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Abstract Establishing how many people have been infected by SARS-CoV-2 remains an urgent

priority for controlling the COVID-19 pandemic. Serological tests that identify past infection can be

used to estimate cumulative incidence, but the relative accuracy and robustness of various

sampling strategies have been unclear. We developed a flexible framework that integrates

uncertainty from test characteristics, sample size, and heterogeneity in seroprevalence across

subpopulations to compare estimates from sampling schemes. Using the same framework and

making the assumption that seropositivity indicates immune protection, we propagated estimates

and uncertainty through dynamical models to assess uncertainty in the epidemiological parameters

needed to evaluate public health interventions and found that sampling schemes informed by

demographics and contact networks outperform uniform sampling. The framework can be adapted

to optimize serosurvey design given test characteristics and capacity, population demography,

sampling strategy, and modeling approach, and can be tailored to support decision-making around

introducing or removing interventions.

Introduction
Serological testing is a critical component of the response to COVID-19 as well as to future epidem-

ics. Assessment of population seropositivity, a measure of the prevalence of individuals who have

been infected in the past and developed antibodies to the virus, can address gaps in knowledge of

the cumulative disease incidence. This is particularly important given inadequate viral diagnostic

testing and incomplete understanding of the rates of mild and asymptomatic infections

(Sutton et al., 2020). In this context, serological surveillance has the potential to provide information

about the true number of infections, allowing for robust estimates of case and infection fatality rates

(Fontanet et al., 2020) and for the parameterization of epidemiological models to evaluate the pos-

sible impacts of specific interventions and thus guide public health decision-making.
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The proportion of the population that has been infected by, and recovered from, the coronavirus

causing COVID-19 will be a critical measure to inform policies on a population level, including when

and how social distancing interventions can be relaxed, and the prioritization of vaccines

(Bubar et al., 2021). Individual serological testing may allow low-risk individuals to return to work,

school, or university, contingent on the immune protection afforded by a measurable antibody

response (Weitz et al., 2020; Larremore, 2020). At a population level, however, methods are

urgently needed to design and interpret serological data based on testing of subpopulations, includ-

ing convenience samples such as blood donors (Valenti et al., 2020; Erikstrup et al., 2021;

Fontanet et al., 2020) and neonatal heel sticks, to reliably estimate population seroprevalence.

Three sources of uncertainty complicate efforts to learn population seroprevalence from subsam-

pling. First, tests may have imperfect sensitivity and specificity, and studies that do not adjust for

test imperfections will produce biased seroprevalence estimates. Complicating this issue is the fact

that sensitivity and specificity are, themselves, estimated from data (Larremore and Fosdick, 2020;

Gelman and Carpenter, 2020), which can lead to statistical confusion if uncertainty is not correctly

propagated (Bendavid et al., 2020). Second, the population sampled will likely not be a representa-

tive random sample (Bendavid et al., 2020), especially in the first rounds of testing, when there is

urgency to test using convenience samples and potentially limited serological testing capacity. Third,

there is uncertainty inherent to any model-based forecast that uses the empirical estimation of sero-

prevalence, regardless of the quality of the test, in part because of the uncertain relationship

between seropositivity and immunity (Tan et al., 2020; Ward et al., 2020).

A clear evidence-based guide to aid the design of serological studies is critical to policy makers

and public health officials both for estimation of seroprevalence and forward-looking modeling

efforts, particularly if serological positivity reflects immune protection. To address this need, we

developed a framework that can be used to design and interpret cross-sectional serological studies,

with applicability to SARS-CoV-2. Starting with results from a serological survey of a given size and

age stratification, the framework incorporates the test’s sensitivity and specificity and enables esti-

mates of population seroprevalence that include uncertainty. These estimates can then be used in

models of disease spread to calculate the effective reproductive number Reff , the transmission

potential of SARS-CoV-2 under partial immunity, forecast disease dynamics, and assess the impact

of candidate public health and clinical interventions. Similarly, starting with a pre-specified tolerance

for uncertainty in seroprevalence estimates, the framework can be used to optimize the sample size

and allocation needed. This framework can be used in conjunction with any model, including ODE

models (Kissler et al., 2020a; Weitz et al., 2020), agent-based simulations (Ferguson et al., 2020),

or network simulations (St-Onge et al., 2019), and can be used to estimate Reff or to simulate trans-

mission dynamics.

Materials and methods

Design and modeling framework
We developed a framework for the design and analysis of serosurveys in conjunction with epidemio-

logical models (Figure 1), which can be used in two directions. In the forward direction, starting

from serological data, one can estimate seroprevalence. While valuable on its own, seroprevalence

can also be used as the input to an appropriate model to update forecasts or estimate the impacts

of interventions. In the reverse direction, sample sizes can be calculated to yield seroprevalence esti-

mates with a desired level of uncertainty and efficient sampling strategies can be developed based

on prospective modeling tasks. The key methods include seroprevalence estimation, propagation of

uncertainty through models, and model-informed sample size calculations.

Bayesian inference of seroprevalence
To integrate uncertainty arising from test sensitivity and specificity, we used a Bayesian model to

produce a posterior distribution of seroprevalence that incorporates uncertainty associated with a

finite sample size (Figure 1, green annotations). We denote the posterior probability that the true

population seroprevalence is equal to �, given test outcome data X and test sensitivity and specificity

characteristics, as Prð� j X; se; spÞ. Because sample size and outcomes are included in X, and because

test sensitivity and specificity are included in the calculations, this posterior distribution over �
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appropriately handles uncertainty due to limited sample sizes and an imperfect testing instrument,

and can be used to produce a point estimate of seroprevalence or a posterior credible interval. The

model and sampling algorithm are fully described in Appendix A1.

Sampling frameworks for seropositivity estimates are likely to be non-random and constrained to

subpopulations. For example, convenience sampling (testing blood samples that were obtained for

another purpose and are readily available) will often be the easiest and quickest data collection

method (Winter et al., 2018). Two examples of such convenience samples are newborn heel stick

dried blood spots, which contain maternal antibodies and thus reflect maternal exposure, and serum

from blood donors (Valenti et al., 2020; Erikstrup et al., 2021; Fontanet et al., 2020). As a result,

another source of statistical uncertainty comes from uneven sampling from a population.

