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Abstract Methods for measuring gut microbiota biochemical activities in vivo are needed to

characterize its functional states in health and disease. To illustrate one approach, an arabinan-

containing polysaccharide was isolated from pea fiber, its structure defined, and forward genetic

and proteomic analyses used to compare its effects, versus unfractionated pea fiber and sugar

beet arabinan, on a human gut bacterial strain consortium in gnotobiotic mice. We produced

‘Microbiota Functional Activity Biosensors’ (MFABs) consisting of glycans covalently linked to the

surface of fluorescent paramagnetic microscopic glass beads. Three MFABs, each containing a

unique glycan/fluorophore combination, were simultaneously orally gavaged into gnotobiotic mice,

recovered from their intestines, and analyzed to directly quantify bacterial metabolism of

structurally distinct arabinans in different human diet contexts. Colocalizing pea-fiber arabinan and

another polysaccharide (glucomannan) on the bead surface enhanced in vivo degradation of

glucomannan. MFABs represent a potentially versatile platform for developing new prebiotics and

more nutritious foods.

Introduction
Increasing effort is being directed to determining how components of diets consumed by various

human populations impact the composition and expressed functional features of their gut microbial

communities (e.g., Johnson et al., 2019; Ghosh et al., 2020). A hoped-for benefit is to gain new

insights about how food ingredients and their biotransformation by the microbiota are linked to vari-

ous aspects of human physiology, and new ways to both define and improve nutritional status. How-

ever, there are many formidable challenges. The gut microbiota is complex and dynamic and

exhibits considerable intra- and interpersonal variation in its configurations (Lloyd-Price et al.,

2017). The chemical compositions of food staples are being cataloged at ever-deepening levels of

detail using higher throughput analytical methods, such as mass spectrometry. Even as this knowl-

edge is being acquired, how food components are recognized by members of the microbiota, and

the pathways through which these chemical entities are metabolized by community members to

influence their functions and those of the host remain challenging to define. Furthermore, much

needs to be learned about the effects of current methods of food processing on the representation

of bioactive food components (Carmody et al., 2015; Wolf et al., 2019), and about the mechanisms

that determine whether and how microbes compete and/or cooperate for them.

Plant fibers epitomize these challenges. Plant fibers are complex mixtures of biomolecules whose

composition varies depending upon their source, method of initial recovery, and the food processing
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techniques used to incorporate them into food products that have satisfactory organoleptic proper-

ties (texture, taste, smell) (Shahidi and Ho, 1998; Caffall and Mohnen, 2009). Plant fibers are com-

posed of but not limited to polysaccharides, proteins, fatty acids, polyphenols, and other plant-

derived small molecules (Nicholson et al., 2012; Scalbert et al., 2014). Isolating and/or purifying

component polysaccharides from crude plant fiber mixtures for studies of the mechanisms by which

they influence members of the microbiota can be very challenging; even if separation is achieved,

painstaking analysis is required to define their structures (Pettolino et al., 2012). Nonetheless,

knowledge of the genetic underpinnings of how various members of the gut microbiota recognize

and metabolize glycans has increased substantially in recent years through a combination of in vitro

and in vivo approaches (Brown and Koropatkin, 2020; Kaoutari et al., 2013; Ndeh and Gilbert,

2018). Knowing that a given microbiota member has a suitable complement of genes for acquiring

and processing a given glycan structure in vitro does not necessarily predict whether that organism

will be a consumer in vivo (Flint et al., 2015). For example, an individual’s microbiota may harbor a

number of organisms with the capacity to compete or cooperate with one another for utilization of a

given type of glycan. Additionally, the physical and chemical structure of a plant fiber (e.g., its size,

surface properties, nutrient composition) in a given region of the gut could influence which set of

microbes attach to its surface, how its associated microbes prioritize consumption of its component

glycans, and how/whether fiber particle-associated microbes can share products of glycan metabo-

lism with one another.

The current study illustrates an approach for identifying bioactive molecules from plant fibers and

defining how they affect and how they are processed by members of the human gut microbiota. Pea

fiber was selected based on results obtained from a screen we conducted of 34 types of food-grade

crude plant fibers obtained from various sources, including the byproducts of food manufacturing

(Patnode et al., 2019). The screen was performed in gnotobiotic mice colonized with a defined con-

sortium of cultured sequenced human gut bacterial strains, including several saccharolytic Bacter-

oides species. Mice were fed a low-fiber diet formulated to represent the upper tertile of saturated

fat consumption and lower tertile of fruit and vegetable consumption by individuals living in the

USA, as reported in the NHANES database (Ridaura et al., 2013). Supplementation of this ‘HiSF-

LoFV’ diet with fiber generated from the seed coat of the pea, Pisum sativum, produced a significant

increase in the abundance of Bacteroides thetaiotaomicron (Patnode et al., 2019). We have now

isolated a bioactive arabinan-enriched fraction from pea fiber, defined its structure, and

eLife digest Tens of trillions of microbes living in the gut help humans and other animals digest

their food. In the process, the microbes provide necessary nutrients for themselves and the animal.

Learning more about the interaction of food components and gut bacteria could help scientists to

better understand how different diets affect human health. Currently, studying these complex

interactions is challenging, but new technologies that measure microbial nutrient processing in the

gut could help.

Now, Wesener et al. show that swallowable microscopic biosensors can measure how gut

bacteria break down nutrients from food. To make the biosensors, Wesener et al. attached complex

carbohydrates extracted from peas and fluorescent tags to microscopic beads. In the experiments,

mice colonized with human gut microbes were fed the beads along with a traditional low fiber,

Western diet. Some of the animals also received fiber supplements.

The microscopic beads were then recovered from the intestines after digestion and the remaining

carbohydrates on the beads were measured. The genetic makeup of the gut microbiome and the

expression of microbial genes was also examined. The experiments revealed which pea

carbohydrates the gut microbes consumed and showed that pairing certain carbohydrates together

on the microbead surface increased their digestion in mice that received fiber supplements.

If future studies prove that the microbead biosensors created by Wesener et al. are safe for

humans to ingest, they could be used to help diagnose how well a person’s gut microbiota can

process different foods. Studies using the microbead sensors may also help scientists develop more

nutritious foods or supplements that promote the growth of microbes important for health.
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characterized how a model human gut community, containing human gut Bacteroides established in

gnotobiotic mice, responds to the isolated arabinan-enriched fraction versus unfractionated pea

fiber. We go on to describe a generalizable method for covalently attaching different glycans to

microscopic paramagnetic glass beads with different covalently bound fluorophores, eliminating the

proteinaceous component of an approach published by our group that relies on streptavidin-coated

beads and bifunctional biotin-conjugated polysaccharides (Patnode et al., 2019). Introduction of

these ‘Microbiota Functional Activity Biosensors’ (MFABs) into gnotobiotic mice fed the HiSF-LoFV

diet with or without glycan supplementation followed by their recovery from the gut allowed us to

directly compare the capacity of these glycans to be degraded by this community. Chemically coloc-

alizing pea fiber arabinan with glucomannan, another type of polysaccharide not found in the diet, in

a monolayer on an MFAB surface enhanced the efficiency of microbial community degradation of

bead-associated glucomannan when animals were given a pea-fiber-supplemented HiSF-LoFV diet.

