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Abstract Multiple brain regions are able to learn and express temporal sequences, and this
functionality is an essential component of learning and memory. We propose a substrate for such
representations via a network model that learns and recalls discrete sequences of variable order
and duration. The model consists of a network of spiking neurons placed in a modular microcolumn
based architecture. Learning is performed via a biophysically realistic learning rule that depends on
synaptic `eligibility traces'. Before training, the network contains no memory of any particular
sequence. After training, presentation of only the first element in that sequence is sufficient for the
network to recall an entire learned representation of the sequence. An extended version of the
model also demonstrates the ability to successfully learn and recall non-Markovian sequences. This
model provides a possible framework for biologically plausible sequence learning and memory, in
agreement with recent experimental results.

Introduction
So long as time flows in one direction, nature itself is fundamentally sequential. To operate in this
reality, the brain needs to think, plan, and take action in a temporally ordered fashion. When you
sing a song, hit a baseball, or even utter a word, you are engaging in sequential activity. More accu-
rately, you are engaging in sequential recall of a learned activity ± your actions not only have 'a' tem-
poral order and duration but 'the' temporal order and duration which you learned. Hence, the
question of how sequence representations are learned, stored, and recalled is of fundamental impor-
tance to neuroscience. Recent evidence has shown that such learned representations can exist in cor-
tical circuits (Gavornik and Bear, 2014 ; Xu et al., 2012 ; Cooke et al., 2015 ; Eagleman and Dragoi,
2012 ; Yin et al., 2008 ), begging the question: through what sort of circuits and learning paradigms
can these representations arise?

To address these questions, we introduce a modular spiking network that can robustly learn and
recall both the order and duration of elements in a sequence, via a local and biophysically realistic
eligibility trace-based learning rule. Although the parts of the model's construction are based upon
recent experimental observations in visual cortex ( Gavornik and Bear, 2014 ; Xu et al., 2012 ;
Cooke et al., 2015 ), utilizing observed cell types ( Shuler and Bear, 2006 ; Liu et al., 2015 ;
Chubykin et al., 2013 ) and laminar structure (Potjans and Diesmann, 2014 ; Binzegger et al.,
2009 ), many of its key aspects (modularity, heterogenous representations) are illustrative of general
principles of sequence learning. The ability of the network to internally learn and recall both duration
and order, along with its use of a local learning rule that bypasses the need for constant and explicit
targets, differs from most historical and contemporary models of sequence learning ( Fiete et al.,
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2010 ; Pereira and Brunel, 2019 ; Klos et al., 2018 ; Jun and Jin, 2007 ; Liu and Buonomano, 2009 ;
Maes et al., 2020 ; Murray and Escola, 2017 ; Martinez et al., 2019 ; Rajan et al., 2016 ;
DePasquale et al., 2018 ; Laje and Buonomano, 2013 ; Sussillo and Abbott, 2009 ; Nicola and Clo-
path, 2017 ). We also present an extended formulation of the model, which is capable of learning
and recalling sequences with non-Markovian (i.e. history-dependent) transitions.

A variety of different models have been proposed to account for the representation and learning
of sequences. Most of these models fall into one of two classes: chain structures or recurrent neural
networks (RNNs). Chain structure models of neural sequence learning operate in a method akin to
synfire chains (Abeles, 1991 ) ± that is, representations of different individual stimuli are linked
together, in order, via feed-forward synaptic connections ( Fiete et al., 2010 ; Pereira and Brunel,
2019 ; Klos et al., 2018 ; Jun and Jin, 2007 ; Liu and Buonomano, 2009 ). These models can be for-
mulated either via an explicit neuron to neuron chain or via an implicit embedding in a random net-
work. While such a chain-like structure can readily encode order, there is nothing internally encoding
start times, stop times, or durations of the individual elements of the sequence. Some models use
the resulting activity chain as a temporal basis or `clock', upon which elements and their durations
can be learned at the level of the output, but the fragility of the chain itself can make such output
representations very sensitive to noise (Liu and Buonomano, 2009 ). Other models have attempted
to address these issues via ad hoc solutions such as variable adaptation time constants
(Martinez et al., 2019 ), but these typically require the network to have a priori information about
the sequence it will be representing.

RNNs are another common class of sequence learning models (DePasquale et al., 2018 ;
Laje and Buonomano, 2013 ; Sussillo and Abbott, 2009 ; Nicola and Clopath, 2017 ). Unlike explicit
feed-forward chain models, RNNs learn complex sequences by leveraging rich, dynamical represen-
tations to approximate target outputs. RNNs are fully capable of encoding duration and order, and
can embed multiple sequences at once. However, common learning rules for these models, such as
backpropagation through time (BPTT) or FORCE, are biologically unrealistic, as they require some
combination of non-local information, precise and symmetrical feedback structures, and/or explicit
feedback about the targets at every time point ( Whittington and Bogacz, 2019 ). Interestingly,
recent work has shown that networks can under some conditions learn inputs via random feedback
connections rather than backpropagation ( Lillicrap et al., 2016 ), but this random feedback is less
effective than BPTT for learning sequences with long time scales (Murray, 2019 ).

Experimentally, the expression of sequences in the brain often follows a compressed encoding, in
which order is represented but duration is not, and sequences are replayed with a time scale dic-
tated by the intrinsic time scales of the circuit ( Foster and Wilson, 2006 ; Skaggs and McNaughton,
1996 ; Davidson et al., 2009 ; Ji and Wilson, 2007 ). Such results can be accounted for by chain-like
models. However, there are also many cases where neural sequences are learned and replayed at or
near their behavioral time scale (Gavornik and Bear, 2014 ; Louie and Wilson, 2001 ;
Eichenlaub et al., 2020 ; Dave and Margoliash, 2000 ), for which a simple ordered chain is insuffi-
cient. To account for this latter phenomenon, our model takes elements from both chain and recur-
rent models in order to establish a new, hybrid framework for sequence learning. Our model's chain-
like, modular structure enables it learn the order of elements, while the recurrent structure within
that chain allows it to internally and flexibly learn those elements' duration. The structure of our net-
work allows us to use a local, biophysically realistic learning rule to adjust the synaptic weights. A
transient sequential input is presented during training, and over the course of training, our learning
rule causes the weights to reach fixed points. After training, the network can then recall the uncom-
pressed transient activity of the sequential input, complete with both duration and order, upon only
partial reactivation (e.g. stimulating only the first element in the sequence).

Results

A model for sequence learning based on modular architecture and
eligibility trace learning
Any model that can account for learning of behavioral temporal sequences must provide answers to
a simple set of questions: what measures the timing of each event in a sequence? How is that infor-
mation passed to the next, or the same computational unit? What mechanism provides the
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appropriate delay? How are all of these elements, the order, duration, and specific timing, learned
from experience? In a traditional `chain-like' network with Hebbian learning, order of presented stim-
uli can be readily encoded by learning directional feed-forward connections between populations.
However, this simple architecture proves insufficient for internally representing the duration of pre-
sented stimuli and their specific start and end times, as intrinsic time constants determine the speed
at which the signal travels through the network ( Murray and Escola, 2017 ; Martinez et al., 2019 ).

