School of Medicine,

Seattle, United States

Competing interest: See

page 34

Funding: See page 34

Received: 30 September 2020

Accepted: 11 March 2021

Published: 09 April 2021

Reviewing editor: Howard Y

Chang, Stanford University,

United States

Copyright Swanson et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Simultaneous trimodal single-cell
measurement of transcripts, epitopes,
and chromatin accessibility using TEA-seq
Elliott Swanson1, Cara Lord1†, Julian Reading1, Alexander T Heubeck1,
Palak C Genge1, Zachary Thomson1, Morgan DA Weiss1, Xiao-jun Li1,
Adam K Savage1, Richard R Green1,2‡, Troy R Torgerson1,3, Thomas F Bumol1,
Lucas T Graybuck1*, Peter J Skene1*

1Allen Institute for Immunology, Seattle, United States; 2Department of Biomedical
Informatics and Medical Education (BIME), University of Washington, Seattle,
United States; 3Department of Pediatrics, University of Washington, Seattle, United
States

Abstract Single-cell measurements of cellular characteristics have been instrumental in

understanding the heterogeneous pathways that drive differentiation, cellular responses to signals,

and human disease. Recent advances have allowed paired capture of protein abundance and

transcriptomic state, but a lack of epigenetic information in these assays has left a missing link to

gene regulation. Using the heterogeneous mixture of cells in human peripheral blood as a test

case, we developed a novel scATAC-seq workflow that increases signal-to-noise and allows paired

measurement of cell surface markers and chromatin accessibility: integrated cellular indexing of

chromatin landscape and epitopes, called ICICLE-seq. We extended this approach using a droplet-

based multiomics platform to develop a trimodal assay that simultaneously measures

transcriptomics (scRNA-seq), epitopes, and chromatin accessibility (scATAC-seq) from thousands of

single cells, which we term TEA-seq. Together, these multimodal single-cell assays provide a novel

toolkit to identify type-specific gene regulation and expression grounded in phenotypically defined

cell types.

Introduction
Peripheral blood mononuclear cells (PBMCs) purified using gradient centrifugation are a major

source of clinically relevant cells for the study of human immune health and disease (Böyum, 1968).

Like most other human tissues, PBMCs are a complex, heterogeneous mixture of cell types derived

from common stem cell progenitors (Laurenti and Göttgens, 2018). Despite the genome being

mostly invariant between different PBMC cell types, each immune cell type performs an important

and distinct function. Understanding the genomic regulatory landscape that controls lineage specifi-

cation, cellular maturation, activation state, and functional diversity in response to intra- and extra-

cellular signals is key to understanding the immune system in both health and disease

(Satpathy et al., 2019; Wang et al., 2020; Zheng et al., 2020).

Recent improvements in single-cell genomic methods have enabled profiling of the regulatory

chromatin landscape of complex cell-type mixtures. In particular, droplet-based single-nucleus or sin-

gle-cell assays for transposase-accessible chromatin (snATAC-seq, scATAC-seq, dscATAC-seq,

mtscATAC-seq) allow profiling of open chromatin at single-cell resolution (Buenrostro et al., 2015;

Lareau et al., 2019). Promising new methods have combined scATAC-seq with simultaneous mea-

surement of nuclear mRNAs (e.g., sci-CAR, Cao et al., 2018; SNARE-seq, Chen et al., 2019;

SHARE-seq, Ma et al., 2020) or in combination with cell surface epitopes (ASAP-seq,
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Mimitou et al., 2020). However, a unifying approach for all three modalities that can be applied to

highly specified functional immune cell types has yet to emerge in the landscape of single-cell meth-

ods. We systematically tested whole cell and nuclear purification and preparation methods for

PBMCs to overcome limitations that restricted previous assays to measurement of only nuclear com-

ponents (ATAC and nuclear RNAs) or proteins on the cell surface. We found that intact, permeabi-

lized cells perform extremely well for scATAC-seq, exceeding conventional scATAC-seq on nuclei by

some measures (Figure 1b). This insight enables a new protocol analogous to Cellular Indexing of

Transcriptomes and Epitopes (CITE-seq; Stoeckius et al., 2017) to measure both surface protein

abundance and chromatin accessibility: integrated cellular indexing of chromatin landscape and epit-

opes (ICICLE-seq, Figures 1a and 3). Finally, we demonstrate that our optimized permeable cell

approach can be combined with a droplet-based multiomics platform to enable the simultaneous

measurement of three different molecular compartments of the cell: mRNA (by scRNA-seq), protein

(using oligo-tagged antibodies), and DNA (by scATAC-seq), which we term TEA-seq after Transcrip-

tion, Epitopes, and Accessibility (Figure 4). These assays enable a new, more unified view into the

molecular underpinnings of gene regulation and expression at the single-cell level.

Results

Optimization of single-nucleus and single-cell ATAC-seq of PBMCs
As a baseline for optimization and cell surface retention, we performed snATAC-seq as recom-

mended by 10x Genomics, with a protocol based on the Omni-ATAC workflow (Corces et al.,

2017). This single-nucleus assay utilizes a combination of hypotonic lysis, detergents, and a saponin

to isolate nuclei without retaining mitochondrial DNA. After performing snATAC-seq using this

method, sequencing, and tabulating data quality metrics (Materials and methods), we identified two

major populations of cell barcodes (Figure 1b, left panel): (1) a large number of barcodes, shown in

gray, that have a low number of unique fragments and a low fraction of reads in peaks (FRIP). These

barcodes contain little useful information but consume 80% of total sequenced reads (Figure 1e,

non-cell barcodes) at a sequencing depth of 200 million reads per library (20,000 reads per expected

barcode). (2) Barcodes with higher quality as measured by FRIP (red points) that contain enough

information to attempt downstream analysis.

The loss of 80% of sequenced reads to non-cell barcodes is costly. Previous studies of scRNA-seq

data have shown that cellular lysis can release ambient RNA that increases the abundance of low-

quality barcodes and contaminates droplets, yielding barcodes with both cellular and ambient RNAs

that reduces the accuracy of the transcriptional readout (Marquina-Sanchez et al., 2020). We rea-

soned that nuclear isolation protocols may cause the release of ambient DNA, causing a similar

effect in scATAC-seq datasets. Optimization of nuclear lysis protocols, especially changing to less

stringent detergents, provided increased FRIP and decreased non-cell barcodes (Figure 1—figure

supplement 1, Figure 1—figure supplement 2a). Hypotonic lysis conditions used in these protocols

may also be a biophysical stressor to the native chromatin state, as previously observed (Lima et al.,

2018). To reduce perturbation of chromatin and retain the cell surface for multimodal assays, we

performed cell membrane permeabilization under isotonic conditions to allow access to the nuclear

DNA without isolating nuclei through hypotonic lysis. The saponin digitonin was used to cause con-

centration-dependent selective permeabilization of cholesterol-containing membranes while leaving

inner mitochondrial membranes intact, preventing high levels of Tn5 transposition in mitochondrial

DNA (Adam et al., 1990; Colbeau et al., 1971). Digitonin has previously been used for ATAC-seq

assays under hypotonic conditions in Fast-ATAC (Corces et al., 2016) and plate-based scATAC-seq

(Chen et al., 2018b) protocols. Permeabilization of intact cells under isotonic conditions greatly

reduced the number of non-cell barcodes and their contribution to sequencing libraries (Figure 1—

figure supplement 2b).

Removal of neutrophils greatly increases PBMC scATAC-seq quality
We observed that PBMCs purified by leukapheresis rather than Ficoll gradient centrifugation had

consistently higher FRIP scores and fewer non-cell barcodes (Figure 1—figure supplement 2c). A

major difference between Ficoll-purified PBMCs and leukapheresis-purified PBMCs was the presence

of residual neutrophils in Ficoll-purified samples. We tested removal of dead cells and debris with
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Figure 1. Improvements to scATAC-seq methods to enable permeabilized cell profiling. (a) Schematic overview of major steps in snATAC, scATAC,

and ICICLE-seq methods. (b) Comparison of quality control characteristics of ATAC-seq libraries generated from nuclei isolation and permeabilized

cells, with and without fluorescence-activated cell sorting. Top panels show signal-to-noise as assessed by fraction of reads in peaks on the y-axis and

quantity of unique fragments per cell barcode on the x-axis. Lower panels display fragment length distributions obtained from paired-end sequencing

of ATAC libraries. Colored lines represent barcodes that pass QC filters; gray lines represent barcodes failing QC (non-cell barcodes). All libraries were

equally downsampled to 200 million total sequenced reads for comparison. Colors in (b) are reused in remaining panels. (c) Total coverage of Tn5

footprints summed across all transcription start sites (TSS). Tn5 footprints are 29 bp regions comprising the 9 bp target-site duplication (TSD) and 10 bp

on either side, which represent accessible chromatin for each transposition event. (d) Total coverage of TSD centers summed over a set of 100,000

genomic CTCF motifs found in previously published DNase-hypersensitive sites (Meuleman et al., 2020). TSD centers are obtained by shifting +4 and

Figure 1 continued on next page
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and without removal of neutrophils using fluorescence-activated cell sorting (FACS) from PBMC sam-

ples with high neutrophil content (Figure 1a, Figure 1—figure supplement 4). When applied to

either nuclei (Figure 1b, left panels) or permeabilized cells (Figure 1b, right panels), there was a

large increase in FRIP and reduction in non-cell barcodes in our scATAC-seq libraries (Figure 1e).

Removal of neutrophils did not have an adverse effect on leukapheresis-purified PBMC data (Fig-

ure 1—figure supplement 2c, right panel). Depletion of neutrophils using anti-CD15 magnetic

beads also improved data quality (Figure 1—figure supplement 2d, Figure 1—figure supplement

5), though not to the same extent as FACS-based depletion. Staining and flow cytometry using an

eight-antibody panel (Supplementary file 1) on Ficoll- and leukapheresis-purified PBMCs showed

minimal effect of the magnetic bead treatment on non-neutrophil cell-type abundance

(Supplementary file 2).

Comparing single-cell and single-nucleus ATAC characteristics
We assessed the quantitative and qualitative differences between nuclei and permeabilized cell pro-

tocols with and without sorting by performing both protocols on a single set of input cells. To fairly

compare data quality across methods, we equally downsampled raw data at the level of raw

sequenced reads per well for each sample that we compare directly (see Materials and methods for

details). We then utilized a uniform set of transcription start site (TSS) regions (TSS ± 2 kb) and a pre-

viously published PBMC peak set (Lareau et al., 2019, Materials and methods) as reference regions

for computation of fraction of reads in TSS (FRITSS) and FRIP, respectively. Permeabilized cells

yielded many more high-quality cell barcodes than nuclear preps using equal loading of cells or

nuclei (15,000 loaded, expected 10,000 captured, Table 1). scATAC-seq libraries prepared from

nuclei contained many more reads originating from nucleosomal DNA fragments (Figure 1b, lower

panels), and non-cell barcodes from nuclei (gray lines) contained more of these fragments than cell

barcodes. Thus, an overabundance of mononucleosomal fragments may indicate non-cell fragment

contamination. Libraries from permeabilized cells consisted almost entirely of short fragments, sug-

gesting that permeabilization under isotonic conditions did not loosen or release native chromatin

structure at the time of tagmentation (Figure 1b, lower panels). Previous bulk ATAC-seq studies

have shown that differing nuclear isolation protocols lead to varying amounts of mononucleosomal

fragments (Li et al., 2019a). In agreement with in vitro experiments studying the effects of low salt

on nucleosomal arrays (Allahverdi et al., 2015), this further suggests that hypotonic lysis leads to

alteration of chromatin structure, raising the possibility of artifactual measurements of accessibility in

nuclei-based ATAC-seq. To assess the effect that this difference has on the data obtained by each

Figure 1 continued

�5 bp from the 5’ and 3’ ends of uniquely aligned fragments, respectively. (e) Barplot representations of the fraction of total aligned reads in various

QC categories. Fragments overlapping a previously published peak set for peripheral blood mononuclear cell dscATAC-seq (Lareau et al., 2019) are

in the ’Overlap Peaks’ category. Unique fragments are the remaining uniquely aligned fragments that do not overlap peak regions. ’Waste’ reads were

not aligned or were assigned to cell barcodes with fewer than 1000 total reads. (f) Violin plots showing distributions of QC metrics. Median (wide bar)

and 25th and 75th quantiles (whiskers and narrow bars) are overlaid on violin plots. Median values are also in Table 1. Note that the y-axis of the first

panel is on a logarithmic scale; remaining panels are linear. snATAC: single-nucleus assays for transposase-accessible chromatin; scATAC: single-cell

assays for transposase-accessible chromatin; ICICLE-seq: integrated cellular indexing of chromatin landscape and epitopes.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Single cell metadata and QC metrics for scATAC-seq experiments .

Source data 2. Fragment size distribution data .

Source data 3. TSS Footprint pileups.

Source data 4. CTCF Tn5 target site duplication center pileups.

Source data 5. Fraction of reads per alignment category.

Figure supplement 1. Nuclei were isolated from peripheral blood mononuclear cells using two buffer compositions and varying detergent
concentrations.

Figure supplement 2. Quality control plots for single-nucleus assays for transposase-accessible chromatin (snATAC-seq) and single-cell assays for
transposase-accessible chromatin ( scATAC-seq) experimental conditions.

Figure supplement 3. Sequencing depth calculation and projection.

Figure supplement 4. Flow cytometry gating to assess neutrophil depletion.

Figure supplement 5. Gating strategy for the eight-color flow cytometry panel used to evaluate anti-CD15 bead-based neutrophil removal.

Figure supplement 6. Examination of transcription start site-proximal fragment positions across scATAC methods.
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method, we overlaid Tn5 footprints near TSS ( Figure 1c) and CTCF transcription factor binding sites

(TFBS, Figure 1d). The signal at TSS was retained in permeabilized cells, but positions flanking the

TSS (occupied by neighboring nucleosomes) had reduced signal compared to isolated nuclei (exam-

ined in detail in Figure 1—figure supplement 6). At CTCF motifs, we observed nearly identical pat-

terns of accessibility in both nuclei and permeabilized cells, suggesting that scATAC-seq signal at

regulatory TFBS is retained in permeabilized cells. Neutrophil and dead cell removal improved the

quality of nuclear scATAC-seq libraries, which yielded the highest number of unique fragments,

reads in TSS, and reads in peaks, though at the cost of fewer high-quality barcodes captured when

compared to permeabilized cells (Table 1). Overall, permeabilized intact cells obtained by FACS had

the highest FRIP and FRITSS scores, fewest non-cell barcodes, and greatest cell capture efficiency

with only a modest increase in mitochondrial reads (Table 1, Figure 1e, f).

Improved label transfer and differential analysis
We next examined the effect of methodological differences on downstream biological analyses (Fig-

ure 2). Removal of neutrophils greatly improved the ability to separate various cell types in uniform

manifold approximation and projection (UMAP) projections of both nuclei and cells (Figure 2a, b).

To provide ground truth for label transfer, we performed flow cytometry on an aliquot of the same

PBMC sample used for scATAC-seq above. A panel of 25 antibodies (Supplementary file 3) was

used to determine the proportion of each of the 12 cell types used to label the scATAC-seq cells in

the PBMC sample (Figure 2—figure supplement 1 and Supplementary file 4). Label transfer was

performed using the ArchR package (Granja et al., 2020) to generate gene scores that enabled

label transfer from a reference scRNA-seq dataset using the method provided in the Seurat package

(Stuart et al., 2019) (Materials and methods). Using these tools, removal of neutrophils improved

label transfer scores, and permeabilized cells yielded more cells with high label transfer scores than

nuclei-based approaches (Figure 2b, c). In addition, permeabilized cells provided labels most similar

to the cell-type proportions identified by flow cytometry (Figure 2d), with identification of CD8

effector cells only observed in scATAC-seq with permeabilized cells. All methods yielded fewer

CD16+ monocytes than observed by flow cytometry, suggesting that CD16+ monocytes may be lost

during scATAC-seq using either nuclei or permeabilized cells, or that label transfer methods were

not conducive to identifying this cell type (Figure 2d). After labeling cell types, we used ArchR to

call peaks for each cell type and perform pairwise tests of differential accessibility between each pair

of cell types (Figure 2—figure supplement 2a). We found many more differentially accessible sites

in both cells and nuclei after removal of neutrophils. Differential accessibility was also used to iden-

tify differentially enriched TFBS motifs in each cell type (Figure 2—figure supplement 2b). Without

neutrophil removal (nuclei unsorted, top panel), we were unable to identify significantly enriched

motifs in B cells and NK cells that were readily apparent in data from clean nuclei or permeabilized

cells (bottom two panels). Together, these results demonstrate that neutrophil removal and the use

of permeabilized cells allow for identification of specific cell types and TFBS motifs that are involved

in regulation of gene expression.

Table 1. QC metrics summary for experiments displayed in Figure 1.