These findings illustrate how knowledge of the bioactive components of fibers, and the capacity to

directly measure microbiota function with MFABs, could provide new approaches for designing

‘next-generation’ prebiotics and foods that are more accessible to, and have a greater impact on,

the gut microbiota (and by extension, the host).

Results

Isolation of a 2-O-branched arabinan fraction from pea fiber
Raw pea fiber was subjected to serial extraction with aqueous buffers (Pattathil et al., 2012). Eight

soluble fractions were assayed for total nucleic acid, protein, and carbohydrate content plus mono-

saccharide composition (Supplementary file 1). The fraction isolated under the harshest conditions

(fraction 8; 4M KOH) possessed high carbohydrate and low protein content, high monosaccharide

diversity, and a high relative proportion of arabinose. We subsequently developed a scalable abbre-

viated procedure for preparing this fraction from pea fiber (see Materials and methods). The mole

percent representation of arabinose in the end product was 71% (corresponding values for xylose,

galactose, and glucose were 12%, 11% and 6%, respectively) (Figure 1A). Glycosyl-linkage analysis

of the isolated glycan revealed a 2-O-branched arabinan (5-substituted arabinose, 2,5-substituted

arabinose, 2,3,5-substituted arabinose) (Figure 1B) attached to small rhamnogalacturonan-I (RGI)

pectic fragments (2-substituted and 2,4-substituted rhamnose) and small galactan oligomers (4-

substituted galactose) (Supplementary file 1). Xylose was present as a linear xylan polysaccharide

(4-substituted xylose) and glucose in the form of residual starch. We named the isolated polysaccha-

ride fraction ‘pea fiber arabinan’ (PFABN) based on (1) these linkage results, (2) the fact that arabi-

nose comprises the majority of its monosaccharide content (71 mole percent), and (3) our

observation that ~90% of all non-starch carbohydrate is represented by what is likely a single species

of polysaccharide, with the remaining being xylan.

In vivo effects of PFABN on human gut Bacteroides
The biological activity of PFABN was compared to that of unfractionated pea fiber and arabinan iso-

lated from sugar beet. Unlike PFABN, sugar beet arabinan (SBABN) is primarily 3-O-branched as

revealed by glycosyl-linkage analysis (Figure 1B, Supplementary file 1). PFABN also contains two-

fold more triply branched 2,3,5-substituted arabinose monomers, suggesting it is more sterically

encumbered than SBABN. The galactan portion of each arabinan is also unique: while both polymers

contain 4-substituted galactose, 4,6-substituted galactose is enriched more than twofold in PFABN,

while 6- and 3,6-substituted galactose are enriched threefold and fourfold in SBABN, respectively

(Supplementary file 1). In vitro assays performed in a minimal defined medium (McNulty et al.,

2013) with Bacteroides type strains established that B. ovatus ATCC 8483, B. cellulosilyticus WH2,

and B. thetaiotaomicron VPI-5482 grew on isolated PFABN and SBABN, although less rapidly during

the exponential phase of growth and to a lower cell density than in medium containing an equivalent

concentration of D-glucose (results based on measurements of OD600; see Figure 1C,

Supplementary file 1). In contrast, B. vulgatus ATCC 8482 grew as rapidly or faster and to the same

or higher density on PFABN and SBABN, respectively, compared to D-glucose (p<0.05, one-way

analysis of variance [ANOVA] with Tukey’s honest significant difference, FDR corrected). B. vulgatus
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ATCC 8482 also reached exponential growth more quickly than when D-glucose was present in this

medium (Figure 1C).

Adult germ-free C57Bl/6J mice were colonized with a 14-member consortium of sequenced bac-

terial strains containing 58,537 known or predicted protein-coding genes. The consortium included

the four Bacteroides type strains, another strain of B. thetaiotaomicron, three additional Bacteroides

species (B. caccae, B. massiliensis, B. finegoldii) plus six other types of bacteria (Figure 2A). Five of

the Bacteroides (B. thetaiotaomicron strains VPI-5482 and 7330, B. vulgatus ATCC 8482, B. cellulosi-

lyticus WH2, B. ovatus ATCC 8483) were each represented by previously described libraries of tens

of thousands of transposon (Tn) insertion mutants (Hibberd et al., 2017; Wu et al., 2015). These

studies had shown that collectively the overall change in abundance of each mutant library in

response to various diet manipulations was similar to the corresponding parental wild-type strain.
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Figure 1. Isolation of an arabinose-rich fraction from pea fiber. (A) Mole fraction of neutral monosaccharides from PFABN and SBABN. Mean values ±

s.d. from triplicate technical measurements are shown. (B) Proposed structure of arabinan isolated from pea fiber and sugar beet as determined by

glycosyl-linkage analysis. The colored arabinose monosaccharides highlight the different glycosyl branching patterns found in arabinan isolated from

the two sources. (C) Growth curves of four Bacteroides strains cultured in minimal medium containing either glucose or arabinan as the sole carbon

source. Data from samples where no exogenous carbon source was added are subtracted from all curves. Solid lines represent the mean and shaded

area the s.e.m. of quadruplicate cultures (data shown are representative of 3 independent experiments). (See also Supplementary file 1).
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Two days post-gavage (dpg 2) of the defined bacterial consortium, mice were switched from the

unsupplemented HiSF-LoFV diet to a HiSF-LoFV diet supplemented with either unfractionated pea

fiber, isolated PFABN, or isolated SBABN. Animals were fed these diets ad libitum for 10 days and

then euthanized. A control group was maintained on unsupplemented HiSF-LoFV chow (Figure 2A;

n = 5–6 mice/treatment group). The amount of supplementation was calibrated so that mice in all

treatment arms would receive the same daily dose of arabinan (100 mg; see Materials and methods).
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Figure 2. Assessing the biological activity of PFABN in gnotobiotic mice colonized with a defined consortium of human gut bacterial strains. (A)

Experimental design. Germ-free mice were fed the unsupplemented HiSF-LoFV diet for 5 days then colonized with the indicated group of 14 bacterial

strains (the five Bacteroides strains represented in the form of Tn mutant libraries are highlighted in boldface). Two days after gavage of the consortium

different groups of animals were switched to a HiSF-LoFV diet supplemented with raw pea fiber, PFABN or SBABN and fed that diet monotonously for

10 days (average dose of supplement consumed/per day is shown). Control animals were maintained on the unsupplemented HiSF-LoFV diet. (B)

Absolute abundances of supplement-responsive bacterial strains, plus the total bacterial load of all 14 strains in fecal samples obtained at the indicated

time points (each dot represents a single animal; bar height represents the mean; error bars represent s.d.). *p<0.01 for comparisons denoted by

horizontal lines (generalized linear mixed-effects model [Gaussian]; two-way ANOVA with Tukey’s HSD, FDR corrected; the data shown are from

Experiment two in Supplementary file 2 and are representative of two independent biological experiments). (C) Specific activity of each diet

supplement on the summed total absolute abundances of the four diet-responsive Bacteroides. Open circles represent mean values and error bars the

s.e.m. of two independent biological experiments (n = 10–11 mice/treatment arm). *p<0.01 for comparisons defined by the horizontal lines (generalized

linear mixed-effects model [Gaussian]; two-way ANOVA with Tukey’s HSD, FDR corrected). (See also Supplementary files 2–4).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Identifying PULs that function as key fitness determinants in the different diet contexts.