To estimate seropositivity for all subpopulations based on a given sample (stratified, convenience,

or otherwise), we specified a Bayesian hierarchical model that included a common prior distribution

on subpopulation-specific seropositivities �i (Appendix A1). In effect, this allowed seropositivity esti-

mates from individual subpopulations to inform each other while still taking into account subpopula-

tion-specific testing outcomes. The joint posterior distribution of all subpopulation prevalences was

sampled using Markov chain Monte Carlo (MCMC) methods (Appendix A1). Those samples, repre-

senting posterior seroprevalence estimates for individual subpopulations, were then combined in a

demographically weighted average to obtain estimates of overall seroprevalence, a process com-

monly known as poststratification (Little, 1993; Gelman and Carpenter, 2020). We focus the dem-

onstrations and analyses of our methods on age-based subpopulations due to their integration into

POLYMOD-type age-structured models (Mossong et al., 2008; Prem et al., 2017), but note that

our mathematical framework generalizes naturally to other definitions of subpopulations, including

those defined by geography (Fontanet et al., 2020; Nyc health testing data, 2020; Nisar et al.,

2020; Malani et al., 2020).

Propagating serological uncertainty through models
In addition to estimating core epidemiological quantities (Farrington and Whitaker, 2003;

Farrington et al., 2001; Hens et al., 2012) or mapping out patterns of outbreak risk (Abrams et al.,

Figure 1. Framework for estimating seroprevalence and epidemiological parameters and the associated uncertainty, and for designing seroprevalence

studies.
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2014), the posterior distribution of seroprevalence can be used as an input to any epidemiological

model. Such models include the standard SEIR model, where the proportion seropositive may corre-

spond to the recovered/immune compartment, as well as more complex frameworks such as an age-

structured SEIR model incorporating interventions like school closures and social distancing

(Davies et al., 2020; Figure 1, blue annotations). We integrated and propagated uncertainty in the

posterior estimates of seroprevalence and uncertainty in model dynamics or parameters using Monte

Carlo sampling to produce a posterior distribution of epidemic trajectories or key epidemiological

parameter estimates (Figure 1, black annotations).

Single-population SEIR model with social distancing and serology
To integrate inferred seroprevalence with uncertainty into a single-population SEIR model, we cre-

ated an ensemble of SEIR model trajectories by repeatedly running simulations whose initial condi-

tions were drawn from the seroprevalence posterior distribution. In particular, the seroprevalence

posterior distribution was sampled, and each sample � was used to inform the fraction of the popu-

lation initially placed into the ‘recovered’ compartment of the model. Thus, uncertainty in posterior

seroprevalence was propagated through model outcomes, which were measured as epidemic peak

timing and peak height. Social distancing was modeled by decreasing the contact rate between sus-

ceptible and infected model compartments. A full description of the model and its parameters can

be found in Appendix A2 and Supplementary file 1.

Age-structured SEIR model with serology
To integrate inferred seroprevalence with uncertainty into an age-structured SEIR model, we consid-

ered a model with 16 age bins (0� 4; 5� 9; . . . 75� 79). This model was parameterized using coun-

try-specific age-contact patterns (Mossong et al., 2008; Prem et al., 2017) and COVID-19

parameter estimates (Davies et al., 2020). The model, due to Davies et al., 2020, includes age-spe-

cific clinical fractions and varying durations of preclinical, clinical, and subclinical infectiousness, as

well as a decreased infectiousness for subclinical cases. A full description of the model and its

parameters can be found in Appendix A2 and Supplementary file 1.

As in the single-population SEIR model, seroprevalence with uncertainty was integrated into the

age-structured model by drawing samples from seroprevalence posterior to specify the fraction of

each subpopulation placed into ‘recovered’ compartments. Posterior samples were drawn from the

age-stratified joint posterior distribution whose subpopulations matched the model’s subpopula-

tions. For each set of posterior samples, the effective reproduction number Reff was computed from

the model’s next-generation matrix. Thus, we quantified both the impact of age-stratified seropreva-

lence (assumed to be protective) on Reff as well as uncertainty in Reff .

Serosurvey sample size and allocation for inference and modeling
The flexible framework described in Figure 1 enables the calculation of sample sizes for different

serological survey designs. To calculate the number of tests required to achieve a seroprevalence

estimate with a specified tolerance for uncertainty, and to determine optimal test allocation across

subpopulations in the context of studying a particular intervention, we treated the estimate uncer-

tainty as a framework output and then sought to minimize it by improving the allocation of samples

(Figure 1, dashed arrow).

Uniform allocation of samples to subpopulations is not always optimal. It can be improved by (i)

increasing sampling in subpopulations with higher seroprevalence and (ii) sampling in subpopula-

tions with higher relative influence on the quantity to be estimated. This approach, which we term

model and demographics informed (MDI), allocates samples to subpopulations in proportion to how

much sampling them would decrease the posterior variance of estimates, that is, ni / xi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��i ð1� ��i Þ

p
,

where ��i ¼ 1� spþ �iðseþ sp� 1Þ is the probability of a positive test in subpopulation i given test

sensitivity (se), test specificity (sp), and subpopulation seroprevalence �i, and xi is the relative impor-

tance of subpopulation i to the quantity to be estimated.

The sample allocation recommended by MDI varies depending on the information available and

the quantity of interest. When the key quantity is overall seroprevalence, xi is the fraction of the pop-

ulation in subpopulation i. When the key quantity is total infections, the effective reproductive

number, Reff , or another quantity derived from compartmental models with subpopulations, xi, is the
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ith entry of the principal eigenvector of the model’s next-generation matrix, after modification to

include modeled interventions. In such scenarios, this approach balances the importance of sampling

subpopulations due to their role in dynamics (xi) and higher variance in seroprevalence estimates

themselves (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��i ð1� ��i Þ

p
). If subpopulation prevalence estimates �i are unknown, sample allocation

based solely on xi is recommended. These methods are derived in Appendix A3.

Data sources
Age distribution of U.S. blood donors was drawn from a study of Atlanta donors (Shaz et al., 2011).

