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Abstract Human embryogenesis entails complex signalling interactions between embryonic and

extra-embryonic cells. However, how extra-embryonic cells direct morphogenesis within the human

embryo remains largely unknown due to a lack of relevant stem cell models. Here, we have

established conditions to differentiate human pluripotent stem cells (hPSCs) into yolk sac-like cells

(YSLCs) that resemble the post-implantation human hypoblast molecularly and functionally. YSLCs

induce the expression of pluripotency and anterior ectoderm markers in human embryonic stem

cells (hESCs) at the expense of mesoderm and endoderm markers. This activity is mediated by the

release of BMP and WNT signalling pathway inhibitors, and, therefore, resembles the functioning of

the anterior visceral endoderm signalling centre of the mouse embryo, which establishes the

anterior-posterior axis. Our results implicate the yolk sac in epiblast cell fate specification in the

human embryo and propose YSLCs as a tool for studying post-implantation human embryo

development in vitro.

Introduction
Over the first 5 days of human development, the fertilised zygote undergoes a series of cleavage

divisions and morphogenetic events that give rise to a blastocyst, which comprises an inner cell mass

(ICM) and a fluid-filled cavity surrounded by the trophoblast, the extra-embryonic tissue that forms

the placenta (Edwards et al., 1970; Steptoe et al., 1971). As the blastocyst matures, the ICM

undergoes a morphological sorting process which leads to the specification of the epiblast, progeni-

tor of the embryo proper, and the hypoblast (extra-embryonic endoderm), the precursor tissue of

the yolk sac (Wamaitha and Niakan, 2018).

Once the hypoblast, epiblast, and trophoblast have been specified, the human blastocyst is ready

to implant into the uterine wall of the mother on embryonic day 6–7 (E6–7) post-fertilisation

(Steptoe et al., 1971). In vivo and in vitro studies of human and non-human primates

(Deglincerti et al., 2016; Luckett, 1975; Ma et al., 2019; Niu et al., 2019; Shahbazi et al.,
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2016) have shown that upon implantation, epiblast cells polarise and undergo lumenogenesis to

form the amniotic cavity. Epiblast cells located in close proximity to the hypoblast become a colum-

nar epiblast disc, in contact with the amniotic cavity. The hypoblast proliferates, giving rise to the

primary yolk sac on day 10. Around day 14, the primitive streak forms posteriorly in the epiblast,

triggering the onset of gastrulation (Sasaki et al., 2016; Shahbazi, 2020).

The signalling pathways that govern early post-implantation morphogenesis in the human embryo

are not fully understood. In the mouse embryo, a group of asymmetrically localised cells, collectively

known as the anterior visceral endoderm (AVE), is established at E5.5, which secrete NODAL, WNT,

and BMP antagonists (e.g. Lefty, Dkk1, Cer1, Noggin), leading to the formation of a gradient of sig-

nalling activity across the anterior-posterior axis of the embryo (Beddington and Robertson, 1999;

Rivera-Pérez and Magnuson, 2005). Interestingly, AVE-like cells have also been identified in the

cynomolgus monkey yolk sac in vivo (Sasaki et al., 2016), and in human embryos cultured in vitro

(Molè et al., 2021; Xiang et al., 2020). However, the functional relevance of these descriptive find-

ings is not yet known.

Culture conditions now support the development of human embryos in vitro up until the interna-

tionally accepted limit of 14 days (Deglincerti et al., 2016; Shahbazi et al., 2016; Xiang et al.,

2020; Zhou et al., 2019). Nonetheless, the reliance on surplus in vitro fertilised (IVF) embryos, com-

bined with the ethical considerations associated with the genetic manipulation of human embryos,

means that there are currently barriers to the study of post-implantation human development.

Accordingly, there is a need to create stem cell models of post-implantation embryogenesis, thereby

producing a system that is amenable to genetic and molecular manipulation. Such research has

already begun, with human embryonic stem cells (hESCs) being used to model early embryogenesis

(Etoc et al., 2016; Moris et al., 2020; Shahbazi et al., 2017; Simunovic et al., 2019;

Warmflash et al., 2014). However, the current systems lack the inclusion of extra-embryonic tissues,

which are likely key regulators of human epiblast patterning. Thus, to determine how intercellular

communication drives post-implantation human embryogenesis, it is important to establish an in

vitro model that encompasses both embryonic and extra-embryonic lineages.

Here, we aimed to build an in vitro model that would allow us to study the interactions between

the yolk sac and epiblast of the post-implantation human embryo. To do this, we first generated

yolk sac-like cells (YSLCs) by simultaneously stimulating ACTIVIN-A, WNT, and JAK/STAT signalling

in peri-implantation-like human pluripotent stem cells (hPSCs) (Gafni et al., 2013). We then mod-

elled the interaction between these YSLCs and hESCs, which revealed that YSLCs induce the expres-

sion of pluripotency and anterior ectoderm markers at the expense of mesoderm and endoderm

markers in hESCs by inhibiting BMP and WNT signalling pathways. Our results indicate that these

YSLCs can be used as a tool for studying how the interaction between human embryonic and extra-

embryonic cells regulates human embryo development.

Results

ACTIVIN-A, WNT, and JAK/STAT pathway activation induces an
endodermal fate in hPSCs
To model epiblast-yolk sac crosstalk, we sought in vitro counterparts of each of these tissues. Con-

ventionally, hESCs have been used as a reliable model of the human epiblast, harbouring a post-

implantation, ‘primed’ pluripotent state (Nakamura et al., 2016; Shao et al., 2017a;

Simunovic et al., 2019; Warmflash et al., 2014; Zheng et al., 2019). To derive a YSLC, we

intended to use a starting cell line with extra-embryonic competency. We hypothesised that human

extended pluripotent stem cells (hEPSCs) were an appropriate candidate as they were shown to

have extra-embryonic potential when incorporated into mouse embryos (Yang et al., 2017).

We first conducted a screen by adding pairs of signalling pathway activators that have been impli-

cated in murine primitive endoderm (hypoblast) development to hEPSC medium (LCDM medium,

see Materials and methods) (Figure 1—figure supplement 1A). hEPSCs were derived from the

RUES2-GLR reporter line which reports for expression of SOX2 (pluripotent epiblast), SOX17 (endo-

derm), and BRACHYURY (mesoderm) (Martyn et al., 2018). By analysing SOX17 and SOX2 reporter

fluorescence intensity, we discerned that the combination of WNT (via the GSK3 activator CHIR

99021) and ACTIVIN-A pathway activation led to the greatest upregulation of SOX17 at the expense
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of SOX2 after 6 days (Figure 1—figure supplement 1B,C). This result is in line with ACTIVIN-A and

WNT signalling being involved in the specification of mouse, monkey, and human primitive endo-

derm in vitro and in vivo (Anderson et al., 2017; Blakeley et al., 2015; Boroviak et al., 2015; Lin-

neberg-Agerholm et al., 2019). We further optimised the medium by increasing the concentrations

of both CHIR 99021 and ACTIVIN-A (Figure 1—figure supplement 1D,E), and removing the other

cytokines from the LCDM medium apart from human leukemia inhibitory factor (LIF), which we found

to be necessary for proliferation during the conversion (Figure 1—figure supplement 1F). Hence-

forth, the medium consisting of N2B27 supplemented with 100 ng ml�1 human ACTIVIN-A, 3 mM

CHIR99021, and 10 ng ml�1 recombinant human LIF is referred to as ‘ACL’.

To further assess the effect of ACL treatment on hEPSCs after 6 days of culture, we analysed the

expression levels of SOX17 and SOX2 using reporter fluorescence at the single cell level. This

revealed a strong shift from an originally SOX2 high, SOX17 low population of cells, to the converse

(Figure 1A–C). Furthermore, gene expression analysis showed that pan-endodermal markers

SOX17, GATA6, and EOMES were all upregulated following ACL treatment (Figure 1D, and Fig-

ure 1—figure supplement 2A). Despite observed downregulation of SOX2 expression, the expres-

sion of OCT4 and NANOG increased (Figure 1D and Figure 1—figure supplement 2A), which has

previously been observed in hESCs overexpressing SOX17 (Séguin et al., 2008). The inability of

ACL to fully downregulate pluripotency markers in hPSCs may indicate that cells may still preserve

some features of pluripotent cells.

To determine whether ACL could also induce endodermal fate in other hPSCs, we treated both

RUES2-GLR Rset hPSCs, which harbour a pluripotent state that is intermediate between pre-implan-

tation ‘ground-state’ naı̈ve pluripotency and post-implantation lineage-biased primed pluripotency

(Gafni et al., 2013; Kilens et al., 2018), and conventional primed RUES2-GLR hESCs, that are similar

to the post-implantation human epiblast (Molè et al., 2021; Nakamura et al., 2016). After 6 days of

treatment, endodermal markers were upregulated and SOX2 was downregulated in both Rset hPSCs

and hESCs (Figure 1E–K). This expression pattern was also observed after 1 month of culture (Fig-

ure 1—figure supplement 3). We also observed the requirement of LIF for continued proliferation

for both of these treated hPSC populations (Figure 1—figure supplement 1F). To evaluate whether

these results were cell line specific, we repeated ACL treatment using H9-derived and SHEF6-

derived hEPSCs, Rset hPSCs, and hESCs. This revealed a similar result, in that SOX17, GATA6, and

EOMES were upregulated after 6 days in all three populations for all cell lines at the protein and

RNA level (Figure 1—figure supplement 2B–K and Figure 1—figure supplement 4). SOX2 protein

levels were also downregulated upon ACL treatment in all three hPSCs for all cell lines (Figure 1—

figure supplement 2B–J and Figure 1—figure supplement 4). However, SOX2 was upregulated at

the mRNA level in treated H9 hEPSC cells (Figure 1—figure supplement 2K). Single-cell fluores-

cence intensity analysis revealed this was likely due to a subpopulation of cells that were GATA6 low

but expressed high SOX2 levels (Figure 1—figure supplement 2D), rather than GATA6 high cells

co-expressing high levels of SOX2. This suggests that there is a heterogeneous response to

ACL treatment within H9 hEPSCs.

Given that all three hPSC ACL-treated populations upregulated expression of selected endoder-

mal markers, we sought to determine whether ACL treatment led to global gene expression shifts

from an epiblast to an endodermal fate – either towards the human hypoblast or the embryonic

endoderm lineage, the definitive endoderm. Accordingly, we compared the transcriptome of sorted

SOX17::H2B-tdTomato+ converted populations (Figure 1—figure supplement 5), along with Rset

hPSCs, primed hESCs (Linneberg-Agerholm et al., 2019), and hEPSCs (Yang et al., 2017), to the

lineages of the early human embryo and to human definitive endoderm. To do this, we first identi-

fied genes that were differentially expressed between epiblast, trophoblast, and hypoblast through-

out pre- or early post-implantation development (E6–14), and in vitro-derived definitive endoderm

(Supplementary file 1; Cuomo et al., 2020; Molè et al., 2021; Xiang et al., 2020; Zhou et al.,

2019). Markers were identified in a pairwise manner, where lineages were individually compared,

and gene signatures for each lineage were defined as those positive markers which were common

across all pairwise comparisons. These gene signatures were then incorporated into a gene set-

enrichment-based gene set variation analysis (GSVA) that is particularly robust in extrapolating cell

type labels from single-cell datasets to bulk RNA-seq datasets (Diaz-Mejia et al., 2019;

Hänzelmann et al., 2013). Coefficients were calculated across each lineage and normalized to

1. Importantly, given that different gene sets are used for each lineage within this analysis,
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Figure 1. Endoderm conversion of RUES2-GLR human pluripotent stem cells (hPSCs) in response to ACL treatment. (A, E, and H) Immunofluorescence

images of SOX2 (green) and SOX17 (red) in human extended pluripotent stem cells (hEPSCs), Rset human pluripotent stem cells (hPSCs), and human

embryonic stem cells (hESCs) after 6 days (6D) of ACL treatment (scale bar = 50 mm). (B, F, and I) Bar chart of elative fluorescence intensity (RFI arbitrary

units [a.u.]) of SOX17 and SOX2 (± SEM) before and after 6D of ACL treatment in hPSCs as measured via reporter protein immunostaining. Mann–

Figure 1 continued on next page
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comparisons in coefficients are only made across cell lines. This analysis revealed that all three cell

populations bore a greater similarity to the hypoblast following ACL treatment, while their similarity

to the epiblast decreased, suggesting a shift towards an endodermal fate (Figure 1L). Interestingly,

Rset-ACL bore the greatest similarity of the three ACL-treated cell lines with the human hypoblast,

while hESC-ACL was the most similar of the three to the definitive endoderm (Figure 1L).