Source type FACS depletion N pass QC
Median
N fragments

Median
mitochondrial reads

Median
unique Median in TSS Median in peaks

Nuclei Unsorted 4719 7344 43 | 0.6% 5247 | 71.6% 1332 | 24.9% 2306 | 43.9%

Nuclei Dead/debris 5526 10,526 59 | 0.6% 7284 | 69.4% 2186.5 | 30.1% 3647 | 50.5%

Nuclei Dead/debris/neutrophils 7769 19,972 136 | 0.9% 11,528 | 59.1% 4846 | 41.5% 7503 | 64.8%

Permeabilized cells Unsorted 6329 5541 100 | 1.9% 3308 | 59.8% 871 | 26.4% 1390 | 42.2%

Dead/debris 6956 6733.5 120 | 2.0% 3795.5 | 56.8% 1219.5 | 32.6% 1874 | 50.2%

Dead/debris/neutrophils 9849 14,069 514 | 4.0% 4756 | 34.3% 2536 | 54.4% 3650 | 76.8%

For all metrics to the right of median N fragments, both the absolute number and a percentage are provided. Median % mitochondrial and median %
unique were calculated as a fraction of total fragments; % in TSS and % in peaks were calculated as a fraction of unique fragments.
TSS: transcription start sites; FACS: fluorescence-activated cell sorting.
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Joint measurement of accessibility and epitopes with ICICLE-seq
Under standard scATAC-seq protocols, removal of the cell membrane severs the connection

between the cell surface and the chromatin state of cells. To test our ability to measure cell surface

proteins and chromatin state simultaneously on permeabilized cells, we modified our optimized per-

meabilized cell scATAC-seq methodology to incorporate measurements using

commercially available barcoded antibody reagents, and we term this new method ICICLE-seq (Fig-

ure 3 and Materials and methods). The ICICLE-seq protocol utilizes a custom Tn5 transposome com-

plex with capture sequences compatible with the 10x Genomics 3’ scRNA-seq gel bead capture
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Figure 2. Improvements to 2D projection and label transfer for scATAC-seq data. (a) Uniform manifold approximation and projection (UMAP)

projection plots for corresponding datasets in Figure 1. Points are colored based on a common scale of fraction of reads in peaks, bottom right. The

number of cells in each panel is displayed in Figure 1b. (b) UMAP projection plots colored based on cell type obtained by label transfer from scRNA-

seq (Materials and methods). Colors for cell types are below, to the right. (c) To visualize the number and quality of transferred labels, we ranked all

cells based on the Seurat label transfer score obtained from label transfer results and plotted lines through the score (y-axis) vs. rank (x-axis) values. (d)

Barplot showing the fraction of cells in each dataset that were assigned each cell-type label. The top row shows cell-type proportions for the same

peripheral blood mononuclear cell sample obtained by 25-color immunotyping flow cytometry (Materials and methods, Supplementary file 3, and

Figure 2—figure supplement 1). Root-mean-square deviation values were computed by comparison of labeled cell-type proportions to values derived

from flow cytometry (Supplementary file 4). Colors for cell types are to the right of the barplot.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Single cell UMAP coordinates and labeling scores.

Source data 2. Fractions of cells assigned to each type by flow cytometry and scATAC-seq.

Figure supplement 1. Flow cytometry gating used to classify and quantify cell-type abundance.

Figure supplement 2. Improved diffential peak and motif detection.
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reaction for simultaneous capture of ATAC fragments and polyadenylated antibody barcode sequen-

ces (Figure 3—figure supplement 1 and Supplementary file 5). Antibody-derived tags (ADTs) from

oligo-antibody conjugates and ATAC-seq fragments can then be selectively amplified by PCR to

generate separate libraries for sequencing (Figure 3—figure supplement 1). Due to the nature of

fragment capture in this system, we obtain both a cell barcode and a single-end scATAC-seq read

from the two ends of the paired-end sequencing reaction. We performed ICICLE-seq on a leukaphe-

resis-purified PBMC sample using a 46-antibody panel (Supplementary file 6) and were able to

obtain 10,227 single cells with both scATAC-seq and ADT data from three capture wells that passed

adjusted QC criteria: >500 unique ATAC fragments (median = 761), FRIP >0.65 (median = 0.725).

Cells passing ATAC QC had a median of 3871 ADT unique molecule indexes (UMIs) per cell (Fig-

ure 3—figure supplement 2b). UMAP projection and ATAC label transfer on ICICLE-seq data had

resolution similar to scATAC-seq on intact permeabilized cells after dead cell and debris removal

(Figure 3b). However, the data quality was limited by the poly-A-based capture method and the sin-

gle-end readout of transposed fragments. Nonetheless, the ICICLE-seq results demonstrated that

permeabilized cells enabled simultaneous capture of chromatin accessibility in the nucleus and high-

quality cell surface epitope quantification. We were able to leverage the additional ADT data to
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Figure 3. Simultaneous profiling of chromatin accessibility and cell surface epitopes. (a) Uniform manifold approximation and projection (UMAP)

projection plot of integrated cellular indexing of chromatin landscape and epitopes (ICICLE-seq) cells based on single-cell assays for transposase-

accessible chromatin (scATAC-seq) data. Cells are colored based on fraction of reads in peaks. n = 10,227 cells passing QC criteria are displayed. (b)

UMAP projection of scATAC-seq data, as in (a). Cells are colored based on cell-type labels obtained by ArchR label transfer (Materials and methods). (c)

UMAP projection plot of ICICLE-seq cells based on antibody-derived tag (ADT) data. Cells are colored according to the total number of unique

molecule indexes across all markers. (d) UMAP projection based on ADT data, as in (c), colored according to cell-type labels derived from marker

expression (Materials and methods). (e) Heatmap of median ADT count values for each marker in each cell type labeled in (d). Values are separately

scaled in each row between zero and the maximum value (right column) for each marker.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Cell type labels and UMAP coordinates for ICICLE-seq cells.

Source data 2. ADT count data for ICICLE-seq.

Figure supplement 1. Sequence-level integrated cellular indexing of chromatin landscape and epitopes design and workflow.

Figure supplement 2. Quality metrics and epitope detection for ICICLE-seq.
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cluster and identify cell types based on their cell surface antigens (Figure 3c) UMAP based on ADT

data, and Jaccard–Louvain clustering allowed identification of cell-type-specific clusters (Figure 3d)

based on clear association of cell-type-specific markers with clusters (Figure 3e, Figure 3—figure

supplement 2c). Thus, ICICLE-seq provided a key proof of principle for directly linked capture of

functional cell types and chromatin accessibility.

Trimodal measurement of transcripts, epitopes, and accessibility with
TEA-seq
With the release of a commercially available platform for simultaneous capture of RNA-seq and

ATAC-seq from single nuclei, we reasoned that permeabilized cells could be used to perform simul-

taneous capture of three major molecular compartments: DNA can be captured using scATAC-seq,

RNA could be captured using scRNA-seq, and protein epitope abundance can be captured using

polyadenylated antibody barcodes, which we term TEA-seq after Transcripts, Epitopes, and Accessi-

bility. After trials and optimization of key steps, we were able to obtain libraries on the 10x Geno-

mics Multiome ATAC plus Gene Expression platform that combined all three of these measurements

for thousands of single cells (Figure 4a) using a panel of 46 oligo-tagged antibodies (Supp Table 6).

After initial data processing for cells loaded into four wells, we identified 29,264 cell barcodes that

passed the QC criteria for scATAC-seq described above and had >2,500 unique ATAC-seq frag-

ments (median = 8762 unique ATAC fragments, Figure 4b, d) and had >500 genes detected by

scRNA-seq (median = 2399 RNA UMIs; median = 1,249 genes detected, Figure 4b), and >500 ADT

UMIs (median = 1171 ADT UMIs, Figure 4c). Additional QC metrics are provided in Figure 4—fig-

ure supplement 1.

With the addition of scRNA-seq data, we were able to perform cell-type label transfer from RNA

to RNA using Seurat label transfer (Stuart et al., 2019) rather than cross-modality transfer from RNA

to ATAC (Materials and methods). For each modality, we were able to perform dimensionality reduc-

tion and UMAP projection to get separate views of the relationships between cells (Figure 4e), as

for ICICLE-seq, above (Figure 3a, b). However, these views do not leverage the strength of linked

multimodal measurements. To begin to take advantage of our tri-modal measurements, we

extended a method recently described by Hao and Hao et al. for paired weighted nearest-neighbors

(WNN) analysis (Hao et al., 2020) to allow an arbitrary number of simultaneously measured modali-

ties to contribute to the WNN network (Materials and methods). After applying this three-way

WNN, we could generate a UMAP embedding with contributions from all three simultaneously mea-

sured modalities (Figure 4f), which enhanced cell-type separation. We found that marker expression

is consistent across all three modalities for some markers, such as CD8A, though we found that con-

sistency across all modalities is not a universal characteristic of functional markers (Figure 4—figure

supplement 2a). In agreement with observations by Hao and Hao et al. on two-modality data, the

weights contributed by different modalities to the WNN analyses vary by cell type (Figure 4—figure

supplement 2b).

Expanding cis-regulatory module identification with TEA-seq
Identification of putative cis-regulatory modules (CRMs) that control the functional state of cells is a

distinct advantage of directly linked measurements of chromatin accessibility and gene expression

(Cao et al., 2018; Ma et al., 2020). This linkage is dependent on reliable detection of gene (or pro-

tein) expression, which is greatly enhanced by the high sensitivity of epitope detection in methods

like CITE-seq (Hao et al., 2020; Stoeckius et al., 2017), and now TEA-seq. Because TEA-seq allows

direct linkage of chromatin accessibility to both gene expression and protein detection, we used

these complementary modalities to investigate peak-to-gene (and peak-to-protein) correlations

among the proteins we measured in our TEA-seq epitope panel. We leveraged the analytical capa-

bilities of the ArchR package to compute peak-to-gene correlation (Granja et al., 2020), then substi-

tuted the more sensitive measurements afforded by ADT counts to compute peak-to-protein

correlations. In cases where both gene and protein expression were reliably detected, these compar-

isons were confirmatory – many of the same putative CRMs that were identified in each comparison

(Figure 4—figure supplement 3). For some targets, however, more sensitive protein abundance

measures allowed detection of many additional correlated CRMs. We present two examples – one

of CCR2/CD192 (Figure 4g, h), a chemokine receptor expressed on monocytes (Tsou et al., 2007),
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Figure 4. Trimodal measurement of transcription, epitopes, and accessibility. (a) Workflow diagram for the major steps in transcription, epitopes, and

accessibility (TEA-seq). (b) Scatterplot comparing unique single-cell assays for transposase-accessible chromatin (scATAC-seq) fragments and scRNA-

seq unique molecule indexes (UMIs) for each TEA-seq cell barcode. In (a, b, d, and e), n = 227,390 barcodes are displayed in total; 29,264 passing QC

criteria are represented by purple points. (c) Scatterplot comparing unique scATAC-seq fragments and antibody-derived tags UMIs for each cell

Figure 4 continued on next page
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and CD38 (Figure 4i, j), a glycoprotein expressed on the surface of multiple immune cell types

(Ferrero and Malavasi, 2002), and a target of therapies for multiple myeloma (Dima et al., 2020;

Sanchez et al., 2016). In both cases, peak-to-protein correlations identified many CRMs were

missed with peak-to-gene correlation alone. The converse is also observed in our experiment: reli-

ably detected genes may enable detection of some regulatory regions that are not identified using

protein detection alone – and peak-to-gene links based on scRNA-seq can be generated genome-

wide for all expressed genes, whether or not they are targeted by the epitope panel.

Comparisons of TEA-seq to CITE-seq and scATAC-seq
To perform a direct assessment of TEA-seq data quality relative to previously published assays, we

performed a comparison to standalone 10x scATAC-seq on permeabilized cells, CITE-seq using the

10x 30 scRNA-seq kit, and both unstained nuclei and unstained permeabilized cells on the 10x Multi-

ome kit (RNA + ATAC). All samples originated from the same pool of thawed and FACS sorted

PBMCs (with dead cells, debris, and neutrophils removed). Separate aliquots were taken for scA-

TAC-seq and the two unstained Multiome kit preps, while CITE-seq and TEA-seq samples were

taken from the same pool of ADT-stained PBMCs (Figure 4—figure supplement 4a). In each case,

15,000 cells were used as input, and we downsampled a single well from the resulting libraries to

equal sequencing depth for a fair comparison (200 � 106 total fragments per well for RNA and

ATAC libraries; 48 � 106 for ADT libraries). We performed four wells of TEA-seq to generate a large

reference dataset (shown in Figure 4), and one well for each other assay. For all comparisons pre-

sented in Figure 4—figure supplement 4, we used a single well of TEA-seq. In these direct compar-

isons, we found that TEA-seq results appeared qualitatively similar to CITE-seq and scATAC-seq

across assays (Figure 4—figure supplement 4b, e, i). The alignment method used for these datasets

allowed us to quantify the number of RNA UMIs that aligned to intronic vs. exonic regions of the

transcriptome. We found that the fraction of reads mapping to exons was lower than that found in

whole-cell CITE-seq data, similar to that seen using a lysed-cell nuclei preparation (median fraction

of reads with exonic mapping: TEA-seq, 51.8%, Nuclei Multiome, 52.2%; CITE-seq, 69.5% Figure 4—

figure supplement 4c), suggesting the primary source of RNAs in TEA-seq is intron-containing

nuclear transcripts. We assessed gene detection by calculating the fraction of cells with UMIs > 0 for

each gene and plotted comparisons between TEA-seq and 10x Multiome nuclei (Figure 4—figure

supplement 4d) as well as CITE-seq (Figure 4—figure supplement 4g). We found that gene detec-

tion was most like nuclei and lower in many cases than CITE-seq. One group of genes stands out as

Figure 4 continued

barcode. (d) scATAC-seq QC scatterplot comparing unique scATAC-seq fragments and fraction of reads in peaks scores for each cell barcode.

n = 34,757 total cells are displayed (those with >1,000 unique ATAC fragments); 29,264 passing QC criteria are represented by purple points.

(e) Uniform manifold approximation and projection (UMAP) projections generated using each of the three modalities separately. Only cells passing QC

(n = 7,939 barcodes) are presented in (e, f). (f) A joint UMAP projection generated using three-way weighted nearest neighbors that leverages all three

of the measured modalities. (g) Scatterplot showing the peak-to-RNA correlations (x-axis) and peak-to-protein (y-axis) correlation values for each peak

(points) that was found to be correlated with the CCR2 gene or CD192 antibody in TEA-seq data. Histograms at the margins show the distribution of

scores for RNA correlations (top) and protein correlations (right). Dashed line shows 1:1 correspondence. Peaks not found to be correlated in each

method were assigned a score of 0. (h) Genome tracks showing links between peaks (red hashes) and the CCR2 gene based on protein expression

(above peaks) and gene expression (below peaks). Correlations are represented by arcs colored based on the correlation score (color scale for both

panels to the left). The bottom panel shows the gene neighborhood around CCR2. All coordinates are from the Hg38 genome assembly. (i), as in (g),

for the CD38 gene and correlated peaks. (j), as in (h), for the CD38 gene locus.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Single cell quality metrics for TEA-seq samples.

Source data 2. Cell type labels and UMAP coordinates for TEA-seq samples.

Source data 3. Peak to gene and peak to protein link correlations.

Figure supplement 1. Quasirandom-jittered plots (jittered only on x-axis) showing various QC metrics from transcription, epitopes, and
accessibility (TEA-seq) cells that passed all QC criteria (Materials and methods).

Figure supplement 2. Cell-type marker expression and modality weights.

Figure supplement 3. Scatterplot showing the peak-to-RNA correlations (x-axis) and peak-to-protein (y-axis) correlation values for each peak (points)
that was found to be correlated with the genes in our antibody-derived tags antibody panel used for transcription, epitopes, and accessibility (TEA-seq)
experiments.

Figure supplement 4. Direct comparisons of TEA-seq, scATAC-seq, CITE-seq, and 10x Multiome.
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particularly low, originating from ribosomal gene transcripts (with gene symbols starting with RPL

and RPS, highlighted in blue). In comparisons of scATAC-seq metrics, we found that TEA-seq per-

formed comparably to standalone permeabilized cell scATAC-seq or Multiome RNA + ATAC using

permeabilized cells, with higher FRIP than purified nuclei used for the same assay (Figure 4—figure

supplement 4e, f). Finally, in comparisons of protein detection by ADTs, we found that antibody

performance in TEA-seq varied by target. Many bimodal distributions were retained (e.g., CD4,

CD8a, CD86), while some separations were less apparent (e.g., CD45RO and CD45RA; Figure 4—

figure supplement 4h), resulting in reduced separation in UMAP analysis for some types (i.e., naı̈ve

vs. mature CD4 cells), though most major cell types were able to be separated (Figure 4—figure

supplement 4i). Together, these results show that TEA-seq data is of high quality but may not

always be the method of choice if a particular modality is of greatest interest to researchers. The

strength of TEA-seq is its ability to measure all three aspects – transcription, epitopes, and accessi-

bility – simultaneously on each cell, enabling deeper insights into the connections between regula-

tion, expression, and function as demonstrated in Figure 4.