Age distribution of U.S. mothers was drawn from the 2016 CDC Vital Statistics Report using Massa-

chusetts as a reference state (Martin et al., 2018). Daily age-structured contact data were drawn

from Prem et al., 2017. All data were represented using 5-year age bins, that is, ð0� 4,

5� 9,. . .,74� 79Þ. For datasets with bins wider than 5 years, counts were distributed evenly into the

5-year bins. Serological test characteristics were collected from registrations with the U.S. Food and

Drug Administration, 2021 and summarized in Supplementary file 1. No attempt was made to

test or validate manufacturer claims, and point estimates of sensitivity and specificity were used that

did not incorporate test calibration sample sizes (Gelman and Carpenter, 2020; Larremore and

Fosdick, 2020). Demographic data for the U.S., India, and Switzerland (analyzed in the article) as

well as other countries (provided in open-source code) were downloaded from the 2019 United

Nations World Populations Prospects report (United Nations, 2019). Hypothetical survey samples

were drawn based on comprehensive seroprevalence estimates from Geneva, Switzerland

(Stringhini et al., 2020).

Results

Test sensitivity/specificity, sampling bias, and true seroprevalence
influence the accuracy and robustness of estimates
We simulated serological data from a single population with seroprevalence rates ranging from 1%

to 50% using the reported sensitivity (90%) and specificity (>99.9%) of the Euroimmun SARS-CoV-2

IgG test (U.S. Food and Drug Administration, 2021; Supplementary file 1), and with the number

of samples ranging from 100 to 5000. We constructed Bayesian posterior estimates of seropreva-

lence, finding that, when seroprevalence is 10% or lower, around 1000 samples are necessary to cor-

rectly estimate seroprevalence to within ±2% (Figure 2). Marketed tests with other characteristics

also required around 1000 tests (Figure 2—figure supplement 1A, B) to achieve the same uncer-

tainty levels, approaching the minimum sample size achieved by a theoretical test with perfect sensi-

tivity and specificity (Figure 2—figure supplement 1C). Similar calculations for other test

characteristics may be performed using the open-source tools that accompany this study (Open-

source code repository and reproducible notebooks for this manuscript, 2020). In general, esti-

mates were most uncertain when true seropositivity was near 50%, the number of samples was low,

and/or test sensitivity/specificity were low.

Next, we tested the ability of the Bayesian hierarchical model to infer both population and sub-

population seroprevalence. We simulated serological data from subpopulations for which samples

were allocated and with heterogeneous seroprevalence levels (Supplementary file 2) and average

seroprevalence values between 5% and 50%. Test outcomes were randomly generated conditioning

on the false positive and negative properties of the test being modeled (Supplementary file 1).

Test allocations across subpopulations were specified in proportion to age demographics of blood

donations, delivering mothers, uniformly across subpopulations, or according to an MDI allocation

focused on minimized posterior uncertainty in Reff .

Credible intervals of the resulting overall seroprevalence estimates were influenced by the age

demographics sampled, with the most uncertainty in the newborn dried blood spots sample set,

due to the narrow age range for the mothers (Figure 3). For such sampling strategies, which draw

from only a subset of the population, our approach assumes that seroprevalence in each subpopula-

tion does not dramatically vary and thus infers that seroprevalence in the unsampled bins is similar

to that in the sampled bins but with increased uncertainty. Uncertainty was also influenced by the

overall seroprevalence, such that the width of the 95% credible interval increased with higher sero-

prevalence for a given sample size. While test sensitivity and specificity also impacted uncertainty,
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central estimates of overall seropositivity were robust for sampling strategies that spanned the entire

population. Note that the MDI sample allocation shown in Figure 3 was optimized to estimate the

effective reproductive number Reff , and thus, while it performs well, it is slightly outperformed by uni-

form sampling when used to estimate overall seroprevalence.
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Figure 2. Uncertainty of population seroprevalence estimates as a function of number of samples and true

population rate. Uncertainty, represented by the width of 95% credible intervals, is presented as ± seroprevalence

percentage points in (A) a contour plot and (B) for selected seroprevalence values, based on a serological test with

90% sensitivity and >99.9% specificity (Figure 2—figure supplement 1 depicts results for other sensitivity and

specificity values). In total, 5000 samples are sufficient to estimate any seroprevalence to within a worst-case

tolerance of ±1.4 percentage points (e.g., 20% ± 1.4% = [18.6%, 21.4%]), even with the imperfect test studied. Each

point or pixel is averaged over 250 stochastic draws from the specified seroprevalence with the indicated

sensitivity and specificity.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Uncertainty of population seroprevalence estimates as a function of number of samples
and true population rate.
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Seroprevalence estimates inform uncertainty in epidemic peak, timing,
and reproductive number
Figure 4 illustrates how the height and timing of peak infections varied in forward simulations under

two serological sampling scenarios and two hypothetical social distancing policies for a basic SEIR

framework parameterized using seroprevalence data. Uncertainty in seroprevalence estimates prop-

agated through SEIR model outputs in stages: larger sample sizes at a given seroprevalence resulted

in a smaller credible interval for the seroprevalence estimate, which improved the precision of esti-

mates of both the height and timing of the epidemic peak. We note that seroprevalence estimates

without correction for the sensitivity and specificity of the test resulted in biased estimates in spite

of increasing precision with larger sample size (Figure 4C, D). Test characteristics also impacted

model estimates, with more specific and sensitive tests leading to more precise estimates (Figure 4—

figure supplement 1). Even estimations from a perfect test carried uncertainty corresponding to the

size of the sample set (Figure 4—figure supplement 1).