Pluripotent state determines the endodermal fate specified in hPSCs in
response to ACL
EOMES, GATA6, and SOX17 are pan-endodermal markers, which are expressed in both extra-

embryonic endoderm and embryonic definitive endoderm across mammalian models (Stern and

Downs, 2012). To date, no putative markers for in vivo human extra-embryonic endoderm vs. defini-

tive endoderm have been designated. We, therefore, sought to identify reliable human extra-embry-

onic endoderm markers that would allow the specific endodermal identity of the ACL-treated hPSCs

to be determined. Previous studies have proposed markers for both human definitive and extra-

embryonic endoderm based on the differentiation of hPSC towards extra-endodermal lineages (Lin-

neberg-Agerholm et al., 2019) or have relied on putative mouse markers (Murakami et al., 2004;

Wang et al., 2012). Contrastingly, we determined all of the differentially expressed genes between

human extra-embryonic and definitive endoderm using published datasets of human embryos cul-

tured in vitro (Xiang et al., 2020; Zhou et al., 2019; Molè et al., 2021) and hESC-derived definitive

endoderm (Cuomo et al., 2020). This revealed that 24,894 of the 26,510 genes analysed were

shared by both endodermal lineages, demonstrating considerable similarity between embryonic and

extra-embryonic endoderm (Figure 2A). Nonetheless, 366 and 1250 genes were found to be differ-

entially upregulated in the definitive endoderm and extra-embryonic endoderm, respectively

(Figure 2A and Supplementary file 2). Extra-embryonic endoderm markers included APOA1,

APOA2, APOE, and APOC1 (Figure 2B and Supplementary file 2) in agreement with the function

of the yolk sac as the primary site of apolipoprotein synthesis during early primate, chick and mouse

development (Baardman et al., 2013; Cindrova-Davies et al., 2017). Similarly, PDGFRa, NID2,

FN1, HNF1b, HNF4a, COL4A1, PITX2, and PODXL were also identified as human extra-embryonic

endoderm markers (Figure 2B and Supplementary file 2), in line with the mouse extra-embryonic

Figure 1 continued

Whitney U-test; ****p < 0.0001 (number of cells analysed: hEPSC control n=2736, hEPSC + 6D ACL n=2270, Rset control n=2749, Rset + 6D ACL

n=3146, hESC control n=1939, hESC + 6D ACL n=2538, three independent experiments each with one sample). (C, G, and J) Quantification of SOX2

and SOX17 protein levels at the single cell level in hEPSC, Rset hPSC, and hESC 6D ACL-treated cells based on relative reporter fluorescence intensity.

Each dot represents an individual cell. (D) Relative expression levels (REL) (± SEM) of GATA6, SOX17, NANOG (n=6 samples, three independent

experiments) and SOX2 (n=4 samples, two independent experiments) in hEPSC before and after 6D ACL treatment, normalised to their respective

control. Mann–Whitney U-test *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. (K) Relative expression levels (REL) (± SEM) of GATA6, SOX17, SOX2,

and NANOG in Rset hPSCs (n=6 samples, three independent experiments), or hESCs (n=4 samples, two independent experiments) after 6D ACL

treatment, normalised to their respective control . Mann–Whitney U-test *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. (L) Transcriptomic-

signature score (gene set variation analysis ([GSVA]) positive marker score) when comparing ACL-treated cells to either the human hypoblast,

trophoblast, or epiblast within the human embryo (E6–14), or to human definitive endoderm using sc-RNA-seq expression data (embryo and definitive

endoderm) and bulk RNA-seq expression data (cell lines). The higher the value (orange), the more relatively similar to each lineage.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Fluorescence intensity and qPCR analysis of endoderm and pluripotency markers in RUES2 human pluripotent stem cells (hPSCs) in

response to ACL.

Figure supplement 1. 6-Day molecular screen using RUES2 human pluripotent stem cells (hPSCs).

Figure supplement 1—source data 1. Fluorescence intensity analysis of human extended pluripotent stem cell (hEPSC) screen.

Figure supplement 2. Endoderm conversion of RUES2 and H9 human pluripotent stem cells (hPSCs) in response to ACL treatment.

Figure supplement 2—source data 1. Fluorescence intensity and qPCR analysis of endoderm and pluripotency markers in RUES2 and H9 human plu-
ripotent stem cells (hPSCs) in response to ACL.

Figure supplement 3. Prolonged culture of Rset-ACL.

Figure supplement 3—source data 1. Fluorescence intensity and qPCR analysis of long-term culture of Rset-ACL.

Figure supplement 4. Endoderm conversion of SHEF6 human pluripotent stem cells (hPSCs) in response to ACL treatment.

Figure supplement 4—source data 1. Fluorescence intensity and qPCR analysis of SHEF6 human pluripotent stem cells (hPSCs) in response to ACL.

Figure supplement 5. Flow cytometry gating strategy for isolating the SOX17::tdTomato+ cells within human extended pluripotent stem cell (hEPSC)-
ACL, Rset-ACL, and human embryonic stem cell (hESC)-ACL populations.
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endoderm expression profile at various stages of development (Ghatpande et al., 2002;

Johansson et al., 1997; Kwon et al., 2008; Rodriguez et al., 2005; Shahbazi et al., 2017).

Using the makers identified above, we subjected ACL-treated hEPSC, Rset, and hESC popula-

tions to GSVA. Given that these marker sets are related – the negative markers for the extra-embry-

onic endoderm are the positive markers for the definitive endoderm – we then subtracted the GVSA

marker score for the definitive endoderm from the GVSA marker score for extra-embryonic endo-

derm and normalised the highest score to 1. This allowed us to obtain a relative view of how similar

each ACL cell type is to the extra-embryonic endoderm vs. the definitive endoderm. This revealed

hESC-ACL to be the most similar to human definitive endoderm of the three populations, and Rset-

ACL the most similar to extra-embryonic endoderm (Figure 2C). hEPSC-ACL were also more similar

to definitive endoderm than extra-embryonic endoderm (Figure 2C).

Collectively, this transcriptional profiling of ACL-treated hPSCs indicates that the initial pluripo-

tent state determines the endodermal fate that ACL treatment induces in hPSC populations. The

fact that primed hESCs give rise to the most definitive endoderm-like population of the three is in

line with previous findings (Linneberg-Agerholm et al., 2019). Although hEPSC-ACL are more simi-

lar to the definitive endoderm relative to extra-embryonic endoderm, they are not as similar to the

definitive endoderm as hESC-ACL are, perhaps due to hEPSC-ACL representing a highly heteroge-

nous population of cells. Rset-ACL were the most similar to the extra-embryonic endoderm, making

them a potential candidate for modelling the human yolk sac.

Developmental characterisation of ACL-treated hPSCs
We next wished to determine the dynamics of conversion from a pluripotent to an endoderm fate.

Commitment to a definitive endoderm fate follows an initial intermediate mesendoderm fate

Figure 2. Transcriptional profiling of ACL-treated human pluripotent stem cells (hPSCs) relative to extra-embryonic endoderm and definitive endoderm

expression signatures. (A) Venn diagram depicting the number of shared genes between human extra-embryonic endoderm (E6–14) and human

embryonic stem cell (hESC)-derived definitive endoderm (brown), of extra-embryonic endoderm differentially expressed genes (orange), and

of definitive endoderm differentially expressed genes (green). (B) MA plot representing the differentially expressed genes between human definitive

endoderm and extra-embryonic endoderm. Top 20 differentially expressed genes are labelled, along with key extra-embryonic endoderm markers

NID2, PDGFRa, HNF4a, HNF1b, PITX2, PODXL, and HHEX (>10% of cell type of interest, log2FC>0.25, p<0.05). (C) Transcriptomic-signature

comparison score of human extra-embryonic endoderm vs. definitive endoderm within ACL-treated hPSCs (gene set variation analysis ([GSVA]) score

for negative markers subtracted from GVSA score for positive markers and values normalised to 1). A negative value represents definitive endoderm

similarity and a positive value represents an extra-embryonic endoderm similarity. hEPSC-ACL: n=2 technical replicates, Rset-ACL: n=3 technical

replicates, hESC-ACL: n=2 technical replicates. Sc-RNA-seq expression data (extra-embryonic endoderm and definitive endoderm) and bulk RNA-seq

expression data (cell lines) were used for all relevant panels.
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(Kimelman and Griffin, 2000), whereas extra-embryonic endoderm derives directly from the ICM

without this intermediate state (Niakan et al., 2012). To determine whether a mesendoderm fate is

induced during ACL treatment in hEPSCs, Rset hPSCs, or hESCs, we monitored the dynamics of

SOX2, SOX17, and BRACHYURY during the 6 days of ACL treatment (Figure 3A & B). This revealed

a trend of increase in BRACHYURY expression in hESC-ACL and hEPSC-ACL populations around day

2 of treatment, which then diminished by day 4 in both cases. However, in Rset hPSCs, this trend of

BRACHYURY levels was not observed. This shows that of the three cell types, the specification

dynamics of Rset hPSCs in response to ACL was the most similar to that expected of extra-embry-

onic endoderm specification.

To further profile ACL-treated cells, we generated human-mouse embryo chimeras. We aggre-

gated eight-cell stage mouse embryos with small groups (three to six cells) of SOX17::H2B-tdTo-

mato+ ACL-treated hEPSCs, Rset hPSCs, or hESCs. To ensure viability of ACL-treated cells

throughout the chimeric process, embryos were cultured in ACL for 24 hr, before being transferred

to mouse embryo medium (KSOM) for the remaining 24 hr until late blastocyst stage (Figure 3C). As

a control we cultured eight-cell stage mouse embryos in ACL for 24 hr, before transferring them into

KSOM and confirmed this had no effect on lineage specification and blastocyst formation (Figure 3—

figure supplement 1). We observed that both hEPSC-ACL and Rset-ACL were able to contribute to

the primitive endoderm of mouse embryos (Figure 3D–F). This was confirmed by the presence of

reporter fluorescence within the ICM, and also by the co-expression of GATA6 with SOX17::H2B-

tdTomato. hEPSC-ACLs and Rset-ACLs contributed to the mouse primitive endoderm in 18% and

12% of chimeras, respectively, with hEPSC-ACL contributing to both the epiblast and the primitive

endoderm 3% of the time, suggesting a degree of fate plasticity (Figure 3F). This contribution pro-

file of hEPSC-ACL and Rset-ACL contrasts that of hEPSCs and Rset hPSCs which both almost solely

contribute to the epiblast compartment within human-mouse chimeric blastocysts: hEPSCs and Rset

hPSCs contribute to the epiblast in 44% and 81% of embryos, and to both the epiblast and primitive

endoderm 6% and 4% of the time, respectively (Figure 3—figure supplement 2). Primed hESCs

treated with ACL could not contribute to mouse primitive endoderm (Figure 3—figure supplement

3).

