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Abstract Meningitis is a potentially life-threatening infection characterized by the inflammation

of the leptomeningeal membranes. Many different viral and bacterial pathogens can cause

meningitis, with differences in mortality rates, risk of developing neurological sequelae, and

treatment options. Here, we constructed a compendium of digital cerebrospinal fluid (CSF)

proteome maps to define pathogen-specific host response patterns in meningitis. The results

revealed a drastic and pathogen-type specific influx of tissue-, cell-, and plasma proteins in the CSF,

where, in particular, a large increase of neutrophil-derived proteins in the CSF correlated with acute

bacterial meningitis. Additionally, both acute bacterial and viral meningitis result in marked

reduction of brain-enriched proteins. Generation of a multiprotein LASSO regression model

resulted in an 18-protein panel of cell- and tissue-associated proteins capable of classifying acute

bacterial meningitis and viral meningitis. The same protein panel also enabled classification of tick-

borne encephalitis, a subgroup of viral meningitis, with high sensitivity and specificity. The work

provides insights into pathogen-specific host response patterns in CSF from different disease

etiologies to support future classification of pathogen type based on host response patterns in

meningitis.

Introduction
Meningitis is a common condition with an estimated annual prevalence of 8.7 million cases globally

(Kassebaum et al., 2017). In the majority of cases, meningitis is caused by viruses, such as enterovi-

ruses, and is associated with low mortality rates (Chadwick, 2005). Certain subtypes of viral meningi-

tis (VM), such as tick-borne encephalitis (TBE), are in contrast associated with higher mortality rates

and risk of developing neurological sequelae (Bogovic and Strle, 2015). Acute bacterial meningitis

(ABM) is one of the leading causes of death due to infectious diseases worldwide and is associated

with rapid disease progression, increased risk of long-term neurological sequelae in survivors, and

high mortality rates (van de Beek et al., 2004; van de Beek et al., 2006). The different bacterial

and viral pathogens are associated with specific virulence mechanisms that impact the molecular

phenotype of the host immune response. This information can be used to diagnose patients with

meningitis, which routinely involves lumbar punctures to evaluate several parameters in the cerebro-

spinal fluid (CSF) such as the number of white blood cells (WBCs) as well as glucose and protein con-

centrations to differentiate between ABM and VM (Ross et al., 1988). Unfortunately, these

parameters are relatively non-specific yielding inconclusive diagnostic information (Garty et al.,

1997; Lindquist et al., 1988; Nigrovic et al., 2002), and it currently remains unknown if different

pathogens and pathogen types can evoke detectable differences in host response proteome.
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Extracellular body fluids such as blood plasma, saliva, and CSF are deficient in the machinery

required for de novo protein synthesis. The protein constituents of body fluids are generated via

active protein secretion from surrounding tissues or from passive leakage derived from normal pro-

tein turnover from cells and tissues. During healthy conditions, the concentration of individual pro-

teins in body fluids is maintained via a tightly controlled balance between protein secretion and

clearance. This balance is altered in severe infectious diseases such as sepsis or meningitis due to

the host responses triggered by the invading pathogen (Malmström et al., 2016). In meningitis and

sepsis, the immune response normally increases cellular and acellular mediators in the CSF and

plasma, which leads to a drastic proteome reorganization (Karlsson et al., 2018). In the most severe

stages of disease, host immune response becomes overwhelming, leading to organ damage and

impaired prognosis (van de Beek et al., 2004; van de Beek et al., 2006).

Improved definitions of the pathogen or pathogen-type specific host response patterns in CSF

could provide insights into specific virulence mechanisms, subsequently leading to the development

of new diagnostic and prognostic information. However, detection of pathogen-specific host

response patterns requires the analysis of large sample cohorts to compare host response patterns

from a similar group of pathogens to all other pathogen types. As the protein composition of body

fluids is produced elsewhere, mRNA transcript profiling is less suitable for the detection of host

responses. Mass spectrometry (MS)-based protein quantification has become the preferred method

for multiplexed and quantitative analysis of proteomes (Aebersold and Mann, 2016). The prevailing

MS strategy relies on data-dependent acquisition (DDA), where the mass spectrometer sequentially

selects and fragments trypsin-generated peptide ions to generate informative daughter fragment

ion spectra used for database searching. Although such proteomics experiments enable identifica-

tion of thousands of peptide ions, the strategy is associated with lower quantitative reproducibility,

as in complex samples the number of available peptides exceeds the cycling time of the DDA

method. In contrast, the recent development of sequential window acquisition of all theoretical frag-

ment ion spectra (SWATH)-MS generates fragment ion spectra of all MS-measurable peptides to

produce a digital representation of the analyzed proteome (Gillet et al., 2012). In SWATH-MS, pro-

teome maps are generated based on data-independent acquisition (DIA), followed by protein quan-

tification using a priori established assay libraries (Teleman et al., 2017). Different assay libraries can

be used to iteratively query the same DIA data in an iterative fashion, which is a considerable advan-

tage as it permits a single data collection step for clinical samples (Guo et al., 2015) and focused

reanalysis in future studies. Importantly, DIA is associated with a high degree of reproducibility, mak-

ing it possible to merge data sets analyzed separately in time to perform cross-study comparisons.