Figure 5 illustrates how the Bayesian hierarchical model extrapolates seroprevalence values in

sampled subpopulations, based on convenience samples from particular age groups or age-stratified

serological surveys, to the overall population, with uncertainty propagated from these estimates to

model-inferred epidemiological parameters of interest, such as the effective reproduction

number Reff . Estimates from 1000 neonatal heel sticks or blood donations achieved more uncertain,

but still reasonable, estimates of overall seroprevalence and Reff as compared to uniform or demo-

graphically informed sample sets (Figure 5). Here, convenience samples produced higher confidence

estimates in the heavily sampled subpopulations, but high uncertainty estimates in unsampled popu-

lations through our Bayesian modeling framework. In all scenarios, our framework propagated uncer-

tainty appropriately from serological inputs to estimates of overall seroprevalence (Figure 5I) or Reff

(Figure 5J). Importantly, we note that the inferred posterior estimates shown in Figure 5 are derived
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Figure 3. Uncertainty of overall seroprevalence estimates from convenience and formal sampling strategies. Uncertainty, represented by the width of

95% credible intervals, is presented as ± seroprevalence percentage points, based on a serological test with 90% sensitivity and >99.9% specificity

(Figure 3—figure supplement 1 depicts results for other sensitivity and specificity values). (A) Curves show the decrease in average CI widths for 15%

seroprevalence, illustrating the advantages of using uniform and model and demographics informed (MDI) samples over convenience samples. (B)

Contour plots show average CI widths for various total sample counts and overall seroprevalence ranging from 5% to 50%. Convenience samples

derived from newborn blood spots (reflecting the age demographics of mothers) or U.S. blood donors improve with additional sampling but retain

baseline uncertainty due to demographics not covered by the convenience sample. For the estimation of overall seroprevalence, uniform sampling is

marginally superior to this example of the MDI sampling strategy, which was designed to optimize estimation of the effective reproductive number Reff .

Each point or pixel is averaged over 250 stochastic draws from the specified seroprevalence with the indicated sensitivity and specificity.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Uncertainty of overall seroprevalence estimates from convenience and formal sampling strategies.
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from stochastically generated data, meaning that repeating this numerical experiment would pro-

duce different simulated test outcomes and therefore different inferred seroprevalence and Reff esti-

mates whose accuracy will stochastically vary, as expected. Improved test sensitivity and specificity

correspondingly improved estimation and reduced the number of samples required (i) to achieve the

same credible interval for a given seroprevalence and (ii) estimates of Reff (Figure 5—figure supple-

ments 1 and 2).

If the subpopulations in the convenience sample have systematically different seroprevalence

rates from the general population, increasing the sample size may bias estimates (Figure 5—figure

supplements 3 and 4) while simultaneously decreasing the widths of posterior credible intervals,

producing higher confidence in estimates in spite of their bias. This may be avoided using data from

other sources or by updating the prior distributions in the Bayesian model with known or hypothe-

sized relationships between seroprevalence of the sampled and unsampled populations. In general,

the magnitude of this type of bias is not possible to estimate without secondary sources of seroprev-

alence data, differentiating it from the avoidable biases that result from failing to post-stratify based

on population demographics or adjust for the sensitivity and specificity of the test instrument.

Strategic sample allocation improves estimates
We used the MDI strategy to design a study that optimizes estimation of Reff and then tested the

performance of the sample allocations against those resulting from blood donation and neonatal

heel stick convenience sampling, as well as uniform sampling. As designed, MDI produced higher

confidence posterior estimates (Figure 5J, Figure 5—figure supplement 2). Importantly, because

the relative importance of subpopulations in a model varies based on the hypothetical interventions
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Figure 4. Uncertainty in serological data produces uncertainty in simulated epidemic peak height and timing. Serological test outcomes for n ¼ 100

tests (A; red) and n ¼ 1000 tests (B; blue) produce (C, D) posterior seroprevalence estimates with quantified uncertainty with posterior means of 15.2%

and 14.6%, respectively; estimates uncorrected for assay performance bias: 13.0% and 13.0%. (E, F) Samples from the seroprevalence posterior produce

a distribution of simulated epidemic curves for scenarios of 25% and 50% social distancing (see Materials and methods), leading to uncertainty in (G)

epidemic peak and (H) timing, which is mitigated in the n ¼ 1000 sample scenario. Boxplot whiskers span 1.5� IQR, boxes span central quartile, lines

indicate medians, and outliers were suppressed. se, sensitivity; sp, specificity.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Uncertainty in serological data produces uncertainty in estimates of epidemic peak height and timing, even when the test has
perfect sensitivity and specificity.
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being modeled (e.g., the reopening of workplaces would place higher importance on the serological

status of working-age adults), MDI sample allocation recommendations should be derived for multi-

ple hypothetical interventions and then averaged to design a study from which the largest variety of

high confidence results can be derived. To illustrate how such recommendations would work in prac-

tice, we computed MDI recommendations to optimize three scenarios for the contact patterns and

demography of the U.S. and India, deriving a balanced sampling recommendation (Figure 6).

Figure 5. Convenience and formal samples provide serological and epidemiological parameter estimates. (A–D) For four sampling strategies, n ¼ 1000

tests were allocated to age groups with negative tests (gray outlines) and positive tests (colors) as shown, drawn stochastically based on seroprevalence

estimates reflecting SARS-CoV-2 serosurvey outcomes from Geneva, Switzerland, as of May 2020 (Stringhini et al., 2020) for a test with 90% sensitivity

and >99.9% specificity. The model and demographics informed (MDI) strategy shown was designed to optimize estimation of Reff . (E–H) Age-group

seroprevalence estimates �i are shown as boxplots (boxes 90% CIs, whiskers 95% CIs); dots indicate the true values from which data were sampled

(Stringhini et al., 2020). Note the decreased uncertainty for boxes with higher sampling rates. (I) Age-group seroprevalences were weighted by Swiss

population demographics to produce overall seroprevalence estimates, shown as probability densities with 95% credible intervals shaded and

highlighted with dashed lines. (J) Age-group seroprevalences were used to estimate the effective reproductive number (Reff ) from an age-stratified

transmission model under status quo ante contact patterns, shown as probability densities with 95% credible intervals shaded and highlighted with

dashed lines, based on a basic reproductive number in the absence of population immunity (R0) of 2.5. Dashed lines indicate true values from which the

data were sampled. Each distribution depicts inference outcomes from a single set of stochastically sampled data; no averaging is done. Note that

although uniform and MDI sample allocation produces equivalently confident estimates of overall seroprevalence, MDI produces a more confident

estimate of Reff because it allocates more samples to age groups most relevant to model dynamics.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Average credible interval width for overall seroprevalence estimates using four sampling strategies and four serological test kits.

Figure supplement 2. Average credible interval width for Reff estimates using four sampling strategies and four serological test kits.

Figure supplement 3. Credible interval coverage for overall seroprevalence estimates using four sampling strategies and four serological test kits.

Figure supplement 4. Credible interval coverage for Reff estimates using four sampling strategies and four serological test kits.
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Discussion
There is a critical need for serological surveillance of SARS-CoV-2 to estimate cumulative incidence.