Discussion
Multimodal data collection from permeabilized PBMCs will be of use to many researchers in the

immunology field and beyond who seek to get the most high-quality data from precious clinical sam-

ples and to facilitate cross-datastream integration with flow cytometry. We found that isotonic cell

permeabilization allows the generation of scATAC-seq libraries with high quality as measured by

FRIP and low nucleosomal content, suggesting that chromatin state in the nucleus is unperturbed

(Figure 1, Figure 2). While a previous study utilized FACS followed by scATAC on individually sorted

cells (Pi-ATAC; Chen et al., 2018c), the use of permeabilized cells enables simultaneous interro-

gation of chromatin accessibility state in the nucleus and the functional state of cells based on their

cell surface proteins (ICICLE-seq, Figure 3) together with mRNA (TEA-seq, Figure 4) at unprece-

dented scale for the first time. Our methods utilize permeabilized cells to allow the addition of pro-

tein measurements that provide a direct link between high-quality scRNA-seq data and scATAC-seq

data using truly paired methods extending beyond SNARE-seq (Chen et al., 2019) and SHARE-seq

(Ma et al., 2020) by taking advantage of 10x Genomics Single Cell Multiome sequencing reagents

as a platform for nucleic acid capture. The use of a droplet-based method allows multimodal meas-

urements at a much higher scale by capturing thousands of single cells at a time. We expect that the

datasets generated by our study will be useful beyond researchers studying PBMC biology, including

those seeking to develop new analytical tools to remove background noise from existing sn/scA-

TAC-seq data (e.g., SCALE, Xiong et al., 2019, or scOpen, Li et al., 2019b) and tools to accurately

identify links across modalities (e.g., AI-TAC, Tasaki et al., 2020).

We have focused on PBMCs during this initial development and demonstration of the utility of

TEA-seq. PBMCs are a widely used source of clinically relevant heterogeneous cell populations for

monitoring clinical disease status and research. As such, TEA-seq optimized for PBMCs will provide

unprecedented biological insight into the molecular underpinnings of human immune health and dis-

ease. It is likely that the use of TEA-seq in other cell types will require sample-specific optimization.

For example, the requirement for neutrophil depletion may be limited to studies related to the

immune system or immune-infiltrated tissues. However, the value of debris and dead cell removal is

likely to be applicable to disaggregated tissue samples from biopsies (Donlin et al., 2018). Likewise,

researchers should take care when assessing fragment length distributions as a quality control met-

ric. In PBMCs, we found that high abundance of mononucleosomal fragments may indicate neutro-

phil-driven background, but this indicator of poor data quality may not be observed in other cell

types or tissues. Early versions of nuclei-based ATAC-seq suffered issues high levels of mitochondrial

reads (Corces et al., 2017), which may be used to profile clonal populations based on their mito-

chondrial genomes (Lareau et al., 2020). Here, we have used low concentrations of digitonin to

selectively permeabilize cholesterol-containing membranes, thereby leaving the inner mitochondrial

membrane intact (Adam et al., 1990; Colbeau et al., 1971). Different cell types have been shown

to have differing sensitivity to digitonin concentrations, perhaps reflecting natural variance in mem-

brane cholesterol composition (Holden and Horton, 2009). As such, cell permeabilization for TEA-

seq may need to be optimized for other cell types. This can be readily tested using bulk ATAC-seq
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and by measuring library complexity, FRIP score, and mitochondrial contamination to determine

data quality.

In addition to the Methods presented in this article, we are maintaining an online protocol to aid

the research community in further development and adoption of TEA-seq on the Protocols.io plat-

form (https://doi.org/10.17504/protocols.io.bqagmsbw). Additional development could allow simul-

taneous measurement of additional aspects of cell biology (e.g., CpG sequencing methods,

scCUT&Tag; Bartosovic et al., 2020), as well as improvements to the modalities in the TEA-seq trio

(e.g., s3-ATAC, Mulqueen et al., 2021). In direct comparisons of TEA-seq to existing methods

(CITE-seq and scATAC-seq), we found that the sensitivity of gene detection was lower and distribu-

tions of antibody detections were altered relative to CITE-seq; however, ATAC-seq data quality

remained comparable to the standalone assay (Figure 4—figure supplement 4). We anticipate that

simultaneous, truly multimodal measurement across molecular compartments will be an essential

tool to expand our view of the full picture of immune cell state in health and disease, with many

applications extending throughout the genomics research community.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Biological sample
(Homo sapiens)

Primary peripheral
blood mononuclear
cells

BioIVT, Westbury, NY,
USA

SERATRIALS-18002;
sample BRH1291132

WIRB protocol # 20190318; Ficoll-
purified

Biological sample
(Homo sapiens)

Primary peripheral
blood mononuclear
cells

BioIVT, Westbury, NY,
USA

SERATRIALS-18002;
sample HMN85396

WIRB protocol # 20190318;
leukapheresis-purified

Biological sample
(Homo sapiens)

Primary peripheral
blood mononuclear
cells

BioIVT, Westbury, NY,
USA

SERATRIALS-18002;
sample RG1131

WIRB protocol # 20190318; Ficoll-
purified

Biological sample
(Homo sapiens)

Primary peripheral
nlood mononuclear
cells

Bloodworks NW,
Seattle, WA, USA

BT001; sample 5716BW WIRB protocol # 20141589; Ficoll-
purified

Biological sample
(Homo sapiens)

Primary peripheral
blood mononuclear
cells

Bloodworks NW,
Seattle, WA, USA

BT001; sample 7811BW WIRB protocol # 20141589; Ficoll-
purified

Antibody Biotin anti-human
CD15 (SSEA-1)
antibody (mouse
monoclonal)

BioLegend Cat# 301913, RRID:AB_
2561325

(0.15 mL per million cells)

Antibody BUV395 anti-human
CD14 antibody (mouse
monoclonal)

BD Biosciences Cat# 563561, RRID:AB_
2744288

(1 mL per million cells)

Antibody BUV496 mouse anti-
human CD45 antibody
(mouse monoclonal)

BD Biosciences Cat# 750179, RRID:AB_
2868405

(1 mL per million cells)

Antibody BUV563 mouse anti-
human CD15 antibody
(mouse monoclonal)

BD Biosciences Cat# 741417, RRID:AB_
2868406

(1 mL per million cells)

Antibody BUV615 mouse anti-
human CD56 antibody
(mouse monoclonal)

BD Biosciences Cat# 613001, RRID:AB_
2868413

(2 mL per million cells)

Antibody Brilliant Violet 650 anti-
human CD3 antibody
(mouse monoclonal)

BioLegend Cat# 300468, RRID:AB_
2629574

(2 mL per million cells)

Antibody Mouse anti-human
CD19 High Parameter
Custom Antibody
BB790-P Conjugate
(mouse monoclonal)

BD Biosciences Cat# 624296 Custom reagent; conjugate of mouse
anti-human CD19 (clone HIB19) and
BB790-P (1 mL per million cells)

Continued on next page

Swanson et al. eLife 2021;10:e63632. DOI: https://doi.org/10.7554/eLife.63632 12 of 38

Tools and resources Genetics and Genomics Immunology and Inflammation

https://doi.org/10.17504/protocols.io.bqagmsbw
https://identifiers.org/RRID/RRID:AB_2561325
https://identifiers.org/RRID/RRID:AB_2561325
https://identifiers.org/RRID/RRID:AB_2744288
https://identifiers.org/RRID/RRID:AB_2744288
https://identifiers.org/RRID/RRID:AB_2868405
https://identifiers.org/RRID/RRID:AB_2868405
https://identifiers.org/RRID/RRID:AB_2868406
https://identifiers.org/RRID/RRID:AB_2868406
https://identifiers.org/RRID/RRID:AB_2868413
https://identifiers.org/RRID/RRID:AB_2868413
https://identifiers.org/RRID/RRID:AB_2629574
https://identifiers.org/RRID/RRID:AB_2629574
https://doi.org/10.7554/eLife.63632


Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Antibody PE/Cy5 anti-human
CD16 antibody (mouse
monoclonal)

BioLegend Cat# 302009, RRID:AB_
314209

(1 mL per million cells)

Antibody BUV395 mouse anti-
human CD3 antibody
(mouse monoclonal)

BD Biosciences Cat# 563546, RRID:AB_
2744387

Custom reagent; conjugate of mouse
anti-human CD3 (clone UCHT1) and
BUV395 (1:50 in 100 mL volume)

Antibody Mouse anti-human
CD45RA High
Parameter Custom
Antibody BUV615-P
Conjugate (mouse
monoclonal)

BD Biosciences Cat# 624297 Custom reagent; conjugate of mouse
anti-human CD45RA (clone HI100)
and BUV615-P (1:5 in 100 mL volume)

Antibody BUV661 mouse anti-
human CD14 antibody
(mouse monoclonal)

BD Biosciences Cat# 741684, RRID:AB_
2868407

(1:50 in 100 mL volume)

Antibody BUV737 mouse anti-
human CD8 antibody
(mouse monoclonal)

BD Biosciences Cat# 749367, RRID:AB_
2868408

(1:5 in 100 mL volume)

Antibody BUV805 mouse anti-
human CD11c antibody
(mouse monoclonal)

BD Biosciences Cat# 742005, RRID:AB_
2868409

(1:33 in 100 mL volume)

Antibody BV421 mouse anti-
human CD25 antibody
(mouse monoclonal)

BD Biosciences Cat# 562442, RRID:AB_
11154578

(1:50 in 100 mL volume)

Antibody BV480 mouse anti-
human CD4 (mouse
monoclonal)

BD Biosciences Cat# 566104, RRID:AB_
2739506

(1:5 in 100 mL volume)

Antibody BV605 mouse anti-
Human CD16 (FcgRIII)
antibody (mouse
monoclonal)

BD Biosciences Cat# 563172, RRID:AB_
2744297

(1:50 in 100 mL volume)

Antibody Brilliant Violet 650 anti-
human CD123 antibody
(mouse monoclonal)

BioLegend Cat# 306020, RRID:AB_
2563827

(1:50 in 100 mL volume)

Antibody Brilliant Violet 711 anti-
human CD127 (IL-7Ra)
antibody (mouse
monoclonal)

BioLegend Cat# 351328, RRID:AB_
2562908

(1:50 in 100 mL volume)

Antibody BV750 mouse anti-
human IgD antibody
(mouse monoclonal)

BD Biosciences Cat# 747484, RRID:AB_
2868411

(1:20 in 100 mL volume)

Antibody BV786 mouse anti-
human neuropilin-1
(CD304) antibody
(mouse monoclonal)

BD Biosciences Cat# 743132, RRID:AB_
2741299

(1:50 in 100 mL volume)

Antibody BB515 mouse anti-
human CD141 antibody
(mouse monoclonal)

BD Biosciences Cat# 565084, RRID:AB_
2739058

(1:33 in 100 mL volume)

Antibody CD11b monoclonal
antibody, PerCP-Cy5.5
conjugated (rat
monoclonal)

BD Biosciences Cat# 561114, RRID:AB_
2033995

(1:5 in 100 mL volume)

Antibody PE anti-human CD27
antibody (mouse
monoclonal)

BioLegend Cat# 302808, RRID:AB_
314300

(1:20 in 100 mL volume)

Antibody PE/Dazzle 594 anti-
human TCRa/b
antibody (mouse
monoclonal)

BioLegend Cat# 306726, RRID:AB_
2566599

(1:33 in 100 mL volume)
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Antibody Mouse anti-CD34
monoclonal antibody,
PE-Cy5 conjugated
(mouse monoclonal)

BD Biosciences Cat# 555823, RRID:AB_
396152

(1:20 in 100 mL volume)

Antibody PE/Cy7 anti-human
CD197 (CCR7) antibody
(mouse monoclonal)

BioLegend Cat# 353226, RRID:AB_
11126145

(1:33 in 100 mL volume)

Antibody APC anti-human CD38
antibody (mouse
monoclonal)

BioLegend Cat# 356606, RRID:AB_
2561902

(1:20 in 100 mL volume)

Antibody APC-R700 mouse anti-
human CD56 (NCAM-1)
antibody (mouse
monoclonal)

BD Biosciences Cat# 565139, RRID:AB_
2744429

(1:20 in 100 mL volume)

Antibody APC/Cyanine7 anti-
human HLA-DR
antibody (mouse
monoclonal)

BioLegend Cat# 307618, RRID:AB_
493586

(1:20 in 100 mL volume)

Antibody TotalSeq-A0062 anti-
human CD10 antibody
(mouse monoclonal)

BioLegend Cat# 312231, RRID:AB_
2734286

(0.5 mg per million cells)

Antibody TotalSeq-A0161 anti-
human CD11b
antibody (mouse
monoclonal)

BioLegend Cat# 301353, RRID:AB_
2734249

(0.05 mg per million cells)

Antibody TotalSeq-A0053 anti-
human CD11c antibody
(mouse monoclonal)

BioLegend Cat# 371519, RRID:AB_
2749971

(0.025 mg per million cells)

Antibody TotalSeq-A0064 anti-
human CD123 antibody
(mouse monoclonal)

BioLegend Cat# 306037, RRID:AB_
2749977

(0.1 mg per million cells)

Antibody TotalSeq-A0390 anti-
human CD127 (IL-7Ra)
antibody (mouse
monoclonal)

BioLegend Cat# 351352, RRID:AB_
2734366

(0.025 mg per million cells)

Antibody TotalSeq-A0081 anti-
human CD14 antibody
(mouse monoclonal)

BioLegend Cat# 301855, RRID:AB_
2734254

(0.2 mg per million cells)

Antibody TotalSeq-A0163 anti-
human CD141
(thrombomodulin)
antibody (mouse
monoclonal)

BioLegend Cat# 344121, RRID:AB_
2783229

(0.1 mg per million cells)

Antibody TotalSeq-A0083 anti-
human CD16 antibody
(mouse monoclonal)

BioLegend Cat# 302061, RRID:AB_
2734255

(0.05 mg per million cells)

Antibody TotalSeq-A0408 anti-
human CD172a (SIRPa)
antibody (mouse
monoclonal)

BioLegend Cat# 372109, RRID:AB_
2783285

(0.25 mg per million cells)

Antibody TotalSeq-A0144 anti-
human CD185 (CXCR5)
antibody (mouse
monoclonal)

BioLegend Cat# 356937, RRID:AB_
2750356

(0.125 mg per million cells)

Antibody TotalSeq-A0050 anti-
human CD19 antibody
(mouse monoclonal)

BioLegend Cat# 302259, RRID:AB_
2734256

(0.2 mg per million cells)
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Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Antibody TotalSeq-A0242 anti-
human CD192 (CCR2)
antibody (mouse
monoclonal)

BioLegend Cat# 357229, RRID:AB_
2750501

(0.5 mg per million cells)

Antibody TotalSeq-A0148 anti-
human CD197 (CCR7)
antibody (mouse
monoclonal)

BioLegend Cat# 353247, RRID:AB_
2750357

(0.5 mg per million cells)

Antibody TotalSeq-A0181 anti-
human CD21 antibody
(mouse monoclonal)

BioLegend Cat# 354915, RRID:AB_
2750006

(0.05 mg per million cells)

Antibody TotalSeq-A0180 anti-
human CD24 antibody
(mouse monoclonal)

BioLegend Cat# 311137, RRID:AB_
2750374

(0.5 mg per million cells)

Antibody TotalSeq-A0085 anti-
human CD25 antibody
(mouse monoclonal)

BioLegend Cat# 302643, RRID:AB_
2734258

(0.08 mg per million cells)

Antibody TotalSeq-A0056 anti-
human CD269 (BCMA)
antibody (mouse
monoclonal)

BioLegend Cat# 357521, RRID:AB_
2749974

(0.5 mg per million cells)

Antibody TotalSeq-A0191 anti-
mouse/rat/human
CD27 antibody
(Armenian hamster
monoclonal)

BioLegend Cat# 124235, RRID:AB_
2750344

(0.125 mg per million cells)

Antibody TotalSeq-A0171 anti-
human/mouse/rat
CD278 (ICOS) antibody
(Armenian hamster
monoclonal)

BioLegend Cat# 313555, RRID:AB_
2800824

(0.01 mg per million cells)

Antibody TotalSeq-A0088 anti-
human CD279 (PD-1)
antibody (mouse
monoclonal)

BioLegend Cat# 329955, RRID:AB_
2734322

(0.1 mg per million cells)

Antibody TotalSeq-A0034 anti-
human CD3 antibody
(mouse monoclonal)

BioLegend Cat# 300475, RRID:AB_
2734246

(0.05 mg per million cells)

Antibody TotalSeq-A0406 anti-
human CD304
(neuropilin-1) antibody

BioLegend Cat# 354525, RRID:AB_
2783261

(0.1 mg per million cells)

Antibody TotalSeq-A0830 anti-
human CD319 (CRACC)
antibody (mouse
monoclonal)