In this way, new opportunities emerge to construct compendiums of proteome maps from physical

biobanks to identify protein patterns in body fluids associated with, for example, disease progres-

sion and treatment options.

In this study, we developed a compendium of SWATH-MS CSF proteome maps to provide novel

insights into central nervous system (CNS) functioning and host response in a cohort of patients with

meningitis. We demonstrate how an extendable compendium of proteome maps supports post-

acquisition and iterative data analysis using cell- and tissue-derived assay libraries to define discrimi-

natory protein panels associated with ABM or VM. The results revealed how meningitis generates

pathogen-specific changes in the CSF proteome. Furthermore, the compendium of CSF proteome

maps supported the identification of a protein panel capable of differentiating between ABM, VM,

and TBE, a VM subgroup, with high sensitivity and specificity based on the host response patterns in

the CSF.

Results

Construction of a compendium of SWATH-MS CSF proteome maps
from meningitis patients
Detection of pathogen-specific host responses in the CSF proteome requires comparative analysis of

patient sample cases of meningitis caused by different pathogens. Here, CSF was collected by lum-

bar puncture from a cohort of 135 patients admitted to the hospital with the suspicion of meningitis.

Following confirmed diagnosis, the patients were broadly subdivided into ABM (n = 35), neuroborre-

liosis (BM, n = 7), VM (n = 21), suspected ABM (n = 5), suspected VM (n = 16), and inflammation
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without infection (n = 2). In this cohort, ABM was caused by 11 different bacterial pathogens, where

the most frequent pathogen was Streptococcus pneumoniae. VM was caused by seven different

viruses with the highest frequency of TBE and enteroviruses (Figure 1). Patients with suspected men-

ingitis but with normal WBC count (<5 � 106/L) and with no clinical signs of infection/inflammation

were regarded as a control group (n = 49). CSF from each sample was digested, and peptides were

analyzed by DDA-MS for the construction of a CSF proteome assay library and DIA-MS to produce a

compendium of proteome maps (Figure 1a). The CSF assay library was merged with previously

established assay libraries from 28 healthy human organs or primary cells to enable the quantifica-

tion of proteins enriched in relevant tissues such as brain, plasma, and immune cells. The assay
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Figure 1. Method flow chart and patient cerebrospinal fluid (CSF) samples. (a) Fifty microliters of CSF from each sample were prepared and analyzed

using both shotgun mass spectrometry (MS) and sequential window acquisition of all theoretical fragment ion spectra (SWATH-MS) for the construction

of CSF proteome assay library and production of a digital compendium of SWATH-MS proteome maps. These SWATH-MS maps were post-acquisition

interrogated with previously established assay library from 28 healthy human organs or primary cells to enable the quantification of proteins enriched in

relevant tissues such as brain, plasma, or immune cells. The SWATH-MS maps were further interrogated with the CSF assay library for determining

protein profiles correlating with acute bacterial meningitis, viral meningitis, neuroborreliosis and control samples. (b) A summary showing the number of

CSF samples in each sample group, as well as the bacterial or viral strains that caused meningitis. The distribution of gender (as percentage in male)

and average age for each group is also presented.
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library relied on the protein abundance in the analyzed tissues and provides a statistically significant

relationship between proteins and tissues, which was integrated into our results to infer the most

likely tissue origin of proteins detected in the CSF. The compendium of SWATH-MS files was subse-

quently interrogated with the merged human assay library followed by interrogation of assay librar-

ies from the most common pathogens causing meningitis to determine protein profiles correlating

with pathogen type (Figure 1b).

Changes in the proteome pattern in CSF during meningitis
A total of 771 unique human proteins were confidently detected and quantified in this analysis. The

sample group containing the largest number of unique proteins was ABM (n = 719 versus n = 544 in

controls), followed by VM (n = 550) and BM (n = 478). On average, the total protein intensities in

ABM were 2, 2.7, and 4.3 times higher than in BM, VM, and the control group, respectively (Fig-

ure 2—figure supplement 1). This reflects an elevated protein concentration in CSF, associated in

particular with bacterial meningitis. Analysis of the subcellular compartment of the detected proteins

revealed that the majority of proteins are secreted (between 37% and 48% across all samples), fol-

lowed by membrane-bound proteins, which comprised 18–24% of the total protein content (Fig-

ure 2—figure supplement 2a). The average intensity for the secreted proteins was 5.9-fold higher

in ABM versus control and 2.7–2.9-fold higher in ABM when compared to BM or VM (Figure 2—fig-

ure supplement 2b). The distribution of quantified proteins in relation to sample groups is pre-

sented as a heat map in Figure 2a. The sample clustering clearly subdivides the sample cohort into

four distinct clusters representing predominantly the ABM, VM, and control samples. The row-wise

color coding indicates inferred tissue origin based on the information from the assay library. The

most distant sample cluster includes in principle all the ABM samples. The remaining sample clusters

are more similar, but the general trend supports subdivision of most of the VM samples from the

control samples. We observe that numerous neutrophil-, plasma-, and brain-associated proteins con-

stitute on average 15–20% of the protein intensity, where, in particular, the neutrophil proteins

increased during ABM (Figure 2—figure supplement 3). Plasma proteins are known to be major

constituents of CSF under physiological conditions (Guldbrandsen et al., 2014), and presence of

brain-associated proteins in CSF is likely related to protein turnover in the brain. Statistical analysis

between sample groups reveals 79 statistically induced or repressed proteins (Figure 2b–d). The

majority of significantly altered proteins were associated with neutrophils (32% in ABM and 14% in