Figure supplement 1. The effects of supplementing the HiSF-LoFV diet with unfractionated pea fiber, PFABN, or SBABN on PUL gene expression.
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The absolute abundances of each strain were defined by shotgun sequencing of DNA isolated from

feces collected on dpg 2, 6, 8, and 11 and from the cecum at the time of euthanasia (two indepen-

dent experiments, labeled Experiment one and Experiment two in Supplementary file 2;

McNulty et al., 2011; Stämmler et al., 2016). Of the 14-member consortium, only B. thetaiotaomi-

cron 7330 failed to colonize mice at levels above a (relative) abundance of 0.1% under any of the

diet conditions tested.

Five community members exhibited statistically significant, albeit distinct, differences in their

absolute abundances in response to specific glycan preparations: (1) B. thetaiotaomicron VPI-5482

responded to all three supplements; (2) B. ovatus ATCC 8483 increased after exposure to both

intact pea fiber and PFABN but not to SBABN; (3) B. vulgatus ATCC 8482 exhibited significant

increases with SBABN; and (4) B. cellulosilyticus WH2 and Ruminococcaceae sp. TSDC 17.2

increased significantly when exposed to intact pea fiber but not to either of the isolated arabinan

preparations (Figure 2B, Supplementary file 2) (p<0.01, generalized linear mixed-effects model

[Gaussian]; two-way ANOVA with Tukey’s HSD, FDR corrected). We calculated the sum total of the

changes in absolute abundances of the four responsive Bacteroides relative to dpg two under each

diet condition and expressed the results as bacterial cells per gram of feces per gram of supplement

provided to each mouse daily. This metric of specific activity, which takes into account the absolute

mass of supplement consumed daily by members of the different groups of mice, revealed that both

of the isolated arabinan preparations had a significantly greater effect compared to intact pea fiber

at the doses tested (Figure 2C) (p<0.05 mixed-effects linear model [Gaussian]; one-way ANOVA

with Tukey’s honest significant difference, FDR corrected).

We took advantage of the fact that the gene content of the community was known and per-

formed mass spectrometry-based metaproteomic analysis on feces, collected on dpg 6, to define

the responses of community members to the different glycan preparations. Bacteroides spp. possess

multiple polysaccharide utilization loci (PULs); a shared feature of PULs is an adjacent pair of susC

and susD homologs responsible for binding extracellular polysaccharide fragments and importing

them into the periplasm. PUL genes also encode various carbohydrate active enzymes (CAZymes)

involved in polysaccharide depolymerization, as well as transcriptional regulators that allow the locus

to be induced in the presence of glycans it can recognize/utilize (Anderson and Salyers, 1989;

Terrapon et al., 2018). Regulated expression of PULs allows bacteria to acquire nutrients within the

highly competitive environment of the gut (Martens et al., 2011; Tuncil et al., 2017).

Supplemental results, Figure 2—figure supplement 1, Figure 2—source data 1, and

Supplementary file 3 summarize the results of our analysis of PUL protein expression from the two

independent experiments (total of 10–11 mice/treatment arm). Based on gene set enrichment analy-

sis (Luo et al., 2009), we identified 14, 12, 11, and 8 PULs that we deemed ‘responsive’ to at least

one of the diet supplements in B. thetaiotaomicron VPI-5482 (BT), B. ovatus ATCC 8483 (Bovatus),

B. cellulosilyticus WH2 (BcellWH2), and B. vulgatus ATCC 8482 (BVU), respectively (adjusted

p-value<0.05, unpaired one-sample Z-test, FDR-corrected).

Additionally, we used multi-taxon insertion site sequencing (INSeq, Wu et al., 2015) of the five

strains represented as Tn mutant libraries to identify genes with significant contributions to bacterial

fitness in each diet context. Fitness was calculated as (1) the log2 ratio of the number of sequencing

reads originating from the site of insertion of the Tn in the organism in fecal communities sampled

on dpg 6 versus dpg 2, relative to (2) the same ratio calculated in mice monotonously fed the unsup-

plemented HiSF-LoFV diet. A negative score indicates that a gene is important for fitness. The score

of each gene was parameterized using linear models generated with limma (Ritchie et al., 2015) to

identify those whose effects on fitness were significantly different compared to when the unsupple-

mented HiSF-LoFV diet was being consumed. The results disclosed that the fitness scores of a total

of 39 genes in B. thetaiotaomicron VPI-5482, 135 genes in B. ovatus ATCC 8483, 346 genes in B. cel-

lulosilyticus WH2, and 82 genes in B. vulgatus ATCC 8482 were significantly decreased during diet

supplementation with either pea fiber, PFABN, or SBABN (Supplementary file 4) (adjusted

p-value<0.05, FDR corrected). Plots of fitness score versus change in protein abundance were gener-

ated for all genes in each of these Bacteroides. Supplemental results and parts A–D of Figure 2—

source data 1 summarize how expression and the fitness contribution of specific PULs vary for indi-

vidual Bacteroides across the dietary contexts tested. Together, these community configurational

and functional responses to diet supplementation provided evidence that PFABN is a key bioactive

component of pea fiber utilized by B. thetaiotaomicron VPI-5482, B. vulgatus ATCC 8482, B.

Wesener et al. eLife 2021;10:e64478. DOI: https://doi.org/10.7554/eLife.64478 6 of 32

Research article Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.64478


cellulosilyticus WH2, and B. ovatus ATCC 8483. However, these results do not directly establish that

it is consumed, nor do they offer a direct comparison of the efficiency of metabolism of PFABN and

SBABN. To produce such evidence, we developed a bead-based method for quantifying polysaccha-

ride degradation within the intestinal tracts of colonized gnotobiotic mice.

Microbiota functional activity biosensors
Covalent linkage of various fluorescent labels and glycans to paramagnetic
MFABs
To quantify PFABN and SBABN degradation as a function of diet, we sought a versatile way to cova-

lently link polysaccharides to recoverable, paramagnetic, microscopic glass beads that could function

as biosensors of their degradation. For covalent polysaccharide immobilization on a bead surface,

we leveraged a cyano-transfer reaction employed in the synthesis of polysaccharide-conjugate vac-

cines (Lees et al., 1996; Shafer et al., 2000).