This issue is illustrated in Figure 1 . In this schematic model, each module responds to a specific
external stimulus. An external sequence activates these different modules in a given order and with
externally determined durations for each element ( Figure 1a ). Learning can change the feed-forward
synaptic efficacies between modules to reflect the order of the presented stimuli. Upon recall, trig-
gered by activating the first stimulus, each of the encoded stimuli are activated at the correct order.
However, the duration of activation within the module, as well as the timing of the activation of the
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Figure 1. Sequence representation in networks. (a) A network composed of different populations of cells, each population is activated by a specific
stimulus, and there are plastic connections between and within these populations. Initially these connections are random and weak. Upon presentation
of a sequence of stimuli (filled circles, left), the populations will become activated for the duration and in the order in which they are stimulated
(right). (b) After many presentations of a particular sequence, successful asymmetric Hebbian learning encodes the order of the stimuli into the synaptic
weights of the network. After training, upon presentation of the first element of the sequence (filled circle, left), the network can recall (right) the order
of presentation, but the timing and duration of each element is lost. In a generic network such as this, the timing of recall is determined by intrinsic
time constants of the system and not the duration in the sequence that was presented.
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subsequent module, is determined by the intrinsic time constants of the network ( Figure 1b ), caus-
ing a temporal compression of the recalled sequence. While certain time constants, asymmetrical
inhibition, or adaptation with slow time constants could be manually placed in the network to facili-
tate recall of the particular sequence in Figure 1a , there does not yet exist a realistic, robust, and
general solution to this problem.

In this work we present a network of spiking neurons that can learn the order, duration, and spe-
cific timing of sequence elements. This model uses local and biophysically realistic learning rules, in
contrast to most RNN models ( DePasquale et al., 2018 ; Laje and Buonomano, 2013 ; Sussillo and
Abbott, 2009 ; Nicola and Clopath, 2017 ). As in the `chain-like' models, the order is learned by
modifying the feed-forward synaptic efficacies between modules. Unlike those models, the duration
of each element is learned via modification of the recurrent connections within each module
(Fiete et al., 2010 ; Pereira and Brunel, 2019 ; Klos et al., 2018 ). However, these two components
are still not sufficient in order to avoid sequence compression during recall. In order to solve this
problem, we assume additional structure within each module and in the allowed connections
between modules. This additional structure allows us to avoid compression during recall while using
relatively simple local learning rules. Consequently, the cellular response types generated by this
network are consistent with experimental observation ( Shuler and Bear, 2006 ; Liu et al., 2015 ), as
described below.

Our network is composed of different modules that are selectively activated via feed-forward con-
nections by different external stimuli. Within each module, there are two populations of excitatory
cells as well as inhibitory cells (Figure 2a ). The excitatory cells in both populations are identical in
their intrinsic properties but differ in their learned and fixed connections with other cells within the
module and in different modules. We name these two excitatory populations `Timers' and `Messen-
gers' ± the reason for these terms will become clear below as we describe their roles within the net-
work. The `Timer' cells learn strong recurrent connections with other Timer cells within the module.
This strong recurrent connectivity results in long-lasting transient activity, which is used to represent
the duration of a given stimuli. Previous studies have analyzed in detail the relationship between
recurrent connectivity and duration of resulting transient activity following a stimulus
(Gavornik et al., 2009 ; Gavornik and Shouval, 2011 ). Timers also excite the inhibitory cells and the
`Messenger' cells. Since the inhibitory cells receive input from the Timers, they have roughly the
same temporal profile. However, inhibitory cells in the module decay slightly more quickly than their
Timer counterparts, thanks to a combination of shorter time constants for synaptic activation (80 ms
for excitatory, 10 ms for inhibitory), and small Timer to inhibitory weights (there are a number of
degenerate sets of parameters which can facilitate quickly decaying inhibitory cells) ( Huertas et al.,
2015 ) (see 'Materials and methods' and Supplementary materials for more details). Owing to this
temporal offset, Messenger cells selectively fire at the end of the Timers' transient activity, since
they receive input from both the Timer cells and the (faster decaying) inhibitory cells. The temporally
specific profile of the Messenger cells enables them to convey a temporally specific transition
between elements, via learned feed-forward connections to Timer cells in other modules. The Timer/
inhibitory/Messenger modular architecture can be constructed in a number of redundant ways,
including simply via random distributions of connections (see previous work ( Huertas et al., 2015 )
for a more detailed analysis).

For learning, we use a previously described reinforcement learning rule based on two competing,
synapse-specific, Hebbian-activated eligibility traces ( Huertas et al., 2016 ; He et al., 2015 ): one for
long-term potentiation (LTP) and one for long-term depression (LTD) (see 'Materials and methods').
The presence of Hebbian activity at a given synapse activates the two traces at different rates (and
to different saturation levels), and the absence of Hebbian activity causes the traces to decay at dif-
ferent rates. The change in synaptic weight is determined simply by the difference in these traces
upon presentation of a reinforcement signal. We have assumed that on every transition between
external stimuli, a `novelty' signal causes a global release of a neuromodulator, which acts as a rein-
forcement signal (see 'Materials and methods'). The assumption of a temporally precise but spatially
widespread neuromodulatory signal might seem at odds with common notions of temporally broad
neuromodulator release, but they are indeed consistent with recent recordings in several neruomo-
dulatory systems (Howe and Dombeck, 2016 ; Hangya et al., 2015 ). Eligibility traces for LTP have
been found in multiple brain regions ( Yagishita et al., 2014 ; Bittner et al., 2017 ; Brzosko et al.,
2017 ), and eligibility traces for both LTP and LTD have been found in both visual and prefrontal
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Figure 2. Microcircuit learns time intervals. (a) Mean firing rates of Timer (black), Messenger (red), and inhibitory populations (light blue) in a
microcircuit before learning (top) and after learning (bottom) to represent an 1100 ms interval. Inset: Core neural architecture (CNA) microcircuit. Solid
lines indicate fixed connections, while dotted lines indicate learned connections. ( b) Timer and Messenger cell type responses to delayed reward task in
V1. Green bar represents stimulus and blue bar represents reward. Schematic representation of data from Liu et al. (2015) .
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cortex (He et al., 2015 ). We have used this rule because it can solve the temporal credit assignment
problem, allowing the network to associate events distal in time, and because it reaches fixed points
in both recurrent and feed-forward learning tasks ( Huertas et al., 2016 ).

Using this rule and the described architecture within a single module, we find ( Figure 2a ) that the
network naturally generates cells that learn to be active for the duration of the stimulus (Timers), and
other cells that activate toward the end of the stimulus duration (Messengers). The Timer cells learn
the duration of the stimulus via changes in the excitatory synaptic efficacies within the Timer popula-
tion. The Messenger cells evolve their specific temporal profile due to the temporal profiles of their
fixed excitatory and inhibitory inputs from the Timer cells and the inhibitory cells. These results are
consistent with experimental observations in V1 circuits that learn the duration between a stimulus
and a reward (Shuler and Bear, 2006 ; Liu et al., 2015 ; Chubykin et al., 2013 ), as shown in
Figure 2b . These results replicate our previous results (Huertas et al., 2015 ) which used a learning
rule with a single trace (Gavornik et al., 2009 ).

This modular microcircuit, in which both Timer and Messenger cells emerge from learning, acts as
a `core neural architecture' (CNA) (Huertas et al., 2015 ), an elemental package of basic temporal
neural responses which can then be used within the larger network to create more complicated rep-
resentations. This CNA functions as the basic microcircuit for our sequence model, and each `ele-
ment' of an input sequence is represented by one of these CNA circuits. One must note that the
individual CNAs are plastic, as their temporal properties are not fixed but adapt to the environment,
through recurrent learning in the Timer population. In a structure akin to the microcircuits found in
cortical columns (Potjans and Diesmann, 2014 ), this model places distinct CNAs sensitive to particu-
lar visual stimuli in a columnar structure, as shown in Figure 3a . To prevent spurious excitation in our
noisy, spiking network, there is soft winner-take-all (WTA) inhibition between the columns (see
'Materials and methods' and 'Discussion' for more details). When presenting a sequence of visual
stimuli, different CNAs in turn become activated in sequence. Timer cells within those CNAs learn
the duration of their particular stimuli via recurrent connections, while order is learned via feed-for-
ward connections from Messengers in one column to Timers in a subsequently presented column.
We will show that this modular architecture can overcome the problem of sequence compression
encountered by `chain-like' models.