Collectively, based on the transcriptional and functional evidence, we concluded that Rset-ACL

are the most similar to human extra-embryonic endoderm relative to the other two cell lines. Despite

hEPSC-ACL being able to contribute to the murine primitive endoderm, and thereby sharing some

functional properties with the extra-embryonic endoderm, they also share significant similarities to

the definitive endoderm, both in terms of their developmental pathway and transcriptional profile.

This is likely due to the high degree of heterogeneity present in hEPSC-ACL cultures. hESC-ACL are

more similar to definitive endoderm, functionally, transcriptionally, and in terms of their develop-

mental trajectory. Based on these findings we concluded that Rset-ACL were the most promising

candidate for modelling the human yolk sac.

Pluripotent state determines the developmental state of extra-
embryonic endoderm specified in hPSCs in response to ACL
To model the yolk sac-epiblast crosstalk, we sought to use an extra-embryonic endoderm cell type

that resembles the post-implantation hypoblast-derived yolk sac. Therefore, we next ascertained

whether Rset-ACL were more similar to pre- or post-implantation extra-embryonic endoderm. How-

ever, to date no markers have been defined that distinguish the two human extra-embryonic endo-

derm states. Following comparison between the transcriptional profile of pre-implantation extra-

embryonic endoderm (primitive endoderm) (E6–7) (Xiang et al., 2020; Zhou et al., 2019) and post-

implantation extra-embryonic endoderm (yolk sac) (E10–14) (Molè et al., 2021; Xiang et al., 2020;

Zhou et al., 2019), we identified differentially expressed genes between the two states. Of the

26,510 genes examined, 25,496 were shared, with 397 and 617 genes being differentially upregu-

lated in the pre- or post-implantation state, respectively (Figure 4A) (Supplementary file 3). Inter-

estingly, AXL, a visceral endoderm marker in the mouse (McDonald et al., 2014), was among the

identified markers of post-implantation yolk sac (Figure 4B and Supplementary file 3). The pres-

ence of APOA2 and APOB in the top differentially expressed post-implantation genes once again

alludes to the yolk sac as the primary site of apolipoprotein synthesis in the early embryo.

We then analysed the expression of the pre- and post-implantation markers in Rset-ACL, and also

the only previously reported hPSC-derived extra-embryonic endoderm progenitor cell line called
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Figure 3. Functional characterisation of ACL-treated human pluripotent stem cells (hPSCs). (A) Line graph (± SEM) plotting the relative fluorescence

intensity (RFI arbitrary units [a.u.]) of SOX2, SOX17, and BRACHYURY in ACL-treated population. Kruskal–Wallis test, ****p < 0.0001 (number of cells

analysed SOX17: human extended pluripotent stem cell (hEPSC): D0 n=2774, D1 n=3258, D2 n = 2932, D3 n=3292, D4 n=2459, D5 n=2293, D6 n=1883,

Rset: D0 n=2108, D1 n=3580, D2 n=2738, D3 n=2586, D4 n=2149, D5 n=2698, D6 n = 2441, human embryonic stem cell (hESC): D0 n=1426, D1 n=1924,

D2 n=1943, D3 n=2817, D4 n=2248, D5 n=1148, D6 n=1957 (n=2 independent experiments); SOX2: hEPSC: D0 n = 2774, D1 n=3258, D2 n=2932, D3

n=3292, D4 n=2459, D5 n=2293, D6 n=1883, Rset: D0 n=2342, D1 n=3634, D2 n=2794, D3 n=2671, D4 n=2068, D5 n=2293, D6 n=2918, hESC: D0

n=2353, D1 n=3082, D2 n=3129, D3 n=4174, D4 n=2989, D5 n=1787, D6 n=3114; BRACHYURY: hEPSC: D0 n = 3452, D1 n=4090, D2 n=3435, D3

n=4223, D4 n=2881, D5 n=2837, D6 n=2218, Rset: D0 n=2317, D1 n = 3739, D2 n=3141, D3 n=2881, D4 n=2467, D5 n=2951, D6 n=4400, hESC: D0

n=2685, D1 n=3433, D2 n=3997, D3 n=5325, D4 n=3490, D5 n=2155, D6 n = 3258. n = 3 independent experiments). (B) Immunofluorescence images of

SOX2 (green), SOX17 (red), and BRACHYURY (grey) in hEPSCs, Rset hPSCs, and hESCs during 6 days of ACL treatment (scale bar = 50 mm). (C)

Schematic of human-mouse chimera protocol using ACL-treated cells. Clumps of three to six SOX-17::H2B-tdTomato+ treated cells were aggregated

with E2.5 mouse embryos and cultured for 24 hr in ACL. After this, embryos were moved into KSOM and cultured for another 24 hr. (D)

Immunofluorescence images of SOX17::H2B-tdTomato (red), GATA6 (grey), and DAPI (blue) in E4.5 mouse blastocysts. hEPSC-ACL cells contribution

Figure 3 continued on next page
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T2iLGö-PrE (Linneberg-Agerholm et al., 2019) derived from T2iLGö hPSCs which harbour a pluripo-

tent state comparable to the pre-implantation naı̈ve human epiblast (Guo et al., 2017). We postu-

lated that given T2iLGö-PrE were derived from an hPSC representing an earlier developmental

epiblast state than Rset hPSCs, they may be more similar to the pre-implantation extra-embryonic

Figure 3 continued

denoted by SOX17::H2B-tdTomato+ (red) cells (white arrowheads) (scale bar = 50 mm). (E) Immunofluorescence images of SOX17::H2B-tdTomato (red),

GATA6 (grey), and DAPI (blue) in E4.5 mouse blastocysts. Rset-ACL cells contribution denoted by SOX17::H2B-tdTomato+ (red) cells (white

arrowheads). (F) Pie charts showing percentage of human cell contribution to the primitive endoderm, epiblast, or both. Rset (N = 67 embryos, n=3

independent experiments), hEPSC (N = 39 embryos, n=3 independent experiments).

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Fluorescence intensity analysis of ACL-treated human pluripotent stem cells (hPSCs) and analysis of mouse-human pre-implantation

chimeras.

Figure supplement 1. Characterisation of mouse blastocysts cultured in interspecies chimera conditions.

Figure supplement 1—source data 1. Analysis of mouse embryo culture condition effects and mouse-human chimeras.

Figure supplement 2. Contribution of human extended pluripotent stem cell (hEPSC) and Rset human pluripotent stem cells (hPSCs) to interspecies
chimeras.

Figure supplement 2—source data 1. Analysis of mouse-human blastocyst chimeras using human extended pluripotent stem cells (hEPSCs) and Rset
human pluripotent stem cells (hPSCs).

Figure supplement 3. Contribution of ACL-treated human embryonic stem cells (hESCs) to interspecies chimeras.

Figure supplement 3—source data 1. Analysis of mouse-human blastocyst chimeras using human embryonic stem cell (hESC)-ACL.

Figure 4. Transcriptional profiling of T2iLGo€-PrE and Rset-ACL relative to human pre- and post-implantation extra-embryonic endoderm expression

signatures. (A) Venn diagram depicting the number of shared genes between pre-implantation extra-embryonic endoderm (E6–7) and post-

implantation extra-embryonic endoderm (E10–14) (brown), of pre-implantation extra-embryonic endoderm differentially expressed genes (green) and

of post-implantation extra-embryonic endoderm differentially expressed genes (orange). (B) MA plot representing the differentially expressed genes

between human pre-implantation and post-implantation extra-embryonic endoderm. Top 20 differentially expressed genes are labelled (>10% of cell

type of interest, log2FC>0.25, p<0.05). (C) Transcriptomic-signature comparison score of pre-implantation extra-embryonic endoderm vs. post-

implantation extra-embryonic endoderm for T2iLGo€-Pre and Rset-ACL (gene set variation analysis [GSVA] score for pre-implantation extra-embryonic

endoderm subtracted from GSVA score for post-implantation extra-embryonic endoderm and values normalised to 1). A negative value (green)

represents pre-implantation extra-embryonic endoderm similarity and a positive value (orange) represents post-implantation extra-embryonic

endoderm. T2iLGo€-Pre: n=2 technical replicates (from published dataset), Rset-ACL: n=3 technical replicates. Sc-RNA-seq expression data (pre- and

post-implantation extra-embryonic endoderm) and bulk RNA-seq expression data (cell lines) were used for all relevant panels.
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endoderm (primitive endoderm), whereas Rset-ACL may be more comparable to the post-implanta-

tion yolk sac.

Similar to the process described above, we performed a differential gene expression analysis

between the pre-implantation (E6–7) (Xiang et al., 2020; Zhou et al., 2019) and post-implantation

(E10–14) (Molè et al., 2021; Xiang et al., 2020; Zhou et al., 2019) extra-embryonic markers on the

two cell lines to determine which was more similar to the post-implantation yolk sac. Given that

these marker sets are related – the negative markers for the post-implantation extra-embryonic are

the positive markers for the pre-implantation extra-embryonic endoderm – we then subtracted the

GSVA marker score for the pre-implantation markers from the GSVSA marker score for post-implan-

tation markers and normalised the highest score to 1. This analysis revealed Rset-ACL to be the

most similar to the post-implantation extra-embryonic endoderm, while T2iLGö-PrE were more simi-

lar to the pre-implantation extra-embryonic endoderm (Figure 4C). These results indicate that Rset-

ACL is the best candidate for modelling yolk sac-epiblast interactions. Accordingly, these cells will

be referred to as YSLCs.

YSLCs antagonise WNT and BMP signalling in hESCs
The yolk sac of the mouse embryo harbours an asymmetrically localised subpopulation of cells called

the AVE. These cells secrete inhibitors of BMP, WNT, and NODAL signalling, thereby creating a sig-

nalling gradient across the post-implantation epiblast. This gradient in turn determines the position-

ing of the primitive streak and, therefore, the anterior-posterior axis of the embryo (Arnold and

Robertson, 2009). The post-implantation hypoblast of both the cynomolgus monkey and human

embryo also expresses DKK1, CER1, and NOG (Molè et al., 2021; Nakamura et al., 2016;

Sasaki et al., 2016) and studies of human embryos cultured to post-implantation stages in vitro

have suggested that an anterior subpopulation of cells within the human hypoblast may influence

BMP signalling within the adjacent epiblast (Molè et al., 2021). This implies that the human yolk sac

may harbour AVE-like cells. We, therefore, analysed the expression of these pathway inhibitors

within the hypoblast of the pre- and post-implantation human embryo using published datasets

(Molè et al., 2021; Xiang et al., 2020; Zhou et al., 2019) and found that DKK1, CER1, LEFTY2, and

SFRP1 are expressed at greater levels in post-implantation relative to pre-implantation hypoblast,

while NOG is expressed at higher levels in the pre-implantation hypoblast (Figure 5A).

Given that YSLCs share transcriptional similarity to the post-implantation extra-

embryonic endoderm, we examined the expression of WNT and BMP inhibitors in YSLCs and

observed that all of the analysed inhibitors were upregulated in YSLCs (Figure 5B and Figure 5—fig-

ure supplement 1A and B). In human stem cell models, DKK1 and NOG act as WNT and BMP inhib-

itors, respectively (Martyn et al., 2019; Simunovic et al., 2019), whereas CER1 antagonises both

NODAL and BMP signalling in other systems (Aykul and Martinez-Hackert, 2016). We, therefore,

postulated that YSLCs may share functional characteristics with the mouse AVE and the human ante-

rior hypoblast in their ability to govern cell fate via BMP and WNT inhibition.