BioLegend Cat# 331821, RRID:AB_
2800872

(0.5 mg per million cells)

Antibody TotalSeq-A0410 anti-
human CD38 antibody
(mouse monoclonal)

BioLegend Cat# 356635, RRID:AB_
2800967

(0.05 mg per million cells)

Antibody TotalSeq-A0176 anti-
human CD39 antibody
(mouse monoclonal)

BioLegend Cat# 328233, RRID:AB_
2750005

(0.05 mg per million cells)

Antibody TotalSeq-A0072 anti-
human CD4 antibody
(mouse monoclonal)

BioLegend Cat# 300563, RRID:AB_
2734247

(0.1 mg per million cells)

Antibody TotalSeq-A0031 anti-
human CD40 antibody
(mouse monoclonal)

BioLegend Cat# 334346, RRID:AB_
2749968

(0.25 mg per million cells)
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(species) or resource Designation Source or reference Identifiers Additional information

Antibody TotalSeq-A0063 anti-
human CD45RA
antibody (mouse
monoclonal)

BioLegend Cat# 304157, RRID:AB_
2734267

(0.0625 mg per million cells)

Antibody TotalSeq-A0087 anti-
human CD45RO
antibody (mouse
monoclonal)

BioLegend Cat# 304255, RRID:AB_
2734268

(0.1 mg per million cells)

Antibody TotalSeq-A0047 anti-
human CD56 (NCAM)
antibody (mouse
monoclonal)

BioLegend Cat# 362557, RRID:AB_
2749970

(0.15 mg per million cells)

Antibody TotalSeq-A0166 anti-
human CD66b
antibody (mouse
monoclonal)

BioLegend Cat# 392905, RRID:AB_
2750372

(0.25 mg per million cells)

Antibody TotalSeq-A0394 anti-
human CD71 antibody
(mouse monoclonal)

BioLegend Cat# 334123, RRID:AB_
2800884

(0.025 mg per million cells)

Antibody TotalSeq-A0005 anti-
human CD80 antibody
(mouse monoclonal)

BioLegend Cat# 305239, RRID:AB_
2749958

(0.5 mg per million cells)

Antibody TotalSeq-A0006 anti-
human CD86 antibody
(mouse monoclonal)

BioLegend Cat# 305443, RRID:AB_
2734273

(0.05 mg per million cells)

Antibody TotalSeq-A0080 anti-
human CD8a antibody
(mouse monoclonal)

BioLegend Cat# 301067, RRID:AB_
2734248

(0.2 mg per million cells)

Antibody TotalSeq-A0156 anti-
human CD95 (Fas)
antibody (mouse
monoclonal)

BioLegend Cat# 305649, RRID:AB_
2750368

(0.1 mg per million cells)

Antibody TotalSeq-A0352 anti-
human FceRIa antibody
(mouse monoclonal)

BioLegend Cat# 334641, RRID:AB_
2750503

(0.5 mg per million cells)

Antibody TotalSeq-A0159 anti-
human HLA-DR
antibody (mouse
monoclonal)

BioLegend Cat# 307659, RRID:AB_
2750001

(0.25 mg per million cells)

Antibody TotalSeq-A0384 anti-
human IgD antibody
(mouse monoclonal)

BioLegend Cat# 348243, RRID:AB_
2783238

(0.05 mg per million cells)

Antibody TotalSeq-A0090 Mouse
IgG1, k isotype Ctrl
antibody (mouse
monoclonal)

BioLegend Cat# 400199, RRID:AB_
2868412

(0.5 mg per million cells)

Antibody TotalSeq-A0136 anti-
human IgM antibody
(mouse monoclonal)

BioLegend Cat# 314541, RRID:AB_
2749992

(0.05 mg per million cells)

Antibody TotalSeq-A0153 anti-
human KLRG1 (MAFA)
antibody (mouse
monoclonal)

BioLegend Cat# 367721, RRID:AB_
2750373

(0.25 mg per million cells)

Antibody TotalSeq-A0584 anti-
human TCR Va24-Ja18
(iNKT cell) antibody
(mouse monoclonal)

BioLegend Cat# 342923, RRID:AB_
2783227

(0.5 mg per million cells)
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Antibody TotalSeq-A0581 anti-
human TCR Va7.2
antibody (mouse
monoclonal)

BioLegend Cat# 351733, RRID:AB_
2783246

(0.05 mg per million cells)

Antibody TotalSeq-A0224 anti-
human TCR a/b
antibody (mouse
monoclonal)

BioLegend Cat# 306737, RRID:AB_
2783167

(0.125 mg per million cells)

Antibody TotalSeq-A0139 anti-
human TCR g/d
antibody (mouse
monoclonal)

BioLegend Cat# 331229, RRID:AB_
2734325

(0.5 mg per million cells)

Sequence-based
reagent

MOSAIC_Bot Integrated DNA
Technologies

Tn5 complex oligo 5’-/5phos/CTGTCTCTTATACACATC
T-’3; standard desalting

Sequence-based
reagent

Tn5ME-s7_Top Integrated DNA
Technologies

Tn5 complex oligo 5’-GTCTCGTGGGCTCGGAGA
TGTGTATAAGAGACAG-3’; stan-
dard desalting

Sequence-based
reagent

Poly-A Top-L Integrated DNA
Technologies

Tn5 complex oligo 5’-TTTTTTTTTTTTTTT
TTTTTTTTTTTTTTT
VNAGATGTGTATAAGAGACAG -3’;
standard desalting

Sequence-based
reagent

SI-P5-22 Integrated DNA
Technologies

PCR primer 5’-AATGATACGGCGACCACCG
AGATCTACACTCTTTCCCTACAC
GACGCTCTTCCGATCT-3’;
standard desalting

Sequence-based
reagent

F BC primer Integrated DNA
Technologies

PCR primer 5’-CTACACGACGCT
CTTCCGATCT-3’; standard desalting

Sequence-based
reagent

ADT-Rev-AMP Integrated DNA
Technologies

PCR primer 5’-CCTTGGCACCCGAGAATTCC-3’;
standard desalting

Sequence-based
reagent

TruSeq R1 Seq primer Integrated DNA
Technologies

PCR primer 5’-ACACTCTTTCCCTACACG
ACGCTCTTCCGATCT-3’;
standard desalting

Sequence-based
reagent

ADT-i7 primer Integrated DNA
Technologies

PCR primer 5’-CAAGCAGAAGACGGCA
TACGAGATNNNNNNNN
GTGACTGGAGTTCCT
TGGCACCCGAGAATTCC*A-3’;
PAGE purification; * = phosphor-
othioate bond; N’s indicate barcode
position

Sequence-based
reagent

SI-PCR-Oligo Integrated DNA
Technologies

PCR primer 5’-AATGATACGGCGACCA
CCGAGATCTACACTCTT
TCCCTACACGACGCTC-3’; standard
desalting

Peptide, recombinant
protein

Tn5 transposase Beta Lifescience TN5-BL01

Commercial assay or kit Chromium Next GEM
Single Cell 3’ GEM,
Library & Gel Bead Kit
v3.1

10x Genomics 1000121

Commercial assay or kit Next GEM Chip G
Single Cell Kit

10x Genomics 1000120

Commercial assay or kit Single Index Kit T Set A 10x Genomics 1000213

Commercial assay or kit Chromium Next GEM
Single Cell ATAC
Library & Gel Bead Kit
v1.1

10x Genomics 1000175

Commercial kit or assay Next GEM Chip H
Single Cell Kit

10x Genomics 1000161

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Commercial kit or assay Single Index Kit N Set A 10x Genomics 1000212

Commercial kit or assay Chromium Next GEM
Single Cell Multiome
ATAC + Gene
Expression Reagent
Bundle

10x Genomics 1000283

Commercial kit or assay Next GEM Chip J
Single Kit

10x Genomics 1000234

Commercial kit or assay Dual Index Kit TT Set A 10x Genomics 1000215

Commercial kit or assay Quant-iT PicoGreen
dsDNA Assay Kit

Thermo Fisher
Scientific

P7589

Commercial kit or assay Library Quantification
Kit, Illumina Platform

KAPA Biosystems KK4844

Commercial kit or assay Bioanalyzer high-
sensitivity DNA analysis

Agilent Technologies 5067-4626

Software, algorithm R The R Foundation RRID:SCR_001905 v3.6.3 and >4.0.2

Software, algorithm ArchR Jeffrey Granja and Ryan
Corces

v1.0.1

Software, algorithm BarCounter Elliott Swanson; this
study

Software, algorithm cellranger 10x Genomics v5.0.0

Software, algorithm cellranger-atac 10x Genomics v1.1.0 and v1.2.0

Software, algorithm cellranger-arc 10x Genomics v1.0.0

Software, algorithm Seurat Paul Hoffman, Satija
Lab, and Collaborators

RRID:SCR_016341 v4.0-beta

Software, algorithm FlowJo BD v10.7

Other Digitonin MP Biomedicals 0215948082

Other Human TruStain FcX BioLegend 422302

Other ViaStain acridine
orange/propidium
iodide solution

Nexcelom Bioscience CS2-0106-25mL

Other Dynabeads MyOne
SILANE

Thermo Fisher
Scientific

37002D

Other Fixable Viability Stain
510

BD Biosciences 564406

Other IGEPAL-CA630 Sigma I8896 CAS 9002-93-1

Other SPRIselect Beckman Coulter B23319

Other NEBNext Ultra II Q5
Master Mix

New England Biolabs M0544

Other KAPA HiFi HotStart
ReadyMix

KAPA Biosystems KM2602

Other Protector RNase
Inhibitor

Sigma-Aldrich 03335399001

Other Fixable Viability Stain
510

BD Biosciences Cat# 564406, RRID:AB_
2869572

Sample collection and preparation
Sample collection and processing
Biological specimens were purchased from BioIVT as cryopreserved PBMCs and Bloodworks NW as

freshly drawn whole blood. All sample collections were conducted by BioIVT and Bloodworks NW
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under IRB-approved protocols, and all donors signed informed consent forms. See

Supplementary file 7 for a list of sources and samples used for data displayed in each figure.

PBMCs sourced from BioIVT were isolated using either Ficoll-Paque or leukapheresis. Following

isolation, PBMCs were subjected to RBC lysis, washing, and counting. PBMC aliquots were cryopre-

served in Cryostor CS10 (StemCell Technologies, 07930) and stored in vapor phase liquid nitrogen.

For fresh blood samples from Bloodworks NW, PBMC processing occurred in-house. Blood tubes

were pooled, gently swirled until fully mixed, about 30 times, and diluted with an equivalent volume

of room temperature PBS (Thermo Fisher Scientific, 14190235). PBMCs were isolated using one or

more Leucosep tubes (Greiner Bio-One, 227290) loaded with 15 mL of Ficoll Premium (GE Health-

care, 17-5442-03) to which a 3 mL cushion of PBS had been slowly added on top of the Leucosep

barrier. Diluted whole blood (24–30 mL) was slowly added to each tube and spun at 1000�g for 10

min at 20˚C with no brake (Beckman Coulter Avanti J-15RIVD with JS4.750 swinging bucket,

B99516). PBMCs were recovered from the Leucosep tube by quickly pouring all volume above the

barrier into a sterile 50 mL conical tube (Corning, 352098). A 15 mL cold phosphate-buffered saline

(PBS) +0.2% bovine serum albumin (BSA) (Sigma, A9576; ‘PBS+BSA’) was added and the cells were

pelleted at 400�g for 5–10 min at 4–10˚C. The supernatant was quickly decanted, the pellet dis-

persed by flicking the tube, and the cells washed with 25–50 mL cold PBS+BSA. Cell pellets were

combined as needed, the cells were pelleted as before, supernatant quickly decanted, and residual

volume was carefully aspirated. PBMCs were resuspended in 1 mL cold PBS+BSA per 15 mL whole

blood processed and counted with a ViCell (Beckman Coulter) using VersaLyse reagent (Beckman

Coulter, A09777) or with a Cellometer Spectrum Cell Counter (Nexcelom) using ViaStain acridine

orange/propidium iodide solution (Nexcelom, C52-0106-5). PBMCs were cryopreserved in Cryo-

stor10 (StemCell Technologies, 07930) or 90% fetal bovine serum (FBS, Thermo Fisher Scientific,

10438026)/10% dimethyl sulfoxide (DMSO, Fisher Scientific, D12345) at 5 � 106 cells/mL by slow

freezing in a Coolcell LX (VWR, 75779-720) overnight in a �80˚C freezer followed by transfer to liq-

uid nitrogen.

Cell thawing
Cryopreserved PBMCs were removed from liquid nitrogen storage and thawed in a 37˚C water bath

for 3–5 min until no ice was visible. Cells were diluted to 10 mL in 37˚C AIM V medium (Gibco,

12055091) with the first 3 mL added dropwise. Cells were then washed once with 10 mL DPBS with-

out calcium and magnesium (Corning, 21-031 CM) supplemented with 0.2% w/v BSA (Sigma-Aldrich,

A2934). Cells were counted on a Cellometer Spectrum Cell Counter (Nexcelom) using ViaStain acri-

dine orange/propidium iodide solution (Nexcelom, C52-0106-5) and stored on ice.

FACS neutrophil depletion
To remove dead cells, debris, and neutrophils, PBMC samples were sorted by FACS prior to nuclei

isolation or cell permeabilization. Cells were incubated with Fixable Viability Stain 510 (BD, 564406)

for 15 min at room temperature and washed with AIM V medium (Gibco, 12055091) plus 25 mM

HEPES before incubating with TruStain FcX (BioLegend, 422302) for 5 min on ice, followed by stain-

ing with anti-CD45 (BioLegend, 304038) and anti-CD15 (BD, 562371) antibodies for 20 min on ice.

Cells were washed with AIM V medium plus 25 mM HEPES and sorted on a BD FACSAria Fusion. A

standard viable CD45+ cell gating scheme was employed; FSC-A vs. SSC-A (to exclude sub-cellular

debris), two FSC-A doublet exclusion gates (FSC-W followed by FSC-H), dead cell exclusion gate

(BV510 LIVE/DEAD negative) followed by CD45+ inclusion gate. Neutrophils (defined as SSChigh,

CD15+) were then excluded in the final sort gate (Figure 1—figure supplement 3). An aliquot of

each post-sort population was used to collect 50,000 events to assess post-sort purity.

Magnetic bead neutrophil depletion
Bead-based neutrophil depletion was performed using a biotin conjugated monoclonal anti-CD15

antibody in combination with streptavidin-coated magnetic beads. A high neutrophil content

(approximately 1.1%) Ficoll-isolated PBMC sample was processed to evaluate efficacy, and a low

neutrophil leukapheresis-isolated PBMC sample was processed to control for off-target effects.

Briefly, 1 � 107 PBMCs were resuspended in 100 mL of chilled DPBS without calcium and magnesium

(Corning, 21-031 CM) supplemented with 0.2% w/v BSA (Sigma-Aldrich, A2934). A 10 mL TruStain
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FcX (BioLegend 422302) was added to the cell suspension, mixed by pipette, and incubated on ice

for 10 min. Anti-CD15 antibody (BioLegend, 301913) was added to the cell suspension, mixed by

pipette, and incubated on ice for 30 min. Following antibody binding, 25 mL of Dynabeads MyOne

Streptavidin T1 magnetic beads (Invitrogen, 65601) was added to the cell suspension, mixed by

pipette, and incubated at room temperature for 5 min. The cell suspension was then diluted with

900 mL of room temperature Dulbecco’s phosphate-buffered saline (DPBS) +0.2% w/v BSA and

placed on an EasySep magnet (Stemcell Technologies, 18103) for 3 min. The supernatant (approxi-

mately 1 mL) was transferred to a new tube and stored on ice until further processing.

Non-depleted and neutrophil-depleted PBMCs from each sample were analyzed by flow cytome-

try using an eight-color panel to assess the effects of the bead-based depletion on major PBMC

populations. For each sample and condition, 1 � 106 cells were centrifuged (750�g for 5 min at 4˚C)

using a swinging bucket rotor (Beckman Coulter Avanti J-15RIVD with JS4.750 swinging bucket,

B99516), the supernatant was removed using a vacuum aspirator pipette, and the cell pellet was

resuspended in 100 mL of DPBS without calcium and magnesium (Corning, 21-031 CM) supple-

mented with 0.2% w/v BSA (Sigma-Aldrich, A2934). Cells were incubated with Fixable Viability Stain

510 (BD, 564406) and TruStain FcX (BioLegend, 422302) for 30 min on ice, and washed in chilled

FACS buffer (DPBS, 0.2% w/v BSA, 0.1% sodium azide; VWR, BDH7465-2). Cells were stained with a

cocktail of antibodies (Supplementary file 1) including 10 mL of Brilliant Stain Buffer Plus (BD,

566385) at a staining volume of 100 mL for 30 min on ice, then washed twice with chilled FACS

buffer. Cells were passed through 35 mm Falcon Cell Strainers (Corning, 352235) and analyzed on a

BD FACS Symphony flow cytometer. Gating analysis was performed using FlowJo cytometry soft-

ware (version 10.7).