Learning and recalling the order and variable duration of presented
sequences
Using the above described architecture and learning rule (see 'Materials and methods' for more
details), the network is capable of robustly learning sequences of temporal intervals. Figure 3 shows
the network learning a sequence of four different elements, of duration 500, 1000, 700, and 1800
ms. The different stimuli here are labeled by color (blue, green, red, orange), and there are four cor-
responding columns in the network (out of 12) which are sensitive to these stimuli. In this example,
the inputs are modeled after lateral geniculate nucleus (LGN) responses to spot stimuli
(Ruksenas et al., 2007 ; Mastronarde, 1987 , see Figure 3Ðfigure supplement 1 ), but more gener-
ally one may consider these stimuli to be oriented gratings, specific natural images in a movie, or
non-visual stimuli such as pitches of sounds in a song.

Before learning, presentation of the blue stimulus only produces a transient response in the CNA
microcircuit housed in the blue-sensitive column ( Figure 3b ). During learning (Figure 3c,d ), a
sequence of stimuli is presented, and microcircuits in their respective columns learn to represent the
duration of the stimulus which activates them. The different microcircuits also learn to `chain'
together in the order in which they were stimulated. After learning, presentation of the blue stimulus
triggers a `recall' of the entire sequence ( Figure 3e ): blue for 500 ms, red for 1000 ms, green for 700
ms, and orange for 1800 ms. The network is capable of learning sequences of temporal intervals
where the individual elements can be anywhere from ~300 to ~1800 ms (see Figure 3Ðfigure sup-
plement 2 ) in duration, which agrees with the observed ranges used for training V1 circuits
(Gavornik and Bear, 2014 ; Shuler and Bear, 2006 ). Additional examples of learned sequences are
shown in Figure 3Ðfigure supplement 3 .

The network itself shows realistic spiking statistics, with interspike interval coefficients (ISIs) of var-
iation near 1. Figure 3Ðfigure supplement 4 shows both spike rasters and ISIs for a single recall
trial. The resulting firing rates are also roughly consistent with the experimentally observed Timers
and Messengers (Figure 2 ).
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In simulations we have been able to learn a sequence of up to eight elements ( Figure 3Ðfigure
supplement 5 ). The upper limit on the number of elements which can be learned in a sequence has
not been fully explored due to the computational time required. For this work, sequences of four
elements were chosen to match experimental results ( Gavornik and Bear, 2014 ). The model pre-
sented here is a high dimensional spiking model, but similar results are obtained with a low dimen-
sional rate model in which the activity of each population is presented by a single dynamical variable
(for details, see 'Materials and methods' and Figure 3Ðfigure supplement 6 ).
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Figure 3. Sequence learning and recall. (a) Network of 12 columns, each containing a core neural architecture (CNA) microcircuit selective for a
different stimulus. Columns containing microcircuits responding to blue, red, green, and orange stimuli are indicated. ( b±e) Mean firing rates for Timer
cells (light colors) and Messenger cells (dark colors) of four different columns during different stages of learning. Stimuli presented are shown as color
bars in the top of plots. During learning, columns are stimulated in the sequence indicated by the color bars (500, 1000, 700, and 1800 ms for blue, red,
green, and orange, respectively). (b) Before learning, the stimulation of a particular column only causes that column to be transiently active. ( c) During
the first trial of learning, all columns in the sequence become activated by the stimuli but have not yet learned to represent duration (through recurrent
learning of Timer cells) or order (through feed-forward learning of the Messenger cells). (d) After many trials, the network learns to match the duration
and order of presented stimuli. ( e) After learning, presenting the first element in the sequence is sufficient for recall of the entire sequence. Figure 3Ð
figure supplements 1 ±6 provide additional information on the network's construction, accuracy, robustness, spiking statistics, dynamics, and limits.
The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Input layer dynamics.
Figure supplement 2. Accuracy of learning and recall.
Figure supplement 3. Learning of different sequences.
Figure supplement 4. Spiking statistics in learned network.
Figure supplement 5. Eight element sequence recall.
Figure supplement 6. Rate-based learning and recall.
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To gain an understanding of why learning succeeds in this model, we focus on the learning occur-
ring between and within two selected modules in a sequence ( Figure 4 ). Before training, presenta-
tion of an isolated stimulus only evokes a transient response of the CNA sensitive to that specific
stimulus, since the Timer cells have yet to learn any recurrent connections, and the Messenger cells
have yet to establish any feed-forward connections to the Timer cells in other columns ( Figure 4a ).
During training, a particular sequence of inputs is presented and then repeated over many trials.
Hebbian activity in the network triggers activation of synapse-specific LTP and LTD associated eligi-
bility traces, which are then converted into changes in synaptic connections upon neuromodulator
release (purple arrows in Figure 4 ), occurring here closely after a change in stimuli (see Equa-
tions 8, 9, and 14 in 'Materials and methods'). Each trial pushes the weights in the network toward
their fixed points ( Equations 17 and 18 in 'Materials and methods'). Hebbian activity within the
Timer population causes activation of their respective eligibility traces, and subsequently an increase
in their recurrent connections ( Figure 4Ðfigure supplement 1 ). As these lateral connections grow,
Timer cells sustain their activity for longer, `extending' their firing profile out in time toward the neu-
romodulator signal associated with the start of the subsequent stimulus. As this occurs, Messenger
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Figure 4. Change in connectivity patterns resulting from learning. ( a) Before, (b) during, and (c) after learning a sequence. Left, view of columnar
structure and learned intercolumnar connections. Dotted box indicates region shown in side view, middle. Middle, the detailed view of two columns
and their core neural architectures (CNAs) and learned intracolumnar connectivity. Dotted lines indicate learned connections, continuous lines indicate
fixed connections. Right, illustration of mean firing rates for color coded columns. Light colors indicate Timer cells, dark colors indicate Messenger cells.
Color bars indicate stimulated columns. Purple arrows indicate global neuromodulator release. ( a) Before learning, stimulus of a column's Timer (T) cells
only causes that column to be transiently active. (b) If another column is stimulated shortly after the first, the Messenger (M) cells of the previous column
will be coactive with the Timer cells of the stimulated column, thereby increasing the feed-forward synaptic weights between these two populations. ( c)
After learning, a physical synaptic pathway has been traced out which links columns in the temporal order in which they were stimulated during training.
Figure 4Ðfigure supplements 1 and 2 demonstrate the dynamics of trace learning in the recurrent and feed-forward cases, respectively.
The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Recurrent learning evolution.
Figure supplement 2. Feed-forward learning evolution.
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cells get `dragged' along by the Timer cells, eventually coactivating with Timer cells of the column
which is stimulated next (Figure 4b ). This Hebbian coactivation triggers the eligibility traces of these
feed-forward synaptic connections, before they too are converted into synaptic weight changes by
the neuromodulator `novelty' signal ( Figure 4Ðfigure supplement 2 ). After many trials (50±100 for
the examples in this paper), weights in the network reach their steady-state values (see
'Materials and methods', Figure 3Ðfigure supplement 2 ) and learning is complete. As the result of
successful learning, a physical synaptic pathway has been traced out which encodes both the dura-
tion and order of the input. After learning, the encoded sequence can be recalled by stimulation of
only the first element ( Figure 4c ). Importantly, recall does not demonstrate sequence compression,
as the Messenger cells' activation (and thereby the activation of the next element) is appropriately
temporally delayed.