VM), the brain (44% in ABM and 32% in VM), and some plasma proteins including several acute-

phase proteins (Figure 2—figure supplement 4a, b). In addition, several neutrophil-associated pro-

teins were induced �64-fold (yellow dots) but not statistically significant, indicating a large degree

of variation associated with these proteins. For each group, the average intensities of all neutrophil

proteins show a significant increase only in ABM compared to controls (Figure 2f), whereas there is

a significant decrease in brain-associated proteins in ABM, VM, and TBE (Figure 2e). Among the

gene ontology (GO) terms enriched for the repressed proteins in ABM was ‘regulation of synapse

maturation and assembly,’ suggesting changes on the cellular level in neuronal circuits during ABM

(Figure 2—figure supplement 4c). Of the induced proteins, notable GO terms were ‘regulation of

apoptotic signaling pathway,’ ‘defense response to bacterium,’ and ‘glial cell development.’ These

suggest increased apoptotic pathways and enriched molecular processes specialized in combating

bacteria in the CSF of patients with ABM, followed by increased development of glial cells, which

are involved in maintaining chemical homeostasis and act as the immune cells of the CNS

(Ransohoff and Brown, 2012).

Cross-comparison of CSF protein composition between ABM, BM, and
VM
To evaluate differences in the host response between the sample groups, we plotted the differen-

tially expressed proteins in scatter plots, with the corresponding log2 fold change for ABM/control

on the x-axis and log2 fold change for BM/control on the y-axis (Figure 3a). This cross-plot was

repeated for ABM against VM (Figure 3b) and VM against BM (Figure 3c). Proteins that were statis-

tically significant or associated with high fold changes (�64) in both sample groups are colored in

black, otherwise only in one color (red; ABM, orange; BM and green; VM). This cross-comparison

reveals that ABM and VM evoke a more similar response compared to BM. In total, ABM was
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Figure 2. Cerebrospinal fluid proteome analysis. (a) The quantified proteins (rows) and samples (columns) were clustered and visualized in a heat map.

Top horizontal color bar classified sample groups, and left vertical color bar classified the human tissue assignments for each protein. The data was

row-wise normalized by Z-score transformation, and column and row clustering was performed with ward.D and canberra clustering criterions. (b–d)

Differentially expressed proteins between control and acute bacterial meningitis (ABM) (b), neuroborreliosis (BM) (c), and viral meningitis (VM) (d) are

shown in volcano plots. Statistically significant proteins (Hochberg-corrected p-values�0.05 and log2 fold change � �2 and �2) are labeled in red.

Statistically non-significant proteins with a high fold change of �64 are labeled in yellow. (e, f) Log2 scaled average intensities of brain and neutrophil-

associated proteins for ABM, BM, VM, tick-borne encephalitis (TBE), and control are presented. The significance of the changes was calculated with a

standard Student’s t-test and marked with asterisk (one or two star significance).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Overview of average protein content and intensities.

Figure supplement 2. Predicted subcellular compartments of detected proteins.

Figure supplement 3. Overview of average protein content and intensities.

Figure supplement 4. Analysis of differences in the cerebrospinal fluid (CSF) of patients with meningitis.
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associated with 49 unique statistically significant proteins and VM 10 proteins and 16 proteins were

shared between the disease groups (Figure 3d). Only three proteins, chitinase-3-like protein 2

(CHI3L2), immunoglobulin mu heavy chain disease protein (MUCB), and profilin-1 (PROF1), were

found at higher levels in all the three diseased groups compared to control (Figure 3e), although

the intensities for these proteins are substantially higher in the ABM samples. Previous studies have

shown an association between these proteins and neurological disease (Møllgaard et al., 2016;

Narayanan et al., 2016; Opsahl et al., 2016). The inferred tissue assignment and average intensities

for the 49 ABM-specific proteins in all samples are presented in Figure 3f and for the 10 VM-specific

proteins in Figure 3g. We observed that neutrophil proteins are distinctive for ABM, but not for VM.

In addition, ABM also led to increased levels of acute-phase proteins such as serum amyloid a-1

(SAA1) and C-reactive protein (CRP). In contrast, VM resulted in increased concentrations of C4b-

binding protein and C-X-C motif chemokine 10 (CXCL10), where the latter chemokine is elevated in

plasma during viral infections.

a b c

d

e

f

g

Figure 3. Cross-comparison of cerebrospinal fluid (CSF) protein composition between acute bacterial meningitis (ABM), neuroborreliosis (BM), and viral

meningitis (VM). (a–c) Significantly regulated proteins (Benjamini–Hochberg-corrected p-value�0.05 and log2 fold change of � �2 and �2) together

with proteins with high fold change of �64 for all three groups were selected, and their fold changes of two disease group at a time were plotted

against each other: ABM versus BM (a), ABM versus VM (b), and BM versus VM (c). The points are colored based on their significance in either one

group only (red: ABM; orange: BM; green: VM) or in both (black). Proteins absent in one group were plotted at the null line for that group for

visualization purposes. (d) Venn diagram summarizes the overlap of the proteins shown in (a–c) for the different groups. The intensities of the three

proteins shared in all three groups (e), 49 proteins specific to ABM (f), and 10 proteins specific to VM (g) are shown as bar plots for every CSF sample.