A sequential gating scheme was used to identify viable singlet CD45+/CD15+/CD16+ neutro-

phils: (1) a time vs. SSC-A gate (to confirm that no abnormalities occurred in the fluidics), (2) a FSC-A

vs. SSC-A gate (to exclude sub-cellular debris), (3) two FSC-A doublet exclusion gates (FSC-W fol-

lowed by FSC-H), (3) a dead cell exclusion gate (BV510 LIVE/DEAD negative), and (4) a CD45+ inclu-

sion gate. Neutrophils were defined as either SSC-Ahigh/CD15+ or CD15+/CD16+. The neutrophil

population defined by SSC-Ahigh/CD15+ was larger than that defined by CD15+/CD16+ due to the

presence of some contaminating CD15low monocytes. Therefore, we used the CD45+/CD15+/CD16

+ gate for subsequent analysis including summary statistics (Figure 1—figure supplement 4 and

Supplementary file 2).

Standard nuclei isolation
Isolation of nuclei suspensions was performed according to the Demonstrated Protocol: Nuclei Isola-

tion for Single Cell ATAC Sequencing (10x Genomics, CG000169 Rev C). Briefly, 8 � 105 to 1 � 106

cells were added to a 1.5 mL low binding tube (Eppendorf, 022431021) and centrifuged (300�g for

5 min at 4℃) using a swinging bucket rotor (Beckman Coulter Avanti J-15RIVD with JS4.750 swing-

ing bucket, B99516). The supernatant was removed using a vacuum aspirator pipette, and the cell

pellet was resuspended in 100 mL of chilled 10x Genomics Nuclei Isolation Buffer (10 mM Tris-HCl

pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% Tween-20, 0.1 % NP-40 Substitute CAS 9016-45-9 [BioVi-

sion 2127-50], 0.01% digitonin [MP Biomedicals 0215948082], 1% BSA) by pipette-mixing 10 times.

Cells were incubated on ice for 3 min, followed by dilution with 1 mL of chilled 10x Wash Buffer (10

mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% Tween-20 [Bio-Rad 1610781], 1% BSA) by

pipette-mixing five times. Nuclei were centrifuged (500�g for 3 min at 4˚C), and the supernatant

was slowly removed using a vacuum aspirator pipette. Nuclei were resuspended in chilled 1x Nuclei

Buffer (10x Genomics, 2000207) to a target concentration of 3000–6000 nuclei per mL. Nuclei sus-

pensions were passed through 35 mm Falcon Cell Strainers (Corning, 352235) and counted on a Cell-

ometer Spectrum Cell Counter (Nexcelom) using ViaStain acridine orange/propidium iodide staining

solution (Nexcelom, C52-0106-5).

Nuclei isolation optimization
In addition to 10x Nuclei Isolation Buffer (10xNIB), we tested an alternative Nuclei Isolation Buffer

(ANIB) as described previously (Mulqueen et al., 2019) 10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM

MgCl2, 0.1% Tween-20, 0.1% IGEPAL CAS 9002-93-1 (Sigma, I8896), 1x Protease Inhibitor (Roche,

11836170001). For each buffer, we generated a titration series of detergent concentrations relative
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to the concentrations described above but did not alter the concentration of other buffer ingre-

dients: 1�, 0.5�, 0.25�, 0.1� for 10�NIB, and 1� and 0.1� for ANIB. The resulting nuclei were

imaged using an EVOS M5000 Imaging System (Thermo Fisher Scientific, AMF5000) in transmitted

light mode at �40 magnification to visually evaluate nuclear integrity (Figure 1—figure supplement

1). The 1 � 10 �NIB, 0.25 � 10 �NIB, 0.1 � 10 �NIB, and 1� ANIB were used for 10X scATAC-seq

(Figure 1—figure supplement 2).

Cell permeabilization
We prepared a 5% w/v digitonin stock by diluting powdered digitonin (MP Biomedicals,

0215948082) with 100% DMSO (Fisher Scientific, D12345) and creating 20 mL aliquots, which were

stored at �20˚C. To permeabilize, 1,000,000 cells were added to a 1.5 mL low binding tube (Eppen-

dorf, 022431021) and centrifuged (400�g for 5 min at 4˚C) using a swinging bucket rotor (Beckman

Coulter Avanti J-15RIVD with JS4.750 swinging bucket, B99516). The supernatant was removed

using a vacuum aspirator pipette, and the cell pellet was resuspended in 100 mL of chilled isotonic

Perm Buffer (20 mM Tris-HCl pH 7.4, 150 mM NaCl, 3 mM MgCl2, 0.01% digitonin) by pipette-mix-

ing 10 times. Cells were incubated on ice for 5 min, after which they were diluted with 1 mL of iso-

tonic Wash Buffer (20 mM Tris-HCl pH 7.4, 150 mM NaCl, 3 mM MgCl2) by pipette-mixing five

times. Cells were centrifuged (400�g for 5 min at 4˚C) using a swinging bucket rotor, and the super-

natant was slowly removed using a vacuum aspirator pipette. The cell pellet was resuspended in

chilled TD1 buffer (Illumina, 15027866) by pipette-mixing to a target concentration of 2300–10,000

cells per mL. Cells were passed through 35 mm Falcon Cell Strainers (Corning, 352235) and counted

on a Cellometer Spectrum Cell Counter (Nexcelom) using ViaStain acridine orange/propidium iodide

solution (Nexcelom, C52-0106-5). For optimization, we used varying final digitonin concentrations in

the Perm Buffer: 0.01% w/v, 0.05% w/v, 0.1% w/v, and 0.2% w/v. The optimal concentration

observed was 0.01% w/v.

snATAC-seq and scATAC-seq
sn/scATAC-seq library preparation
scATAC-seq libraries were prepared according to the Chromium Single Cell ATAC v1.1 Reagent Kits

User Guide (CG000209 Rev B) with several modifications. In total, 15,000 cells or nuclei were loaded

into each tagmentation reaction. Nuclei were brought up to a volume of 5 mL in 1x Nuclei Buffer

(10x Genomics, 2000207), mixed with 10 mL of a transposition master mix consisting of ATAC Buffer

B (10x Genomics, 2000193) and ATAC Enzyme (Tn5 transposase; 10x Genomics, 2000123). Permea-

bilized cells were brought up to a volume of 9 mL in TD1 buffer (Illumina, 15027866) and mixed with

6 mL of Illumina TDE1 Tn5 transposase (Illumina, 15027916). Transposition was performed by incu-

bating the prepared reactions on a C1000 Touch thermal cycler with 96-Deep Well Reaction Module

(Bio-Rad, 1851197) at 37˚C for 60 min, followed by a brief hold at 4˚C. A Chromium NextGEM Chip

H (10x Genomics, 2000180) was placed in a Chromium Next GEM Secondary Holder (10x Genomics,

3000332), and 50% glycerol (Teknova, G1798) was dispensed into all unused wells. A master mix

composed of Barcoding Reagent B (10x Genomics, 2000194), Reducing Agent B (10x Genomics,

2000087), and Barcoding Enzyme (10x Genomics, 2000125) was then added to each sample well,

pipette-mixed, and loaded into row 1 of the chip. Chromium Single Cell ATAC Gel Beads v1.1 (10x

Genomics, 2000210) were vortexed for 30 s and loaded into row 2 of the chip, along with Partition-

ing Oil (10x Genomics, 2000190) in row 3. A 10x Gasket (10x Genomics, 370017) was placed over

the chip and attached to the Secondary Holder. The chip was loaded into a Chromium Single Cell

Controller instrument (10x Genomics, 120270) for GEM generation. At the completion of the run,

GEMs were collected and linear amplification was performed on a C1000 Touch thermal cycler with

96-Deep Well Reaction Module: 72˚C for 5 min, 98˚C for 30 s, 12 cycles of 98˚C for 10 s, 59˚C for 30

s, and 72˚C for 1 min.

GEMs were separated into a biphasic mixture through addition of Recovery Agent (10x Geno-

mics, 220016), and the aqueous phase was retained and removed of barcoding reagents using Dyna-

beads MyOne SILANE (10x Genomics, 2000048) and SPRIselect reagent (Beckman Coulter, B23318)

bead clean-ups. Sequencing libraries were constructed by amplifying the barcoded ATAC fragments

in a sample indexing PCR consisting of SI-PCR Primer B (10x Genomics, 2000128), Amp Mix (10x

Genomics, 2000047), and Chromium i7 Sample Index Plate N, Set A (10x Genomics, 3000262) as
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described in the 10x scATAC User Guide. Amplification was performed in a C1000 Touch thermal

cycler with 96-Deep Well Reaction Module: 98˚C for 45 s, for 9–11 cycles of 98˚C for 20 s, 67˚C for

30 s, 72˚C for 20 s, with a final extension of 72˚C for 1 min. Final libraries were prepared using a

dual-sided SPRIselect size-selection cleanup. SPRIselect beads were mixed with completed PCR

reactions at a ratio of 0.4� bead:sample and incubated at room temperature to bind large DNA

fragments. Reactions were incubated on a magnet, and the supernatant was transferred and mixed

with additional SPRIselect reagent to a final ratio of 1.2� bead:sample (ratio includes first SPRI addi-

tion) and incubated at room temperature to bind ATAC fragments. Reactions were incubated on a

magnet, the supernatant containing unbound PCR primers and reagents was discarded, and DNA-

bound SPRI beads were washed twice with 80% v/v ethanol. SPRI beads were resuspended in Buffer

EB (Qiagen, 1014609), incubated on a magnet, and the supernatant was transferred, resulting in

final, sequencing-ready libraries.

sn/scATAC-seq sequencing
Final libraries were quantified using a Quant-iT PicoGreen dsDNA Assay Kit (Thermo Fisher Scien-

tific, P7589) on a SpectraMax iD3 (Molecular Devices). Library quality and average fragment size

were assessed using a Bioanalyzer (Agilent, G2939A) High Sensitivity DNA chip (Agilent, 5067-4626).

Libraries were sequenced on the Illumina NovaSeq platform with the following read lengths: 51 nt

read 1, 8 nt i7 index, 16 nt i5 index, and 51 nt read 2.

sn/scATAC-seq data processing
Demultiplexing of raw base call files into FASTQ files was performed using 10x cellranger-atac

mkfastq (10x Genomics v.1.1.0). To assess samples at an equal sequencing depth, FASTQ files were

downsampled to a uniform total raw read count among compared samples: 2 � 108 fragments for

comparison of nuclei and cells across FACS conditions (Figures 1 and 2); 1.25 � 108 fragments for

optimization experiments (Figure 1—figure supplement 2) due to lower available total read depth

after sequencing. A 10x cellranger-atac count was used to process sequencing reads by performing

adapter trimming and sequence alignment to the GRCh38 (hg38) reference genome (refdata-cell-

ranger-atac-GRCh38-1.1.0). The output files fragments.tsv.gz and singlecell.csv were utilized for

downstream processing and quality control analysis.

To evaluate quality control metrics across all scATAC-seq datasets, we utilized bedtools (v2.29.1)

and GNU parallel (Tange, 2011) v20161222 to generate overlap counts and feature count matrices

for a panel of reference genomic regions: 518,766 peaks from a previous study of PBMCs by scA-

TAC-seq (Lareau et al., 2019; supplementary file GSE123577_pbmc_peaks.bed.gz from GEO acces-

sion GSE123577) were converted from hg19 to hg38 coordinates using the UCSC liftOver tool

(Hinrichs et al., 2006; kent source v402) and used to compute a standardized fraction of reads in

peaks score for cells in each dataset (FRIP); 33,496 transcription start site regions (TSS ±2 kb) from

Hg38 ENSEMBL release 93 (Yates et al., 2020) were filtered to select genes used in the 10x Geno-

mics cellranger GRCh38 reference for scRNA-seq (refdata-cellranger-GRCh38-3.0.0) and used to

compute the fraction of reads in TSS (FRITSS); and a set of 3,591,898 reference DNase hypersensi-

tive sites from ENCODE (Meuleman et al., 2020; ENCODE file ID ENCFF503GCK) were used to

assess distal regulatory element accessibility. In addition, we generated tiled window counts across

the genome in 5k, 20k, 100k bins.

sn/scATAC-seq quality control
Custom R scripts were used to assess and filter preprocessed scATAC-seq data along a variety of

quality metrics. Cells or nuclei with >1,000 uniquely aligned fragments, FRIP >0.2, FRITSS > 0.2, and

fraction of fragments overlapping ENCODE reference regions > 0.5 were retained for downstream

analysis. Cells or nuclei that passed these QC cutoffs were used to generate sparse count matrices

and filtered fragments.tsv.gz files for downstream analysis.

To examine aggregate TSS accessibility, we selected fragments from fragments.tsv.gz that over-

lapped TSS regions describe above (TSS ±2 kb). For plotting, fragments were separated using cell

barcodes (and fragment length in the case of Figure 1—figure supplement 5) into separate groups.

Fragment positions were converted to positions relative to TSS (sensitive to transcript strand orienta-

tion), and the number of fragments overlapping each position was calculated.
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To examine CTCF motif accessibility, CTCF motif locations were obtained from genome-wide

motif scans of non-redundant TF motifs (Vierstra, 2020; https://resources.altius.org/jvierstra/proj-

ects/motif-clustering/releases/v1.0). Motifs were filtered to select CTCF motifs that overlapped

ENCODE reference regions (Meuleman et al., 2020; ENCODE file ID ENCFF503GCK). Selected

were ranked by their MOODS match, and the top 100,000 motifs were selected for analysis. Motif

locations were expanded to a total of 4 kb centered on the middle of each CTCF motif (using the

resize function from GenomicRanges in R). Fragments from cells that passed QC filtering were con-

verted to target site duplication (TSD) center positions (+5 bp from the 5’ end and �4 bp from the

3’ end of each fragment). All TSD centers that overlapped expanded CTCF motif regions were

selected, and the number of TSD centers that overlapped each position relative to the CTCF motif

was calculated (sensitive to CTCF motif strand orientation).

sn/scATAC-seq saturation analysis
To assess sequencing library saturation, we used the fragments.tsv.gz output file from cellranger-

atac, which provides the observed count of each unique fragment position, to calculate how many

fragments were observed with each frequency. This count-of-counts table was used as input for the

R package preseqR function preseqR.rSAC.bootstrap, which predicts the number of unique species

(unique ATAC fragments in our case) that are represented at least r times based on an initial sample

(Daley and Smith, 2013; Deng et al., 2018). For each dataset, we ran 100 rounds of bootstrapped

estimations at 10 million-fragment steps, from 0 to 2 billion total fragments per sample. To assess

the fraction of additional unique fragments obtained at each 10 million read step (as shown in Fig-

ure 1—figure supplement 3), we subtracted the estimated number of unique fragments from the

number of unique fragments at the previous step and divided by 10 million (the number of addi-

tional raw sequenced fragments).

sn/scATAC-seq dimensionality reduction
For 2D projections of scATAC-seq data, we used binarized sparse matrices of 20 kb window accessi-

bility across the hg38 genome (excluding mitochondrial regions, chrM). Independently for each data-

set, we selected features found in >3% of cells/nuclei, weighted features using term frequency-

inverse document frequency, log-transformed the resulting weights, and performed principle com-

ponent analysis (PCA) using singular value decomposition to generate 50 reduced dimensions as

described previously (Cusanovich et al., 2018; Hill, 2019). We then removed the first PC, which was

strongly correlated with the number of available fragments and retained the remaining PCs up to PC

30. For display, we further reduced the dimensionality of selected PCs using UMAP (Becht et al.,

2019; McInnes et al., 2018) (R package uwot, v0.1.8, parameters: scale = TRUE, min_dist = 0.2).

sn/scATAC-seq cell-type labeling
Labeling of scATAC-seq datasets was performed using the ArchR package (Granja et al., 2020)

v0.9.4. In brief, filtered fragments.tsv.gz files after quality control were used to generate an ArchR

GeneScore matrix and a tiled genome feature matrix for each dataset. Cells were grouped by per-

forming iterative latent semantic indexing (LSI) on the tile matrix, followed by the shared nearest-

neighbor clustering approach implemented in Seurat (Stuart et al., 2019) v3.1.5. GeneScore data

was then used to compare scATAC-seq clusters to a labeled reference scRNA-seq dataset consisting

of 9380 PBMCs generated by 10x Genomics, with labels provided by the Satija lab (https://www.

dropbox.com/s/zn6khirjafoyyxl/pbmc_10k_v3.rds?dl=0) using ArchR’s implementation of the Find-

TransferAnchors method from Seurat. The best-scoring labels for each scATAC-seq cluster were

used for downstream analysis and display (Figure 2), and label transfer scores for individual cells

were used to compare label transfer between methods (Figure 2c).

sn/scATAC-seq peak analysis
After labeling cell types in each dataset, peaks for each cell type were generated using the ArchR

functions addGroupCoverages and addReproduciblePeakSet. Within each dataset, peaks scores

from each pair of cell types were compared using getMarkerFeatures performed in each direction

separately by swapping foreground and background cell types. To identify differentially accessible

markers, the Wilcoxon rank sum test was used (testMethod = ‘wilcoxon’), and multiple hypothesis
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test correction was performed using the Benjamini and Hochburg method for false discovery rate

estimation (FDR; Benjamini and Hochberg, 1995). Differentially accessible peaks (DAPs) from each

comparison were selected with filter string "FDR <= 0.05 and Log2FC >= log2(1.5)".