Properly encoded durations and orders are the result of the fixed points in the learning rule, as
described in the 'Materials and methods' section and in previous publications ( Gavornik and
Shouval, 2011 ; Huertas et al., 2016 ). Recurrent learning ends in a fixed point which sets the time D
between the end of firing in one column and the start of firing in the next (see Equation 17 , Fig-
ure 4Ðfigure supplement 1 ). Feed-forward learning results in a fixed point which determines the
connection strength between Messenger and Timer cells in subsequent columns (see Equation 18 ,
Figure 4Ðfigure supplement 2 ). Formally, the fixed point sets the value of the Hebbian term, Hij =
r i � r j , between the Messenger cells and the Timer cells in the next column at the time of reward, and
implicitly this results in setting the connection strengths W ij . Both these fixed points depend on the
parameters of the learning rule, which can be chosen such that these terms achieve desired values
(D arbitrarily small, Hij to a fixed value at time of reward). Such learning can then correctly encode
any presented sequence. Earlier work examines in detail the dependence of D on network parame-
ters (Gavornik and Shouval, 2011 ; Huertas et al., 2016 ; He et al., 2015 ).

Empirically, temporal accuracy of recall depends on many non-trivial factors (i.e. length of individ-
ual elements, length of entire sequence, placement of short elements near long elements, etc.),
owing to the many non-trivial effects of stochasticity of the spiking network (spike rasters are shown
in Figure 3Ðfigure supplement 4 ). In addition to fluctuations in recall accuracy, there can also be
fluctuations in learning accuracy, as randomness in spiking can happen to accumulate such that the
traces (and therefore the fixed points) are also sufficiently modified over the course of training. Over
the whole network, over the course of many trials, and over the course of learning instances, these
effects tend to wash out. Reported times in the recalled sequence generally match the times of the
input sequence to within 10% (see Figure 3Ðfigure supplement 2 ). This model does not observe
any intrinsic bias toward over- or under-predicting, as this can be modulated by network parameters
and can change stochastically from trial to trial or from element to element.

Our model also exhibits robustness to changes in its parameters. In Figure 5 , we demonstrate
the network successfully recalling a learned four element sequence, in which the fixed connections
that establish the Timer and Messenger cells are modified by +/- 20%. Furthermore, the mean
reported time in a two-column network is conserved after application of random fluctuations to the
learning parameters (Figure 5Ðfigure supplement 1 ). In addition, the network can also function if
the synaptic time constant for excitatory connection is shortened from 80 to 20 ms ( Figure 5Ðfigure
supplement 2 ). A long time constant of excitatory connections is often used in models of working
memory (Lisman et al., 1998 ) and models of long-lasting but transient recurrent networks
(Gavornik et al., 2009 ; Gavornik and Shouval, 2011 ). Such long time constants make the network
mode robust, able to learn longer transient durations and to operate in a more physiological range
(Wang, 2001 ), and there is evidence for such time constants in some brain regions ( Wang et al.,
2013 ). Nevertheless, our network can operate with faster excitatory time constants ( Figure 5Ðfig-
ure supplement 2 ), but shorter synaptic time constants limit the duration of elements that can be
learned.

While the results shown in this work were obtained using a two-trace learning (TTL) rule, the net-
work can also be trained with a learning rule based on a single trace ( Gavornik et al., 2009 ;
Gavornik and Shouval, 2011 ), and the results are similar to those demonstrated here (one-trace
results not shown).
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Learning and recalling non-Markovian sequences
In the modular network described above, the transitions from each module to the next depend only
on the identity of the current module that is active; such a model is formally called a Markovian
model (Gillespie, 1991 ). While the Markov property is typically discussed in the context of probabi-
listic models, here we apply it to deterministic sequences as well. A Markovian model can only repro-
duce specific types of sequences and is unable to reproduce a sequence in which the same element
is repeated more than once and is followed each time by a different element, for example, the
sequence ABAC. The columnar network described above is essentially Markovian since activation of
a neural population will necessarily feed forward to all other populations it is connected to, no mat-
ter the history or context. Behaviorally, learning of non-Markovian sequences is ubiquitous, and cells
responsible for producing and learning non-Markovian sequences exhibit non-Markovian activation
(Cohen et al., 2020 ).

To learn non-Markovian sequences, we modify the network structure while maintaining local
learning rules. Ideally, the network should be able to learn sequences which are in themselves non-
Markovian (ABACAD), as well as simultaneous combinations of sequences which are non-Markovian
when learned together (ACE and BCD). We will demonstrate both cases here.
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Figure 5. Robustness to core neural architecture (CNA) weight changes. Firing rates of four columns, after learning a four element sequence, each of
700 ms duration. Only the first element is stimulated for recall. Before learning, static CNA weights W EE
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MT are either set as in

Supplementary file 1 (center plot), or independently adjusted +/± 20% from their values in Supplementary file 1 . In each of the four `modified' cases,
sequence learning is still successful and retains the correct timing. The most noticeable difference is along the W EE

MT axis, where the amplitude of the
Messenger cells can be seen to increase as WEE

MT increases. Inset: CNA microcircuit with labeled connections. Figure 5Ðfigure supplement 1
demonstrates a two-column network's robustness to random variations in the learning parameters. Figure 5Ðfigure supplement 2 shows the success
and failure cases for a network with a 20 ms excitatory time constant.
The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Robustness of parameter randomization.
Figure supplement 2. Sequence learning with 20 ms excitatory time constant.
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For the network to learn and recall non-Markovian sequences, it must somehow keep track of its
history and use this history to inform transitions during sequence learning and recall. To this end, we
include two additional stages to the network ( Figure 6 ). The first is a fixed (non-learning) recurrent
network, sometimes called a `reservoir' (as in reservoir computing) or a `liquid' (as in a liquid state
machine) ( Maass et al., 2002 ; Maass et al., 2004 ), which receives inputs from the Messenger cells
in the main columnar network. Owing to these inputs and due to its strong recurrent connectivity,
the current state of the reservoir network is highly dependent on the history of network activity.
Therefore, it acts as a long-term memory of the state of the columnar network. The second addi-
tional stage is a high dimensional, sparse, non-linear network which receives input from the reservoir,
serving to project the reservoir states into a space where they are highly separated and non-overlap-
ping. The result is that a given pattern in this sparse network at time t uniquely identifies the history

2 3

Inh

M

TInh

M

T

Reservoir Sparse Pattern Net

Figure 6. Non-Markovian sequence learning and recall. Three-stage network. Two sequentially activated columns
(2±3) learn to connect to each other through a reservoir and sparse pattern net. At time t, Messenger cells from
column 2 are active and act as inputs into the reservoir (earlier, Messenger cells from column 1 also fed into the
reservoir). The sparse pattern net receives input from the reservoir, so as to be a unique representation of the
history of the network up to and including time t. Timer cells active at t + Dt (column 3) connect to the sparse
pattern via Hebbian learning.
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of the main network up to and including time t. Since these patterns are highly non-overlapping
(due to the sparsity and non-linearity), a particular pattern at time t can use simple, local, and bio-
physically realistic Hebbian learning to connect to Timer cells firing at time t + Dt in the main net-
work (direct Messenger to Timer feed-forward learning is removed in this non-Markovian example).

We test the ability of this three-stage network to learn long, non-Markovian sequences with
repeated elements by presenting a sequence blue-green-blue-red-blue-orange (BGBRBO) during
training (Figure 7 ). A simplified, rate-based version of the columnar network is used to reduce com-
putation time (see 'Materials and methods). The presented sequence is such that there are three dif-
ferent transitions from blue to another element, and each stimulus is also presented for a different
duration, making this a non-trivial problem. Before learning ( Figure 7a ), the blue stimulus does not
evoke any recall, only triggering a transient response of the blue-responsive column. During learning
(Figure 7b,c ), Timer cells learn the duration of their stimulus, as before, but now it is the sparse pat-
tern net which is using Hebbian learning to feed forward to Timers in subsequently stimulated col-
umns. After learning (Figure 7d ), external input to the blue stimulus is sufficient to trigger recall of
the entire trained non-Markovian sequence. In this case, each blue element in the sequence has the
same duration; this is owing to the fact that our TTL rule currently only supports one dynamic
attractor per population. In order for repeated elements to have different durations during recall, an
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Figure 7. Non-Markovian sequence learning and recall. Mean firing rates for Timer cells (light colors) and Messenger cells (dark colors) of four different
columns during different stages of learning (before, first trial of learning, last trial of learning, after learning). Stimuli presented are shown in color bars
inset in top of plots (500, 700, 500, 1300, 500, and 700 ms for blue, green, blue, red, blue, and orange, respectively).
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appropriate learning rule must be capable of creating multiple attractors within that element's Timer
population, with each attractor triggering a different duration of activity.

