Complex structures of Rsu1 and PINCH1 reveal a regulatory mechanism of the ILK/PINCH/Parvin complex for F-actin dynamics

  1. Haibin Yang
  2. Leishu Lin
  3. Kan Sun
  4. Ting Zhang
  5. Wan Chen
  6. Lianghui Li
  7. Yuchen Xie
  8. Chuanyue Wu  Is a corresponding author
  9. Zhiyi Wei  Is a corresponding author
  10. Cong Yu  Is a corresponding author
  1. Southern University of Science and Technology, China, China
  2. University of Pittsburgh, United States

Abstract

Communications between actin filaments and integrin-mediated focal adhesion (FA) are crucial for cell adhesion and migration. As a core platform to organize FA proteins, the tripartite ILK/PINCH/Parvin (IPP) complex interacts with actin filaments to regulate the cytoskeleton-FA crosstalk. Rsu1, a Ras suppressor, is enriched in FA through PINCH1 and plays important roles in regulating F-actin structures. Here, we solved crystal structures of the Rsu1/PINCH1 complex, in which the Leucine-Rich-Repeats of Rsu1 form a solenoid structure to tightly associate with the C-terminal region of PINCH1. Further structural analysis uncovered that the interaction between Rsu1 and PINCH1 blocks the IPP-mediated F-actin bundling by disrupting the binding of PINCH1 to actin. Consistently, overexpressing Rsu1 in HeLa cells impairs stress fiber formation and cell spreading. Together, our findings demonstrated that Rsu1 is critical for tuning the communication between F-actin and FA by interacting with the IPP complex and negatively modulating the F-actin bundling.

Data availability

Diffraction data have been deposited in PDB under the accession code 7D2S, 7D2T and 7D2U.

The following data sets were generated

Article and author information

Author details

  1. Haibin Yang

    Department of Biology, Southern University of Science and Technology, China, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6902-6941
  2. Leishu Lin

    Department of Biology, Southern University of Science and Technology, China, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Kan Sun

    Department of Biology, Southern University of Science and Technology, China, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Ting Zhang

    Department of Biology, Southern University of Science and Technology, China, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Wan Chen

    Department of Biology, Southern University of Science and Technology, China, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Lianghui Li

    Department of Biology, Southern University of Science and Technology, China, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yuchen Xie

    Department of Biology, Southern University of Science and Technology, China, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Chuanyue Wu

    Department of Pathology, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    carywu@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.
  9. Zhiyi Wei

    Department of Biology, Southern University of Science and Technology, China, Shenzhen, China
    For correspondence
    weizy@sustech.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  10. Cong Yu

    Department of Biology, Southern University of Science and Technology, China, Shenzhen, China
    For correspondence
    yuc@sustech.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2912-6347

Funding

National Natural Science Foundation of China (31870757)

  • Cong Yu

National Natural Science Foundation of China (31970741)

  • Zhiyi Wei

National Natural Science Foundation of China (31770791)

  • Zhiyi Wei

Science and Technology Planning Project of Guangdong Province (2017B030301018)

  • Cong Yu

Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions (2019SHIBS0002)

  • Zhiyi Wei

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Reinhard Fässler, Max Planck Institute of Biochemistry, Germany

Publication history

  1. Received: October 27, 2020
  2. Accepted: February 12, 2021
  3. Accepted Manuscript published: February 15, 2021 (version 1)
  4. Version of Record published: February 26, 2021 (version 2)
  5. Version of Record updated: March 8, 2021 (version 3)

Copyright

© 2021, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,024
    Page views
  • 172
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Haibin Yang
  2. Leishu Lin
  3. Kan Sun
  4. Ting Zhang
  5. Wan Chen
  6. Lianghui Li
  7. Yuchen Xie
  8. Chuanyue Wu
  9. Zhiyi Wei
  10. Cong Yu
(2021)
Complex structures of Rsu1 and PINCH1 reveal a regulatory mechanism of the ILK/PINCH/Parvin complex for F-actin dynamics
eLife 10:e64395.
https://doi.org/10.7554/eLife.64395

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Sean M Braet, Theresa SC Buckley ... Ganesh Srinivasan Anand
    Research Article

    SARS-CoV-2 emergent variants are characterized by increased viral fitness and each shows multiple mutations predominantly localized to the spike (S) protein. Here, amide hydrogen/deuterium exchange mass spectrometry has been applied to track changes in S dynamics from multiple SARS-CoV-2 variants. Our results highlight large differences across variants at two loci with impacts on S dynamics and stability. A significant enhancement in stabilization first occurred with the emergence of D614G S followed by smaller, progressive stabilization in subsequent variants. Stabilization preceded altered dynamics in the N-terminal domain, wherein Omicron BA.1 S showed the largest magnitude increases relative to other preceding variants. Changes in stabilization and dynamics resulting from S mutations detail the evolutionary trajectory of S in emerging variants. These carry major implications for SARS-CoV-2 viral fitness and offer new insights into variant-specific therapeutic development.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Giuseppina Mastrototaro, Pierluigi Carullo ... Marie-Louise Bang
    Research Article

    Palladin (PALLD) belongs to the PALLD/myopalladin (MYPN)/myotilin family of actin-associated immunoglobulin-containing proteins in the sarcomeric Z-line. PALLD is ubiquitously expressed in several isoforms and its longest 200 kDa isoform, predominantly expressed in striated muscle, shows high structural homology to MYPN. MYPN gene mutations are associated with human cardiomyopathies, whereas the role of PALLD in the heart has remained unknown, partly due to embryonic lethality of PALLD knockout mice. In a yeast two-hybrid screening, CARP/Ankrd1 and FHOD1 were identified as novel interaction partners of PALLD's N-terminal region. To study the role of PALLD in the heart, we generated conditional (cPKO) and inducible (cPKOi) cardiomyocyte-specific PALLD knockout mice. While cPKO mice exhibited no pathological phenotype, ablation of PALLD in adult cPKOi mice caused progressive cardiac dilation and systolic dysfunction, associated with reduced cardiomyocyte contractility, intercalated disc abnormalities, and fibrosis, demonstrating that PALLD is essential for normal cardiac function. Double cPKO and MYPN knockout (MKO) mice exhibited a similar phenotype as MKO mice, suggesting that MYPN does not compensate for the loss of PALLD in cPKO mice. Altered transcript levels of MYPN and PALLD isoforms were found in myocardial tissue from human dilated and ischemic cardiomyopathy patients, whereas their protein expression levels were unaltered.