To identify enriched TFBS motifs, CIS-BP motif annotations (Weirauch et al., 2014) were attached

to each peak identified by ArchR using the addMotifAnnotations. Marker peaks for each cell type

were identified using getMarkerFeatures without specifying foreground and background groups

using the Wilcoxon rank sum test and FDR correction, as described above. Enriched motifs were

identified using the ArchR function peakAnnoEnrichment, which performs a hypergeometric test for

enrichment of motif annotations in marker peaks, with FDR correction for multiple hypothesis testing

(parameters: peakAnnotation = ‘Motif’, cutOff = "FDR <= 0.01 and Log2FC >= log2(1.5)"). Up to

the top 10 enriched motifs for each cell type were plotted using the ArchR function

plotEnrichHeatmap.

Cell-type flow cytometry
To assess cell-type proportions, PBMCs were analyzed with a 25-color immunophenotyping flow

cytometry panel. 1 � 106 thawed PBMCs were centrifuged (750�g for 5 min at 4˚C) using a swinging

bucket rotor (Beckman Coulter Avanti J-15RIVD with JS4.750 swinging bucket, B99516), the super-

natant was removed using a vacuum aspirator pipette, and the cell pellet was resuspended in DPBS

without calcium and magnesium (Corning 21-031 CM). Cells were incubated with Fixable Viability

Stain 510 (BD, 564406) and TruStain FcX (BioLegend, 422302) for 30 min at 4˚C, then washed with

chilled PBS+0.2% BSA (Sigma, A9576; ‘PBS+BSA’). Cells were stained with a cocktail of antibodies

(Supplementary file 3) at a staining volume of 100 mL for 30 min at 4˚C, then washed with PBS

+0.2% BSA. Fixation was performed by resuspending cells in 100 mL of 4% paraformaldehyde (Elec-

tron Microscopy Sciences, 15713) and incubating for 15 min at 25˚C, protected from light. Following

fixation, cells were washed twice with PBS+0.2% BSA and resuspended in 100 mL PBS (without BSA).

Stained cells were analyzed on a five-laser Cytek Aurora spectral flow cytometer. Spectral unmixing

was calculated with pre-recorded reference controls using Cytek SpectroFlo software (version 2.0.2).

Cell types were quantified by traditional bivariate gating analysis performed with FlowJo cytometry

software (version 10.7, Figure 2—figure supplement 1).

ICICLE-seq
Oligonucleotide sources
Custom oligonucleotides for Tn5 complexes, indexing, and amplification were ordered from Inte-

grated DNA Technologies. Sequences and modifications are provided in Supplementary file 5. ADT

i7 indexing primers contain a phosphorothioate bond linking the final two 30 bases and were purified

using polyacrylamide gel electrophoresis (PAGE). The MOSAIC_Bot oligo used in Tn5 complexing

contains a 50 phosphate group and was purified using standard desalting. All remaining oligos were

produced without chemical modifications and purified using standard desalting.

Tn5 complexing
The assembly of Tn5 transposomes was performed as previously described (Mulqueen et al., 2019).

DNA complexes containing mosaic-end sequences with either a poly-T or Nextera R2N 5’ overhang

(Poly-T Top-L/MOSAIC_Bot, Tn5ME-s7_Top/MOSAIC_Bot) were created by annealing equimolar

amounts of top and bottom oligos (Figure 3—figure supplement 1 and Supplementary file 5) on a

C1000 Touch thermal cycler with 96-Deep Well Reaction Module (Bio-Rad, 1851197) at 95˚C for 5

min followed by 5˚C decreases every 2 min until the temperature reached 20˚C. Oligos were

annealed at a concentration of 16 mM in 2� Dialysis Buffer (100 mM HEPES-KOH pH 7.5 [Teknova,

550000-016], 200 mM NaCl, 0.2 mM EDTA, 2 mM DTT [IBI Scientific, 21040], 0.2% Triton X-100

[Sigma-Aldrich, T8787], 20% glycerol [Teknova, G1798]). Annealed complexes were mixed 1:1 for a

final concentration of 8 nM. Tn5 transposase (Beta Lifescience, TN5-BL01) was supplemented with

5 M NaCl at a final volume ratio of 1:8 NaCl to Tn5. The resulting NaCl/Tn5 mixture was mixed with

the annealed complexes at a volume ratio of 1.2:1 ratio of DNA complexes to Tn5 and incubated at

25˚C for 60 min to form final, reaction-ready Tn5 complexes, which were stored at �20˚C until use.
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Antibody staining
PBMCs were depleted of neutrophils, dead cells, and debris through FACS as described above.

2 � 106 sorted PBMCs were centrifuged (400�g for 5 min at 4˚C) using a swinging bucket rotor

(Beckman Coulter Avanti J-15RIVD with JS4.750 swinging bucket, B99516), the supernatant was

removed using a vacuum aspirator pipette, and the cell pellet was resuspended in 100 mL of DPBS

without calcium and magnesium (Corning 21-031 CM) supplemented with 2% w/v BSA (Sigma-

Aldrich A2934). A 10 mL TruStain FcX (BioLegend, 422302) was added and cells were incubated on

ice for 10 min. A panel of 46 barcoded oligo-conjugated antibodies (BioLegend TotalSeq-A) includ-

ing a mouse IgG1K isotype-negative control (Supplementary file 6) was added and incubated on

ice for 30 min. Cells were washed three times in 4 mL of DPBS plus 2% BSA to remove unbound anti-

bodies and used as input into cell permeabilization with 0.01% digitonin as described above.

ICICLE-seq library preparation
Transposition was performed by aliquoting 20,000 permeabilized cells in TD1 buffer (Illumina,

15027866), bringing the volume up to 9 mL in TD1 buffer, and mixing with 6 mL of Poly-T overhang

Tn5 complexes. Reactions were incubated on a C1000 Touch thermal cycler with 96-Deep Well Reac-

tion Module (Bio-Rad, 1851197) at 37˚C for 120 min, followed by a brief hold at 4˚C. Cell barcodes

were then added to ATAC and ADTs via GEM generation using 10x Genomics 30 RNA beads and

subsequent amplification. Briefly, a Chromium Next GEM Chip G (10x Genomics, 2000177) was

placed in a Chromium Next GEM Secondary Holder (10x Genomics, 3000332) and 50% glycerol

(Teknova, G1798) was dispensed into all unused wells. A barcoding master mix was prepared, which

consisted of NEBNext Ultra II Q5 Master Mix (New England Biolabs, M0544), Reducing Agent B (10x

Genomics, 2000087), F BC Primer (0.2 mM, Supplementary file 5), and ADT-Rev-AMP (0.2 mM,

Supplementary file 5). The master mix was added to each sample well, pipette-mixed, and loaded

into row 1 of the chip. Chromium Single Cell 3’ v3.1 Gel Beads (10x Genomics, 2000164) were vor-

texed for 30 s and loaded into row 2 of the chip, along with Partitioning Oil (10x Genomics,

2000190) in row 3. A 10x Gasket (10x Genomics, 370017) was placed over the chip and attached to

the Secondary Holder. The chip was loaded into a Chromium Single Cell Controller instrument (10x

Genomics, 120270) for GEM generation. At the completion of the run, GEMs were collected and

amplification was performed on a C1000 Touch thermal cycler with 96-Deep Well Reaction Module:

72˚C for 5 min, 98˚C for 30 s, 12 cycles of 98˚C for 10 s, 42˚C for 30 s, and 65˚C for 30 s, followed by

a final extension of 65˚C for 1 min.

GEMs were separated into a biphasic mixture through addition of Recovery Agent (10x Geno-

mics, 220016), the aqueous phase was retained and removed of barcoding reagents using Dyna-

beads MyOne SILANE (10x Genomics, 2000048) beads. Next, a dual-sided 0.6�/2.0� bead:sample

SPRIselect reagent (Beckman Coulter, B23318) size-selection clean-up was performed to remove

large DNA fragments and unused primers. Libraries were split into two reactions in a 3:1 ATAC:ADT

ratio and amplified separately using different indexed P7 primers. ATAC fragments were amplified

in a 100 mL reaction consisting of Buffer EB (Qiagen, 1014609), Amp Mix (10x Genomics, 2000047),

SI-P5-22 primer (20 mM, Supplementary file 5), and Chromium i7 Multiplex Kit N Set A (10x Geno-

mics, 3000262). ATAC PCR was performed in a C1000 Touch thermal cycler with 96-Deep Well Reac-

tion Module: 98˚C for 45 s, seven cycles of 98˚C for 20 s, 54˚C for 30 s, and 72˚C for 20 s, followed

by a final extension of 72˚C for 1 min. ADT fragments were amplified in a 100 mL reaction consisting

of Buffer EB (Qiagen, 1014609), KAPA HiFi HotStart ReadyMix (KAPA Biosystems, KM2602), SI-P5-

22 primer (10 mM, Supplementary file 5), and ADT i7 primer (10 mM, Supplementary file 5). ADT

PCR was performed in a C1000 Touch thermal cycler with 96-Deep Well Reaction Module: 95˚C for 3

min, 15 cycles of 95˚C for 20 s, 60˚C for 30 s, and 72˚C for 20 s, followed by a final extension of 72˚C

for 5 min. SPRIselect reagent cleanups were performed with a 1.2� bead:sample ratio for ADT

libraries and a dual-sided size selection of 0.4�/1.2� bead:sample ratio for ATAC libraries.

ICICLE-seq sequencing
Final libraries were quantified using qPCR (KAPA Biosystems Library Quantification Kit for Illumina,

KK4844) on a CFX96 Touch Real-Time PCR Detection System (Bio-Rad, 1855195). Library quality and

average fragment size were assessed using a Bioanalyzer (Agilent, G2939A) High Sensitivity DNA

chip (Agilent, 5067-4626). Libraries were sequenced on the Illumina NovaSeq platform with the
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following read lengths: 28 bp read 1 (Cell barcode and UMI), 8 bp i7 index, 100 bp read 2 (ATAC-

seq sequence or ADT barcode). A Truseq read 1 primer (0.3 mM, Supplementary file 5) was

included as a Custom Read 1 primer to mitigate the risk of off-target priming of the standard Illu-

mina Nextera read 1 primer on the partial Nextera R1N sequence included in the mosaic end por-

tion of the Poly-T Tn5 insertion.

ICICLE-seq data preprocessing
Demultiplexing of raw base call files into FASTQ files was performed using bcl2fastq2 (Illumina

v2.20.0.422). Read 2 was trimmed of adapter sequences, low-quality bases and reads, and polyA

tailing using fastp (Chen et al., 2018a) v0.21.0 (parameters: –adapter_sequence=CTGTCTCTTA

TACACATCT –cut_tailX–trim_poly_x) and the resulting read 2 sequences were aligned to the

GRCh38 (hg38) reference genome (Illumina iGenomes, https://support.illumina.com/sequencing/

sequencing_software/igenome.html) using Bowtie 2 (Langmead and Salzberg, 2012; v2.3.0, param-

eters: –local, –sensitive, –no-unal, –phred33). Aligned reads in SAM format were filtered by align-

ment score (�30) then tagged with cell barcode and UMI sequence and quality scores using custom

python code (python3 v3.7.3). Barcode sequences were compared against the 10x Genomics v3 30

GEX barcode whitelist (3M-february-2018.txt.gz). Sequences not included in the whitelist were cor-

rected to a valid whitelist barcode by allowing a single base mismatch (Hamming distance of 1).

Sequences with more than one possible match were corrected at the position with the lowest

sequencing quality score. Reads with barcodes that could not be corrected were excluded from fur-

ther analysis. Filtered and tagged SAM files were converted to sorted, indexed BAM files using

GATK (McKenna et al., 2010; Broad Institute v4.1.4.0). Genomic coordinates were converted to

BED format using bedtools (Quinlan and Hall, 2010; v2.26.0). Custom python code was used to col-

lapse aligned fragments into a list of fragments with unique cell barcode and genomic coordinate

combinations. These fragments were then written as a fragments.tsv.gz file in the format: chr, start

position, end position, cell barcode, UMI count, and strand (+/–).

ADT data preprocessing
Methods for ADT counting were developed in-house and were implemented as an optimized, highly

efficient C program named BarCounter (available at https://github.com/AllenInstitute/Barcounter-

release). BarCounter was used for single-cell ADT counting as follows: firstly, barcode sequences

were compared against the 10x Genomics v3 30 GEX barcode whitelist (3M-february-2018.txt.gz).

Sequences not included in the whitelist were corrected to a valid whitelist barcode by allowing a sin-

gle base mismatch (hamming distance of 1) at a low-quality basecall (sequencing quality score <20).

Reads with barcodes that could not be corrected were excluded from further analysis. Next, ADT

barcode sequences were compared against a CSV taglist containing ADT barcode/antibody associa-

tions. Antibody barcodes in the current TotalSeq-A catalog (BioLegend) have a Hamming distance

from all other barcodes of at least 3. Therefore, a single base mismatch (Hamming distance of 1) was

allowed. Reads containing ADT sequences that could not be assigned to an antibody in the taglist

were excluded. Finally, UMI sequences that were unique within their assigned ADT for their assigned

cell barcode were counted. Final ADT UMI counts were written by cell barcode to a CSV file for use

in downstream analysis.

ADT features were filtered by comparison to the mouse IgG1k isotype control, which should not

bind to human cell surface proteins. The distribution of counts for each antibody was compared to

the control using a Mann–Whitney test (R function wilcox.test with parameter alternative = ‘greater’).

Any features for which the test returned a p-value>1�10�9 were considered similar to the control

and were removed from downstream analysis (Supplementary file 6).

ICICLE-seq analysis
Aligned ICICLE-seq chromatin accessibility fragments.tsv.gz files were preprocessed as for 10� scA-

TAC-seq samples, above. QC filtering was performed as described, with modified cutoffs: >500

uniquely aligned reads, FRIP >0.65, FRITSS > 0.2, and fraction of fragments overlapping ENCODE

reference regions > 0.5 were retained for downstream analysis. For 2D projections of the scATAC-

seq data, we used binarized sparse matrices of 20 kb window accessibility across the hg38 genome,

selected features found in >0.5% of cells, weighted features using LogTF-IDF, and performed PCA
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as described above. We then removed the first PC and retained the remaining PCs up to PC 20.

UMAP was performed with adjusted parameters (scale = FALSE, min_dist = 0.2). To assign cell-type

labels, filtered fragments.tsv.gz files were used as input to ArchR. ArchR functions addIterativeLSI

and addGeneIntegrationMatrix (parameters transferParams = list(dims = 1:10, k.weight = 20) and

nGenes = 4000) were used to transfer labels from the scRNA-seq PBMC reference described above

(scATAC Cell Type Labeling).

Count matrices for ADT data were scaled for each cell by dividing by the thousands of total ADT

UMIs per cell, then transformed using Log10(scaled count + 1). Normalized features were used for

PCA using the R function prcomp with default parameters. Filtered and normalized features were

used as direct input to UMAP (R package uwot with parameter min_dist = 0.2) with the first two PCs

from PCA used as initial coordinates to aid reproducibility of UMAP projection. Cells were clustered

using a Jaccard–Louvain method (parameters k = 15, radius = 1) using UMAP coordinates. Clusters

with high signal from the mouse IgG1k isotype control antibody were removed from subsequent

analysis (one cluster, n = 32 cells). The remaining clusters were manually labeled by examination of

cell-type marker enrichment. The R package scratch.vis (Tasic et al., 2018; https://github.com/alle-

ninstitute/scrattch.vis; Graybuck, 2021a; copy archived at swh:1:rev:aa9094fb3d92f05264-

c9aa0911eb4c4967862609) was used to generate the cluster median heatmap plot and a river/

alluvial plot comparing the cell-type labels obtained from ATAC-seq and ADT-based analyses.

To compare peaks between cell types, all filtered fragments for cells in each cell type were aggre-

gated and used as input to the MACS2 peak caller (Zhang et al., 2008; parameters -f BED, -g hs, –

no-model). The top 2500 peaks from each cell type were selected for comparison (except for Plas-

mablasts, for which all 592 peaks were used). A master set of peaks across all types was constructed

by combining all narrowPeak results files and combining the outer coordinates of overlapping peaks

(GenomicRanges function reduce). A binary matrix of peak overlaps for each cell type was generated

and used to construct the peak comparison figure inspired by UpSet plots (Lex et al., 2014).