Figure 3A, B outlines the procedure for generating fluorescently labeled, polysaccharide-coated

beads. First, the surfaces of 10 mm diameter glass beads were sialyated by reaction with an amine-

and/or phosphonate-organosilane (Step one in Figure 3A). This approach provided us with control

over the stoichiometry and properties of surface functional groups (amine and phosphonate) to be

used for further derivatization with a fluorophore and ligand immobilization. We found that coating

with a 1:1 mole ratio of (3-aminopropyl)triethoxysilane (APTS) and 3-(trihydroxysilyl)propyl methyl-

phosphonate (THPMP) to install both amine and phosphonate functional groups on the bead surface

provided a nucleophilic handle and decreased nonspecific ligand binding and bead aggregation

(Bagwe et al., 2006). Surface sialyation and the amount of reactive surface amine functional groups

were monitored by measuring the zeta potential of beads following organosilane derivatization with

or without amine acetylation (Figure 3—figure supplement 1A). Surface amine functional groups

were subsequently quantified using a ninhydin-based colorimetric assay (Soto-Cantu et al., 2012).

The results revealed that amine plus phosphonate functionalized beads contain 2.18 � 1010 ± 3.49 �

109 (mean ± s.d.) reactive amines per bead versus 1.20 � 109 ± 1.92 � 108 reactive amines after sur-

face acetylation (Figure 3—figure supplement 1B). By comparison, streptavidin-coated beads used

in our previously published procedure (Patnode et al., 2019) possess 23-fold fewer potential bind-

ing sites (9.21 � 108 ± 1.13 � 108 molecules of biotin per bead). Second, we attached unique fluoro-

genic tags directly to the bead surface so that multiple bead types with different immobilized

polysaccharides could be analyzed simultaneously within a given gnotobiotic animal. To do so, sur-

face-modified beads were reacted with an N-hydroxysuccinimide (NHS) ester-activated fluorophore

(Step two in Figure 3A). Fluorophore coupling was specific to beads with surface amines (Figure 3—

figure supplement 1C). Bead fluorescence could be modulated over four orders of magnitude sim-

ply by titration of the reactant fluorophore (Figure 3—figure supplement 1D). Low levels of fluoro-

phore immobilization on beads not coated with APTS or on acetylated beads likely reflect

incomplete acetylation with acetic anhydride or nonspecific fluorophore adsorption. Third, polysac-

charide was activated by reaction with 1-cyano-4-dimethylaminopyridinium tetrafluoroborate (CDAP)

to generate an electrophilic cyanate-ester intermediate (Figure 3B); activated polysaccharide reacts

with amines on the surface of the amine plus phosphonate bead. Lastly, a hydride reduction was per-

formed to reduce any Schiff base formed with the polysaccharide reducing end and likely the resul-

tant isourea bond (see Figure 3—figure supplement 2 for a schematic of the surface of an

arabinan-coated MFAB).

Using SBABN as a test case, we found that adding 0.2 mg of CDAP per mg polysaccharide

resulted in consistent and specific SBABN immobilization without ligand overactivation (manifested

by aggregation and carbamoylation of hydroxyl groups) (Figure 3C). Immobilization was dependent

upon the presence of reactive surface amines; amine acetylation with acetic anhydride reduced sur-

face amine functional groups, fluorophore conjugation, and polysaccharide immobilization

(Figure 3C, Figure 3—figure supplement 1B–D). Therefore, acetylated beads were used as controls

in the studies described below. Throughout our experiments, levels of conjugation ranged from 2 to

20 ng of arabinose per 1000 beads when immobilizing SBABN. Conjugation proceeded as expected

based on the pKa of the bead amine: pH 7.5–7.8 yielded maximal immobilization (high pH results in

cyanate-ester hydrolysis, while low pH favors amine protonation) (Figure 3—figure supplement 3A).

Conjugation efficiency was not significantly different when different buffer solutes were tested
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Figure 3. Generating microscopic paramagnetic glass beads with covalently attached fluorophores and glycans.

(A,B) Steps used for producing MFABs. The transferred cyano-group from 1-cyano-4-dimethylaminopyridinium

tetrafluoroborate (CDAP), and its modification during ligand immobilization are highlighted in red (panel b).

Arabinose oligosaccharide is shown as a representative ligand for immobilization. Amine and phosphonate

functional groups are denoted by ‘+’ and ‘–’ symbols, respectively. See Figure 3—figure supplement 2 for a

more complete depiction of the chemical linkages represented on the surface of an MFAB with bound arabinan.

(C) Arabinose released during acid hydrolysis from amine plus phosphonate beads with and without surface amine

groups acetylated. Beads were coated with SBABN that had been activated using increasing mass ratios of CDAP.

Each point represents a single technical measurement (n = 4). Bar height represents the mean value.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Characterizing the modified surface chemistry of paramagnetic glass beads.

Figure supplement 2. Schematic of a fluorescent arabinan-coated MFAB.

Figure supplement 3. Conjugation reaction conditions influence immobilization of polysaccharides on the

surfaces of the paramagnetic glass beads.
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(Figure 3—figure supplement 3B). A low and inconsistent level of polysaccharide could be conju-

gated onto a bead surface in the absence of CDAP (Figure 3C), likely through reductive amination

of the polysaccharide reducing end. Lastly, using maltodextrin as a model, we tested whether oligo-

saccharides could also be immobilized using CDAP activation and capture onto amine plus phospho-

nate beads. Maltodextrin (dextrose equivalent 13–17; estimated Mn ~1300 Da) was activated with

CDAP (0.2 mg/mg oligosaccharide) prior to attachment to the bead surface. Conjugation resulted in

4.43 ± 1.03 ng of immobilized glucose per 1000 beads or 2.05 � 109 molecules of maltodextrin per

bead (Figure 3—figure supplement 3C); this represents 9.4% of all available surface reactive

amines.

Quantifying polysaccharide degradation with MFABs in vitro
To determine whether CDAP-immobilized polysaccharides are good proxies for hydrated plant cell

wall fragments and polysaccharide components (i.e. are anchored polysaccharides accessible to bac-

terial glycosidases that generate oligosaccharide inducers of PULs), we first performed several in

vitro experiments. We initially incubated PFABN-coated beads with glycosyl hydrolyses and the frac-

tion of arabinan remaining on the bead surface was measured by gas chromatography–mass

spectrometry (GC–MS). Incubation with a combination of endo-arabinanase and a-L-arabinofuranosi-

dase enzymes removed 88 ± 1.2% (mean ± s.d.) of the immobilized PFABN after 30 min while incu-

bation with each enzyme individually removed greater than 80% of the glycan after 30 min and more

than 90% after 20 hr. In contrast, an endo-inulinase with specificity toward b(1-2)-linked fructose

resides failed to degrade PFABN (Figure 4—figure supplement 1). These results indicate that a

substantial portion of the bead-immobilized glycan was susceptible to enzyme-catalyzed

degradation.

As a prelude to in vivo studies that would test the ability of MFABs to measure the saccharolytic

activity of the defined community in defined dietary contexts, we next incubated PFABN-coated

MFABs with B. thetaiotaomicron VPI-5482 or B. cellulosilyticus WH2 grown to mid-log phase in

defined minimal medium (McNulty et al., 2013). Saccharolytic activity was measured by using GC–

MS to quantify the mass of arabinose retained on beads as a function of incubation time and

whether or not soluble PFABN was included in the culture medium (reference control: beads recov-

ered from incubations lacking bacteria). Under the conditions tested, added PFABN was required

for degradation of immobilized PFABN from beads; the amount of PFABN removed from the bead

surface increased with increasing incubation time, with maximum values of 64 ± 9% (mean ± s.d.)

and 48 ± 3% achieved with B. thetaiotaomicron VPI-5482 and B. cellulosilyticus WH2, respectively

(Figure 4—figure supplement 2). The effect of supplemented PFABN in this in vitro MFAB-based

degradation assay is consistent with our in vivo metaproteomic analysis, demonstrating its ability to

induce PULs involved in its utilization (Figure 2—figure supplement 1). Together, these results pro-

vided further evidence of the accessibility of bead-bound polysaccharide to degradation by secreted

or bacterial cell surface-associated glycoside hydrolases.