To test this, we first sought to determine whether YSLCs can influence hESC fate. hESCs have

been shown to lose their pluripotent character in a BMP-dependent manner when cultured in a 3D

‘sandwich’ matrix of Geltrex, in which cells are plated on top of a base layer of Geltrex before being

covered by mTESR1 containing 5% Geltrex (Shao et al., 2017b). Confirming these previous findings,

we found that at a density of 60,000 cells per cm2 hESCs lost SOX2 expression and either formed

squamous spheroids or lost structural integrity (Figure 5—figure supplement 1C). Similarly, we

found that inhibiting WNT signalling using either IWR1 (10 ng ml�1) or XAV (10 ng ml�1) in hESCs

cultured in 3D Geltrex prevented downregulation of SOX2 (Figure 5—figure supplement 1C and

D). Collectively, this indicates that hESCs lose SOX2 in 3D Geltrex in response to BMP and WNT sig-

nalling pathway activation. To test whether YSLCs could antagonise this signalling, YSLCs were cul-

tured at a 1:1 ratio with hESCs for 72 hr in mTeSR1 PLUS, revealing SOX2 levels to be higher in co-

culture conditions relative to control hESCs. We also noted a slight (but not significant) increase

in the number of epithelial spheroids (squamous and columnar) relative to disorganised structures in

co-culture conditions (Figure 5—figure supplement 1E–G). This demonstrates an ability of YSLCs to

inhibit the loss of SOX2 in hESCs that would otherwise occur in 3D Geltrex.

To test whether the reduced loss of SOX2 expression was controlled by a soluble factor, we con-

ditioned mTeSR1 PLUS medium for 24 hr on confluent YSLCs. This experimental setting also

removed any effects of suboptimal YSLC viability within the co-culture conditions. hESCs were then
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Figure 5. Yolk sac-like cells (YSLCs) antagonise BMP and WNT signalling in human embryonic stem cells (hESCs). (A) Bar chart plotting average

expression levels of WNT, NODAL, and BMP inhibitors in pre-implantation (Pre, E6–7) and post-implantation human hypoblast (Post, E10–14) denoted

as relative counts per million (RCPM) using published sc-RNA-seq data. (B) Bar chart (± SEM) plotting expression levels of BMP, NODAL, and WNT

inhibitors in Rset hPSCs and YSLCs denoted as transcripts per million (TPM) using bulk RNA-seq data (YSLCs: n=3 technical replicates, Rset: n=2

technical replicates [from published dataset]). (C) Immunofluorescence images of SOX2 (green) and ACTIN (grey) in hESCs cultured in 3D Geltrex in

either mTeSR (hESC) or mTeSR conditioned on YSLCs (+YSLC CM) (scale bar = 50 mm). (D) Percentage of structures that are columnar, squamous, or

disorganised based on cell aspect ratio calculations in cells from panel C using ACTIN stainings. Chi-squared test. ****p < 0.0001 (number of structures

analysed: control n=33, +YSLC CM n=30, n=3 independent experiments each with one sample). (E) Bar chart (± SEM) depicting SOX2 levels as inferred

from relative fluorescence intensity (RFI arbitrary units [a.u.]) in cells from panel C. Mann–Whitney U-test; ****p < 0.0001 (number of cells analysed:

SOX2: hESC n=2346, +YSLC CM n=596, n=3 independent experiments each with one sample). (F) Immunofluorescence of pSMAD1/5 (grey) in hESCs

cultured in mTeSR (hESC) or mTeSR conditioned on YSLCs (+YSLC CM) in 3D Geltrex (scale bar = 50 mm). (G) Immunofluorescence of LEF1 (grey) in

Figure 5 continued on next page
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cultured in this conditioned medium for 72 hr in 3D Geltrex. mTeSR1 PLUS conditioned on YSLCs

blocked the downregulation of SOX2 within hESCs relative to control conditions and also signifi-

cantly supported a columnar epithelial morphology (Figure 5C–E). These results show that YSLCs

are able to prevent SOX2 downregulation and support columnar spheroid formation in hESCs in 3D

Geltrex via secreted components, but that the potency of this effect is limited when they are physi-

cally co-cultured with hESCs, likely due to a reduced viability of YSLCs in 3D Geltrex conditions.

To understand whether YSLC conditioned medium was inhibiting BMP and WNT signalling within

the 3D hESC spheroids, we analysed the levels of the downstream WNT and BMP effectors LEF1

and pSMAD1/5, respectively, in hESCs cultured in 3D Geltrex in either mTeSR1 PLUS or mTeSR1

PLUS conditioned on YSLCs. This revealed that both pathways were active in mTeSR1 PLUS control

conditions, but their activity decreased in the presence of YSLC conditioned medium (Figure 5F–H).

To more precisely control the signalling pathways inducing SOX2 loss in hESCs, we added either

BMP4 or WNT3a to hESCs cultured in 2D. Addition of 1 ng ml�1 of BMP4 to mTeSR1 PLUS led to a

marked decrease in SOX2 expression concomitant with an increase in the levels of nuclear pSMAD1/

5 (Figure 5I,J). Strikingly, when hESCs were exposed to BMP4 in the presence of YSLC conditioned

medium, SOX2 expression did not significantly decrease and levels of nuclear pSMAD1/

5 remained low (Figure 5I,J). Similarly, when hESCs were cultured in the presence of 1 mg ml�1

WNT3A they lost SOX2 expression and upregulated LEF1 (Figure 5K,L). However, when hESCs

were cultured in the presence of 1 mg ml�1 WNT3a and YSLC conditioned medium, the downregula-

tion of SOX2 and upregulation of LEF1 was significantly counteracted (Figure 5K–L). A similar trend

was observed for NANOG levels in hESCs that were exposed to either BMP4 or WNT3a in the pres-

ence of YSLC conditioned medium (Figure 5—figure supplement 1H–K). Together, our results

demonstrate that YSLCs block loss of pluripotent gene expression by antagonising WNT and BMP

signalling via secreted factors and can thereby influence hESC fate.

YSLCs inhibit posterior epiblast fate specification in hESCs
Within the mouse embryo, the AVE acts to induce anterior fate and repress the formation of the

primitive streak in the epiblast cells adjacent to it (Rivera-Pérez and Hadjantonakis, 2015). A similar

function has been recently proposed for the human anterior hypoblast (Molè et al., 2021). Given

the ability of YSLCs to influence hESC fate via WNT and BMP inhibition, we hypothesised that YSLCs

may bear similarity to both the mouse AVE and the human anterior hypoblast, and may, therefore,

be able to prevent hESCs from differentiating into posterior epiblast fates. Consequently, we ana-

lysed the expression of the posterior markers BRACHYURY and GATA6 in hESCs cultured in 3D Gel-

trex. In control conditions, BRACHYURY was not induced, while GATA6 was upregulated, and this

upregulation was blocked in the presence of YSLC conditioned medium (Figure 6A–C). Next, to test

whether YSLCs can block mesoderm specification, we employed a 2D mesoderm induction protocol

Figure 5 continued

hESCs cultured in mTeSR (hESC) or mTeSR conditioned on YSLCs (+YSLC CM) in 3D Geltrex (scale bar = 50 mm). (H) Bar chart (± SEM) depicting the

levels of pSMAD1/5 (nuclear) and LEF1 in hESCs cultured in mTeSR (hESC) or mTeSR conditioned on YSLCs (+YSLC CM) as inferred from RFI in cells

from panels F and G, respectively. Mann–Whitney U-test, ****p <0.0001 (number of cells analysed: pSMAD1/5: hESC n=2563, +YSLC CM n=1660; LEF1:

hESC n=1984, +YSLC CM n=1041. n=3 independent experiments each with one sample). (I) Immunofluorescence of SOX2 (green) and pSMAD1/5 (grey)

in hESCs cultured in mTeSR (hESC), treated with BMP4 (+BMP4) or treated with BMP4 and YSLC conditioned media (+BMP4+YSLC CM) (scale bar = 50

mm). (J) Bar charts (± SEM) depicting the levels of SOX2 and pSMAD1/5 RFI in samples from panel I. Kruskal–Wallis test with Dunn’s multiple

comparisons test, ****p<0.0001 (number of cells analysed: hESC n=1549, +BMP4 n = 1063, +BMP4+YSLC CM n=1544, n=3 independent experiments

each with one sample). (K) Immunofluorescence of SOX2 (green) and LEF1 (grey) in hESCs cultured in mTeSR (hESC), treated with WNT3a (+WNT3a) or

treated with WNT3a and YSLC conditioned media (+WNT3a+YSLC CM) (scale bar = 50 mm). (L) Bar chart (± SEM) depicting the levels of SOX2 and

LEF1 RFI in samples from panel K. Kruskal–Wallis test with Dunn’s multiple comparisons test, ****p<0.0001 (number of cells analysed: hESC n=1604,

+WNT3a n=1682, +WNT3a+YSLC CM n=1376, n=3 independent experiments each with one sample).

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Analysis of BMP/WNT/NODAL inhibitors in the human embryo and yolk sac-like cells (YSLCs) and analysis of human embryonic stem

cell (hESC) response to YSLCs.

Figure supplement 1. Yolk sac-like cells (YSLCs) prevent SOX2 and NANOG loss.

Figure supplement 1—source data 1. Fluorescence intensity analysis of SOX2 and NANOG levels in human embryonic stem cells (hESCs) in the pres-
ence of yolk sac-like cells (YSLCs) and YSLC conditioned media (CM).
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Figure 6. Yolk sac-like cells (YSLCs) inhibit mesoderm and endoderm specification in human embryonic stem cells (hESCs) in 3D and 2D. (A)

Immunofluorescence of pSMAD1/5 (green) and GATA6 (grey), and a merge of the two, in hESCs cultured in 3D Geltrex in mTeSR (hESC) or YSLC

conditioned media (+YSLC CM) (scale bar = 50 mm). (B) Immunofluorescence of LEF1 (green) and BRACHYURY (grey), and a merge of the two, in hESCs

cultured in 3D Geltrex in mTeSR (hESC) or YSLC conditioned media (+YSLC CM) (scale bar = 50 mm). (C) Bar charts (± SEM) depicting the levels of

GATA6 and BRACHYURY in hESCs cultured in 3D Geltrex in mTeSR (hESC) or YSLC conditioned media (+YSLC CM) as inferred from relative

fluorescence intensity (RFI) arbitrary units [a.u.] in cells from panels A and B, respectively (number of cells analysed: GATA6: hESC n=2336, YSLC CM

n=1074, BRACHURY: hESC n=2112, YSLC CM n=1261, n=3 independent experiments each with one sample) Mann–Whitney U-test; *p < 0.05, **p <

0.01, ***p < 0.001, ****p < 0.0001. (D) Immunofluorescence of SOX2 (green) and GATA6 (grey), and a merge of the two in hESCs, hESCs in MesoI

(mesoderm induction medium), or MesoI + YSLC CM (scale bar = 50 mm). (E) Immunofluorescence of SOX2 (green) and BRACHYURY (grey), and a

merge of the two, in hESCs, hESCs in mesoderm induction medium (MesoI), or MesoI conditioned on YSLCs (MesoI + YSLC CM) (scale bar = 50 mm).