TEA-seq
TEA-seq library preparation
Consistent with ICICLE-seq, cryopreserved PBMCs were thawed, stained for FACS, depleted of neu-

trophils, dead cells, and debris through FACS, stained with TotalSeq-A antibodies (BioLegend,

Supplementary file 6), and permeabilized using 0.01% digitonin as described above. ATAC and

Gene Expression libraries were prepared according to the Chromium Next GEM Single Cell Multi-

ome ATAC + Gene Expression User Guide (CG000338 Rev A) with several modifications. To gener-

ate a high-quality reference dataset, we generated four 10x Genomics wells of TEA-seq. For each

well, transposition was performed by diluting 15,400 permeabilized cells to a final volume of 5 mL in

isotonic Tagmentation Buffer (20 mM Tris-HCl pH 7.4, 150 mM NaCl, 3 mM MgCl2, RNase Inhibitor

1 U/mL; Lucigen NxGen, F83923-1). Cells were mixed with 10 mL of a transposition master mix con-

sisting of 7 mL ATAC Buffer B (10x Genomics, 2000193) and 3 mL ATAC Enzyme B (Tn5 transposase;

10x Genomics, 2000265) per reaction. Transposition was performed by incubating the prepared

reactions on a C1000 Touch thermal cycler with 96–Deep Well Reaction Module (Bio-Rad, 1851197)

at 37˚C for 60 min, followed by a brief hold at 4˚C. A Chromium NextGEM Chip J (10x Genomics,

2000264) was placed in a Chromium Next GEM Secondary Holder (10x Genomics, 3000332) and

50% glycerol (Teknova, G1798) was dispensed into all unused wells. A master mix composed of Bar-

coding Reagent Mix (10x Genomics, 2000267), Reducing Agent B (10x Genomics, 2000087), Tem-

plate Switch Oligo (10x Genomics, 3000228), and Barcoding Enzyme Mix (10x Genomics, 2000266)

was then added to each sample well, pipette-mixed, and loaded into row 1 of the chip. Chromium

Single Cell Multiome Gel Beads v1.1 (10x Genomics, 2000261) were vortexed for 30 s and loaded

into row 2 of the chip, along with Partitioning Oil (10x Genomics, 2000190) in row 3. A 10x Gasket

(10x Genomics, 3000072) was placed over the chip and attached to the Secondary Holder. The chip

was loaded into a Chromium Single Cell Controller instrument (10x Genomics, 120270) for GEM

generation. At the completion of the run, GEMs were collected, and reverse transcription and bar-

coding were performed by incubating GEMs on a C1000 Touch thermal cycler with 96–Deep Well

Reaction Module at 37˚C for 45 min, 25˚C for 30 min, followed by a brief hold at 4˚C. Upon comple-

tion of the GEM incubation, 5 mL of Quenching Agent (10x Genomics, 2000269) was immediately

added and mixed with the reaction solution.
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GEMs were separated into a biphasic mixture through addition of Recovery Agent (10x Geno-

mics, 220016), the aqueous phase was retained and cleared of barcoding reagents using Dynabeads

MyOne SILANE (10x Genomics, 2000048) and 2.0� bead:sample ratio SPRIselect reagent (Beckman

Coulter, B23318) cleanups, incubating for 10 min after each bead addition step.

Barcoded ATAC and cDNA fragments were amplified using a PCR reaction consisting of 45 mL of

template, 50 mL of Pre-Amp Mix (10x Genomics, 2000270), 5 mL of Pre-Amp Primers (10x Genomics,

2000271), and 1 mL of ADT-Rev-AMP (0.2 mM, Supplementary file 5). Amplification was performed

in a C1000 Touch thermal cycler with 96–Deep Well Reaction Module: 72˚C for 5 min, 98˚C for 3

min, for seven cycles of 98˚C for 20 s, 63˚C for 30 s, and 72˚C for 1 min, with a final extension of 72˚C

for 1 min. Amplified fragments were purified using a 2.0� bead:sample ratio SPRIselect reagent

(Beckman Coulter, B23318) bead clean-up, incubating for 10 min after bead addition.

Sequencing ready ATAC libraries were constructed by amplifying barcoded ATAC fragments in a

sample indexing PCR consisting of SI-PCR Primer B (10x Genomics, 2000128), Amp Mix (10x Geno-

mics, 2000047), and Sample Index Plate N, Set A (10x Genomics, 3000427) as described in the 10x

Multiome User Guide. Amplification was performed in a C1000 Touch thermal cycler with 96–Deep

Well Reaction Module: 98˚C for 45 s, then nine cycles of 98˚C for 20 s, 67˚C for 30 s, and 72˚C for 20

s, with a final extension of 72˚C for 1 min. Final ATAC libraries were prepared using a dual-sided

0.6�/1.6� bead:sample SPRIselect reagent (Beckman Coulter, B23318) size-selection clean-up.

cDNA fragments were amplified using a PCR reaction consisting of 35 mL of template, 50 mL of

Amp Mix (10x Genomics, 2000047), 15 mL of cDNA Primers (10x Genomics, 2000089), and 1 mL of

ADT-Rev-AMP (2 mM, Supplementary file 5). Amplification was performed in a C1000 Touch ther-

mal cycler with 96–Deep Well Reaction Module: 98˚C for 3 min, then eight cycles of 98˚C for 15 s,

63˚C for 20 s, and 72˚C for 1 min, with a final extension of 72˚C for 1 min. cDNA and ADT fragments

were separated using a dual-sided SPRIselect reagent (Beckman Coulter, B23318) size-selection

clean-up. Large cDNA fragments were retained in an initial 0.6� bead:sample SPRIselect incubation,

reactions were incubated on a magnet, and small unbound fragments containing ADTs were trans-

ferred to new wells where they were subjected to an additional 2.0� bead:sample SPRIselect

cleanup.

Consistent with ICICLE-seq, ADT fragments were amplified in a 15 cycle indexing PCR, substitut-

ing SI-PCR-Oligo primer (10 mM, Supplementary file 5) for SI-P5-22. Final ADT libraries were pre-

pared using a dual-sided 1.6� bead:sample SPRIselect reagent (Beckman Coulter, B23318) clean-up.

cDNA Fragmentation, End-Repair, and A-tailing were performed in a joint reaction containing

25% of cDNA sample as described in the 10x Multiome User Guide. Briefly, cDNA was diluted in

Buffer EB (Qiagen, 1014609) and combined with master mix of Fragmentation Buffer (10x Genomics,

2000091) and Fragmentation Enzyme (10x Genomics, 2000090). The reaction was incubated in a

C1000 Touch thermal cycler with 96–Deep Well Reaction Module: 4˚C start, 32˚C for 5 min, and 65˚C

for 30 min, followed by a brief hold at 4˚C. Reactions were purified using a dual-sided 0.6�/0.8�

bead:sample SPRIselect reagent (Beckman Coulter, B23318) size-selection clean-up. Ligation was

performed by mixing each sample with a master mix consisting of Ligation Buffer (10x Genomics,

2000092), DNA Ligase (10x Genomics, 220110), and Adapter Oligos (10x Genomics, 2000094), and

incubating in a C1000 Touch thermal cycler with 96–Deep Well Reaction Module for 15 min at 20˚C,

followed by a brief hold at 4˚C. Ligation reactions were purified using a 0.8� bead:sample SPRIselect

reagent (Beckman Coulter, B23318) clean-up.

Sequencing ready Gene Expression libraries were constructed by amplifying cDNA fragments in a

sample indexing PCR consisting of Amp Mix (10x Genomics, 2000047) and Dual Index TT Set A (10x

Genomics, 3000431) as described in the 10x Multiome User Guide. Amplification was performed in a

C1000 Touch thermal cycler with 96–Deep Well Reaction Module: 98˚C for 45 s, for 14 cycles of 98˚C

for 20 s, 54˚C for 30 s, and 72˚C for 20 s, with a final extension of 72˚C for 1 min. Final Gene Expres-

sion libraries were prepared using a dual-sided 0.6�/0.8� bead:sample SPRIselect reagent (Beck-

man Coulter, B23318) size-selection clean-up.

A bench protocol for TEA-seq is available on protocols.io at https://www.protocols.io/view/tea-

seq-bqagmsbw.
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TEA-seq sequencing
Final libraries were quantified using qPCR (KAPA Biosystems Library Quantification Kit for Illumina,

KK4844) on a CFX96 Touch Real-Time PCR Detection System (Bio-Rad, 1855195). Library quality and

average fragment size were assessed using a Bioanalyzer (Agilent, G2939A) High Sensitivity DNA

chip (Agilent, 5067-4626). Libraries were sequenced on the Illumina NovaSeq platform with the fol-

lowing read lengths: 50 bp read 1, 10 bp i7 index, 16 bp i5 index, 90 bp read 2.

TEA-seq data processing
Demultiplexing of raw base call files into FASTQ files was performed using bcl2fastq2 (Illumina

v2.20.0.422, parameters: –create-fastq-for-index-reads, –minimum-trimmed-read-

length=8, –mask-short-adapter-reads=8, –ignore-missing-positions, -ignore-miss-

ing-filter, –ignore-missing-bcls, -r 24 w 24 p 80). TheX–use-bases-mask option was

used to adjust the read lengths for each library type as follows: Y28n*,I10,I10n*,Y90n* for Gene

Expression, Y50n*,I8n*,Y16,Y50n* for ATAC, and Y28n*,I8n*,n*,Y90n* for ADT.

TEA-seq analysis
For analysis of TEA-seq data alone, the full available sequencing depth from each library for each

well was used for alignment. RNA and ATAC libraries were aligned using cellranger-arc software

(v1.0.0, 10x Genomics) against 10x genomics reference refdata-cellranger-arc-GRCh38-2020-A using

default parameters. ADT barcode counting was performed using BarCounter as described above for

ICICLE-seq. After alignment, ATAC-seq data was used as input for scATAC-seq Quality Control anal-

ysis and filtering, as described above. The 10x droplet barcodes that were called cells by the cell-

ranger-arc software passed ATAC-seq QC criteria (>2,500 unique fragments, FRIP >0.2,

FRITSS > 0.2, and fraction of fragments overlapping ENCODE reference regions > 0.5) and

had >500 genes detected were used for downstream analysis.

Selected scATAC-seq barcodes were further processed using ArchR (v1.0.1) for Iterative LSI, Clus-

tering, Group Coverage computation, Reproducible Peak Set annotation, and sparse Peak Matrix

generation using default settings according to the ArchR documentation (https://archrproject.com).

We then used the Peak Matrix as input for an additional round of Iterative LSI based on these fea-

tures (Peak LSI), then used the ArchR addUMAP function for two-dimensional UMAP projection.

Next, the scRNA-seq count matrix generated by cellranger-arc, the Peak Matrixand, Peak LSI

data (for analysis), and UMAP projection, and Gene Score Matrix (for visualization) generated using

ArchR and the ADT count matrix were filtered and combined as assays in a Seurat object (Seurat

v4.0.0-beta), and dimensionality reduction for scRNA-seq and ADTs was carried out using parame-

ters specific to each assay as described below.

For scRNA-seq, the matrix was normalized (NormalizeData function, default settings), variable

features were identified (FindVariableFeatures function, defaults), the data was scaled (ScaleData

function, defaults), PCA was performed (RunPCA function, defaults), and a UMAP projection was

generated (RunUMAP, dims = 1:30). For label transfer, we performed SCTransform to normalize the

data in order to match the Seurat Multimodal Reference Dataset for PBMCs (available from the Sat-

ija lab at https://atlas.fredhutch.org/data/nygc/multimodal/pbmc_multimodal.h5seurat, Hao et al.,

2020). Label transfer was then performed using the Seurat functions FindTransferAnchors and Trans-

ferData as described in the Seurat v4 Vignettes. For consistency with other figures in the paper, we

mapped the reference labels in the ‘celltype.l2’ categories onto the cell-type categories presented

in the reference used for scATAC-seq label transfer, above.

For ADT counts, the data was normalized (NormalizeData function, scale.factor = 1000) and

scaled (ScaleData function, defaults), then used directly as inputs for UMAP projection (RunUMAP

function).

For scATAC-seq data, we imported the results from ArchR for presentation and analysis,

described above.

Multi-modal weighted nearest-neighbors analysis
In order to perform weighted nearest neighbors (WNN) analysis with input from all three assays

above, we extended the functions provided by Seurat v4.0.0-beta (Hao et al., 2020), which utilize

only two assays, to allow an arbitrary number of reduced dimension sets to be used as input. To do
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so, we performed within-modality and cross-modality predictions and computed cross-modal affini-

ties as described by Y. Hao and S. Hao et al. We then generalized the computation of cell-specific

modality affinity ratio, S, for each cell i, in each modality, a, using a small value for e (10�4) as sug-

gested by Y. Hao and S. Hao et al.

SaðiÞ ¼
�aðxi; x̂i;knnaÞ

b 6¼a
max �aðxi; x̂i;knnbÞ

� 	

þ "

Here, xi and xi;knna represent a generic form of the actual and predicted values of the low-

dimensionality representation of each cell in each modality, as described for RNA and protein in Y.

Hao and S. Hao et al. (e.g., ri and ri;knna for scRNA), and b is used to represent all modalities that are

not the modality under consideration (e.g., ADT and scATAC-seq when a is RNA). The formula for

�a xi;xi;knna
� �

and �a xi;xi;knnb
� �

is given in Y. Hao and S. Hao et al.

With these multiple Sa ið Þ values, we then compute the cell-specific modality weights, wa ið Þ as

waðiÞ ¼
eSa ðiÞ

P

b e
SbðiÞ

To generate the weighted pairwise cell similarities, we now sum across all modalities instead of

only RNA and protein:

�weightedði; jÞ ¼
X

a

waðiÞ�aðxi;xjÞ

These multi-modal weighted similarities were then used to construct the WNN graph and perform

WNN-based UMAP projection as described by Y. Hao and S. Hao et al. The modified version of

Seurat v4.0.0-beta used for this analysis is available at https://github.com/aifimmunology/seurat

(Swanson, 2021; copy archived at swh:1:rev:d49409e847ba787cb483d12bd5712d1083f41ac1). In

the specific case of TEA-seq integration, we used scRNA-seq PCA dimensions 1:30, ATAC Peak LSI

dimensions 1:30, and all normalized and scaled ADT features passing QC criteria (1:38).

Peak linkage analysis
To identify peak-to-RNA and peak-to-protein correlations in TEA-seq data, we first generated low-

dimensional embeddings based on joint analysis for RNA and ATAC data using Archr. We generated

an ArchR project using all four of the TEA-seq wells generated and filtered, above. We used the 500

bp tile matrix generated by ArchR to perform LSI for ATAC data using addIterativeLSI. We then

imported the RNA-seq data using import10xFeatureMatrix, added the matched RNA data to the

project using addGeneExpressionMatrix, and reduced dimensions with addIterativeLSI with modified

parameters (clusterParams = list(resolution = 0.2, sampleCells = 1e4, n.start = 10, varFeatures = 2500,

firstSelection = ‘variable’, binarize = FALSE)). We then integrated LSI results using addCombined-

Dims, then clustered cells using the combined LSI dimensions using addClusters. We then called

peaks for each cluster using addGroupCoverages and addReproduciblePeakSet, before generating

a per-cell peak matrix using addPeakMatrix. Next, we recomputed the ATAC-seq LSI based on the

peak matrix with addIterativeLSI and generated a refined set of joint reduced dimensions in combi-

nation with the RNA LSI results with addCombinedDims. These combined, peak-based dimensions

were used to identify peak-to-RNA correlations using addPeak2GeneLinks. For loop visualizations,

we filtered the peak-to-RNA correlations using getPeak2GeneLinks with adjusted parameters (cor-

CutOff = 0.05, FDRCutOff = 0.01, resolution = 1000, returnLoops = TRUE), and results were filtered

for epitope antibody targets (Supplementary file 6). To compute peak-to-Protein correlations, we

substituted the ADT count matrix for the RNA matrix by using the ADT matrix as an input for addG-

eneExpressionMatrix, then re-ran the addPeak2Gene links and getPeak2GeneLinks functions with

the same parameters listed, above. For comparisons shown in scatter plots, we used the base-spe-

cific (non-binned) findPeak2GeneLinks results stored in the ArchR object, and selected all peak-to-

RNA or peak-to-Protein links identified for each gene with the same corCutOff and FDRCutOff

parameters shown above.
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Cross-modal comparison of TEA-seq, CITE-seq, and scATAC-seq
Joint sample processing and aliquots
To allow direct comparison of TEA-seq data to CITE-seq, scATAC-seq, and 10x Multiome RNA +

ATAC performed on unstained nuclei and permeabilized cells, we thawed leukapheresis-purified

PBMCs and performed dead cell, debris, and neutrophil removal by FACS as described above. We

then separated this pool into separate aliquots for antibody staining (for CITE-seq and TEA-seq),

nuclei isolation (for 10x Multiome RNA + ATAC), and two separate cell permeabilization aliquots (for

scATAC-seq and 10x Multiome RNA + ATAC). scATAC-seq was performed using 0.01% digitonin

permeabilization as described above. We then stained the CITE-seq and TEA-seq aliquot using the

same 46 antibody panel as described above for ICICLE-seq and TEA-seq, and divided this stained

pool for whole-cell CITE-seq (described below) and TEA-seq. Finally, we permeabilized the TEA-seq

portion of this aliquot to perform TEA-seq as described above. For 10x Multiome RNA + ATAC

libraries, we either permeabilized cells with 0.01% digitonin as describe above or purified nuclei as

described by the 10x Genomics Nuclei Isolation for Single Cell Multiome ATAC + Gene Expression

Sequencing Demonstrated Protocol (CG000365 Rev B). Protocol steps following sample preparation

for TEA-seq or Multiome ATAC + Gene Expression were performed as described above. For Multi-

ome ATAC + Gene Expression on nuclei or permeabilized cells, we excluded steps for ADT process-

ing. A diagrammatic overview of this experimental workflow is provided in Figure 4—figure

supplement 4a.