Quantifying polysaccharide degradation with MFABs in gnotobiotic
mice
PFABN and SBABN were immobilized onto amine plus phosphonate-derivatized beads. Beads acet-

ylated with acetic anhydride after fluorophore labeling were used as controls (Figure 4A). Each of

these three bead types contained a unique fluorophore. The three bead types were pooled, and the

mixture was introduced by oral gavage into four groups of mice 10 days after they received the 14-

member consortium: one group of recipient animals had been fed the unsupplemented HiSF-LoFV

diet, while the other groups had received HiSF-LoFV containing unfractionated pea fiber, PFABN, or

SBABN (n = 5 animals/group). Germ-free mice fed HiSF-LoFV supplemented with PFABN served as

controls (n = 5; Experiment 1). The bead mixtures were harvested using a magnet from the cecums

of animals four hours after their introduction by oral gavage; the individual bead types were then

purified by fluorescence-activated cell sorting (FACS). Polysaccharide degradation was quantified by

GC–MS of neutral monosaccharides released after acid hydrolysis of the purified beads. Results

were referenced to the masses of monosaccharides released from aliquots of each input bead type

(i.e., the same bead preparation but never introduced into mice).
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The quantities of neutral monosaccharides liberated by acid hydrolysis from the surfaces of beads

recovered from the cecums of germ-free mice were not significantly different from the amounts lib-

erated from the input bead preparations with one exception – a slight, albeit statistically significant,

increase in galactose from beads coated with PFABN and SBABN (Figure 4—figure supplement 3;

p<0.05, Mann–Whitney U test). This result established the stability and utility of cyanate-ester–cou-

pled MFABs for studying polysaccharide degradation within the mouse gut, and the recalcitrance of

both PFABN and SBABN to host digestive enzymes.

In contrast to germ-free controls (see Figure 4—figure supplement 3), the mass of arabinose

was significantly decreased when PFABN- or SBABN-coated beads were recovered from colonized

mice fed the unsupplemented HiSF-LoFV diet (Figure 4B,C; p<0.05, Mann–Whitney U test). Com-

pared to the base HiSF-LoFV diet, supplementation with unfractionated pea fiber induced a commu-

nity configuration associated with significantly increased capacity to degrade both PFABN and

SBABN as judged by the amount of arabinose remaining on recovered beads (Figure 4B,C; p<0.05,

Mann–Whitney U test). Loss of arabinose from either PFABN- or SBABN-beads was not significantly

different between the two bead types when the HiSF-LoFV diet was supplemented with either of

these isolated arabinan preparations, demonstrating functional equivalence in the capacity of each

community to utilize either arabinan (see Figure 4B,C and Supplementary file 5 which provides
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Figure 4. Quantifying microbial degradation of PFABN- and SBABN-coated beads in colonized gnotobiotic mice

fed unsupplemented or supplemented HiSF-LoFV diets. (A) Monosaccharide composition of beads containing

covalently bound PFABN or SBABN. Control beads were subjected to surface amine acetylation. The amount of

monosaccharide released after acid hydrolysis was quantified by GC-MS. Each point represents a single

measurement. Bar height denotes the mean while error bars represent the s.d. (n = 6 biological replicates). (B,C)

Percentage of arabinose, galactose and xylose remaining on the surface of beads recovered from the cecums of

mice fed the indicated diets (n = 5 mice/treatment group). Each point represents a single animal. Bar height

denotes the mean while error bars represent the s.d. p<0.05 (Mann–Whitney U test compared to the group

furthest to the left). (See also Supplementary file 5).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Enzyme degradation of PFABN immobilized on an MFAB surface using CDAP chemistry.

Figure supplement 2. Degradation of MFAB-bound PFABN by B. thetaiotaomicron VPI-5482 and B.

cellulosilyticus WH2 in vitro.

Figure supplement 3. Assaying whether bead-linked polysaccharides are degraded in germ-free mice.
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evidence that results from cecal samples [Experiment 1] and fecal samples [Experiment 2] were

comparable).

Beads coated in PFABN revealed that xylan (xylose monosaccharide remaining on PFABN beads)

was more efficiently processed by the microbiota in all three supplemented diet contexts

(Figure 4B; p<0.05, Mann–Whitney U test). Our group previously explored the importance of arabi-

noxylan utilization from the base HiSF-LoFV diet (Patnode et al., 2019). In contrast to xylan, the gal-

actan content from both arabinan preparations was not utilized under any of the diet conditions

tested (Figure 4B,C and Supplementary file 5), suggesting that b(1-4) galactan degradation in vivo

has lower priority compared to the available arabinan (Tuncil et al., 2017).

Colocalization of distinct glycans on the same bead
As noted in Introduction, plant fibers have complex physical–chemical properties manifest in part by

their mixtures of different glycan structures and by their varying shapes and surface properties. Plant

fiber particles are impacted by methods, such as extrusion, that are commonly used to incorporate

plant fibers into food products so that these products have acceptable organoleptic properties

(Caffall and Mohnen, 2009; Gualberto et al., 1997), and by the mechanical forces and digestive

enzymes (both host and microbial) that are encountered as food passes through the gastrointestinal

tract. In foods, plant fibers exist mostly as micro-particles. Although it would be desirable to be able

compare the dynamics of degradation of glycans on MFABs with glycans in food particles with simi-

lar dimensions/characteristics, robust methods for reproducibly recovering food particles from lumi-

nal contents are not currently available. Therefore, we reasoned that the MFAB platform could

provide a way of testing whether deliberately colocalizing distinct polysaccharides, akin to natural

plant fiber particles, would result in ‘synergistic’ polysaccharide degradation by microbial community

members.

To explore this notion, we turned to glucomannan, a hemicellulosic linear b(1-4) polysaccharide

composed of D-mannose and D-glucose. We found that among the pea fiber-responsive Bacteroides

identified above, only B. ovatus ATCC 8483 and B. cellulosilyticus WH2 were able to grow in minimal

medium containing glucomannan as the sole carbon source (Figure 5A). Both organisms have PULs

known to be induced by glucomannan in vitro (PUL28 in B. cellulosilyticus WH2; PULs 52 and 80 in

B. ovatus ATCC 8483); each of these PULs encodes at least one GH26 enzyme with b-mannanase

activity (Bågenholm et al., 2017; Martens et al., 2011). Multiple genes in the glucomannan-respon-

sive PUL28 of B. cellulosilyticus WH2 were consistently expressed, but not at significantly different

levels, when mice were fed the unsupplemented HiSF-LoFV and pea fiber supplemented HiSF-LoFV

diets (Supplementary file 3). Only two B. ovatus ATCC 8483 genes from its glucomannan-respon-

sive Bovatus_PUL52 were expressed, albeit at the very limit of detection, under both diet conditions,

and none from Bovatus_PUL80 (Supplementary file 3). Neither B. thetaiotaomicron VPI-5482 nor B.

vulgatus ATCC 8482, which fail to grow on glucomannan as the sole carbon source, contain GH26,

GH2, or GH130 genes with known or predicted b-mannanase or b-mannosidase activities that were

induced during pea fiber supplementation (Supplementary file 3) (among the two organisms, only

the protein products of B. thetaiotaomicron BT_0458 [GH2] and BT_1033 [GH130] were detected

under either diet conditions, and only at the very threshold of detection).