Here, we presented a formal framework for doing so to aid in the design and interpretation of sero-

logical studies, which avoids the biases associated with seroprevalence estimates that fail to account

for sensitivity, specificity, and sampling schemes. We considered that sampling may be done in mul-

tiple ways, including efforts to approximate seroprevalence using convenience samples, as well as

more complex and resource-intensive structured sampling schemes, and that these efforts may use

one of any number of serological tests with distinct test characteristics. We incorporated into this

framework an approach to propagating the estimates and associated uncertainty through mathe-

matical models of disease transmission (focusing on scenarios where seroprevalence maps to immu-

nity) to provide decision-makers with tools to evaluate the potential impact of interventions and thus

guide policy development and implementation.

Our results suggest approaches to serological surveillance that can be adapted as needed based

on pre-existing knowledge of disease prevalence and trajectory, availability of convenience samples,

and the extent of resources that can be put towards structured survey design and implementation.

While this work focuses on the design and analysis of single cross-sectional surveys, stratified by

age, extensions to the analysis of serial cross-sectional surveys (Stringhini et al., 2020; Nisar et al.,

2020) or other stratifications are also possible. Our results suggest that such surveys could benefit

from the rebalancing of limited test budgets between subpopulations from one cross-sectional wave

to the next by basing each wave’s test allocation strategy on the MDI recommendations derived

from the preceding wave. Although our numerical demonstrations here focused on heterogeneity

and modeling by age, our work may be applied to any population stratification for which there is

heterogeneity. Indeed, seroprevalence studies by neighborhood in New York City (Nyc health test-

ing data, 2020), Karachi (Nisar et al., 2020), and Mumbai (Malani et al., 2020) have all found geo-

graphical variation in seroprevalence. In situations where sample sizes are low and heterogeneity is

high, hyperprior parameters can be adjusted to accommodate larger variation between

subpopulations.

In the absence of baseline estimates of cumulative incidence, an initial serosurvey can provide a

preliminary estimate (Figure 2). Our framework updates the ’rule of 3’ approach (Hanley and
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Figure 6. Model and demographics informed (MDI) sample allocations vary by demographics and modeling needs. Bar charts depict recommended

sample allocation for three objectives, reducing posterior uncertainty for (A, E) estimates of overall seroprevalence, (B, F) predictions from an age-

structured model with status quo ante contact patterns, (C, G) predictions from an age-structured model with modified contacts representing, relative

to pre-crisis levels, a 20% increase in home contact rates, closed schools, a 25% decrease in work contacts, and a 50% decrease of other contacts

(Mossong et al., 2008; Prem et al., 2017), and (D, H) averaging the other three MDI recommendations to balance competing objectives. Data for

both the U.S. (blue; A–D) and India (orange; E–H) illustrate the impact of demography and contact structure on strategic sample allocation. These

sample allocation strategies assume no prior knowledge of subpopulation seroprevalences f�ig.
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Lippman-Hand, 1983) by incorporating uncertainty in test characteristics and can further address

uncertainty from biased sampling schemes (see Appendix A4). As a result, convenience samples,

such as the maternal antibodies within newborn heel stick dried blood spots or samples from blood

donors, can be used to estimate population seroprevalence. However, it is important to note that in

the absence of reliable assessment of correlations in seroprevalence across age groups, extrapola-

tions from these convenience samples to entire populations may be misleading as sample size

increases (Figure 5—figure supplement 3). Indeed, as convenience sample size increases, credible

intervals will shrink, which, if sampled groups are unrepresentative of unsampled groups, will consti-

tute a ‘false precision’. Uniform or model and demographic informed samples, while more challeng-

ing logistically to implement, give the most reliable estimates. The results of a one-time study could

be used to update the priors of our Bayesian hierarchical model and improve the inferences from

convenience samples. In this context, we note that our framework naturally allows the integration of

samples from multiple test kits and protocols, provided that their sensitivities and specificities can

be estimated (Larremore and Fosdick, 2020; Gelman and Carpenter, 2020), which will become

useful as serological assays improve in their specifications.

The results from serological surveys will be invaluable in projecting epidemic trajectories and

understanding the impact of interventions such as age-prioritized vaccination (Bubar et al., 2021).

We have shown how the estimates from these serological surveys can be propagated into transmis-

sion models, incorporating model uncertainty as well. Conversely, to aid in rigorous assessment of

particular interventions that meet accuracy and precision specifications, this framework can be used

to determine the needed number and distribution of population samples via model and demo-

graphic-informed sampling. Extensions could conceivably address other study planning questions,

including sampling frequency (Herzog et al., 2017).

There are a number of limitations to this approach that reflect uncertainties in the underlying

assumptions of serological responses and the changes in mobility and interactions due to public

health efforts (Kissler et al., 2020b). Serology reflects past infection, and the delay between infec-

tion and detectable immune response means that serological tests reflect a historical cumulative inci-

dence (the date of sampling minus the delay between infection and detectable response). However,

due to the waning of antibody concentrations over time (Ward et al., 2020), seroreversion may

cause seroprevalence studies to underestimate cumulative incidence. As a consequence, modeling

studies that incorporate seroprevalence estimates should acknowledge such potential delays and

seroreversion when interpreting their findings. The possibility of heterogeneous immune responses

to infection and unknown dynamics and duration of immune response means that interpretation of

serological survey results may not accurately capture cumulative incidence. For COVID-19, we do

not yet understand the serological correlates of protection from infection, and as such projecting

seroprevalence into models that assume seropositivity indicates immunity to reinfection may be an

overestimate; models would need to be updated to include partial protection or return to

susceptibility.

Our work also requires the specification of prior and hyperprior distributions, assumptions inher-

ent to any Bayesian approach to statistical inference. Here, we used uninformative uniform prior dis-

tributions and a weakly informative hyperprior distribution in order to impose minimal assumptions

when modeling the data. This is a conservative choice as assuming uninformative prior distributions

results in higher posterior uncertainty. While informative priors can reduce uncertainty in seropreva-

lence studies (Gelman and Carpenter, 2020), specifying such priors appropriately relies on addi-

tional information and/or assumptions about the study population, which may be sparse, particularly

during an unfolding pandemic.