We also demonstrate an example of simultaneous learning of two sequences with a shared ele-
ment (Figure 8 ). First, a sequence blue-red-orange (BRO) is trained, and then a sequence green-red-
purple (GRP) is also learned. Each of the elements in these sequences has a duration of 500 ms.
With both these sequences learned and stored simultaneously in the same network, transitions from
red are non-Markovian ± red should transition to orange if it was preceded by blue and should tran-
sition to purple if it was preceded by green. Figure 8a shows recall upon stimulation of blue, while
Figure 8b shows recall upon stimulation of green. In both cases, the sequence makes the correct
transition from red to the appropriate third element. Recall of both sequences is also robust to per-
turbations in the initial state of the reservoir, as shown in ( Figure 8Ðfigure supplement 1 .)

Of note in these two simulations is that the `incorrect' transitions do get slightly activated, as the
sparse patterns responsible for these transitions are not completely non-overlapping. There is an
interplay here between the robustness and uniqueness of these patterns ± the sparser they are, the
more non-overlapping they are, but also the more sensitive they are to noise. Other parameters in
the model, such as the level of recurrence in the reservoir, or the projection strengths from the reser-
voir to the sparse net, also affect the robustness/uniqueness of the patterns. For the simulations
shown, a set of parameters (Supplementary file 2 ) was empirically chosen so that a handful of non-
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Figure 8. Recall of two overlapping sequences. Mean firing rates for Timer cells (light colors) and Messenger cells (dark colors) during recall of two
sequences. Both blue-red-orange (BRO) and green-red-purple (GRP) have been stored in the network via learning. (a) Recall of BRO, following
presentation of a blue stimulus. (b) Recall of GRP, following presentation of a green stimulus. Note that R transitions to a different element in the two
sequences.Figure 8Ðfigure supplement 1 demonstrates the network's robustness to perturbations of the reservoir's initial state.
The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Robustness in non-Markovian recall.
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Markovian transitions could be reliably encoded. Though we have not optimized the network param-
eters, or fully characterized its properties, these results demonstrate that such an architecture can
overcome the problem of non-Markovian sequences.

The addition of the reservoir and sparse network is essential for the ability to encode and replay
non-Markovian sequences, but they alone are not sufficient for sequence learning and recall in our
model. One must note that the reservoir receives its input from the modular network, not from the
environment, and therefore if the modular network does not learn, the inputs to the reservoir would
not be generated appropriately. In this formulation, during learning, the entire sequence is pre-
sented as inputs, but to trigger recall after learning, only the first element of the learned sequence is
presented. In short, the input during learning and recall is different. Typical reservoir computing
models can learn an output, given a specific input signal, but if that input signal changes, then so
would the resulting output. This means that typically the reservoir alone cannot learn to recall with
only the first element of the sequence as input, given that it was presented the whole sequence dur-
ing training.

We use rate-based versions of all three stages for simplicity and computational efficiency, but a
spiking based model is likely to have similar results. In our Markovian modular model described
above, we use a fully spiking model. The rate-based approximation, which we use here in the non-
Markovian case, is shown to produce similar results (Figure 3Ðfigure supplement 6 ). The reservoir
itself does not learn and needs only to be highly recurrent to recapture the demonstrated functional-
ity. Therefore, a spiking implementation is likely to work, albeit using many more neurons and at a
much higher computational cost. The sparse network as used here is binary (see
'Materials and methods'), but non-binary sparse representations are likely to produce similar results.
Transitioning all three stages to using actual spiking neurons would require much time, computa-
tional power, and parameter adjustments, but there are no clear fundamental roadblocks to doing
so.

We have chosen this simple sparse representation of this three-stage network, not because it is a
biophysically realistic implementation but in order to demonstrate the concept that such an addition
is sufficient for learning and expressing non-Markovian sequences, while still using local learning
rules. The viability of this relatively simple, compartmentalized structure demonstrates two things:
first, that our original columnar network can be used as a building block in more complicated tasks,
and second, that even a complex task such as learning non-Markovian sequences does not require
non-local learning rules to perform. There are, in general, likely a large number of architectures
which would effectively achieve a similar aim ± take a very complex problem like non-Markovian
sequence learning and constrain the possible solution space, allowing for a local learning rule to `fin-
ish the job'. Other groups have approached non-Markovian sequences by including additional hier-
archy or long synaptic time constants (Hawkins and Ahmad, 2016 ; Tully et al., 2016 ), and solutions
like RNNs handle such sequences natively (albeit with non-local learning rules) since they are continu-
ous systems with a dependence on a relatively long history when compared to the intrinsic time con-
stants. We combine these two methods, using highly recurrent networks in the context of a larger
architecture, and this combination allows us to maintain local and biophysically realistic learning
rules.

Discussion
In this work, we demonstrate the ability of a modular, spiking network to use local, biophysically real-
istic learning rules to learn and recall sequences, correctly reporting the duration and order of the
individual elements. In combining modular, heterogenous structure with a learning rule based on eli-
gibility traces, the model can accurately learn and recall sequences of up to at least eight elements,
with each element anywhere from ~300 to ~1800 ms in duration. We have also shown a modified
architecture that is capable of learning and recalling non-Markovian sequences with multiple history-
dependent transitions.

The capabilities, construction, and rules of our model are significantly different from most con-
temporary and historical models of sequence learning, such as synfire chains and RNNs. In particular,
we are not aware of another model that uses spiking networks and local, biophysically realistic learn-
ing rules, along with experimentally observed cell responses, to robustly learn both the order and
duration of presented sequences of stimuli. Previous approaches which have attempted to internally
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learn both duration and order of elements ( Veliz-Cuba et al., 2015 ) have been highly sensitive to
changes in parameters and/or were not based on experimentally observed cell responses. Other
types of hybrid models combine chain structures with additional hierarchy/functionality ( Murray and
Escola, 2017 ; Martinez et al., 2019 ), but either requires manually set adaptation time constants
that are specific for a set duration to represent the duration of elements or do not treat the duration
of elements as variable at all. Recently another model has been proposed, based on a periodic and
essentially deterministic timing network, which also uses biologically plausible learning rules to learn
to represent single non-Markovian sequences (Maes et al., 2020 ). However, it cannot learn arbi-
trarily long (and self-terminating) sequences, such as those presented in (Figure 7 ), nor can it learn
several different sequences and replay them separately, such as those presented in (Figure 8 )

The modified three-stage model is capable of learning non-Markovian sequences because of
inclusion of a non-learning recurrent network that stores memory over longer durations than the
modular network. However, the model's ability to generate learned sequences depends crucially on
the backbone of the modular network ± because of this, we can use a non-plastic, highly recurrent
reservoir and maintain biophysically realistic learning rules in the network. This modified model also
differs in functionality from traditional RNNs, as in our model, the stimulus presented during training
(the entire sequence) is different from the stimulus presented after learning in order to trigger recall
(usually the first element is sufficient). In general, the number of elements necessary to trigger recall
is the same as the number of elements needed to disambiguate the sequence (i.e. `A' would be suffi-
cient to trigger ABCD in a network embedded with learned sequences ABCD and EFGH, but `AB'
would be required to trigger ABCD in a network embedded with learned sequences ABCD and
AFGH). In a way, our network acts as an autoencoder, both learning a reduced encoding (e.g. `A'
instead of `ABCD') and reconstructing the original external input from this reduced encoding.