Based on these considerations, we hypothesized that supplementing the diet with pea fiber

would induce expression of PULs in community members, so that they could readily utilize bead-

associated PFABN; moreover, those community members that could utilize PFABN and express b-

mannanases would be able to more efficiently access/metabolize glucomannan positioned on the

same bead. To test this hypothesis, we synthesized beads coated with PFABN alone, glucomannan

alone, or both glycans together, as well as control acetylated beads that lack a bound polysaccha-

ride (Figure 5B). These four bead types, each labeled with a distinct fluorophore, were simulta-

neously introduced into two groups of mice colonized with the 14-member community – one group

was fed the unsupplemented HiSF-LoFV diet, while the other group received a pea fiber-supple-

mented diet (n = 7–8 mice/group) (Supplementary file 2). Beads were recovered from their cecums

4 hr after gavage; the different bead-types were then isolated using FACS (Figure 5C) and subjected

to acid hydrolysis and neutral monosaccharide analysis by GC–MS. We used the amount of mannose

remaining on the bead as a proxy of glucomannan degradation because it represents the bulk of

monosaccharide present in glucomannan and is absent in PFABN. The results revealed that gluco-

mannan on beads coated with glucomannan alone was degraded to a similar extent in mice
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receiving the unsupplemented or pea fiber-supplemented HiSF-LoFV diets (Figure 5D and

Supplementary file 5; p=0.87, Mann–Whitney U test). However, when presented with PFABN on

the same bead, significantly more glucomannan was degraded by the microbiota of mice receiving

the pea fiber-supplemented diet as compared to the unsupplemented diet (Figure 5D; p<0.05,

Mann–Whitney U test). The amount of arabinose remaining on beads coated with PFABN and gluco-

mannan, and PFABN alone, was also significantly reduced (degradation increased) with pea fiber

supplementation (Figure 5D; p<0.05, Mann–Whitney U test). These results show that deliberate

physical colocalization can result in quantitatively modest, albeit statistically significant synergistic

degradation of polysaccharides during fiber supplementation (Supplementary file 5; p<0.05, linear

model; diet supplement by bead-type interaction term). This finding, and the approach used to

obtain these results, have implications for food science and prebiotic/synbiotic discovery efforts.
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Figure 5. Colocalization of PFABN and glucomannan on the same bead results in augmented degradation of glucomannan in gnotobiotic mice

colonized with the defined consortium and fed the pea fiber supplemented HiSF-LoFV diet. (A) In vitro growth of supplement-responsive Bacteroides

species in minimal medium containing glucose or glucomannan as the sole carbon source. Data from samples where no exogenous carbon source was

added are subtracted from all curves. The line represents the mean and shaded regions the s.e.m. of quadruplicate measurements. (B) Monosaccharide

compositions of beads with covalently bound PFABN, glucomannan, or both PFABN and glucomannan. Control beads were subjected to surface amine

acetylation. The amount of monosaccharide released after acid hydrolysis was quantified by GC-MS. Each point represents a single measurement. Bar

height represents the mean and error bars the s.d. (n = 6 biological replicates). (C) Beads containing PFABN alone, glucomannan alone, or both

glycans, as well as ‘empty’ acetylated control beads, each containing a unique fluorophore, were simultaneously introduced by oral gavage into

gnotobiotic mice, recovered 4 hr later from their cecums. Each bead-type is subsequently purified by FACS. A representative flow cytometry plot of

beads isolated from the cecum is shown. (D) Monosaccharide remaining on beads coated with PFABN alone, glucomannan alone, or both glycans after

collection and purification from the cecums of mice fed the unsupplemented or pea fiber-supplemented HiSF-LoFV diet. Colors are identical to those

used in panel b. The amount of remaining monosaccharide is expressed relative to the absolute mass of monosaccharide immobilized on the surface of

each type of input bead. Each point represents a single animal. Bar height represents the mean and error bars the s.d. (n = 5–8 biological replicates).

*p<0.05 (Mann–Whitney U test). (See also Supplementary file 5).
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Discussion
We have used gnotobiotic mice colonized with a defined model human gut microbial community

containing 58,537 known or predicted protein-coding genes together with metaproteomic and for-

ward genetic analyses to demonstrate the sensitivity of a microbiota to structural differences in gly-

cans (arabinans) isolated from two distinct plant sources. Robust isolation procedures and analytical

characterization are required to isolate grams of polysaccharide and test their biological effects in

gnotobiotic mice. The approach we employed allowed us to isolate 50 g of material to ~85% purity

with the remaining material comprised of starch and xylan. Starch can be degraded by host

enzymes. The xylan present in our PFABN preparation could, in principle, influence the microbiota

response. However, there is arabinoxylan already present in the base HiSF-LoFV diet, and we found

that expression of known xylan-responsive PULs in B. cellulosilyticus WH2 and B. ovatus ATCC 8483

was not induced by PFABN supplementation (Figure 2—figure supplement 1; Patnode et al.,

2019; McNulty et al., 2013; Martens et al., 2011). The specific activity of each isolated arabinan (in

this case the increase in absolute abundance of the responsive Bacteroides per unit mass of diet

ingredient consumed per day) was superior to unfractionated pea fiber (Figure 2C), emphasizing, as

others have, the importance of characterizing the effects of plant fibers on both the microbiota and

host in order to inform future studies at the intersection of food science, nutrition, and human micro-

bial ecology research (Gidley and Yakubov, 2019). Although each of the isolated arabinans had dis-

tinct effects on gene expression and organismal fitness, our development of orally administered

recoverable and chemically modifiable probes to quantitate community metabolic function revealed

their equivalent degradation in specified diet contexts. These findings illustrate how in vivo func-

tional assays can complement and expand current approaches for characterizing microbiomes.

The bead-based MFABs described in this report represent a technology for measuring biochemi-

cal activities expressed by a microbial community of interest in vivo or ex vivo. Future studies where

MFABs are used in conjunction with genetic tools that enable rapid deletion of genes or entire

multi-kilobase loci could provide new insights about the mechanisms by which community members

acquire/degrade nutrients (polysaccharides). We emphasize that in this study, we use MFABs to

quantify community degradative activity and not to analyze community consumption of MFAB-

bound polysaccharides and its relationship to bacterial growth. Determining the latter is challenging

in our animal model; a typical gavage of 107 beads contained 100 mg of bead-immobilized polysac-

charide, 1000 times more polysaccharide was consumed daily in the diet by mice in the polysaccha-

ride-supplemented arms of our experiments.