Use of model and demographic-informed sampling schemes is valuable for projections that evalu-

ate interventions but are dependent on accurate parameterization. While in our examples we used

POLYMOD and other contact matrices, these represent the status quo ante and should be updated

to the extent possible using other data, such as those obtainable from surveys (Mossong et al.,

2008; Prem et al., 2017) and mobility data from online platforms and mobile phones

(Buckee et al., 2020; Ainslie et al., 2020; Open COVID-19 Data Working Group et al., 2020).

Moreover, the framework could be extended to geographic heterogeneity as well as longitudinal

sampling if, for example, one wanted to compare whether the estimated quantities of interest (e.g.,

seroprevalence, Reff ) differ across locations or time (Abrams et al., 2014; Stringhini et al., 2020;

Kissler et al., 2020a).
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Here, we explored only SEIR models, but extensions to alternatives that incorporate waning

immunity (Ward et al., 2020) and a return to full or partial susceptibility are possible (Saad-

Roy et al., 2020). Clarified understanding of SARS-CoV-2 antibody titers, protection, and durability

will further inform whether it is appropriate to model seropositive individuals as no longer suscepti-

ble, as we did in example calculations here. We note that, across model types, the derivation of

model-focused MDI sample allocation strategies requires only the formulation of a next-generation

matrix or network of subpopulations’ epidemiological impacts on each other, providing a more gen-

eral framework spanning model assumptions and classes.

Overall, the framework here can be adapted to communities of varying size and resources seek-

ing to monitor and respond to SARS-CoV-2 and future pandemics. Further, while the analyses and

discussion focused on addressing urgent needs, this is a generalizable framework that with appropri-

ate modifications can be applicable to other infectious disease epidemics.
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Appendix 1

A1 Bayesian inference of seroprevalence
A1.1 Inference of seroprevalence in a sample using an imperfect test

If a serological test had perfect sensitivity and specificity, the probability of observing nþ seroposi-

tive results from n tests, given a true population seroprevalence � is given by the binomial

distribution:

Prðnþ j �Þ ¼ n

nþ

� �
�nþð1� �Þn�nþ ; �2 ½0;1�: (A1)

However, imperfect specificity and sensitivity require that we modify this formula. For conve-

nience, in the remainder of this Appendix, we will use

u�Prðtest ispositive j seronegativeÞ ¼ 1� specificity

v�Prðtest isnegative j seropositiveÞ ¼ 1� sensitivity

Using this notation, the probability that a single test returns a positive result, given u, v, and the

true seroprevalence �, is

Prðtest ispositive j �;u;vÞ ¼ �ð1� vÞþ ð1� �Þu: (A2)

Substituting this per-sample probability into Equation (A1) yields

Prðnþ j �;u;vÞ ¼ n

nþ

� �
½uþ �ð1� u� vÞ�nþ ½1� u� �ð1� u� vÞ�n�nþ : (A3)

Note that Equation (A1), and therefore Equation (A3), both assume that samples are drawn

independently and can therefore be computed using a binomial likelihood. This assumption may be

modified in scenarios in which factors contributing to non-independence of samples are known and

measured, for example, when individuals are sampled but are known to belong to the same house-

hold (Nisar et al., 2020). Finally, using Bayes’ rule, we can write the posterior distribution over sero-

positivity �, given the data, the test’s parameters (Diggle, 2011), and an uninformative (uniform)

prior on �, yielding

Prð� j nþ;u;vÞ ¼
½uþ �ð1� u� vÞ�nþ ½1� u� �ð1� u� vÞ�n�nþ

Bð1�v;1þnþ ;1þn�nþÞ�Bðu;1þnþ ;1þn�nþÞ
1�u�v

h i ; (A4)

where B is an incomplete beta function without normalization. In practice, to sample from this distri-

bution, one can use an accept–reject algorithm with, for example, a uniform proposal distribution

and consider only the numerator of Equation (A4). Alternatively, one can generate samples from a

truncated beta distribution using accept–reject sampling or an inverse cumulative distribution func-

tion method, and these samples can be transformed to represent draws from Equation (A4).

A1.2 Bayesian estimation of seroprevalence across subpopulations

For a test with sensitivity 1� v and specificity 1� u, and given niþ seropositive results from ni
tests in subpopulation i—set equal to zero for unsampled subpopulations—the posterior distribu-

tion over the vector of subpopulation seropositivities � ¼ f�ig given all results nþ ¼ fniþg is given

by

Prð� j nþ;u;vÞ ¼
Z Z

��;g

Pr �; ��;g j nþ;u;v
� �

d�� dg (A5)

where we have included a hierarchy of priors. Specifically, the prior for each subpopulation sero-

prevalence was �i ~Betað��g; ð1� ��ÞgÞ, which has expectation �� and variance ��ð1� ��Þ=ðgþ 1Þ. The

hyperprior for the overall mean �� was uniform on the interval (0,1), allowing it to be dictated by the

observed data. The hyperprior for the variance parameter was g~Gammaðn; scale¼ g0=nÞ, which has

expected value E½g� ¼ g0 and Var½g� ¼ g2

0
=n.
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A1.3 Sampling from the Bayesian hierarchical model for subpopulation
seroprevalences using MCMC

We sample from the joint posterior distribution inside the integral in Equation (A5) using a MCMC

algorithm, with univariate Metropolis–Hastings updates. We initialize the age-specific seroprevalence

parameters at �i ¼ ðnþ þ 1Þ=ðni þ 2Þ, set �� equal to the sample mean of the f�ig and set g ¼ g0. For

each simulation, the MCMC algorithm was run for a total of 50,100 iterations. The first 100 iterations

were discarded and every 50th sample was saved to obtain 1000 samples from the joint posterior

distribution. Code is open source and freely available (https://github.com/LarremoreLab/

covidserologicalsampling). Trace plots and effective sample sizes of the posterior samples were used

to evaluate convergence and mixing of the chains. Effective sample sizes were greater than 6000 for

all parameters, and trace plots did not raise concerns about the MCMC algorithm settings.