The reservoir and sparse network components of our three-stage model could be thought to arise
from a projection from other cortical or subcortical areas. Functionally similar networks (ones that
take complex, multimodal, and dynamic context and repackage it into sparse, separated patterns)
have been observed in the dentate gyrus ( Leutgeb et al., 2007 ; van Dijk and Fenton, 2018 ) and
the cerebellum (Chadderton et al., 2004 ; Billings et al., 2014 ). However, these model components
could also be thought of as part of the same cortical network, partially segregated in function but
not necessarily by location. Pattern separation is likely a common neural computation that might
occur in many brain areas, so we make no particular predictions about the locations of these network
components.

Our model suggests that the types of single cell responses in V1 observed in delayed reward
tasks (Timers and Messengers) (Shuler and Bear, 2006 ; Liu et al., 2015 ; Chubykin et al., 2013 ) will
also be present when learning a visual sequence. Furthermore, we predict that distinct populations
of these cells are sensitive to and can learn the dynamics of distinct stimuli. This functional modular-
ity could be physically implemented as physically compartmentalized in columns and layers, though
this is not strictly required. We present here two equivalent possible configurations of the network.
The first, Figure 9a , shows an architecture that more directly implements the CNA, where inhibitory
neurons are physically located next to their associated excitation for clarity, and long-range inhibi-
tory connections exist. Figure 9b displays a more realistic structure by restricting inhibitory connec-
tions to be local. Both architectures are functionally identical, and there are a number of other
redundant constructions which recapture the behavior described in this work.

Recent results showing sequence learning and recall in visual cortex support the idea that these
cell types are implicated in sequence learning ( Gavornik and Bear, 2014 ). When multiple visual stim-
uli are presented sequentially, Local Field Potential (LFP) recordings indicate Timer-like responses
(long, sustained potentiation) in layer V, with Messenger-like responses (short bursts centered
around the transition between elements) arising in layer II/III (see Figure 4 from Gavornik and Bear,
2014 ). These results are consistent with the hypothesis that Timers and Messengers are indeed com-
partmentalized into different cortical layers.

Our model makes several testable predictions. It predicts that: (1) After learning a sequence,
Messenger cells will more strongly functionally connect to Timer cells that represent subsequent
stimuli, than to Timers which represent previous stimuli, or to other Messengers. (2) Learning
sequences with long duration elements will increase lateral connection efficacies between Timers
within the same modules. However, learning sequences with short duration elements may actually
weaken those same lateral connections, depending on initial conditions. (3) There will be a

Cone and Shouval. eLife 2021;10:e63751. DOI: https://doi.org/10.7554/eLife.63751 15 of 25

Research article Neuroscience



population of inhibitory cells within each module that have firing properties similar to Timers but
that decay more quickly ( Figure 2a ).

From a theoretical perspective, the main takeaway is that the architecture of our model enables it
to accurately learn and recall sequences while maintaining local learning rules. If we were to start
with a homogenous, randomly connected pool of neurons, sequence learning would require precise
credit assignment, which is very difficult or impossible to calculate locally. Instead, the modular struc-
ture and the functionally heterogeneous cell types of the CNA perform some of this credit assign-
ment implicitly, by breaking down a complex, difficult to learn task into a hierarchy of well-defined
and easy to learn tasks. The Timers learn the duration, and the Messengers learn the order (compo-
nents in the non-Markovian formulation have similarly simple and segregated tasks). While these
restrictions end up limiting the types of outputs our network can represent, they enable the use of
local learning rules.

Materials and methods

Network architecture
In a totally unstructured network, the learning rule described below would be insufficient for the task
of sequence learning and memory. In exchange for the freedom of online, biophysically realistic rein-
forcement learning, we must presuppose some restrictions on the macro structure of the network.
The structure imposed on the network has two components: a modular columnar structure with
restricted connections and the weight distribution of the non-plastic synaptic efficacies. The weight
distribution results in the emergence of distinct Timer and Messenger cell types, and the columnar
structure places populations of these cells into stimulus-specific modules.

The network consists of 12 different `columns', each containing 100 excitatory Timer cells, 100
inhibitory Timer cells, 100 excitatory Messenger cells, and 100 inhibitory Messenger cells, all assem-
bled in a CNA microcircuit. Neither the particular number nor the ratio of the cell types is a strict
requirement. These populations can be represented by many spiking neurons, few spiking neurons,
or a single mean field neuron, and the populations can emerge even from distributions of random
connections (Huertas et al., 2015 ). Each column is tuned to be selective for a particular stimulus
from the input layer, such that a sequence of external stimuli (e.g. ABCD or `red-green-orange-blue')
will trigger a corresponding sequence of input-selective columns.

To simulate presentation of visual cues, the network is stimulated by an input layer designed to
mimic spiking inputs from the LGN. Each stimulus is represented in the input layer by a Poisson spike
train with a 50 ms pulsed peak, in accordance with the observed cellular responses in LGN

Inh

M

T

Inh

Inh

M

T

Inh

Layer II/III
(M cells)

Layer V
(T cells)

Inh

M

T

Inh

Inh

M

T

Inh

Layer II/III
(M cells)

Layer V
(T cells)

a) b)

Figure 9. Explicit microcircuit structure. (a,b) Two examples of complete microcircuit structure displayed in laminar architecture of cortical columns.
Dashed lines represented learned connections, while continuous lines represent fixed connections. (a) Intercolumn inhibition produces soft winner-take-
all dynamics between columns, interlaminar inhibition generates core neural architecture (CNA). (b) Same functionality as (a) but rearranged so as to
only have local inhibition.
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(Ruksenas et al., 2007 ; Mastronarde, 1987 ). In general, this spike train can also include a decaying
exponential tail, but short pulses were chosen both for analytical simplicity and to match experimen-
tal data (Ruksenas et al., 2007 ; Mastronarde, 1987 ), as shown in Figure 3Ðfigure supplement 1 .
The cells of the input layer feed directly into the respective Timer cells of the columnar network.

Intercolumnar inhibition exists between Timer populations and between Messenger populations
in the different columns, for the purposes of soft WTA dynamics between the columns of the net-
work. This WTA inhibition can be thought of functionally as long-range inhibitory connections
(Figure 8a ), but in reality, is much more likely to be long-range excitatory connections synapsing
onto local inhibition ( Figure 8b ). Such inhibition is generally not necessary in the low-noise case (or
in a rate-based model), but the stochastic, spiking nature of the network makes it a desirable practi-
cal inclusion to guard against spurious runaway excitatory chains.

For the purposes of this paper, Timer cells can only learn to connect to other Timer cells within
their column, and Messenger cells can only learn to connect to (any) Timer cells outside of their col-
umn. In case of the extended network that can learn non-Markov sequences, Messenger cells con-
nect to the reservoir and not directly to Timer cells in other columns, as described above. While we
include these restrictions for practical purposes, previous publications have shown all possible intra-
columnar excitatory connections to be learnable with the use of a single trace eligibility rule
(Huertas et al., 2015 ). The strengths of non-plastic connections within columns are modeled after
those learned in previous publications ( Huertas et al., 2015 ). These fixed connections serve to
establish the Timer and Messenger cells used in the network. In Figure 5 , we demonstrate that suc-
cessful sequence learning is robust to +/± 20% changes in these connections. By only learning task
relevant connections, we simplify the computation and analysis while maintaining the complete gen-
eral functionality of variable sequence learning and recall.

