Complex structures of Rsu1 and PINCH1 reveal a regulatory mechanism of the ILK/PINCH/Parvin complex for F-actin dynamics

  1. Haibin Yang
  2. Leishu Lin
  3. Kan Sun
  4. Ting Zhang
  5. Wan Chen
  6. Lianghui Li
  7. Yuchen Xie
  8. Chuanyue Wu  Is a corresponding author
  9. Zhiyi Wei  Is a corresponding author
  10. Cong Yu  Is a corresponding author
  1. Southern University of Science and Technology, China, China
  2. University of Pittsburgh, United States

Abstract

Communications between actin filaments and integrin-mediated focal adhesion (FA) are crucial for cell adhesion and migration. As a core platform to organize FA proteins, the tripartite ILK/PINCH/Parvin (IPP) complex interacts with actin filaments to regulate the cytoskeleton-FA crosstalk. Rsu1, a Ras suppressor, is enriched in FA through PINCH1 and plays important roles in regulating F-actin structures. Here, we solved crystal structures of the Rsu1/PINCH1 complex, in which the Leucine-Rich-Repeats of Rsu1 form a solenoid structure to tightly associate with the C-terminal region of PINCH1. Further structural analysis uncovered that the interaction between Rsu1 and PINCH1 blocks the IPP-mediated F-actin bundling by disrupting the binding of PINCH1 to actin. Consistently, overexpressing Rsu1 in HeLa cells impairs stress fiber formation and cell spreading. Together, our findings demonstrated that Rsu1 is critical for tuning the communication between F-actin and FA by interacting with the IPP complex and negatively modulating the F-actin bundling.

Data availability

Diffraction data have been deposited in PDB under the accession code 7D2S, 7D2T and 7D2U.

The following data sets were generated

Article and author information

Author details

  1. Haibin Yang

    Department of Biology, Southern University of Science and Technology, China, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6902-6941
  2. Leishu Lin

    Department of Biology, Southern University of Science and Technology, China, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Kan Sun

    Department of Biology, Southern University of Science and Technology, China, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Ting Zhang

    Department of Biology, Southern University of Science and Technology, China, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Wan Chen

    Department of Biology, Southern University of Science and Technology, China, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Lianghui Li

    Department of Biology, Southern University of Science and Technology, China, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yuchen Xie

    Department of Biology, Southern University of Science and Technology, China, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Chuanyue Wu

    Department of Pathology, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    carywu@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.
  9. Zhiyi Wei

    Department of Biology, Southern University of Science and Technology, China, Shenzhen, China
    For correspondence
    weizy@sustech.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  10. Cong Yu

    Department of Biology, Southern University of Science and Technology, China, Shenzhen, China
    For correspondence
    yuc@sustech.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2912-6347

Funding

National Natural Science Foundation of China (31870757)

  • Cong Yu

National Natural Science Foundation of China (31970741)

  • Zhiyi Wei

National Natural Science Foundation of China (31770791)

  • Zhiyi Wei

Science and Technology Planning Project of Guangdong Province (2017B030301018)

  • Cong Yu

Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions (2019SHIBS0002)

  • Zhiyi Wei

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,477
    views
  • 231
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Haibin Yang
  2. Leishu Lin
  3. Kan Sun
  4. Ting Zhang
  5. Wan Chen
  6. Lianghui Li
  7. Yuchen Xie
  8. Chuanyue Wu
  9. Zhiyi Wei
  10. Cong Yu
(2021)
Complex structures of Rsu1 and PINCH1 reveal a regulatory mechanism of the ILK/PINCH/Parvin complex for F-actin dynamics
eLife 10:e64395.
https://doi.org/10.7554/eLife.64395

Share this article

https://doi.org/10.7554/eLife.64395

Further reading

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Kira Breunig, Xuifen Lei ... Luiz O Penalva
    Research Article

    RNA binding proteins (RBPs) containing intrinsically disordered regions (IDRs) are present in diverse molecular complexes where they function as dynamic regulators. Their characteristics promote liquid-liquid phase separation (LLPS) and the formation of membraneless organelles such as stress granules and nucleoli. IDR-RBPs are particularly relevant in the nervous system and their dysfunction is associated with neurodegenerative diseases and brain tumor development. Serpine1 mRNA-binding protein 1 (SERBP1) is a unique member of this group, being mostly disordered and lacking canonical RNA-binding domains. We defined SERBP1’s interactome, uncovered novel roles in splicing, cell division and ribosomal biogenesis, and showed its participation in pathological stress granules and Tau aggregates in Alzheimer’s brains. SERBP1 preferentially interacts with other G-quadruplex (G4) binders, implicated in different stages of gene expression, suggesting that G4 binding is a critical component of SERBP1 function in different settings. Similarly, we identified important associations between SERBP1 and PARP1/polyADP-ribosylation (PARylation). SERBP1 interacts with PARP1 and its associated factors and influences PARylation. Moreover, protein complexes in which SERBP1 participates contain mostly PARylated proteins and PAR binders. Based on these results, we propose a feedback regulatory model in which SERBP1 influences PARP1 function and PARylation, while PARylation modulates SERBP1 functions and participation in regulatory complexes.

    1. Biochemistry and Chemical Biology
    Parnian Arafi, Sujan Devkota ... Michael S Wolfe
    Research Article

    Missense mutations in the amyloid precursor protein (APP) and presenilin-1 (PSEN1) cause early-onset familial Alzheimer’s disease (FAD) and alter proteolytic production of secreted 38-to-43-residue amyloid β-peptides (Aβ) by the PSEN1-containing γ-secretase complex, ostensibly supporting the amyloid hypothesis of pathogenesis. However, proteolysis of APP substrate by γ-secretase is processive, involving initial endoproteolysis to produce long Aβ peptides of 48 or 49 residues followed by carboxypeptidase trimming in mostly tripeptide increments. We recently reported evidence that FAD mutations in APP and PSEN1 cause deficiencies in early steps in processive proteolysis of APP substrate C99 and that this results from stalled γ-secretase enzyme-substrate and/or enzyme-intermediate complexes. These stalled complexes triggered synaptic degeneration in a Caenorhabditis elegans model of FAD independently of Aβ production. Here, we conducted full quantitative analysis of all proteolytic events on APP substrate by γ-secretase with six additional PSEN1 FAD mutations and found that all six are deficient in multiple processing steps. However, only one of these (F386S) was deficient in certain trimming steps but not in endoproteolysis. Fluorescence lifetime imaging microscopy in intact cells revealed that all six PSEN1 FAD mutations lead to stalled γ-secretase enzyme-substrate/intermediate complexes. The F386S mutation, however, does so only in Aβ-rich regions of the cells, not in C99-rich regions, consistent with the deficiencies of this mutant enzyme only in trimming of Aβ intermediates. These findings provide further evidence that FAD mutations lead to stalled and stabilized γ-secretase enzyme-substrate and/or enzyme-intermediate complexes and are consistent with the stalled process rather than the products of γ-secretase proteolysis as the pathogenic trigger.