(F) Bar chart (± SEM) depicting the levels of GATA6, BRACHYURY and SOX2 in hESCs cultured in basal medium (hESC), hESCs in mesoderm induction

medium (MesoI), or MesoI + YSLC CM as measured by RFI. Kruskal–Wallis test with Dunn’s multiple comparisons test. ****p <0.0001 (number of cells

analysed: GATA6: hESC n = 5583, +MesoI n=2554, +MesoI+YSLC CM n=2383, BRACHYURY: hESC n = 6859, +MesoI n=6741, +MesoI+YSLC CM

n=2072; SOX2: hESC n=6859, +MesoI n=6741, +MesoI+ YSLC CM n=2072. n=3 independent experiments each with one sample). (G) Relative

expression levels (REL) (± SEM) of EOMES, SOX17, MIXL1, FOXA2, and GSC in hESCs cultured in basal medium (hESC), hESCs in mesoderm induction

Figure 6 continued on next page
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involving the supplementation of 10 ng ml�1 BMP4 to hESCs for 3 days (Richter et al., 2014). Strik-

ingly, immunofluorescence analyses revealed that YSLC conditioned medium suppressed the upre-

gulation of BRACHYURY while also preventing the loss of SOX2 in hESCs cultured in mesoderm

induction medium (Figure 6D–F). GATA6 was also upregulated in hESCs after BMP4 treatment and

this was also countered by YSLC conditioned medium. Similarly, YSLC conditioned medium sup-

pressed the upregulation of the posterior markers EOMES, SOX17, MIXL1, FOXA2, and GSC at the

RNA level (Figure 6G). These results, therefore, demonstrate that YSLCs are able to inhibit posterior

epiblast marker expression in hESCs.

YSLCs upregulate pluripotency and anterior ectoderm markers in hESCs
SOX2 is a pluripotency marker but is also expressed in the anterior ectoderm. Given that YSLCs are

able to prevent SOX2 downregulation in 3D Geltrex, we investigated the levels of the pluripotency

markers OCT4 and NANOG, and the anterior ectoderm markers SOX1 and OTX2 in hESC cultured

in YSLC conditioned medium in 3D Geltrex over a 5-day period. This revealed that expression of

both OCT4 and NANOG was higher in hESCs cultured in YSLC conditioned medium at all timepoints

relative to control mTeSR conditions, while SOX2 levels were significantly different from day 3 of cul-

ture (Figure 7A and B). SOX1 levels steadily increased relative to controls over the 5-day culture

period but were downregulated after 7 days (Figure 7C and D, Figure 7—figure supplement 1A

and B). Conversely, OTX2 expression did not increase until day 3, and peaked at day 4, before

decreasing again (Figure 7C and D). Interestingly, in the presence of conditioned medium, pluripo-

tency markers and anterior ectoderm markers were co-expressed (Figure 7—figure supplement

1C). Overall, these results demonstrate that YSLCs can upregulate pluripotency and anterior ecto-

derm markers in hESCs in 3D.

To further assess the ability of YSLCs to induce anterior ectoderm markers in hESCs, we deter-

mined whether YSLC conditioned medium could upregulate neural markers in 2D. In neural progeni-

tor differentiation protocols, dual small molecule targeting of SMAD signalling is widely used

(Chambers et al., 2009; Shi et al., 2012). Given that YSLC conditioned medium was able to inhibit

SMAD activity in hESCs in 2D and 3D, we analysed the ability of YSLC conditioned medium to

replace small molecule SMAD inhibitors within a 2D neural differentiation protocol. Accordingly,

hESCs were cultured in YSLC conditioned medium, rather than SB431542 and NOGGIN, for 11 days,

before being cultured in FGF2 for 4 days (Shi et al., 2012; Figure 7E). After the completion of the

15-day protocol, the anterior ectoderm markers SOX1, PAX6, NESTIN, and NOTCH1 were all signifi-

cantly upregulated in hESCs (Figure 7F–H). SOX2 was downregulated relative from controls, but

was still present, as has been observed during the early stages of neural specification (Zhang et al.,

2018). Interestingly, YSLC conditioned medium induced the upregulation of anterior ectoderm

markers to intermediate levels relative to hESCs cultured in dual SMAD conditions and control

hESCs (Figure 7—figure supplement 1D). This was also the case for levels of pluripotency markers

(Figure 7—figure supplement 1D). Overall these results demonstrate that YSLCs support anterior

ectoderm marker expression in combination with pluripotency markers and, therefore, share func-

tional similarities with the mammalian AVE.

Discussion
The signalling pathways that govern lineage specification and morphogenesis within the implanting

human embryo remain poorly understood due to technical and ethical constraints. Here, we have

created an in vitro system to explore the signalling interactions between the epiblast and yolk sac of

the post-implantation human embryo.

Figure 6 continued

medium (MesoI), or MesoI + YSLC CM as measured by RFI, normalised to their hESC control (n=4 samples, two independent experiments). Kruskal–

Wallis test; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

The online version of this article includes the following source data for figure 6:

Source data 1. Fluorescence intensity and qPCR analysis of mesoderm and endoderm markers in human embryonic stem cells (hESCs) in the presence

of yolk sac-like cell (YSLC) conditioned medium (CM).

Mackinlay et al. eLife 2021;10:e63930. DOI: https://doi.org/10.7554/eLife.63930 14 of 28

Research article Cell Biology Developmental Biology

https://doi.org/10.7554/eLife.63930


0

5

10

15

hESC

+YSLC CM

D
1

10

15

S
O

X
2

O
C

T
4

D1 D3

SOX2

OCT4
R

F
I 
(a

.u
.)

0

5

MergeSOX2 SOX1

h
E

S
C

+
Y

S
L

C
 C

M

0

50

100

150

200

0.0

2.5

5.0

7.5

10.0

0

1

2

3

4

5

R
E

L

PAX6 NESTIN NOTCH1

*

*

*

*

D
3

D
4

D
5

SOX1

4
5

2
3

1
00

5

10

15

20
OTX2

R
F

I 
(a

.u
.)

D0 D11 D15

YSLC CM FGF2

NS ****

****

****

****
****

**** ********

**** ****

NS

****

**** ****

hESC  +

A

E

hE
S
C

hE
S
C

hE
S
C

+Y
S
LC

 C
M

+Y
S
LC

 C
M

+Y
S
LC

 C
M

F G H

0.0

0.5

1.0

1.5
SOX1

0.0

0.5

1.0

1.5
SOX2

hE
S
C

+Y
S
LC

 C
M

hE
S
C

+Y
S
LC

 C
M

****

N
A

N
O

G

D4 D5
h

E
S

C
+

Y
S

L
C

 C
M

h
E

S
C

+
Y

S
L

C

 C
M

h
E

S
C

+
Y

S
L

C

 C
M

S
O

X
1 h

E
S

C
+

Y
S

L
C

 C
M

O
T

X
2 h

E
S

C
+

Y
S

L
C

 C
M

D1 D3 D4 D5

R
F

I 
(a

.u
.)

NANOG

****

****

****
****

NS

R
F

I 
(a

.u
.)

D
1 D

3
D
4

D
5

D
1 D

3
D
4

D
5

D
1 D

3
D
4

D
5D

1 D
3

D
4

D
5

hESC

+YSLC CM

AA B C

D

0

5

10

15

20

R
F

I 
(a

.u
.)

R
F

I 
(a

.u
.)

Figure 7. Yolk sac-like cells (YSLCs) induce the co-expression of anterior ectoderm markers and pluripotency markers in human embryonic stem

cell (hESC) in 3D and 2D. (A) Immunofluorescence of SOX2 (green), NANOG (grey), and OCT4 (red) in hESCs after 1, 3, 4, or 5 days cultured in mTeSR

(hESC) or in YSLC conditioned media (+YSLC CM) in 3D Geltrex (scale bar = 50 mm). (B) Bar charts (± SEM) depicting relative fluorescence intensity (RFI

arbitrary units [a.u.]) of SOX2, NANOG, and OCT4 in hESCs cultured in YSLC CM (+YSLC CM) relative to hESCs cultured in mTeSR (hESCs) in 3D

Geltrex for 1, 3, 4, and 5 days. Two-way ANOVA with Sidak’s multiple comparisons test comparing hESC vs. +YSLC CM for each day. ****p<0.0001, **

<0.01, NS p>0.05 (number of cells analysed: SOX2: day 1: hESC n=567, +YSLC CM n=662, day 3: hESC n=2318, +YSLC CM n=1870, day 4: hESC

n=3755, +YSLC CM n=1249, day 5: hESC n=4946, +YSLC CM n=1897, OCT4: day 1: hESC n=450, +YSLC CM n=601, day 3: hESC=1929, +YSLC CM

n=1902, day 4: hESC=3472, +YSLC CM n=1314, day 5: hESC n=4946, +YSLC CM n=1897, NANOG: day 1: hESC n=450, +YSLC CM n=601, day 3: hESC

n=1929, +YSLC CM n=1902, day 4: hESC n=3472, +YSLC CM n=1314, day 5: hESC n=4946, +YSLC CM n=1897, n = 3 independent experiments each

with one sample). (C) Immunofluorescence of OTX2 (green) and SOX1 (grey) in hESCs after 1, 3, 4, or 5 days cultured in mTeSR (hESC) or YSLC

conditioned media (+YSLC CM) in 3D Geltrex (scale bar = 50 mm). (D) Bar charts (± SEM) depicting RFI of OTX2 and SOX1 in hESCs cultured in YSLC

CM (+YSLC CM) relative to hESCs cultured in mTeSR (hESC) in 3D Geltrex for 1, 3, 4, and 5 days. Two-way ANOVA with Sidak’s multiple comparisons

test comparing hESC vs. +YSLC CM for each day. ****p<0.0001 NS, p>0.05 (number of cells analysed: OTX2: day 1: hESC n=456, YSLC CM n=914, day

3: hESC n=4278, +YSLC CM n=2036, day 4: hESC n=2432, +YSLC CM n=1123, day 5: hESC n=3858, +YSLC CM n=3243, SOX1: day 1: hESC n=503,

Figure 7 continued on next page
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We first sought to derive an in vitro stem cell line representative of the post-implantation human

yolk sac. Following a screen of developmentally relevant signalling pathway activators, we identified

concurrent ACTIVIN-A, WNT, and JAK-STAT pathway activation in hEPSCs, Rset hPSCs, and hESCs

leads to an upregulation of pan-endodermal markers. This is in line with recent studies implicating

these pathways in extra-embryonic endoderm specification (Anderson et al., 2017; Linneberg-

Agerholm et al., 2019). Studies in human embryos have shown that inhibition of ACTIVIN-A signal-

ling leads to a decrease in the number of epiblast and hypoblast cells (Blakeley et al., 2015),

whereas studies in marmoset embryos demonstrated a role for the WNT pathway in hypoblast speci-

fication (Boroviak et al., 2015), indicating these signalling pathways are involved in hypoblast speci-

fication in vivo. Whether the JAK-STAT pathway is equally involved in hypoblast specification/

maintenance in human and non-human primate embryos remains to be determined.

Our data shows that the pluripotent state of hPSCs determines their propensity to adopt an

extra-embryonic endoderm- or definitive endoderm-like fate in response to ACL: Rset hPSCs, which

harbour a pluripotent state that is an intermediate between naı̈ve and primed (Gafni et al., 2013;

Kilens et al., 2018), demonstrate extra-embryonic endoderm potential, whereas conventional

hESCs, which are similar to the primed post-implantation epiblast (Molè et al., 2021;

Nakamura et al., 2016), are more predisposed to definitive endoderm differentiation. This phenom-

ena is also observed in mouse extra-embryonic endoderm specification; mouse ESCs are able to dif-

ferentiate into extra-embryonic endoderm progenitors cells (XEN cells), whereas post-implantation

primed EpiSCs are not (Cho et al., 2012). The observation that Rset hPSCs, which are transcription-

ally similar to the implanting human epiblast, are still competent to form extra-embryonic endoderm

is in line with the specification of human hypoblast progenitors at the time of implantation

(Niakan and Eggan, 2013). Nonetheless, following ACL treatment, hEPSC, Rset hPSCs, and hESCs

still maintained OCT4 and NANOG expression, suggesting the cells still harbour some pluripotency

features.