CITE-seq library preparation
CITE-seq library generation was performed using 10x Genomics Single Cell 30 v3.1 kit, based on the

10 � 30 Gene Expression Library Construction Guide (CG000204 Rev B) and the New York Genome

Center Technology Innovation Lab CITE-seq protocol (version 2019-02-13). Briefly, a Chromium Next

GEM Chip G (10x Genomics, 2000177) was placed in a Chromium Next GEM Secondary Holder and

50% glycerol was dispensed into all unused wells. A barcoding master mix was prepared, which con-

sisted of RT Reagent B (10x Genomics, 2000165), Template Switch Oligo (10x Genomics, 3000228),

Reducing Agent B (10x Genomics, 2000087), and RT Enzyme C (10x Genomics, 2000085). The mas-

ter mix was added to the sample well, pipette-mixed, and loaded into row 1 of the chip. Chromium

Single Cell 3’ v3.1 Gel Beads (10x Genomics, 2000164) were vortexed for 30 s and loaded into row 2

of the chip, along with Partitioning Oil (10x Genomics, 2000190) in row 3. A 10x Gasket (10x Geno-

mics, 370017) was placed over the chip and attached to the Secondary Holder. The chip was loaded

into a Chromium Single Cell Controller instrument for GEM generation. GEMs were separated into a

biphasic mixture through addition of Recovery Agent (10x Genomics, 220016), the aqueous phase

was retained and removed of barcoding reagents using Dynabeads MyOne SILANE beads. cDNA

amplification was performed using the 10x Genomics cDNA Primers (2000089) on a C1000 Touch

thermal cycler with 96-Deep Well Reaction Module: 53˚C for 45 min, 85˚C for 5 min, followed by a

hold at 4˚C.

To separate ADT and cDNA libraries, we performed a 0.6� bead:sample SPRIselect reagent

size selection. The bead fraction from this separation was retained as the cDNA fraction, and super-

natant separation was retained as the ADT-containing fraction. To further process ADTs, we added

an additional 1.4� SPRI volumes to the ADT-containing supernatant to a final ratio of 2� SPRI:sam-

ple, then retained the bead fraction of this second step. We then repeated a fresh 2� bead:sample

cleanup, retaining the bead fraction as the ADT library. ADTs were amplified in a 100 mL reaction

consisting of Buffer EB, KAPA HiFi HotStart ReadyMix, SI-PCR-Oligo primer (10 mM,

Supplementary file 5), and ADT i7 primer (10 mM, Supplementary file 5). ADT PCR was performed

in a C1000 Touch thermal cycler with 96-Deep Well Reaction Module: 95˚C for 3 min, 12 cycles of

95˚C for 20 s, 60˚C for 30 s, and 72˚C for 20 s, followed by a final extension of 72˚C for 5 min. SPRIse-

lect reagent cleanups were performed with a 1.6� bead:sample ratio to generate final ADT libraries.

cDNA Fragmentation, End-Repair, A-tailing, and indexed amplification were performed as

described in the 10 � 30 Gene Expression Library Construction Guide. These steps match the 10x

Multiome guide and are described above in the TEA-seq library construction methods.
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10x Multiome and TEA-seq library preparation
As described above, unstained FACS-sorted PBMCs were used as input to nuclei and permeabilized

cell Multiome ATAC plus Gene Expression library preparation. Nuclei were isolated according to 10x

Genomics Demonstrated Protocol CG000365 Rev A exactly as recommended for cryopreserved

PBMCs. Cells were permeabilized as described above. Libraries were prepared according to the 10x

Genomics Chromium Next GEM Single Cell Multiome ATAC plus Gene Expression user guide

CG000338 Rev A.

TEA-seq libraries were prepared as described previously in the methods above.

Sequencing of cross-modal libraries
All Multiome ATAC plus Gene Expression and TEA-seq libraries were sequenced on an Illumina

NovaSeq S4 v1.0 flowcell with the following read lengths: 50 bp read 1, 10 bp i7 index, 16 bp i5

index, 90 bp read 2. Following sequencing, read lengths were adjusted to the applicable length for

each datatype (ATAC, gene expression, ADT) during demultiplexing. Demultiplexing of raw base

call files into FASTQ files was performed using bcl2fastq2 (Illumina v2.20.0.422, parameters: –cre-

ate-fastq-for-index-reads, –minimum-trimmed-read-length=8, –mask-short-

adapter-reads=8, –ignore-missing-positions, -ignore-missing-filter, –ignore-

missing-bcls, -r 24 w 24 p 80). The –use-bases-mask option was used to adjust the read

lengths for each library type as follows: Y28n*,I10,I10n*,Y90n* for Gene Expression, Y50n*,I8n*,Y16,

Y50n* for ATAC, and Y28n*,I8n*,n*,Y90n* for ADT.

CITE-seq libraries were sequenced on the Illumina NextSeq platform using a high-output flowcell

with the following read lengths: 28 bp read 1, 8 bp i7 index, 91 bp read 2. Demultiplexing of CITE-

seq raw base call files into FASTQ files was performed using 10x Genomics cellranger mkfastq

(v.3.0.2).

The scATAC library was sequenced on the Illumina NextSeq platform using a high-output flowcell

with the following read lengths: 51 bp read 1, 8 bp i7 index, 16 bp i5 index, 51 bp read 2. Demulti-

plexing of raw base call files into FASTQ files was performed using 10x cellranger-atac mkfastq (10x

Genomics v.1.1.0).

Data analysis
To perform comparisons between these methodologies, all scRNA-seq and scATAC-seq libraries

were downsampled to 200 million FASTQ entries (200 million of each sequenced read; ~20,000

reads per expected cell recovered at ~10,000 cell expected recovery), and all ADT libraries were

downsampled to 48 million reads (limited by the available read count for one

experiment; ~4,800reads per expected cell recovered). For scATAC-seq data, we used cellranger-

atac (v 1.2.0) to align the data to 10x Genomics reference refdata-cellranger-atac-GRCh38-1.2.0. For

CITE-seq data, RNA alignment was performed using cellranger (v5.0.0) with the –include-introns

parameter against 10x Genomics reference refdata-gex-GRCh38-2020-A. For 10x Multiome and

TEA-seq, we aligned RNA and ATAC data using cellranger-arc (v1.0.0) against 10x Genomics refer-

ence refdata-cellranger-arc-GRCh38-2020-A. To analyze CITE-seq and TEA-seq ADT libraries, we

used BarCounter to compute the counts of ADT barcodes for each 10x cell barcode, as described

for ICICLE-seq and TEA-seq, above.

After alignment or tabulation of each dataset, cell barcodes were filtered using modality and

method-specific criteria based on inspection of the distribution of QC data for each library. Filtering

was performed to remove low-quality barcodes and putative doublets. For transcription (RNA-seq

data), we filtered barcodes based on number of genes detected per barcode: TEA-seq: >500

genes, <2,750 genes, 7098 barcodes retained; nuclei on 10x Multiome: >300 genes, <4,000 genes,

6717 barcodes retained; permeabilized cells on 10x Multiome: >300 genes, <2,750 genes, 8334

barcodes retained; CITE-seq: >500 genes, <5,000 genes, 7399 barcodes retained. For epitopes

(ADT data), both TEA-seq and CITE-seq were filtered based on number of UMIs (>300 UMIs

and <5000 UMIs): TEA-seq, 7661 barcodes retained; CITE-seq, 7493 barcodes retained. For accessi-

bility (ATAC-seq data), barcodes were filtered using the same criteria as other scATAC-seq libraries,

above (>1,000 unique fragments, FRIP > 0.2, FRITSS > 0.2, Fraction ENCODE overlap > 0.5), and

doublets were removed using the ArchR package (Granja et al., 2020): TEA-seq: 6725 barcodes
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retained; nuclei on 10x Multiome: 6541 barcodes retained; permeabilized cells on 10x Multiome:

7238 barcodes retained; standalone scATAC-seq: 11,963 barcodes retained.

After filtering, we performed modality-specific analyses to compare the performance of each

method in each separate modality. For transcription, scRNA-seq datasets were analyzed using the

Seurat package (v.4.0-beta, Hao et al., 2020; Stuart et al., 2019). Data was normalized using the

NormalizeData function, features were selected using the FindVariableFeatures function, and data

was then scaled using the ScaleData function. Scaled data for selected features was used as input

for PCA to reduce dimensionality, then projected to two dimensions using the RunUMAP function

on the first 30 principal component dimensions. All parameters were defaults. To label cells with

PBMC cell types, we utilized the same scRNA-seq reference from the Satija lab that was used for

scATAC-seq analysis, above. Label transfer was performed using FindTransferAnchors function (with

the parameter reduction = ‘cca’), followed by the TransferData function. Canonical correlation analy-

sis was used instead of a PCA-based transfer because the scRNA-seq datasets were aligned using

introns, while the reference was aligned using exons only. To compare gene detection across experi-

mental methods, we computed the fraction of filtered cell barcodes with �1 UMI for each gene.

For epitope (ADT) data from filtered cell barcodes, we filtered features to remove antibodies that

were similar to the Mouse IgG1k Isotype background control. For each cell barcode, we divided the

UMI counts for each feature by the number of UMI counts for the control, and flagged features with

�16-fold enrichment relative to the control. We then removed the following features that were

flagged in >0.5% of cells in the CITE-seq dataset: CD269 (TNFRSF17), CD304 (NRP-1), CD66b (CEA-

CAM8), CD80, and TCR Va24-Ja18. The TEA-seq dataset was filtered to remove these features to

allow comparison between TEA-seq and CITE-seq data. After feature filtering, each cell barcode

was normalized by dividing the UMI counts by the total UMI count, and multiplying by 10,000. Val-

ues for each feature were then scaled using the R scale function, and all features were used as input

for two-dimensional UMAP projection using the uwot R package (Melville, 2020).

For accessibility (scATAC-seq) data from filtered cell barcodes, we analyzed each dataset using

the ArchR package (v1.0.1 Granja et al., 2020). For each dataset, we performed dimensionality

reduction using the addIterativeLSI function (with parameter varFeatures = 50,000), then generated

two-dimensional UMAP projections using the addUMAP function. To label cells, we used the addGe-

neIntegraitonMatrix function to compare the ArchR GeneScore matrix to the same scRNA-seq refer-

ence used for scRNA-seq, above.

Data analysis and visualization software
Post-processing analysis of summary statistics and visualization of snATAC-seq, scATAC-seq, and

ICICLE-seq was performed using R v.3.6.3 and greater (R Development Core Team, 2020) in the

Rstudio IDE (RStudio Team, 2020; Integrated Development Environment for R) or using the Rstudio

Server Open Source Edition as well as the following packages: for scATAC-seq-specific analyses and

comparisons to scRNA-seq data, ArchR (Granja et al., 2020) and Seurat (Hao et al., 2020;

Stuart et al., 2019); for general data analysis and manipulation, data.table (Dowle and Srinivasan,

2019), dplyr, Matrix (Bates and Maechler, 2018), matrixStats (Bengtsson, 2018), purrr (Henry and

Wickham, 2019), and reshape2 (Wickham, 2007); for data visualization, ggplot2 (Wickham, 2016)

and cowplot (Wilke, 2018); for dimensionality reduction and clustering, igraph (Csardi and Nepusz,

2006), RANN, and the R uwot implementation (Melville, 2020) of UMAP (Becht et al., 2019;

McInnes et al., 2018); for manipulation of genomic region data, bedtools2 (Quinlan and Hall,

2010) and GenomicRanges (Lawrence et al., 2013); and for prediction of sequencing saturation,

preseqR (Deng et al., 2018; Deng et al., 2015).

Data and code availability
Raw scATAC-seq and ICICLE-seq, and TEA-seq data are in the process of deposition to dbGaP for

controlled access. Processed data has been submitted to GEO (accession number GSE158013).

Code related to processing, analysis, and visualization of data in this study is available at https://

github.com/alleninstitute/aifi-swanson-teaseq (Graybuck, 2021b; copy archived at swh:1:rev:

b88dbaf1568da1c8d6958bafd1abc8d36b214cc4).
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Additional files
Supplementary files
. Supplementary file 1. Antibody-fluorophore conjugates used to characterize peripheral blood

mononuclear cell cell-type abundance by flow cytometry before and after anti-CD15 bead-based

neutrophil depletion.

. Supplementary file 2. Quantification of major cell populations by flow cytometry before (pre-deple-

tion) and after (post-depletion) anti-CD15 bead-based neutrophil depletion of either Ficoll-purified

or leukapheresis-purified peripheral blood mononuclear cells. The gating strategy used to assess

these populations is presented in Figure 1—figure supplement 4.

. Supplementary file 3. Antibody-fluorophore conjugates used to assess peripheral blood mononu-

clear cell cell-type populations for evaluation of cell-type labeling.

. Supplementary file 4. Quantification of peripheral blood mononuclear cell cell-type populations

using the antibody panel provided in Supplementary file 3. The gating strategy used to assess

these populations is presented in Figure 2—figure supplement 1. Type labels and proportions

used for comparisons of scATAC-seq cell-type labeling in Figure 2d are provided in the last two col-

umns. When two gated populations are combined to tabulate a single cell type, the same cell-type

label is listed beside each gate. Cell-type proportions are listed only at the first instance of each cell

type.

. Supplementary file 5. Custom oligonucleotide sequences used to generate ICICLE-seq libraries.

. Supplementary file 6. Antibody-oligo conjugates (BioLegend TotalSeq-A) used for ICICLE-seq and

TEA-seq experiments to label peripheral blood mononuclear cell cell types.

. Supplementary file 7. Sources and presentation of human biological specimens utilized in this

study.

. Transparent reporting form

Data availability

Raw scATAC-seq and ICICLE-seq, and TEA-seq data are deposited dbGaP for controlled access

(dbGaP atudy accession phs002316.v1.p1). Processed data has been deposited in GEO (accession

number GSE158013).

The following dataset was generated:

Author(s) Year Dataset title Dataset URL
Database and Identifier

Swanson E, Lord C,
Green RR, Bumol
TF, Graybuck LT,
Skene PJ

2020 Integrated single cell analysis
of chromatin accessibility and
cell surface markers

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE158013

NCBI Gene Expression
Omnibus, GSE158013
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Allahverdi A, Chen Q, Korolev N, Nordenskiöld L. 2015. Chromatin compaction under mixed salt conditions:
opposite effects of sodium and potassium ions on nucleosome array folding. Scientific Reports 5:8512.
DOI: https://doi.org/10.1038/srep08512, PMID: 25688036

Bartosovic M, Kabbe M, Castelo-Branco G. 2020. Single-cell profiling of histone modifications in the mouse
brain. bioRxiv. DOI: https://doi.org/10.1101/2020.09.02.279703

Bates D, Maechler M. 2018. Matrix: Sparse and Dense Matrix Classes and Methods. Benjamin.
Becht E, McInnes L, Healy J, Dutertre C-A, Kwok IWH, Ng LG, Ginhoux F, Newell EW. 2019. Dimensionality
reduction for visualizing single-cell data using UMAP. Nature Biotechnology 37:38–44. DOI: https://doi.org/10.
1038/nbt.4314

Bengtsson H. 2018. matrixStats: Functions That Apply to Rows and Columns of Matrices (And to Vectors).
https://github.com/HenrikBengtsson/matrixStats

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to
multiple testing. Journal of the Royal Statistical Society: Series B 57:289–300. DOI: https://doi.org/10.1111/j.
2517-6161.1995.tb02031.x

Swanson et al. eLife 2021;10:e63632. DOI: https://doi.org/10.7554/eLife.63632 35 of 38

Tools and resources Genetics and Genomics Immunology and Inflammation

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE158013
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE158013
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE158013
https://doi.org/10.1083/jcb.111.3.807
https://doi.org/10.1038/srep08512
http://www.ncbi.nlm.nih.gov/pubmed/25688036
https://doi.org/10.1101/2020.09.02.279703
https://doi.org/10.1038/nbt.4314
https://doi.org/10.1038/nbt.4314
https://github.com/HenrikBengtsson/matrixStats
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.7554/eLife.63632
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