Proteins not classified to a tissue were further divided into two groups depending on if they were downregulated (-) or upregulated (+) compared to

control.
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Predictive proteomic patterns using LASSO regression modeling
To define host response protein patterns specific for pathogen type, we used LASSO regression to

select discriminatory protein intensities from the compendium of CSF proteome maps. In total, we

included the four broader groups, ABM, BM, VM, and the control group. In addition, we included

TBE as this group was associated with a distinct molecular host response. We used fourfold cross-

validation to build a model for each of the five groups to distinguish the groups from each other. To

assess the stability of our model, we repeated the process 100 times (runs), generating 2000 models

in total (4 folds � 5 groups � 100 runs). All of the tested groups had an area under the receiver

operating characteristic curve (AUROC) above 0.80, and two of them had an AUROC above 0.90

(Figure 4a). The protein profiles for ABM and control were reproducible across the 100 runs and

specific, with a mean AUROC of 0.96 for ABM and 0.95 for controls. The models for BM and VM

had a lower mean AUROC of 0.85 and 0.80, respectively. TBE displayed the most stable and discrim-

inatory AUROC of 0.87 of all specific causative-agent subgroups, indicating that TBE evokes a dis-

tinct host response. In total, 18 proteins were detected in �90% of the 100 runs in every fold and

had a nonzero weight, which were consistently used in the LASSO models for discriminating different

sample groups. For these 18 predictive proteins, we visualized the distribution of the respective pro-

tein contribution to the models as box plots colored by the average weight (coefficient) over all 100

runs (Figure 4c). Proteins with a nonzero coefficient had a positive influence on the model and are

regarded as predictive proteins for the disease group as shown by the fill color of the box plots. The

average intensity of the 18 proteins shows the differences in the abundance levels in their respective

sample group (Figure 4d, Figure 4—figure supplement 1). 5 of the 18 proteins were in general

detected in higher amounts in ABM and BM and include proteins such as gelsolin (GEL), cathepsin D

(CATD), and transthyretin (TTHY) that are involved in neutrophil degranulation according to the

Reactome Pathway Database. Nine of the proteins were exclusively elevated in ABM and include

proteins involved in inflammatory response (A2GL, HPT A1T1), fibrin clot formation (HEP2, PROS),

LPS binding (CD14), and regulation of the complement cascade (CFAH). Notably, these proteins are

all found in lower concentrations in the control samples, and these proteins were mostly predictive

for ABM and/or the control samples. In contrast, BM, VM, and TBE in general have less discrimina-

tory weight coefficient. For TBE, monocyte differentiation antigen CD14 was elevated compared to

the controls. Antithrombin-III, a serine protease inhibitor that regulates the blood coagulation cas-

cade, was associated with a high weight coefficient and a relatively high abundance level in the VM

group. In conclusion, these results demonstrate that LASSO regression can select a set of predictive

proteins to classify different disease etiologies in meningitis, which was not possible by any of sin-

gle-protein biomarker candidates quantified in this study.

Longitudinal follow-up of protein levels in ABM and subarachnoidal
hemorrhage
Meningitis is a disease that is associated with a risk of developing severe neurological sequelae in

survivors, and some studies have shown that the levels of certain proteins remained high in the CSF

from non-survivors (Goonetilleke et al., 2010), such as chitotriosidase, complement C1q tumor

necrosis factor-related protein 9, and haptoglobin. To investigate changes of the CSF proteome

over time, we extended the compendium of proteome maps with an additional total of 36 CSF sam-

ples from ABM (six patients) and from patients with subarachnoidal hemorrhage (SAH, four patients).

From these patients, there were multiple CSF samples collected up to 10–13 days after admittance

to hospital (Figure 5a). Four LASSO-predicted proteins for ABM remained elevated until the end of

the 10-day period (Figure 5b), suggesting that sampling over a longer time period is required to

observe the protein levels returning to baseline. The brain proteins with significantly lower levels in

ABM started to increase during the extended follow-up times peaking around day 5 (Figure 5c). In

contrast, the proteins with significantly lower abundance in ABM compared to control cases show a

slight increase over time (Figure 5d), whereas the proteins with higher levels in ABM compared to

control decreased in ABM over the 10 day-period (Figure 5e). The levels of neutrophil proteins in

ABM start to decrease but showed a high degree of variability (Figure 5f). In all cases, protein levels

were low or absent in SAH. Interestingly, the LASSO-predicted proteins used for discriminating ABM

tend to stay elevated even after the patients were released from hospital care. These results indicate

an ongoing complex host response process that is unique to infectious neurological disease, such as
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Figure 4. Predictive proteomic profiling using a LASSO regression model. (a) Predictive proteomic profiling was performed on all detected and

manually curated proteins (n = 771) by LASSO regression model to assign predictive scores to discriminate acute bacterial meningitis (ABM),

neuroborreliosis (BM), viral meningitis (VM), tick-borne encephalitis (TBE), and control samples from each other. The samples were split into four

randomly selected folds, and the modeling was repeated 100 times. The average area under the curve (AUC) of the sensitivity and specificity of the

Figure 4 continued on next page
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ABM, and is absent in other types of neurological trauma such as SAH. Data of protein levels over a

longer period of time could possibly help in understanding neurological sequelae that are followed

after some cases of meningitis.