Interestingly, hEPSC treated with ACL give rise to a population of cells that harbour similarities to

both the definitive endoderm and extra-embryonic endoderm. Overall hEPSC-ACL transcriptionally

bear a greater similarity to definitive rather than extra-embryonic endoderm, and also harbour a

large subpopulation of cells that undergo a mesendodermal intermediate state during endodermal

specification, thereby resembling definitive endoderm specification. However, hEPSC-ACL are not

as transcriptionally similar to the definitive endoderm as hESC-ACL are, and also demonstrate a pro-

pensity to contribute to the mouse primitive endoderm within interspecies chimeras. Collectively,

this suggests that hEPSC-ACL may harbour a heterogenous population of endodermal cells that

have varying degrees of similarity to either the definitive or extra-embryonic endoderm. This sug-

gests that the starting hEPSC population may contain subpopulations with largely contrasting plurip-

otent states that span from naı̈ve to primed. This is mirrored during human trophoblast stem cell

induction wherein hEPSCs respond heterogeneously (Castel et al., 2020).

Figure 7 continued

+YSLC CM n=735, day 3: hESC n=2933, +YSLC CM n=3023, day 4: hESC n=3426, +YSLC CM n=2507, day 5: hESC n=3764, +YSLC CM n=2620, n = 3

independent experiments each with one sample). (E) Diagram depicting the modified neural specification protocol in which YSLC conditioned media is

used to replace the SB431542+NOGGIN treatment in the conventional protocol for 11 days, before culturing hESCs in the presence of just FGF2 for 4

days. (F) Immunofluorescence of SOX2 (green), SOX1 (grey), and a merge of both in hESCs cultured in mTeSR (hESC) and hESCs cultured in YSLC

conditioned media (+YSLC CM) for the first 11 days of the neural protocol before being placed in FGF2 as outlined in panel E (scale bar = 50 mm). (G)

Bar charts (± SEM) depicting RFI of SOX1 and SOX2 in cells from panel F. Mann–Whitney U-test; *p<0.05, ****p<0.0001 (number of cells analysed:

SOX1: hESC n = 4949, +YSLC CM n=4736, SOX2: hESC n = 4947, +YSLC CM n=4736, n=3 independent experiments). (H) Relative expression levels

(REL) (± SEM) of PAX6, NESTIN, and NOTCH1 in hESCs cultured as outlined in panel E normalised to hESC control. Mann-Whitney U-test ; *p < 0.05

(n=4 samples, two independent experiments).

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Fluorescence intensity and qPCR analysis of anterior ectoderm and pluripotency markers in human embryonic stem cells (hESCs) in the

presence of yolk sac-like cell (YSLC) conditioned medium (CM) in 2D and 3D.

Figure supplement 1. Yolk sac-like cells (YSLCs) induce the co-expression of anterior ectoderm markers and pluripotency markers in human embryonic
stem cells (hESCs) in 2D and 3D.

Figure supplement 1—source data 1. Fluorescence intensity and qPCR analysis of anterior ectoderm and pluripotency markers in human embryonic
stem cells (hESCs) in the presence of yolk sac-like cell (YSLC) conditioned medium (CM) in 2D and 3D.
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Pluripotent state also appeared to influence the developmental state of the extra-embryonic

endoderm that hPSCs adopt in response to ACL treatment. Previously, T2iLGö-hPSCs, hPSCs similar

to the pre-implantation human epiblast, have been shown to adopt an endodermal fate following

treatment with ACTIVIN-A, the WNT activator Chiron, and LIF to give rise to ‘T2iLGö-PrE’ cells (Lin-

neberg-Agerholm et al., 2019). By comparing pre- vs. post-implantation extra-

embryonic endoderm gene expression signatures to Rset-ACL and T2iLGö-PrE, we found that

T2iLGö-PrE were relatively more similar to the pre-implantation extra-embryonic endoderm, whereas

Rset-ACL were more similar to the post-implantation extra-embryonic endoderm (yolk sac). T2iLGö

hPSCs represent an earlier developmental pluripotent state than Rset hPSCs and may, therefore, be

more predisposed to adopt an early extra-embryonic endoderm fate in response to ACL. However,

Rset hPSCs represent a later, intermediate pluripotent state (Kilens et al., 2018) and may conse-

quently adopt a more post-implantation extra-embryonic endoderm fate. Future investigations are

needed to determine whether YSLCs can contribute to the yolk sac in human embryos.

To model the epiblast-yolk sac interactions in vitro, we used hESCs for the epiblast component of

the model, as when cultured in 3D they are able to recapitulate key hallmarks of early post-implanta-

tion human embryos (Moris et al., 2020; Shahbazi et al., 2017; Shao et al., 2017a;

Simunovic et al., 2019; Taniguchi et al., 2015; Zheng et al., 2019). We then determined YSLC’s

ability to influence cell fate in hESCs by analysing levels of anterior and posterior epiblast markers in

hESCs in the presence of YSLCs or YSLC conditioned medium in both 2D and 3D contexts. This

revealed that YSLCs inhibit WNT and BMP signalling in hESCs, thereby blocking posterior epiblast

marker expression, while promoting the co-expression of pluripotency and anterior ectoderm

markers.

Within mouse development, the AVE acts to antagonise signals from the trophoblast, leading to

the establishment of the anterior-posterior axis across the epiblast (Rivera-Pérez and Hadjantona-

kis, 2015). Similarly, in vitro cultured human embryos harbour a subpopulation of anterior hypoblast

cells that express BMP, WNT, and NODAL inhibitors and may, therefore, represent the human equiv-

alent of an AVE signalling centre (Molè et al., 2021). YSLC’s ability to influence hESC fate, promot-

ing anterior ectoderm and pluripotency marker expression at the expense of posterior epiblast

markers, via WNT and BMP pathway antagonism suggests a functionality similar to a mammalian

AVE signalling centre.

Studies in the mouse embryo have shown that when the extra-embryonic ectoderm is removed

such that only the epiblast and the visceral endoderm, including the AVE, remain, posterior epiblast

fate is lost, with SOX1 and OCT4 being co-expressed within the epiblast (Rodriguez et al., 2005).

Therefore, it is likely that this state is being mimicked when hESCs are cultured with YSLCs or in

YSLC conditioned medium, as human trophoblast stem cells are missing from this model. The role

that the human trophoblast plays in anterior-posterior patterning is not yet understood. Similarly, it

is unclear whether primitive streak derivatives are required for complete anterior fate specification in

the epiblast, as has been shown to be the case in the mouse (Camus et al., 2000). To assess whether

the trophoblast is required for complete anterior ectoderm specification and, if so, whether it acts

directly, via its secreted signals, or indirectly, via primitive streak specification, co-culture conditions

supportive of the survival of YSLCs, hESCs, and human trophoblast stem cells need to be optimised.

A model that incorporates the three cell types would be invaluable for dissecting anterior-posterior

patterning in the human embryo.

Additionally, without more detailed transcriptional characterisation of the human AVE, it remains

unclear whether YSLCs resemble human AVE specifically, or human post-implantation yolk sac gen-

erally. Given that in the primate post-implantation hypoblast, BMP and WNT inhibitors are initially

expressed broadly before being restricted anteriorly (Molè et al., 2021; Sasaki et al., 2016), future

in-depth transcriptional comparison and profiling of the peri-implantation human hypoblast should

help to refine the positioning of YSLCs developmentally. Similarly, LEFTY1 and LEFTY2 are both

upregulated in the human post-implantation hypoblast and in YSLCs, and so the role that NODAL

signalling plays within anterior-posterior patterning remains to be explored.

In summary, our results implicate the human yolk sac in early human embryo morphogenesis and

propose YSLCs as a useful tool for modelling the interaction between the post-implantation yolk sac

and epiblast, providing a platform to dissect the mechanisms of human embryogenesis.
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Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Cell line
(Homo sapiens)

RUES2-GLR Brivanlou Lab
(Rockefeller Institute, New York City, NY)

Human embryonic
stem cell line

Cell line
(Homo sapiens)

H9 Vallier Lab
(Stem Cell Institute,
Cambridge, UK) under
agreement with WiCell

(RRID:CVCL_1240) Human embryonic
stem cell line

Cell line
(Homo sapiens)

SHEF6 Shef-6
(UK Stem Cell Bank, NIBSC)

Human embryonic
stem cell line

Peptide,
recombinant protein

Recombinant
human ACTIVIN-A

Stem Cell Institute,
Cambridge, UK

100 ng ml�1

Peptide,
recombinant protein

Recombinant
human LIF

Stem Cell Institute,
Cambridge, UK

10 ng ml�1

Peptide,
recombinant protein

Recombinant
human WNT3a

R and D Systems 5036-WN-010 1 mg ml�1

Peptide,
recombinant protein

Recombinant
human BMP4

Peprotech 120–05

Chemical
compound, drug

CHIR99021 Stem Cell Institute,
Cambridge, UK

3 mM

Antibody NANOG
(goat polyclonal)

R and D Systems AF1997 (RRID:AB_355097) (1:200)

Antibody SOX1 (goat polyclonal) R and D Systems AF3369-SP (RRID:AB_2239879) (1:200)

Antibody SOX2
(rabbit polyclonal)

Abcam Ab59776 (RRID:AB_945584) (1:200)

Antibody T (goat polyclonal) R and D Systems AF2085 (RRID:AB_2200235) (1:200)

Antibody GATA6 (goat polyclonal) R and D Systems AF1700 (RRID:AB_2108901) (1:200)

Antibody LEF1 (rabbit monoclonal) Cell Signaling Technology 2230S (RRID:AB_823558) (1:200)

Antibody pSMAD1/5/9
(rabbit monoclonal)

Cell Signaling Technology 13820S (RRID:AB_2493181) (1:200)

Software, algorithm ImageJ software ImageJ
(http://imagej.nih.gov/ij/)

RRID:SCR_003070

Software, algorithm GraphPad Prism software GraphPad Prism
(https://graphpad.com)

RRID:SCR_015807

Other 8-well m-plates ibiTreat Ibidi 80826

Other Rset (2-component) StemCell Technologies 05978

Other mTeSR1 PLUS StemCell Technologies 05825

Other Geltrex LDEV-free
growth factor reduced

Thermo Fisher Scientific A1413302

Other Matrigel BD Biosciences 356230

Human embryonic stem cell culture
The UK Stem Cell Bank Steering Committee approved all hESC experiments. All experiments comply

with the UK Code of Practice for the Use of Human Stem Cell Lines. The following hESC lines were

used: RUES2-GLR (kindly provided by Ali Brivanlou, The Rockefeller University, New York City, NY),

H9 (kindly provided by Ludovic Vallier, Stem Cell Institute, UK, under agreement with WiCell), and

SHEF6 (kindly provided by the UK Stem Cell Bank, National Institute for Biological Standards and

Control (NIBSC)). All hESC lines were maintained in a humidified incubator set at 37˚C, 21% O2, 5%

CO2. H9, SHEF6, and RUES2-GLR cell lines have been authenticated by STR profiling. All cell lines

were tested for mycoplasma every 2 weeks and were all negative.

Conventional hESCs were either cultured on growth factor-reduced Matrigel-coated (Corning,

353046) dishes or on irradiated CF-1 mouse embryonic fibroblasts (MEFs) (ASF-1201, AMS
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Biotechnology). For Matrigel coating, a 1.6% Matrigel solution in DMEM/F12 was incubated for 2 hr

at room temperature (RT). When on Matrigel, hESCs were cultured in mTeSR1 (85850, StemCell

Technologies), with medium changed every 24 hr. When cultured on MEFs, hESCs were cultured in

‘Primed medium’, consisting of DMEM F12 (21331–020, Thermo Fisher Scientific) supplemented

with 100 mM b-mercaptoethanol (31350–010, Thermo Fisher Scientific), penicillin–streptomycin

(15140122, Thermo Fisher Scientific), GlutaMAX (35050061, Thermo Fisher Scientific), MEM non-

essential amino acids (11140035, Thermo Fisher Scientific), and 20% v/v KnockOut Serum Replace-

ment (10828010, Thermo Fisher Scientific). This was supplemented with 12 ng ml�1 bFGF2 (Stem

Cell Institute) before use.