Installing specific functional groups on the surfaces of microscopic paramagnetic glass beads

using commercially available organosilane reagents allows ‘modular’ incorporation of different bio-

molecules. This approach represents an alternative to a procedure we described recently, where

bifunctional biotinylated ligands are generated prior to immobilization on glass beads coated with

streptavidin (Patnode et al., 2019). Each of these approaches has distinct advantages and disadvan-

tages. By immobilizing ligand directly on the bead surface, MFABs possess a greater number of sites

for ligand attachment than streptavidin-coated beads and include no protein constituents. Higher

ligand density enables higher levels of ligand loading, which reduces the absolute number of beads

that need to be administered, recovered, and processed, and increases the dynamic range of a func-

tional activity readout.

A unifying question for food science, microbiome science, and nutrition research is how to deci-

pher the effects of a nutrient and the matrix in which it resides within a food on modulation of micro-

biota functions (Gidley and Yakubov, 2019; Leitch et al., 2007). Crude plant fibers contain various

polysaccharides densely intercalated within a cellulose-lignin matrix (Caffall and Mohnen, 2009).

We found that the absolute abundances of B. cellulosilyticus WH2 and Ruminococcaceae sp. TSDC

17.2 increase significantly when animals were consuming the crude pea fiber-supplemented diet, but

not during supplementation with either of the isolated arabinans. The chemistry for covalent polysac-

charide attachment to MFABs not only allows for dense ligand presentation, but also enables multi-

ple ligands to be simultaneously immobilized to create ‘hybrid’ beads to model the effects of

physical colocalization of different fiber components on microbial degradation. In principle, a wide

range of different glycan combinations with varying stoichiometries can be explored owing to the

fact that different hybrid bead types, each with its own fluorophore, can be created and tested
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simultaneously in vitro and in vivo to investigate the mechanism, generality, and biological signifi-

cance of colocalization of glycans on their degradation by gut microbes.

The selection of gut bacterial taxa for in vivo tests of fiber effects in gnotobiotic animal models is

critical for yielding ecologically and physiologically relevant results. Characterizing defined communi-

ties comprised of organisms beyond those represented in the 14-member consortium will undoubt-

edly be informative. For example, members of Lactobacillus, Bifidobacterium, and Faecalibacterium

are more tolerant of acidic conditions after carbohydrate fermentation and can outcompete acid

intolerant bacteria such as Bacteroides; their inclusion would likely change the response of commu-

nity members to the presence of different plant fiber preparations and the dynamics of plant fiber

degradation documented by various collections of MFABs.

The approach we describe for ligand immobilization does not require the synthesis of bifunctional

ligands (or fluorophores); instead, custom functional groups can be incorporated into the probe

through modification of the organosilane donor molecule. As such, the MFAB platform provides an

opportunity to develop chemistries for nondestructively releasing ligands for analysis (Bielski and

Witczak, 2013). For example, characterizing microbial degradation of polysaccharides needs to

move beyond relatively ‘simple’ GC–MS measurements of monosaccharides released from the sur-

face of recovered beads to readouts of glycan structures recovered from the bead surface (prior to

and after exposure to microbes). This information would provide a more informed view of functional

properties (saccharolytic activities) expressed by model communities comprised of cultured

sequenced members of a microbiota representing a population of interest, or their intact uncultured

microbiota, as well as greater insights about structure/activity relationships of existing or new candi-

date prebiotic and synbiotic formulations.

Materials and methods

Isolation of PFABN
Fractionation of pea fiber
Raw pea fiber (Rattenmaier) was fractionated using serial extractions with aqueous buffers of increas-

ing harshness (Pattathil et al., 2012). Pea fiber (5 g) was defatted by stirring at 23˚C for 2 hr in 60

mL of 80% (vol:vol) ethanol. Fiber was pelleted by centrifugation (3500 x g, 5 min), and the superna-

tant was removed. Neat ethanol was added to the pelleted fiber, and the solution was mixed for 2

min. Fiber was centrifuged (3500 x g, 5 min), and the supernatant was removed. Neat acetone was

added to the pelleted fiber, the solution was mixed for 2 min, centrifuged (3500 x g, 10 min), and

the supernatant was removed. The resulting ‘defatted’ pea fiber was dried in a chemical hood over-

night. Defatted pea fiber was subsequently resuspended in 200 mL of 50 mM ammonium oxalate

(pH = 5.7) and stirred at 23˚C for 20 hr. The suspension was centrifuged (7000 x g, 15 min), the

supernatant was collected, concentrated (Amicon Stirred Cell concentrator [Millipore Sigma; Cat.

No.: UFSC20001] with a 3 kDa molecular weight cut-off ultrafiltration disk [Millipore Sigma; Cat. No.:

PLBC06210]), and then dialyzed extensively against water (3.5 kDa molecular weight cut-off dialysis

tubing [Thermo Scientific; Cat. No.: 88244] or 3.5 kDa molecular weight cut-off Slide-A-Lyzer dialysis

cassettes [Thermo Scientific]). The precipitate from the dialysis was recovered by centrifugation

(15,000 x g, 15 min). The precipitate and soluble material from the dialysis, representing fractions

one and two, respectively, were dried with lyophilization.

The pellet from the ammonium oxalate extraction was washed with 200 mL of water, centrifuged

(4000 x g, 15 min), and the supernatant was discarded. The pellet was resuspended in 200 mL of 50

mM sodium carbonate (pH 10) containing 0.5% (wt:wt) sodium borohydride and stirred at 23˚C for

20 hr. The suspension was centrifuged (6000 x g, 15 min), and the supernatant was collected. Boro-

hydride was quenched by slowly adding glacial acetic acid. A stringy precipitate began to form as

the pH decreased. The suspension was concentrated (as above); the insoluble and soluble portions

of the resulting concentrated sodium carbonate suspension were separated with centrifugation

(15,000 x g, 15 min), yielding fractions three and four, respectively. Fractions were dialyzed and

dried with lyophilization.

The pellet from the sodium carbonate extraction was washed with water before resuspension in

200 mL of 1 M potassium hydroxide containing 1% wt:wt sodium borohydride and stirring for 20 hr

at 23˚C. The suspension was centrifuged (6000 x g, 15 min), and the supernatant was removed. Five
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drops of 1-octanol were added to prevent foaming during borohydride quenching. A light precipi-

tate began to form in the solution as the pH decreased. The suspension was concentrated; the insol-

uble and soluble portions of the concentrated 1 M potassium hydroxide extract were separated by

centrifugation (15,000 x g, 15 min), yielding fractions five and six, respectively. The fractions were

dialyzed and dried with lyophilization.

The pellet from the 1 M potassium hydroxide extraction was washed with water before resuspen-

sion in 200 mL of 4 M potassium hydroxide containing 1% wt:wt sodium borohydride. The mixture

was stirred at 23˚C for 20 hr. The suspension was then centrifuged (6000 x g, 15 min), and the super-

natant was removed. 1-Octanol was added to prevent foaming during borohydride quenching; dur-

ing this process, a precipitate formed, dissolved, and then reformed as the pH was lowered to 6.0.