A2 Including protective seropositivity into models
A2.1 Canonical single-population SEIR model with social distancing and
seropositivity

Let S, E, I, and R be the number of susceptible, exposed, infected, and recovered people in a popu-

lation of size N, Sþ E þ I þ R ¼ N. We model dynamics by

_S¼�b�SI

_E¼ b�SI�aE

_I ¼ aE�gI

_R¼ gI

(A6)

where b, a, and g represent the rates of infection, symptom onset, and recovery, respectively, as in

a standard SEIR model. To model social distancing, we include the contact parameter �2 ½0;1�, which
modulates the fraction of social contacts between S and I populations that remain. Thus, �¼ 1 repre-

sents no social distancing while �¼ 0:5 would represent a 50% reduction in contacts. In the simula-

tions of this article, only �¼ 0:5;0:75 were considered as examples of dynamics.

To parameterize this model using seroprevalence, we made the modeling assumption that sero-

positive individuals are immune. Noting that this is only an assumption that at present requires in-

depth research, we therefore placed seropositive individuals into the recovered group. In other

words, for a seropositive fraction �, with 10 individuals in the E and I compartments each, initial con-

ditions would be

ðS0; E0; I0; R0Þ ¼ ðN� �N� 20; 10; 10; �NÞ:

A2.2 Canonical single-population SEIR parameters and simulation details

Parameter values used in this study can be found in Supplementary file 2. In prose, the model used

transmission rate b ¼ 1:75, exposure-to-infected rate a ¼ 0:2, and recovery rate g ¼ 0:5, with no

births or deaths, in a finite population of size N ¼ 10; 000. Social distancing was implemented as a

coefficient � ¼ f0:5; 0:75g, corresponding to 50% and 25% social distancing, multiplying the contact

rate between infected and susceptible populations. Integration was performed for 150 days with a

timestep of 0.1 days. Initial conditions for ðS;E; I;RÞ were ðN � 20� �N; 10; 10; �NÞ, to simulate a frac-

tion � of recovered individuals, assumed to be immune. For each sampled value of �, peak infection

height and timing were extracted from forward-integrated time series.

A2.3 Age-structured (POLYMOD) SEIR model with seropositivity

A model with 16 age bins (0� 4; 5� 9; . . . 75� 79) was parameterized using country-specific age-

contact patterns (Mossong et al., 2008; Prem et al., 2017) and COVID-19 parameter estimates

(Davies et al., 2020). The model includes age-specific clinical fractions and varying durations of
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preclinical, clinical, and subclinical infectiousness, as well as a decreased infectiousness for sub-

clinical cases (Davies et al., 2020).

Davies et al. define a next-generation matrix

Nij ¼ uiCij yjð�Pþ�CÞþ ð1� yjÞf�S

� �
; (A7)

where ui is the susceptibility of age group i; Cij is the number of age-j individuals contacted by an

age-i individual per day; yj is the probability that an infection is clinical for an age-j individual; �P, �C,

and �S are mean durations of preclinical, clinical, and subclinical infectiousness, respectively; and f is

the relative infectiousness of subclinical cases (Davies et al., 2020). Values for all parameters are

reported in Supplementary file 2.

Protective seropositivity can be included in the model by multiplying Nij as defined above by

1� �i, where �i is the seropositivity rate of age group i. With this included term, we can modify

Equation (A7) as

eNðuÞ ¼ ðI�DuÞN ¼ ðI�DuÞDuCDayþb ; (A8)

where Dx represents a diagonal matrix with entries Dii ¼ xi, and the constants are defined a¼
�Pþ�C � f�S and b¼ �S.

The effective reproductive number is then the spectral radius � (i.e., the largest eigenvalue l) of

the next-generation matrix:

Reffð�Þ ¼ � eNð�Þ
� �

: (A9)

As written, Equation (A9) represents a model component shown in Figure 1 (blue annotations)

as it maps parameters � to a point estimate of Reff . As with the canonical SEIR model, uncertainty in

the model parameters themselves can also be incorporated into overall uncertainty in Reff via Monte

Carlo.

A2.4 Age-structured SEIR model parameters and simulation details

Parameter values used in this study can be found in Supplementary file 2 and were generally drawn

from the work of Davies et al. and the sources therein. Published estimated contact matrices were

used for India and the U.S. in the article, with additional countries’ contact matrices shown in the

accompanying open-source code.

A3 MDI sampling
The calculations that follow rely on facts from optimization theory. We briefly review these here

before applying these results in what follows.

Let n ¼ ðn1; :::; nKÞ. Suppose we want to minimize a function of the form

f ðnÞ ¼
X

i

ci

ni
; (A10)

subject to the constraint that
P

i ni ¼ n. Using the method of Lagrange multipliers, it can be shown

that f ðnÞ is minimized when ni /
ffiffiffiffi
ci

p
. We apply this result below with various expressions for ci to

determine the optimal allocation of n tests across subpopulations in order to minimize the uncer-

tainty of quantities of interest.

A3.1 Minimizing posterior uncertainty for seroprevalence

Given age-specific seroprevalence estimates �, the estimate for overall seroprevalence is defined as

�pop ¼
P

i di�i, where di is the proportion of the population in group i. The uncertainty of this estima-

tor depends on the uncertainties of the age-specific seroprevalences, which inherently depend on

the number of tests ni allotted to each subpopulation. Although the posterior uncertainties of the

subpopulation seroprevalences are not available in closed form, we can nevertheless approximate

them using the uncertainties in the corresponding maximum likelihood estimators. Here, we consider

the maximum likelihood estimators based on a separate binomial model for each subpopulation,
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that is, models of the form Equation (A3), where � is replaced by �i. Note that this model assumes

independence among the subpopulation seroprevalences.

The maximum likelihood estimate of �i, given ni;þ positive tests out of ni tests administered, is

�̂i ¼
ni;þ=ni� u

1� u� v
;

but this is only valid when both the numerator and denominator are positive, corresponding to

a value of �̂i in the interval (0, 1). If the above estimator is computed and found to be negative,

which happens when the fraction of tests that are positive is below the false positive rate, then

the maximum likelihood lies at the end point, �̂i ¼ 0. Similarly, if the estimator is found to be

greater than one, �̂i ¼ 1. These estimators are undefined if no tests are allocated to group i,

that is, when ni ¼ 0.