To convert hESCs to each of the states of pluripotency, cells were first plated from Matrigel onto

MEFs in Primed Medium for 24 hr. To convert hESCs into ‘extended pluripotent stem cells’, hESCs

were cultured in ‘LCDM’ medium as outlined in the initial publication (Yang et al., 2017) until

domed colonies appeared. Briefly, LCDM consists of a basal N2B27 medium supplemented with 10

ng ml�1 recombinant human LIF (Stem Cell Institute, Cambridge, UK), 1 mM CHIR 99021 (Stem Cell

Institute, Cambridge, UK), 2 mM dimethindene maleate (1425, Tocris), 2 mM minocycline hydrochlo-

ride (sc-203339, Santa Cruz Biotechnology), 0.5 mM IWR-endo-1 (S7086, Selleckchem), and 2 mM

Y27632 (72302, STEMCELL Technologies). N2B27 contains a 1:1 mix of DMEM F12 (21331–020,

Thermo Fisher Scientific) and Neurobasal A (10888–022, Thermo Fisher Scientific) supplemented

with 100 mM b-mercaptoethanol (31350–010, Thermo Fisher Scientific), penicillin–streptomycin

(15140122, Thermo Fisher Scientific), GlutaMAX (35050061, Thermo Fisher Scientific), MEM non-

essential amino acids (11140035, Thermo Fisher Scientific), 5% v/v KnockOut Serum Replacement

(10828010, Thermo Fisher Scientific), 1% v/v B27 (10889–038, Thermo Fisher Scientific), and 0.5% of

in-house produced N2, which consists of DMEM F12 medium (21331–020, Thermo Fisher Scientific),

2.5 mg ml�1 insulin (I9287, Sigma-Aldrich), 10 mg ml�1 Apo-transferrin (T1147, Sigma-Aldrich),

0.75% bovine albumin fraction V (15260037, Thermo Fisher Scientific), 20 mg ml�1 progesterone

(p8783, Sigma-Aldrich), 1.6 mg ml�1 putrescine dihydrochloride (P5780, Sigma-Aldrich), and 6 mg

ml�1 sodium selenite (S5261, Sigma-Aldrich). Cells were passaged every 4–5 days, and medium was

changed daily.

To convert to Rset hPSCs (05978, StemCell Technologies), hESCs were cultured in the commer-

cially available medium as per the manufacturer’s instructions. Cells were passaged once domed col-

onies had formed, and subsequently every 4–5 days, and medium was changed daily.

All cell lines were passaged using StemPro Accutase (A1110501, ThermoFisher Scientific), which

was added for 3 min at 37˚C, before being diluted in DMEM/F12 and centrifuged. Cells were then

plated in their appropriate medium supplemented with 10 mM ROCK inhibitor Y-27632 (72304,

STEMCELL Technologies). ROCK inhibitor was removed after 24 hr.

Screen procedure and ACL conversion protocol
The initial chemical screen was carried out using RUES2-GLR hESCs. Inactivated MEFs were plated

onto 96-well m-plates ibiTreat (89626, Ibidi). The following day hEPSCs were plated in LCDM

medium. After 24 hr, medium was replaced with LCDM medium supplemented with each of the var-

iations of pathway activators listed in Figure 1—figure supplement 1B. Retinoic acid (R2625,

Sigma-Aldrich) was used at varying concentrations (0.1, 1, 10 mM) along with the following concen-

trations for the other cytokines: 100 ng ml�1 PDGF-AB (78096, StemCell Technologies), 20 ng ml�1

human ACTIVIN-A (Stem Cell Institute, Cambridge, UK), 1 mM CHIR 99021 (Stem Cell Institute, Cam-

bridge, UK), and 12 ng ml�1 bFGF2 (Stem Cell Institute, Cambridge, UK). Medium was changed

every 24 hr. After 6 days, each well was fixed in 4% paraformaldehyde (11586711, Electron Micros-

copy Sciences) at RT for 20 min and subsequently washed twice with 0.1% Tween-PBS in preparation

for immunostaining. As a control, hEPSCs were cultured for 6 days in LCDM medium.

For the second screen, which sought to determine the effect of changing the basal medium, 8-

well m-plates ibiTreat were used (80826, Ibidi). hEPSCs were plated on MEFs in LCDM medium for

24 hr, before being replaced with each of the medium being screened for (conditions outlined in

Figure 1—figure supplement 1D). Medium was changed every 24 hr and after 6 days cells were

fixed as outlined above.

For proliferation experiments, hPSCs (Rset hPSCs, hESPCs, or hESCs) were plated on MEFs at

density of 10,000 cells/well in a 24-well plate. Rset hPSCs, hEPSCs, and hESCs were plated in their

respective medium. After 24 hr, this was replaced with either ACL medium + DMSO or ACi medium
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(ACTIVIN-A + Chiron + 10 mM Jak inhibitor) (420097, Merck Millipore). After 24 hr of the addition

of ACL+DMSO or ACi, the first proliferation timepoint was taken. This day was considered day 1 of

hypoblast conversion. Cell number was counted using a haemocytometer every day during conver-

sion with media change every day.

For hPSC ACL treatment, 250,000 of the respective cell lines were plated onto MEFs in 12 multi-

well dishes (Corning, 353046) in their respective pluripotency medium. After 24 hr, medium was

replaced with ACL. ACL consists of N2B27 basal medium supplemented with 100 ng ml�1 human

ACTIVIN-A (Stem Cell Institute, Cambridge, UK), 10 ng ml�1 recombinant human LIF (Stem Cell Insti-

tute, Cambridge, UK), and 3 mM CHIR99021 (Stem Cell Institute, Cambridge, UK). Cells were pas-

saged using Dispase (07923, StemCell Technologies) at a ratio of approximately 1:2–1:3 every 3–5

days.

3D cultures of hESCs and YSLCs
Geltrex LDEV-free growth factor reduced (A1413302, Thermo Fisher Scientific) and growth factor

reduced Matrigel (356230, BD Biosciences) were thawed on ice and dispensed using ice-cold tips.

For co-cultures, 80 ml of Geltrex was added to 8-well m-plates ibiTreat (80826, Ibidi) and incu-

bated at 37˚C for 4 min. Having been passaged using StemPro Accutase, 30,000 YSLCs and 30,000

hESCs were mixed in DMEM/F12 and plated on top of the Geltrex bed for 12 min at 37˚C to allow

the cells to attach to the matrix. Proceeding this, the DMEM/F12 was replaced with mTeSR1 supple-

mented with 5% Geltrex. Medium was changed every 24 hr with just mTeSR1. As a control 60,000

hESCs were plated in 3D Geltrex in mTeSR1, with medium changed daily. After 72 hr, the wells were

fixed as outlined above.

mTeSR conditioned medium experiments
To prepare YSLC conditioned medium , YSLCs were cultured until confluent in ACL. Medium was

then changed to mTeSR1 PLUS (05825, StemCell Technologies) for 24 hr before being collected and

filtered using syringe filters with a pore size of 0.45 mm (10109180, Thermo Fischer Scientific) and

stored at 4˚C for a maximum of a week. YSLC conditioned medium was used in two different sets of

experiments:

. 3D culture: 80 ml of Geltrex was added to 8-well m-plates ibiTreat (80826, Ibidi) and incubated
at 37˚C for 4 min; 30,000 hESCs resuspended in DMEM/F12 were then plated on top of the
Geltrex bed for 12 min at 37˚C. The DMEM/F12 was subsequently replaced with YSLC-condi-
tioned medium supplemented with 5% Geltrex. Medium was changed every 24 hr with
just YSLC conditioned medium. As a control 30,000 hESCs were plated in 3D Geltrex in mTeSR
Plus, with medium being changed every 24 hr. After the determined length of culture, wells
were fixed as outlined above.

. 2D culture: 30,000 hESCs were plated on Matrigel-coated 8-well m-plates ibiTreat (as outlined
in the section ‘Human embryonic stem cell culture’) in either YSLC conditioned
medium, YSLC conditioned medium supplemented with 1 ng ml�1 recombinant human BMP4
(120–05, Peprotech) or 1 mg ml�1 WNT3a (5036-WN-010, R&D Systems), or MesoI YSLC condi-
tioned medium. Medium was changed every 24 hr with supplemented agonist, and cells were
fixed after 48 hr. Samples were fixed as outlined above.

Mesoderm induction conditioned medium experiments: hESCs were plated on Matrigel-coated 8-

well m-plates ibiTreat (see section ‘Human embryonic stem cell culture’) and cultured in mesoderm

induction medium (MesoI) which was composed of N2B27 (as outlined above) supplemented with 10

ng ml�1 of recombinant human BMP4 (120–05, Peprotech) for 3 days before being fixed. Alterna-

tively, N2B27 was conditioned on confluent YSLCs for 24 hr before being supplemented with BMP4

and added to hESCs for 3 days before being fixed.

Neural differentiation conditioned medium experiments: hESCs were cultured in N2B27 that had

been conditioned on confluent YSLCs for 24 hr on Matrigel-coated 8-well m-plates ibiTreat (see sec-

tion ‘Human embryonic stem cell culture’) for 11 days, before being passaged 1:2 and maintained in

N2B27 supplemented with 20 ng ml�1 bFGF2 (Stem Cell Institute, Cambridge, UK) for 4 days.

The neural differentiation protocol outlined in Shi et al., 2012 was carried out as a positive con-

trol. Briefly, hESCs were cultured in N2B27 supplemented with 10 mM SB431542 (72232, Stem Cell

Technologies) and 500 ng ml�1 of NOGGIN (1967-NG, R&D Systems) on Matrigel-coated 8-well m-

plates ibiTreat (see section ‘Human embryonic stem cell culture’) for 11 days, before being passaged
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1:2 and maintained in N2B27 supplemented with 20 ng ml�1 bFGF2 (Stem Cell Institute, Cambridge,

UK) for 4 days.

Chimera experiments
All national and international guidelines were followed for mouse upkeep. Experiments were

approved by the home office,reviewed by the University of Cambridge Animal Welfare and Ethical

Review Body (AWERB), and were regulated by the Animals (Scientific Procedures) Act 1986 Amend-

ment Regulations 2012. Animals were inspected daily and those that showed health concerns were

culled by cervical dislocation. F1 (C57BI6xCBA) females were superovulated by injection of 5 IU of

pregnant mares’ serum gonadotropin (PMSG, Intervet), followed by injection of 5 IU of human chori-

onic gonadotropin (hCG, Intervet) and mating with F1 males. Animals were culled by cervical

dislocation.

For human cell-mouse embryo chimera experiments, eight-cell stage mouse embryos were recov-

ered at embryonic day E2.5 prior to compaction by flushing the oviducts with M2. Zona pellucida

was then removed by brief treatment with Acidic Tyrode’s solution (T1788, Sigma-Aldrich). Concur-

rently, clumps consisting of three to six SOX17-tdTomato+ ACL-treated cells were manually picked.