Figure 4 continued

predicted model is presented in a receiver operating characteristic (ROC) curve. (b) The variation of the AUC across the 100 repetitions is shown as box

plots. (c) All proteins that were detected in each fold and in �90% of the 100 repetitions (18 proteins) were selected as important proteins for the

construction of the LASSO prediction model, and their value (e.g., log-transformed, centered, and scaled protein abundances) plotted as box plots.

The fill color of the box plot represents the weight coefficient assigned to each individual protein, where blue and red represent positive or negative

effect of that protein for prediction of that specific sample group. (d) The selected 18 proteins are presented in a heat map, with sample groups as

rows and sample group averages for each protein as columns.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Visualization of the 18 predictive proteins in volcano plots.

a b c

d e f

ABM

SAH

ABM

SAH

ABM

SAH

ABM

SAH

ABM

SAH

Figure 5. Longitudinal investigation of protein abundances in acute bacterial meningitis (ABM) and subarachnoidal hemorrhage (SAH). (a) Summary of

the cerebrospinal fluid (CSF) samples collected from patients with ABM (n = 6) or SAH (n = 4) for longitudinal analysis of CSF proteome is presented.

(b–f) Based on previous results, five groups of proteins were selected for longitudinal analysis in ABM up to 10 days and in SAH up to 13 days after

admittance to hospital: four proteins selected by LASSO as predictive and indicative of ABM (b), brain-associated proteins downregulated in AMB (c),

downregulated proteins not classified to a tissue and specific to ABM (d), upregulated proteins not classified to a tissue and specific to ABM (e), and

neutrophil proteins upregulated in ABM (f).
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Discussion
Here, we present a resource of extendable compendium of CSF proteome maps from a cohort of

meningitis patients to define specific host response patterns in meningitis. The quantified proteins

have a median coefficient of variation (CV) for technical replicates below 20% as previously shown

(Guo et al., 2015). The compendium presented in this study comprised in total 171 CSF samples

with different sample- and time-dimensions generated from <50 mL of CSF. In SWATH-MS, the post-

acquisition targeted data analysis strategy using previously established assay libraries confirms

the presence and relative abundance of proteins. Once acquired, the compendium of SWATH-MS

maps can be iteratively reanalyzed in silico to test new hypotheses. In this study, we used a highly

curated assay library to search for tissue- or cell-enriched proteins informative for host response pat-

terns associated with ABM, BM, TBE, and VM.

In severe infectious diseases, several factors may influence the type and magnitude of the host

response, such as type of infecting pathogen, host immune status, and time of infection. The dysre-

gulated host responses during sepsis and meningitis can be detrimental to the host (Iskander et al.,

2013; Ward et al., 2008). At the same time, altered protein composition of CSF provides an oppor-

tunity to probe disease status of the complex interplay of factors driving the host response. Damage

derived from the infectious process and/or the host response may generate detectable protein

changes associated with, for example, organ damage (Malmström et al., 2015). In this study, we

used LASSO regression to define protein patterns capable of discriminating between ABM, BM, VM,

TBE, and controls. Based on an assay library containing information of tissue- and cell-enriched pro-

teins, the different disease groups had noticeable differences in protein patterns associated with

neutrophils, blood plasma, and proteins predominantly present in the brain. The increased levels of

neutrophil proteins are a consequence of infiltrating activated neutrophils, known to occur predomi-

nately during ABM (Hoffman and Weber, 2009; Tunkel and Scheld, 1993). Neutrophils may release

decondensed extracellular DNA coated with antimicrobial proteins called neutrophil extracellular

traps (NETs) (Moorthy et al., 2016). A recent study showed high levels of NETs in the CSF of

patients with pneumococcal meningitis and that disrupting NETs using DNase I significantly reduces

bacterial load, demonstrating that NETs contribute to the pathogenesis of pneumococcal meningitis

(Mohanty et al., 2019). It is noteworthy that both ABM and VM introduce reduced levels of brain-

specific proteins, although the overlap of the reduced proteins between ABM and VM is small. The

reason for this reduction is not clarified, although it was previously reported that brain proteins

decrease in CSF during other neurological disorders, such as Huntington’s disease (Fang et al.,

2009).