Spiking and rate-based dynamics
The network comprises microcircuits of both excitatory and inhibitory spiking leaky-integrate-and-
fire neurons placed in a modular architecture akin to that observed in cortical columns. The following
equations describe the membrane dynamics for each model neuron i:

C
dvi

dt
ˆ gL EL � vi… †gE;i EE � vi… †gI;i EI � vi… †s (1)

dsi

dt
ˆ �

si

t s
� 1 � si… †

X

k

d t � t i
k

� �
(2)

Here, subscripts L, E, and I refer to leak, excitatory, and inhibitory, respectively. g refers to the
corresponding conductance, and E to the corresponding reversal potentials. vi and si are the mem-
brane potential and synaptic activation, respectively, of neuron i. s is a random noise term. Once
the membrane potential reaches a threshold vth, the neuron spikes and enters a refractory period
tref . Each spike (at time t i

k) updates the synaptic activation si by an amount � 1� si… †, and in the
absence of spikes, synaptic activation decays exponentially. Conductance g is the product of the syn-
aptic weight matrix with the synaptic activation, summed over all presynaptic neurons:

ga;i ˆ
X

j
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ij sj (3)

Here, a can be either E (excitatory) or I (inhibitory), and Wa
ij are the connection strengths from

neuron j to neuron i. A firing rate estimate for each neuron r i is calculated by an exponential filter of
the spikes at times t i

k, with a time constant t r .

t r
dr i

dt
ˆ � r i

X

k

d t � t i
k

� �
(4)

Our excitatory time constant is notably long (80 ms), but this is not strictly required for our model.
This is shown in Figure 5Ðfigure supplement 2 , in which we set the excitatory time constant to 20
ms and demonstrate successful learning of a sequence with elements 500 ms long each. However,
the ability of the Timers to learn long times via their recurrent connections (without prohibitively
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small learning rates) depends on such large time constants, which are common in working memory
literature (Gavornik and Shouval, 2011 ; Lisman et al., 1998 ; Wang et al., 2013 ). Figure 5Ðfigure
supplement 2b shows that the Timer cells reach bistability when trying to learn 1000 ms with a 20
ms time constant, causing failure in learning. The relationship between reported time, recurrent
weights, and time constants in Timer-like cells is analyzed in detail in previous work ( Gavornik et al.,
2009 ; Gavornik and Shouval, 2011 ; Huertas et al., 2016 ). Although there is some evidence for a
slow time constant in preforntal cortex (PFC) ( Wang et al., 2013 ), this might not be so in sensory
cortex. There are alternative ways to acquire a slow time constant that can facilitate learning of long
interval times, such as derivative feedback (Lim and Goldman, 2013 ) or active intrinsic conductance
(Gavornik and Shouval, 2011 ; FranseÂn et al., 2006 ).

For the rate-based version of these dynamics (used in the three-stage network model), each pop-
ulation of spiking neurons is represented by a single rate-based unit, which is governed by the fol-
lowing equations:

t u
dui

dt
ˆ � ui ‡

X

j ;a

Wa
ij � uj

� �
(5)

r i ˆ � ui… † (6)

where t u is the characteristic time constant and r i is the resulting firing rate for neuron i. � is a piece-
wise non-linear transfer function used in previous sequential activation models ( Brunel, 2003 ):
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where uc is the critical activity level, � is a lower threshold, and v a scaling parameter.

TTL rule
In place of a pair-based spike timing-dependent rule or rate-based Hebbian rule, which fails to solve
the temporal credit assignment problem, the network learns based on `eligibility traces' for both
LTP and LTD (Huertas et al., 2015 ; FreÂmaux and Gerstner, 2015 ). These eligibility traces are syn-
apse-specific markers that are activated via a Hebbian coincidence of activity between the pre- and
postsynaptic cells. At a maximally allowed activation level, these traces saturate, and in the absence
of Hebbian activity, these traces decay. LTP and LTD traces are distinct in that they activate, decay,
and saturate at different rates/levels. These dynamics are described in the following equations:
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dt
ˆ � Tp

ij ‡ hpHij

Tp
max � Tp

ij

� �

Tp
max

(8)

t d dTd
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The superscripts p and d indicate LTP or LTD synaptic eligibility traces, respectively. Here, Ta
ij

(where a2 p;d… †) is the eligibility trace located at the synapse between the jth presynaptic cell and
the ith postsynaptic cell. The Hebbian activity, Hij , is a simple multiplication r i � r j in this rule, where r j

and r i are the time averaged firing rates at the pre- and postsynaptic cells. Here, we use a simple
case where Hij for LTP and LTD are identical, this is the simplest option and it is sufficient here, but
experimentally the Hebbian terms are more complex and are different for LTP and LTD traces
(He et al., 2015 ). The parameter Ta

max refers to the saturation level, t a to the characteristic decay
time constant of the trace, and ha to the Hebbian activation constant. If we assume steady-state
activity such that < Hij > is constant (a first-order approximation), we can derive effective saturation

levels and effective time constants ~T
a

and ~t a, which vary as a function of the Hebbian term:

Cone and Shouval. eLife 2021;10:e63751. DOI: https://doi.org/10.7554/eLife.63751 18 of 25

Research article Neuroscience



~T
a

ˆ
Ta

max Hij

 �

Ta
max ‡ Hij


 � (10)

~t a ˆ
Ta

maxt
a

Ta
max ‡ Hij


 � (11)

where Hij

 �

is the mean of Hebbian activity during trace saturation, in cases of prolonged and steady

pre- and postsynaptic activation ( Huertas et al., 2016 ). For increasing H ij

 �

=Ta
max, ~T

a
asymptotically

approaches Ta
max. In our model this ratio is large for appreciable Hij


 �
, so practically speaking the

traces saturate very close to Ta
max (see Figure 4Ðfigure supplement 1 ). Equations 8 and 9 , using

parameters as in Supplementary file 1 , create traces with a fast, quickly saturating rising phase in
the presence of constant activity, and a long, slow falling phase in the absence of activity. The trace
dynamics in the rising and falling phases can be approximated using these effective terms to have
the simple exponential forms:
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where Ta
F t… †is the trace dynamics in the falling phase and Ta

R t… †represents the trace dynamics in the
rising phase.

In this rule, synaptic weights are updated upon presentation of a global neuromodulatory signal
R t… †. In general, this signal can be either a traditional reward signal or a `novelty' signal that accom-
panies the beginning or end of an external stimulus. This neuromodulatory signal then converts eligi-
bility traces into synaptic efficacies, consuming them in the process, via a simple subtraction of the
LTD trace from the LTP trace:

dW ij

dt
ˆ hR t… †Tp

ij � Td
ij

� �
(14)

Here, W ij is the synaptic efficacy between pre- and postsynaptic cells j and i, R t… †is the neuromo-
dulatory signal, and h is the learning rate. Following presentation of the neuromodulatory signal, the
eligibility traces are `consumed' and reset to zero, and their activation is set into a short refractory
period (25 ms). Synaptic efficacies reach a steady state under the following condition:

Z t trial

0
R t… †Tp

ij � Td
ij

� �
dt ˆ 0 (15)

where t trial is the time at the end of the trial. In our model, each time a stimulus (whether a novel or
familiar) starts or ends, a global novelty neuromodulator is released, and this acts as the `reward' in
the learning rule. As a result, synaptic efficacies update every time a stimulus is changed, according
to the learning rule in Equation 14 , until they reach the fixed point of Equation 15 . Under the sim-
plifying assumption that the reward function R t… †is a delta function d t � t reward… †, this fixed point
becomes:

Tp
ij t reward… † T̂d

ij t reward… † (16)