To create small clumps of cells, ACL-treated cells were dissociated in StemPro Accutase (07920,

StemCell Technologies) for 1 min at 37˚C, before being diluted in DMEM/F12 (11320033, Thermo

Fischer Scientific), pipetted gently, centrifuged, and resuspended in ACL medium. The resulting

clumps were then aggregated with the eight-cell stage mouse embryos in 100% ACL medium for 24

hr before being transferred into KSOM until E4.5. Embryos were then fixed as outlined above. For

hEPSC and Rset hPSC controls, the same protocol was used, only ACL was replaced with the cell

line’s respective medium were relevant.

For all mouse embryo experiments, sample size was based on our own previous experience and

relevant publications.

Cell sorting
To isolate successfully converted hPSC-ACL cell populations for RNA-seq analysis, hESCs,

Rset hPSCs, and hEPSCs were treated with ACL for 6 days. Cells were then dissociated using Accu-

tase and filtered using syringe filters with a pore size of 0.45 mm before being resuspended in PBS

supplemented with 5% fetal bovine serum (Stem Cell Institute, Cambridge, UK). The tdTomato+

population was then selected for by carrying out cell sorting using an AriaIII instrument, before being

pelleted for RNA extraction.

Library preparation/RNA-seq
The sequencing was performed on the Illumina HiSeq 4000 platform. Reads were aligned using the

STAR algorithm (Dobin et al., 2013) and read counts of genes were quantified using the HTSeq

algorithm (Anders et al., 2015) to calculate transcripts per million (TPM).

RNA-seq analysis
Data from single-cell human hypoblast were obtained from Zhou et al., 2019, Molè et al.,

2021 and Xiang et al., 2020. Stem cell-derived definitive endoderm single-cell data was obtained

from day 3 converted cells from Cuomo et al., 2020. Read one raw data from Zhou et al., 2019

was trimmed using cutadapt and the adapter sequence was specified using ‘-g TGGTATCAACGCA-

GAGTACATGGG’. Raw data from Cuomo et al. were trimmed using TrimGalore! with default set-

tings. Raw data from Xiang et al. was not trimmed. Reads were then aligned to the GRCh38 human

reference transcriptome using kallisto in batch mode for smart-seq2 data (Xiang et al., 2020;

Cuomo et al., 2020), and for Zhou et al., 2019 kb-python was used with a custom whitelist for each

set of fastq files and with custom technology specified as ‘-x 1,0,8:1,8,16,0,0,0’. Smart-seq2 tran-

script level counts were then collapsed into gene level counts as described elsewhere

(Booeshaghi et al., 2020). Count tables were then filtered to include cells used in their respective

publications. T2iLGö-PrE was obtained from Linneberg-Agerholm et al., 2019 and processed to

TPM. Data from (Molé et al., 2021) was processed an analysed as previously described.

Single-cell datasets were intersected based on common features. They were then integrated

using Seurat v3 (Stuart et al., 2019) based on 10,000 variable features in 30 dimensions using
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50,000 anchors to generate a merged Seurat object with batch-corrected counts in the ‘integrated’

assay. Cell identities were assigned based on single-cell metadata files provided by respective publi-

cations. The Seurat object was then subset based on identities of interest (epiblast vs. hypoblast vs.

trophoblast vs. definitive endoderm; hypoblast vs. definitive endoderm-like cells, pre-implantation

vs. post-implantation hypoblast). Markers to distinguish the identities were identified using the Find-

Markers function on the subset objects, using a Wilcoxon ranked test on integrated counts with a

log fold change minimum of 0.25 and a minimum of 10% of cells in a given identity expressing each

positive marker. Genes with a p-value<0.05 were used for downstream analysis as transcriptome sig-

natures. Using the average TPM of bulk RNA-seq cell-line data, GSVA was used to determine cell

type similarity using marker gene sets (Hänzelmann et al., 2013). MA plots were created using

ggplot2.

RNA extraction
RNA was extracted with TRIzol reagent (15596010, Thermo Fisher Scientific). Briefly, snap-frozen cell

pellets were suspended in 500 mL TRIzol, followed by a 5 min incubation at RT and addition of 0.1

mL chloroform. The samples were vortexed for 15 s, or until homogeneity in colour. After a 3 min

incubation at RT, samples were centrifuged at 14,000 rpm for 15 min at 4˚C to allow phase separa-

tion. The top aqueous RNA-containing layer was transferred to fresh tubes; 1 mL RNAse-free glyco-

gen (AM9510, Thermo Fisher Scientific) and 250 mL isopropanol (I91516, Sigma) were added.

Samples were mixed by inverting three to four times and incubated for 10 min at RT. A 30 min cen-

trifugation at 14,000 rpm at 4˚C was performed to pellet the RNA, which was subsequently washed

with 250 mL of 75% ethanol. The supernatant was removed, and the pellet air-dried before suspend-

ing in 50 mL nuclease-free water. The samples were vortexed for 15 s and then incubated at 55˚C for

10 min to completely dissolve the RNA. The samples were stored at �80˚C.

Retrotranscription and RT-PCR analysis
To make sample cDNA, 1 mg of RNA was used to perform a reverse transcriptase reaction in the

presence of random primers (C1181, Promega), dNTPs (N0447S, New England BioLabs), RNase

inhibitor (M0314L, New England BioLabs), and M-MuLV reverse transcriptase (M0253L, New England

BioLabs).

RT-PCR reactions were carried out using Power SYBR Green PCR Master Mix (4368708,

Thermo Fisher Scientific) on a Step One Plus Real-Time PCR machine (Applied Biosystems). The fol-

lowing programme was used: 10 min at 95˚C and 40 cycles of 15 s at 95˚C and 1 min at 60˚C. qPCR

data was normalised against expression levels of hypoxanthine guanine

phosphoribosyltransferase (HPRT), which should be consistent across samples. Error bars represent

variability (SEM) across multiple independent experiments. A complete list of primers used is shown

in Table S4.

Immunostaining and imaging
Permeabilisation was performed using PBS with 0.1 M glycine, 0.3% Triton X-100 for 30 min at RT.

Primary antibodies were incubated overnight at 4˚C. All primary antibodies were diluted in blocking

buffer (1% BSA, 0.1% Tween in PBS) at 1:200. Cells were then washed three times with 0.1% Tween-

PBS before being incubated with fluorescently conjugated Alexa Fluor secondary antibodies diluted

1:500 in 0.1% Tween-PBS for 2 hr at room temperature. Where indicated Alexa Fluor 647 Phalloidin

(1:100; A22287, Thermo Fisher Scientific) and DAPI (1:1000; D3571 Thermo Fisher Scientific) were

added concomitantly with the secondary antibodies. Primary and secondary antibody lists can be

found in Supplementary file 4.

Imaging took place on an inverted SP5 confocal microscope (Leica Microsystems) using a Leica

HC PL FLUOTAR 0.5 NA 20.0� dry objective and a Leica HC PL APO 1.4 NA 63� oil objective, or

on an inverted SP8 confocal microscope (Leica Microsystems) with a Leica HC PL APO CS2 1.4 NA

63� oil objective and a Leica Fluotar VISIR 0.95 NA 25� water objective. Within each independent

experiment, laser power and detector gain were maintained constant.
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Image analysis
All microscopy analysis was carried out using FIJI software (http://fiji.sc) (Schindelin et al., 2012).

For all quantifications, laser power and detector gain were maintained constant to quantitatively

compare different experimental conditions within a single experiment. A single representative

Z-plane was chosen for all quantifications. When calculating protein levels within a cell population,

10 microscopic fields of view were randomly captured for each independent experiment to obtain

representative coverage of the cell population within each experiment.

Quantification of nuclear fluorescence intensity
Nuclear shape was conferred from DAPI staining, images of which were binarised to produce a mask

to segment the nuclei in 2D. The watershed function on FIJI was then used to separate nuclei that

were closely positioned. Each nuclear outline was then saved as a region of interest (ROI) and the

fluorescence intensity within each ROI was then analysed. Within each experiment, the experimental

fluorescence intensity values were normalised to the control expression level for each protein being

analysed.

Classification of spheroid morphology
Within co-culture and conditioned medium experiments, each structure was classified as disorgan-

ised, squamous epithelial or columnar epithelial. ‘Disorganised structures’ were those which contain

no discernible epithelial structures and were mostly a 2D ‘carpet’ of cells. Squamous epithelial sphe-

roids were mainly composed of cells with an aspect ratio (height/width) of <1. Columnar epithelial

spheroids were mainly composed of cells with an aspect ratio >1.

Statistical analyses
All statistical analysis other than that involved in sequencing data analysis was carried out using

GraphPad Prism software. Qualitative data are presented as a contingency table and were analysed

with a c2 test. Quantitative data are presented as mean ± SEM. Data with a Gaussian distribution

were analysed using a two-tailed unpaired Student’s t-test when comparing two groups or ANOVA

with a Tukey’s or Sidak’s multiple comparison test when comparing multiple. If there were significant

differences in the variance, a Welch’s correction was used. If the data did not have a Gaussian distri-

bution, a Mann–Whitney U-test was used when comparing two groups or a Kruskal–Wallis test with a

Dunn’s multiple comparison test was used when comparing multiple groups. Independent experi-

ments are defined as biological replicates. Technical replicates were undertaken simultaneously.
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Nedellec S, Flippe L, Firmin J, Song J, Charpentier E, Lammers J, Donnart A, Marec N, Deb W, Bihouée A, Le
Caignec C, et al. 2018. Parallel derivation of isogenic human primed and naive induced pluripotent stem cells.
Nature Communications 9:360 . DOI: https://doi.org/10.1038/s41467-017-02107-w

Kimelman D, Griffin KJP. 2000. Vertebrate mesendoderm induction and patterning. Current Opinion in Genetics
& Development 10:350–356. DOI: https://doi.org/10.1016/S0959-437X(00)00095-2

Kwon GS, Viotti M, Hadjantonakis A-K. 2008. The endoderm of the mouse embryo arises by dynamic widespread
intercalation of embryonic and extraembryonic lineages. Developmental Cell 15:509–520 . DOI: https://doi.
org/10.1016/j.devcel.2008.07.017

Linneberg-Agerholm M, Wong YF, Romero Herrera JA, Monteiro RS, Anderson KGV, Brickman JM. 2019. Naı̈ve
human pluripotent stem cells respond to wnt, nodal and LIF signalling to produce expandable naı̈ve extra-
embryonic endoderm. Development 146:dev180620. DOI: https://doi.org/10.1242/dev.180620,
PMID: 31740534

Luckett WP. 1975. The development of primordial and definitive amniotic cavities in early rhesus monkey and
human embryos. American Journal of Anatomy 144:149–167 . DOI: https://doi.org/10.1002/aja.1001440204

Ma H, Zhai J, Wan H, Jiang X, Wang X, Wang L, Xiang Y, He X, Zhao ZA, Zhao B, Zheng P, Li L, Wang H. 2019. In
vitro culture of cynomolgus monkey embryos beyond early gastrulation. Science 366:eaax7890. DOI: https://
doi.org/10.1126/science.aax7890, PMID: 31672918

Martyn I, Kanno TY, Ruzo A, Siggia ED, Brivanlou AH. 2018. Self-organization of a human organizer by combined
Wnt and Nodal signalling. Nature 558:132–135 . DOI: https://doi.org/10.1038/s41586-018-0150-y

Martyn I, Brivanlou AH, Siggia ED. 2019. A wave of WNT signalling balanced by secreted inhibitors controls
primitive streak formation in micropattern colonies of human embryonic stem cells. Development 10:
dev172791. DOI: https://doi.org/10.1242/dev.172791

McDonald ACH, Biechele S, Rossant J, Stanford WL. 2014. Sox17-Mediated XEN cell conversion identifies
dynamic networks controlling cell-fate decisions in embryo-derived stem cells. Cell Reports 9:780–793 .
DOI: https://doi.org/10.1016/j.celrep.2014.09.026
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