Using the maximum likelihood estimators as proxies for the subpopulation posterior distributions,

we can approximate the posterior variance of �pop as

Var½�pop� »

P
i d

2

i Var½�̂i�
¼P

i d
2

i
½uþ�ið1�u�vÞ�½1�u��ið1�u�vÞ�

nið1�u�vÞ2 ;
(A11)

where �i is the true seroprevalence of group i. This variance equation has the form of

Equation (A10), and thus the optimal allocation of samples is given by ni

ni / di
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½uþ �ið1� u� vÞ�½1� u� �ið1� u� vÞ�

p
; (A12)

where multiplicative constants have been absorbed into the proportion. In the absence of knowl-

edge about the true subpopulation seroprevalences �, we recommend simply allocating samples

with respect to the demographic information: ni / di.

A3.2 Minimizing posterior uncertainty for modeling

When the primary quantity of interest is the output from a model, improved test allocation strategies

can be developed by leveraging the model structure. For example, suppose the goal is accurate esti-

mation of the total number of infected individuals at some future time point t. To avoid confusion

with the identity matrix I or the subpopulation index i, let ht ¼ ðht
1
; ht

2
; :::Þ denote the vector contain-

ing the number of infected individuals within each subpopulation and let the total number of

infected individuals be Ht ¼ P
i h

t
i. Using the next-generation matrix defined in Equation (A7) and

modification for the depletion of susceptibles as in Equation (A8), the next=generation matrix

updates the vector of infected individuals per subpopulation as

htþ1 ¼ ðI�D�ÞNht

»ðI�D�Þklx
(A13)

where x represents the normalized eigenvector of N corresponding to the largest eigenvalue l, and

k is a scalar k¼ xTht. The next-generation matrix N is non-negative and satisfies the conditions of the

Perron–Frobenius theorem, which means that it has a largest eigenvalue l—for a next-generation

matrix, R0 ¼ l—which is greater than or equal to all other eigenvalues, with a corresponding eigen-

vector x of non-negative components. This means that repeated applications of N to any initial vec-

tor that is not orthogonal to x will become increasingly parallel to x at a rate of l=jl2j per iteration,
where l2 is the second largest eigenvalue of N. This is the basis of the so-called Power Method,

which repeatedly applies the matrix to find the largest eigenvalue and its corresponding eigenvec-

tor. Rewriting Equation (A13) for each subpopulation i leads to

htþ1

i ¼ ð1� �iÞ
P

jNijh
t
j

» ð1� �iÞðxThtÞlxi :
(A14)

Note that as seroprevalence increases, ð1� �Þ approaches zero, thereby accounting for the
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depletion of susceptibles in subpopulation i by reducing the number of infected individuals therein

in the next timestep.

There are two helpful interpretations of Equations (A13) and (A14). First, the vector x is the prin-

cipal ‘direction’ of the next-generation matrix, and repeated iterations of the dynamics in a large

population will result in infected fractions that are proportional to x. In the above, we approximate

the effect of N on h as klx, an approximation that is better when l is well separated from the second

eigenvalue l2. Measurements of l=jl2j for models considered in this article ranged from 2 to 4.

A second interpretation of this result appeals to the notion of the next-generation matrix N as a

network in which the nodes are infected subpopulations and the directed links Nij explain the effects

of an infection at node j on future infections at node i. In this network dynamical system, by calculat-

ing x we have computed the eigenvector centralities of the network’s nodes (Mark Newman, 2018),

which are a measure of the importance of each subpopulation in the network.

With these preliminary calculations in mind, we turn to the estimation of Ht. Because

Ht ¼ P
i h

t
i, and because the values hti are all functions of a random variable �, Ht is also a ran-

dom variable. Our goal is to minimize its variance by strategically allocating finite samples in

order to minimize the important posterior variances among the elements of �. In plain language,

some of the subpopulations are more important in shaping future disease dynamics than others,

so MDI will preferentially allocate more samples to those subpopulations in a principled manner,

which we now derive.

As in Equation (A11), we approximate the posterior variance of � by the posterior variance of the

corresponding maximum likelihood estimator �̂. This results in the following approximation of the

variance of the total number infected:

Var½Ht � »Var
P

ið1� �̂iÞa1l1xi

h i

¼
P

i a1l1xið Þ2½uþ�ið1�u�vÞ�½1�u��ið1�u�vÞ�
nið1�u�vÞ2 :

where xi is the ith element of the principal eigenvector x. The first expression is obtained by using

the approximation in Equations (A13) and (A14). The resulting variance expression has the form of

Equation (A10), and thus, ignoring constants, the optimal allocation of samples is given by ni

/ xi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½uþ �ið1� u� vÞ�½1� u� �ið1� u� vÞ�

p
: (A15)

In the absence of knowledge about the true subpopulation seroprevalences �, we recommend

simply allocating samples with respect to the entries of the principal eigenvector: ni / xi.

A4 Impact of sensitivity and specificity on the ‘rule of 3’
Suppose we have a perfect test (u ¼ v ¼ 0) and when we perform n tests, zero are positive. The max-

imum likelihood estimate of the seroprevalence would be 0. Hanley and Lippman-Hand, 1983 pro-

posed a simple upper 95% confidence bound on true seroprevalence equal to 3=n.

The derivation of this rule is motivated by the following question: ’What is the maximum sero-

prevalence under which the probability of observing zero positives in n tests is less than or equal to

5%?’. Briefly, the probability of a negative test is �. and thus the probability of observing n negative

tests is ð1� �Þn. Setting this equal to 0.05 and solving for �, we find � ¼ 1� :051=n » 3=n, where the

approximation is based on the power series representation of the exponential function.

Now, let us consider what happens if sensitivity and specificity are not equal to one and again

zero positive tests are observed. The probability of a negative test is then 1� u� �ð1� u� vÞ. An
upper 95% confidence bound on the true seroprevalence is then

�¼ 1� u� :051=n

1� u� v
»

3=n� u

1� u� v
; (A16)

where the approximation is derived in a similar manner. Notice if u>3=n, this upper bound is less

than zero. This occurs when there is inconsistency between the specified false positive rate u and the

observed data; namely, this occurs when n is large enough that we would have expected at least

one false positive.
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Even if seroprevalence is zero, we expect to observe some number positive tests simply due to

imperfect test specificity. Suppose we observe nþ positive tests from a sample of n. An approximate

upper 95% confidence bound on the true seroprevalence:

nþ
n
� u

� �
þ 1:64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþðn�nþÞ

n3

q

1� u� v
(A17)
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