The large number of disease-causing pathogens in meningitis leads to high heterogeneity in both

patients and disease progression, and this variability can be seen in other severe infectious diseases

such as sepsis. In order to account for this clinical diversity in medical research, traditional individual

biomarker studies can be replaced with multiprotein panels to provide better coverage of the under-

lying disease. The LASSO regression model resulted in 18 predictive proteins. Proteins predictive of

ABM include CATD and complement factor H (CFAH), both of which are known plasma proteins

involved in clearance of specifically bacterial infections (Bewley et al., 2011; Haapasalo et al.,

2012). Leucine-rich alpha-2-glycoprotein (A2GL) has previously been suggested to be an inflamma-

tory marker, and significantly higher levels of A2GL were reported in the CSF of children with ABM

compared to febrile controls (Chong et al., 2018). Other studies have shown that the CSF levels of

alpha-1 antitrypsin (A1AT) and apolipoprotein E (APOE) were higher in ABM compared to controls

(Hoffman et al., 1989; Gutteberg et al., 1986; Wang et al., 2012). Furthermore, antithrombin-3

(ANT3), one of the predictive proteins for VM, has previously been shown to have a broad-spectrum

antiviral activity for various human cytomegaloviruses and herpes simplex viruses (Quenelle et al.,

2014). These results together indicate that large-scale multiprotein panels can yield biological and

clinical insights that are difficult to achieve with traditional statistical analyses.

The high reproducibility of SWATH-MS is a consequence of the DIA, which generates fragment-

ion spectra from all MS-measurable peptides from a proteome. This feature can support extension

of the compendium to generate a digital representation of physical biobanks. In total, the sample

cohort in this study consists of patients infected with 19 different pathogens, where the three largest

groups were S. pneumoniae, enteroviruses, and TBE. Among these pathogen groups, the LASSO

regression generated the highest AUC for TBE although the sample size was relatively small. There
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are currently no biomarkers for detecting and diagnosing TBE (Bogovic and Strle, 2015). Future

extension of the compendium will enable further investigations of pathogen-specific host responses

for other pathogens in CSF. In addition, the opportunity to reanalyze the compendium in silico

based on improved assay libraries will provide opportunities to find new protein patterns correlating

with other types of clinical information such as disease outcome or the development of neurological

sequelae. This goal can be achieved through either a data-driven process where samples are clus-

tered based on similarities in the proteome changes or in a hypothesis-driven fashion where the

compendium is interrogated for protein profiles correlating with, for example, pathogen type, infec-

tion time, or disease severity. The increasing efforts to construct complete assay libraries of the

human proteome (Kim et al., 2014; Matsumoto et al., 2017; Zolg et al., 2017) will provide

improved definition of proteins enriched in particular cells and tissues and will enable quantification

of additional proteins, post-translational modifications (Rosenberger et al., 2017), and proteolyti-

cally processed proteins from the already established compendiums of proteome maps. Ultimately

such a resource can be anticipated to enable improved correlation between host responses and

detectable changes in CSF and potentially blood plasma to identify molecular markers that can be

used for the development of new diagnostic-, prognostic-, and treatment-decisive information for

severe infectious diseases.

Materials and methods

Patients and CSF samples
CSF samples (n = 171) from a total of 139 patients from two different cohorts were analyzed.

Patients enrolled in a prospective study at the Clinic for Infectious Diseases, Lund University Hospi-

tal, Lund, Sweden, between March 2006 and November 2009 (as previously described; Linder et al.,

2011), with a clinical suspicion of meningitis who underwent a lumbar puncture and where CSF sam-

ples were collected, were included. The patients were categorized into the following groups: ABM

(n = 35), BM (n = 7), VM (n = 21, of which TBE n = 5), suspected ABM (n = 5), suspected VM

(n = 16), and inflammation with no infection (n = 2). Control patients had a suspected meningitis,

but were declared healthy after displaying a normal CSF WBC count (<5 � 106/L) (n = 49). In addi-

tion, longitudinal samples were collected from six of the previously mentioned ABM patients (6 origi-

nal samples and additional 14 longitudinal samples) and from four patients with SAH (22 longitudinal

samples).

CSF sample preparation
A constant volume of 50 mL of each CSF sample was used to correlate to the protein concentration

present in each sample. Samples were heat-inactivated by incubation on a heat-block for 5 min at

80˚C to kill any microorganisms present in the samples, and then transferred into lysing matrix tubes

(Nordic Biolabs) containing 90 mg silica beads (0.1 mm). The cells were homogenized with a cell dis-

ruptor (BeadBeater, FastPrep 96, MP Biomedicals) twice for 180 s. The samples were incubated for

30 min at 37˚C in 10 M urea, 1 M ammonium bicarbonate (ABC), and 1 mg trypsin (sequence grade

modified trypsin porcin, Promega) for denaturation and tryptic cleavage. Samples were further incu-

bated in 10 M urea and 1 M ABC for 30 min, after which large unfolded proteins were spun down by

centrifugation. The supernatants were reduced by incubation for 60 min at 37˚C in 500 mM tris(2-car-

boxyethyl) phosphine (TCEP, Sigma-Aldrich) and alkylated by incubation with 500 mM 2-

Iodoacetamide (IAA, Sigma-Aldrich). Samples were diluted in 100 mM ABC and incubated overnight

in 1 mg trypsin, after which trypsin was inactivated by addition of formic acid. C18-columns (Vydac

UltraMicro Spin Silica C18 300 Å) were used according to manufacturer’s instructions to clean up

and concentrate the peptide samples.