In our model there are two classes of synaptic plasticity, plasticity of recurrent connections to
learn duration, and of feed-forward connections between modules to learn order. When feed-for-
ward projections or external input activate a group of neurons, they cause an increase in the firing
rates of those neurons, this we call the rising phase. Once input ceases, the activity in these neurons
starts decaying, this decaying activity is the falling phase, and its dynamics are determined by recur-
rent connections. Synaptic eligibility traces follow the activity profiles, they rise or saturate during
the rising phase, and decay during the falling phase. Since the traces saturate, the information relat-
ing to the feed-forward activity is contained exclusively in the rising phase of the traces, and during
the falling phase, such information has been lost due to saturation. On the other hand, the
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information relating to the recurrent activity is contained in the falling phase, precisely because the
input has ceased and the feed-forward information has been lost via saturation, so all that remains is
the recurrent information. As such, learning the appropriate order via feed-forward connections
needs to happen during the rising phase, and learning appropriate decay times via recurrent connec-
tions needs to happen during the falling phase. The differing activation, decay, and saturation rates/
levels of the LTP and LTD traces have been chosen such that a fixed point can be reached either dur-
ing the rising phase or falling phase of the traces (see Figure 4Ðfigure supplements 1 and 2).

We show the fixed points obtained in simulations of sequence learning in Figure 3Ðfigure sup-
plement 2 and demonstrate how learning occurs in Figure 4Ðfigure supplements 1 and 2. To gain
intuition of when these fixed points are obtained and how they depend on the learning parameters,
we make several simplifying approximations. To solve for the falling phase fixed point, we first
assume that the traces are saturated when the underlying Hebbian activity is above a certain thresh-
old, Hth . We call the time when Hebbian activity crosses below that threshold t th . Then, combining
Equations 12 and 16 (substituting t reward in for t and t th in for t stim), we can solve for D ˆ t reward � t th

at the fixed point:

D ˆ
ln ~T

d

~T
p

� �

1
t p � 1

t d

� � (17)

The objective of learning, then, is to move D from its starting value to the value in Equation 17 ,
which is determined by the parameters in the network. The parameters can be chosen such that the
fixed-point value of D is arbitrarily small. As shown in Figure 4Ðfigure supplement 1 , this recap-
tures the behavior of the Timer cells.

The rising phase fixed point can be determined by combining Equations 13 and 16 to give us an
implicit function of H:

~T
p
ij 1� et reward=~t p

ij

� �
ˆ ~T

d
ij 1� et reward=~t d

ij

� �
(18)

Since ~T
a
ij and ~t a

ij both depend on H (Equations 8 and 9 ), given t reward, Ta
max, and t a, H at the time

of reward is uniquely determined by this fixed point. Practically, this means feed-forward learning
increases synaptic efficaciesW ij in order to increase postsynaptic firing r i , until Hij = r i � r j = a fixed
value at t = t reward, as determined by Equation 18 (Figure 4Ðfigure supplement 2 ). Qualitatively,
successful feed-forward learning in our model uses traces with dominant LTP in the rising phase

(hp> hd) and dominant LTD in the falling phase ( t d> t p) ( seeSupplementary file 1 ).
Through these learning dynamics, the Timer cells learn to represent the duration of their particu-

lar element in the sequence (by decreasing D to its fixed-point value), while Messengers learn to
feed forward to the Timer cells in the next stimulated column (by increasing W ij until Hij t reward… †
reaches its fixed-point value). Note that for modules that do not have overlapping activation, the
Hebbian term Hij is zero, and therefore the associated weights W ij do not change. Figure 3Ðfigure
supplement 2c shows these weights approaching their fixed-point values over the course of learn-
ing. Earlier work derives these equations in more detail ( Huertas et al., 2016 ).

The parameters chosen for the traces are displayed in Supplementary file 1 . For the recurrent
traces, the parameters follow the restrictions derived from analysis in an earlier publication
(Huertas et al., 2016 ). The corresponding analysis for the feed-forward traces, however, is not nec-
essarily applicable in the context of sequence learning, since multiple neuromodulator signals are
active during each learning epoch. As a result, the parameters for the feed-forward traces are empir-
ically derived. Multiple different sets were found to work, but the set in Supplementary file 1 was
the one used for all simulations included in this paper. Figure 5Ðfigure supplement 1 shows that
the mean reported times are robust to random perturbations (ranging from +/± 20%) of the learning
parameters. The perturbations are added via independently drawing each parameter randomly from
a uniform distribution with bounds of 80±120% of each parameter's initial value. Note that the stan-
dard deviation increases, as expected, but is of the same order of magnitude. One hundred different
random sets are used, and the resulting learned times compare favorably to trials with no parameter
randomization.
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The above eligibility trace learning rules are referred to as TTL. As described in a previous publi-
cation (Huertas et al., 2016 ), and demonstrated throughout this work, TTL allows for both feed-for-
ward and recurrent learning, and as such can robustly encode temporally dependent input patterns.
TTL is supported by recent experiments which have found evidence for eligibility traces existing in
cortex (He et al., 2015 ), striatum (Yagishita et al., 2014 ), and hippocampus (Bittner et al., 2017 ;
Brzosko et al., 2017 ). Other eligibility trace rules, such as the one-trace rule demonstrated in earlier
work (Gavornik et al., 2009 ; Gavornik and Shouval, 2011 ), can also replicate the results of this
paper. In general, any rule which can associate distal events/rewards, thereby solving the temporal
credit assignment problem, would be likely to work with this network model. TTL was chosen for its
biological realism, but the novel capabilities of this model (its ability to learn and recall both the
duration and order of elements in a sequence) primarily result from the network architecture, com-
bined with a history-dependent learning rule.

Non-Markovian network dynamics
The three-stage network used to learn and recall non-Markovian sequences comprises the main
columnar network, a highly recurrent network (reservoir), and a sparse pattern net. The dynamics of
the rate-based columnar network are described above. The dynamics of the units ui in the reservoir
are described by the equation:

t net
dui

dt
ˆ � ui ‡

j

X
Jij  r j � � m

� �
‡

k

X
W ik f uk… † (19)

where ui are the firing rates of the units in the reservoir and r j are the firing rates of the Messenger
cells in the main network. Jij is a K � n binary matrix of projections from the columnar network to
the reservoir, where K is the number of units in the reservoir and n is the number of columns in the
network. Jij is structured such that the first K/n units in the reservoir receive direct input from the
Messengers in the first column, the second K/n units receive direct input from the Messengers in the
second column, and so on. W ik are the recurrent weights of the reservoir, each of which is drawn

from a normal distribution N 0; g•••
K

p
� �

, where g is the `gain' of the network ( Rajan et al., 2010 ).

 is a piecewise linear activation function:

 x… † ˆ
0 if x � 0

x if x>0

�
(20)

so � m is the firing threshold. f is a sigmoidal activation function:

f x… †̂ tanh x… † 21… † (21)

The reservoir projects to a high-dimensional sparse pattern network. Each unit in the sparse pat-
tern net receives input from the reservoir, fed through a sparse matrix Omi , with fraction � ˆ :04 of

entries non-zero and drawn from a normal distribution N 0; g
M

� �
, where M is the number of units in the

sparse pattern net and g is the gain, as described above. The activation of each unit nm of the sparse
network is determined by the following:

nm ˆ Q r j � � m
� �

Q
i

X
Omi f ui… † �� o

� �
(22)

where Q is the Heaviside function. The sparse pattern network is binary in our implementation but
this is not essential, as long as its non-linear and sparse. The sparse network feeds back into the
main network via weights Qjm , which are learned via a simple Hebbian rule:

dQjm

dt
ˆ Hjm ˆ r j � nm (23)

with the additional restriction 0 � Qjm � Qmax. Here, j indexes units in the main network and m
indexes units in the sparse pattern net.
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