Bacterial strains and sample preparation
For the generation of pathogen assay libraries, bacterial isolates (n = 1 of Escherichia coli, Entero-

coccus faecalis, Streptococcus pyogenes, Streptococcus agalactiae, Listeria monocytogenes,

Pseudomonas aeruginosa, Staphylococcus aureus, and n = 4 of S. pneumoniae) were taken from fro-

zen stocks and grown overnight at 37˚C and 5% CO2 on blood agar plates. Streaks of each plate

were grown in Todd–Hewitt broth (30 g/L, Difco Laboratories) supplemented with yeast extract (6 g/
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L, Difco Laboratories). The bacterial cells were centrifuged and the pellet was washed three times in

wash buffer (50 mM Tris-HCl, 150 mM NaCl, pH 7.6, Medicago). The final pellet was resuspended to

a final concentration of 2 � 109 CFU/mL. The pellet was dissolved in ice-cold LC-grade water and

heat-inactivated by incubation at 90˚C for 5 min. The homogenization, denaturation, in-solution

digestion, reduction, alkylation, and sample clean-up were performed as for the CSF sample

preparation.

LC-MS/MS analysis of CSF samples
All peptide analyses were performed on a Q Exactive Plus mass spectrometer (Thermo Fisher Scien-

tific) connected to an EASY-nLC 1000 ultra-high-performance liquid chromatography system

(Thermo Fisher Scientific). For shotgun analysis, peptides were separated on an EASY-Spray column

(Thermo Scientific; ID 75 mm � 25 cm, column temperature 45˚C). Column equilibration and sample

load were performed using constant pressure at 600 bar. Solvent A was used as stationary phase

(0.1% formic acid). Solvent B (mobile phase; 0.1% formic acid, 100% acetonitrile) was used to run a

linear gradient from 5% to 35% over 60 min at a flow rate of 300 nL/min. One full MS scan (resolu-

tion 70,000 @ 200 m/z; mass range 400–1600 m/z) was followed by MS/MS scans (resolution 17,500

@ 200 m/z) of the 15 most abundant ion signals (TOP15). The precursor ions were isolated with 2 m/

z isolation width and fragmented using higher-energy collisional-induced dissociation at a normal-

ized collision energy of 30. Charge state screening was enabled and unassigned or singly charged

ions were rejected. The dynamic exclusion window was set to 10 s. Only MS precursors that

exceeded a threshold of 1.7e4 were allowed to trigger MS/MS scans. The ion accumulation time was

set to 100 ms (MS) and 60 ms (MS/MS) using an AGC target setting of 1e6 (MS and MS/MS).

For DIA, peptides were separated using an EASY-spray column (Thermo Fisher Scientific; ID 75

mm � 25 cm, column temperature 45˚C). Column equilibration and sample load was performed at

600 bar. Solvent A was used as stationary phase (0.1% formic acid). Solvent B (mobile phase; 0.1%

formic acid, 100% acetonitrile) was used to run a linear gradient from 5% to 35% over 120 min at a

flow rate of 300 nL/min. A full MS scan (resolution 70,000 @ 200 m/z; mass range from 400 to 1200

m/z) was followed by 32 MS/MS full fragmentation scans (resolution 35,000 @ 200 m/z) using an iso-

lation window of 26 m/z (including 0.5 m/z overlap between the previous and next window). The pre-

cursor ions within each isolation window were fragmented using higher-energy collisional-induced

dissociation at normalized collision energy of 30. The automatic gain control was set to 1e6 for both

MS and MS/MS with ion accumulation times of 100 ms (MS) and 120 ms (MS/MS). The obtained raw

files were converted to mzML using MSConvert (Kessner et al., 2008). The MS proteomics data

have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with

the dataset identifier PXD023174.

LC-MS/MS analysis of bacterial samples
Peptide analysis was performed as for the CSF samples, with the exception that an Acclaim PepMap

100 pre-column (Thermo Scientific, C18, 3 mm, 100 Å; ID 75 mm � 2 cm) was coupled to the column

and the linear gradient of between 5% and 35% acetonitrile in aqueous 0.1% formic acid was run for

120 min instead. The MS proteomics data have been deposited to the ProteomeXchange Consor-

tium via the PRIDE partner repository with the dataset identifier PXD024904.

CSF shotgun MS analysis
The shotgun MS data was searched with Trans-Proteomic Pipeline (TPP, v4.7 POLAR VORTEX rev 0,

Build 201405161127) using X!Tandem against the UniProt human reference proteome

(UP000005640, Oct-2015, reviewed and canonical proteins only), and for generation of decoy pro-

teins a reverse approach was used. Cysteine carbamidomethylation was considered as a fixed and

methionine oxidation as a variable modification, and enzyme specificity was set for trypsin to allow

two missed cleavage sites. Variable acetylation of the n-terminae, S-carbamoylmethyl-cysteine cycli-

zation of the n-terminal cysteines as well as pyro-glutamic acid formation from glutamic acid and glu-

tamine was also allowed by X!Tandem. The precursor mass tolerance thresholds were set to 20 ppm

and the fragment mass tolerance to 50 ppm. The raw files were gzipped and Numpressed

(Teleman et al., 2014) and converted to mzML format using msconvert from ProteoWizard

(v3.05930 suite, [Chambers et al., 2012]).
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CSF assay library creation and DIA analysis
Assay libraries were created using the Fraggle-Franklin-Tramler workflow (Teleman et al., 2017). In

brief, fragment spectra from TPP search results were interpreted by the software tool fraggle and

assembled into a retention time normalized consensus assay library with a Franklin-derived multilevel

false-disovery rate (FDR) of <0.01. Assays were generated by the software tool Tramler and contain

only the 3–6 most intense fragments within the mass range of 350–2000 m/z and do not fall within

the precursor isolation window (Deutsch et al., 2012). The assay library was stored in traML format.

For DIA analysis, DIANA v2.0.0 was used (Teleman et al., 2015) with a 20 ppm extraction window.

The generated data was manually curated to remove various immunoglobulin variable chain

proteins.

Shotgun MS analysis and assay library creation of bacterial samples
A snakemake workflow was created for building generic transition library (GTL) from Thermo DDA

experiments. The raw spectral library creation was achieved by a tandem of spectrum clustering,

DDA searches and OpenSwath protocols. Initially, a set of DDA raw files were converted to mascot

generic format by ThermoRawFileParser software (Hulstaert et al., 2020). Secondly, spectra files

were clustered through Mass Rarity Clustering approach by MaRaCluster (The and Käll, 2016). Urs-

gal package (Kremer et al., 2016) was used as interface for searching the consensus spectra against

data’s UniProt reference proteome using five search engines, namely MSGFPlus (version

2019.07.03), MS Amanda (version 2.0.0.17442, Dorfer et al., 2014), Comet (version 2019.01.rev5,

Eng et al., 2013; Eng et al., 2015), X! Tandem (version alanine, Craig and Beavis, 2004), and

OMSSA (version 2.1.9, Geer et al., 2004). Optional Met Oxidation (UniMod: 35), Asp and Gln dea-

midations (UniMod: 7), along with the fixed Cys carbamidomethylation (UniMod: 4) modifications,

were considered in this study. Individual engine results were validated by percolator (v3.4.0,

Käll et al., 2007), while the Combine FDR algorithm was implemented for combining results from all

search engines (Jones et al., 2009). Moreover, a threshold of 1% peptide FDR was set for decisive

candidate inclusion. In the final step, GTL database was built by all peptide’s b- and y-ions extraction

and adding decoy assays, as described previously (Escher et al., 2012; Collins et al., 2013;

Röst et al., 2014; Schubert et al., 2015). In this implementation, we use eight ion types: b, y, b(2+),

y(2+), b-H2O, y-H2O, b-NH3, and y-NH3.

Human tissue atlas
The human tissue atlas was used to statistically assign all detected proteins (n = 771) to human tissue

based on abundance. A total of 12 tissue assignments were used, which included the following tis-

sues and cell types: adipose, brain, liver, nerve, erythrocytes, lymphocytes, macrophages, neutro-

phils, platelets, and plasma. Proteins associated to other tissues that were available via the atlas

are depicted here as ‘others.’ A protein was depicted as ‘not classified’ if the abundance could not

be statistically associated to only one tissue or if it was missing from the atlas altogether. The tissue

assignments of certain proteins used in further analyses in this study were compared and matched

against other, publicly available and published protein tissue-assignment repositories

(Supplementary file 1).

Statistical analysis
For statistical analyses, a Benjamini–Hochberg-corrected t-test was used. GO annotations were per-

formed by using two unranked lists of proteins with GOrilla (Eden et al., 2009). For the LASSO

modeling, the proteomic data was first log-transformed, scaled, and centered (i.e., log10 of the

abundances, subtraction of the per-protein mean and division by the per-protein standard devia-

tion). This data was then used as the input to the LASSO implementation of the LiblineaR package

of the R statistical programming language (R version 3.6.1; LiblineaR version 2.10–8). A fourfold

cross-validation approach was used for model building, where the samples were split randomly into

four balanced groups (same proportion of pathogen type as the whole cohort). For each of the four

groups, the model was trained on 3/4 of the data and the performance was evaluated on the

remaining 1/4, and this modeling was performed 100 times. Proteins that received a nonzero weight

coefficient (as in the value of that protein has an influence on the model) in �90% of all models were

selected for further analysis.
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Guo T, Kouvonen P, Koh CC, Gillet LC, Wolski WE, Röst HL, Rosenberger G, Collins BC, Blum LC, Gillessen S,
Joerger M, Jochum W, Aebersold R. 2015. Rapid mass spectrometric conversion of tissue biopsy samples into
permanent quantitative digital proteome maps. Nature Medicine 21:407–413. DOI: https://doi.org/10.1038/
nm.3807, PMID: 25730263

Gutteberg TJ, Flaegstad T, Jørgensen T. 1986. Lactoferrin, C-reactive protein, a-1-Antitrypsin and
immunoglobulin GA in cerebrospinal fluid in meningitis. Acta Paediatrica 75:569–572. DOI: https://doi.org/10.
1111/j.1651-2227.1986.tb10252.x

Haapasalo K, Vuopio J, Syrjänen J, Suvilehto J, Massinen S, Karppelin M, Järvelä I, Meri S, Kere J, Jokiranta TS.
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