The resulting suspension was concentrated; the insoluble and soluble portions of the concentrated 4

M potassium hydroxide extract were separated by centrifugation (15,000 x g, 15 min), yielding frac-

tions seven and eight, respectively. These fractions were dialyzed and dried with lyophilization. Note

that after each extraction, sodium azide was added to a final concentration of 0.05% prior to concen-

tration and dialysis.

Characterization of pea fiber fractions
Each of the eight fractions was resuspended in water (1 mg/mL) by heating to 90˚C and sonication

(Branson Sonifer). Insoluble material was removed by centrifugation (18,000 x g, 5 min). The soluble

material was assayed for protein content (bicinchoninic acid assay) using bovine serum albumin as a

standard, DNA content (UV-visible absorbance spectroscopy, Denovix DS-11 spectrophotometer)

and total carbohydrate content (phenol-sulfuric acid assay; Masuko et al., 2005) using D-glucose as

a standard (Supplementary file 1). The molecular size of each fraction was measured using an Agi-

lent 1260 high-performance liquid chromatography system equipped with an evaporative light scat-

tering detector. An Agilent Bio Sec-5 column (Cat. No.: 5190–2526) and guard were used with water

as the mobile phase. Unbranched pullulan fractions were employed as length standards (Shodex).

The monosaccharide composition of each fraction was measured using polysaccharide methanolysis

followed by GC–MS (Doco et al., 2001). [1,2,3,4,5,6-2H]-Myo-inositol (CDN Isotopes) was used as an

internal standard. Twofold dilutions of free monosaccharide standards (L-arabinose, D-galactose, D-

galacturonic acid, D-glucose, D-glucuronic acid, D-mannose, D-rhamnose, and D-xylose) were simulta-

neously derivatized and used to quantify the absolute abundance of each monosaccharide in each

fraction. GC–MS peaks were quantified using metaMS (Wehrens et al., 2014). Glycosyl-linkage anal-

ysis was performed on fractions five, seven, and eight at the Complex Carbohydrate Research Cen-

ter (University of Georgia), employing previously described methods (Anumula and Taylor, 1992).

Fraction eight was enriched in arabinan and designated PFABN.

Procedure for scaled up isolation of PFABN
The isolation procedure described above was slightly modified to recover gram quantities of PFABN.

Raw pea fiber was resuspended at 50 mg/mL in 1 M potassium hydroxide containing 0.5% (wt:wt)

sodium borohydride and stirred at room temperature for 24 hr. The suspension was centrifuged

(3900 x g, 20 min), and the supernatant was discarded. The pellet from the 1 M potassium hydroxide

extraction was resuspended in 4 M potassium hydroxide containing 0.5% (wt:wt) sodium borohy-

dride (50 mg/mL) and stirred at room temperature for 24 hr. The suspension was centrifuged, and

the supernatant was collected and neutralized with 4 M acetic acid. Neat ethanol was added (7.5:1

[vol:vol]), and polysaccharide was precipitated at �20˚C. Precipitated polysaccharide was isolated by

centrifugation (3900 x g, 20 min) and rinsed with 250 mL of 80% ethanol (4˚C) three times. The pellet

was dried overnight under a dry nitrogen stream. The entire procedure was repeated five times to

isolate 51 g of PFABN (overall yield 22%). Isolated PFABN was pulverized (Spex SamplePrep

Freezer/Mill; Metuchen, NJ; Model 6870), and total carbohydrate content was defined (phenol-sulfu-

ric acid assay).

GC–MS of neutral monosaccharide composition
PFABN was suspended in water at a concentration of 1 mg/mL and transferred to 8 mm crimp top

glass vials (Fisher Scientific; Cat. No.: C4008-632C). One hundred and seventy-five microliters of 2 M

trifluoroacetic acid containing 15 ng of D6-myo-inositol was added, and the vials were capped with
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Teflon-coated aluminum caps (Fisher Scientific; Cat. No.: C4008-2A). PFABN was hydrolyzed for 2 hr

at 95˚C. Samples were then centrifuged (3200 x g, 5 min), the supernatant was transferred to a new

glass vial, and the material was dried under reduced pressure. Samples were subsequently oximated

by adding 20 mL of methoxyamine (15 mg/mL in pyridine) and incubating the solution overnight at

37˚C. Twenty microliters of MSTFA (N-methyl-N-trimethylsilyltrifluoroacetamide plus 1% TCMS

[2,2,2-trifluoro-N-methyl-N-(trimethylsilyl)-acetamide, chlorotrimethylsilane]) (Thermo Scientific) was

added, and the solution was incubated at 70˚C for 1 hr. The material was subsequently diluted with

20 mL heptane before analysis using an Agilent 7890A gas chromatography system coupled with an

Agilent 5975C mass spectrometer detector. Employing L-arabinose, D-galactose, D-glucose, D-man-

nose, D-rhamnose, D-xylose standards, peaks were identified and quantified using metaMS

(Wehrens et al., 2014); peak areas were corrected using a D6-myo-inositol internal standard and

quantified using linear fits of twofold diluted standards. Technical replicates represent independent

GC–MS derivatizations and analyses of the same sample.

PFABN linkage analysis
PFABN was enzymatically destarched using amyloglucosidase and a-amylase (Megazyme). To do so,

PFABN was first resuspended by heating at 95˚C in a solution containing 50 mM sodium malate

(pH = 6) and 2 mM calcium chloride (5 mg/mL). Based on the manufacturer’s measurement of the

specific activities of these two enzymes, we added an amount sufficient to degrade all starch within

the PFABN fraction within one minute; nonetheless, we allowed degradation to proceed for 4 hr at

37˚C before terminating the reaction by incubation at 95˚C for 20 min. Polysaccharide was dialyzed

extensively against water and dried by lyophilization. Complete digestion of starch was confirmed

with GC–MS analysis of neutral monosaccharides.

Glycosyl-linkage analysis was performed on the destarched PFABN at the Complex Carbohydrate

Research Center (University of Georgia) using previously described methods (Anumula and Taylor,

1992). Briefly, polysaccharide (1 mg) was taken up in dimethyl sulfoxide, permethylated in the pres-

ence of NaOH base, hydrolyzed for 2 hr in 2 M trifluoroacetic acid at 121˚C, reduced overnight with

sodium borohydride, and acetylated with acetic anhydride and pyridine. Inositol was used as an

internal standard. The resulting partially methylated alditol acetates were analyzed by GC–MS (HP-

5890 instrument interfaced with a 5970 mass selective detector using a SP2330 capillary column

[30 � 0.25 mm ID, Supelco] and a temperature program of 60˚C for 1 min, increasing to 170˚C at

27.5˚C/min, to 235˚C at 4˚C/min with a 2 min hold, and finally to 240˚C at 3˚C/min with 12 min hold).

Sugar beet arabinan (Megazyme) was analyzed simultaneously. The resulting linkage data are pre-

sented in Supplementary file 1.

In vitro growth assays
Bacterial stocks, previously stored at �80˚C, were struck onto Brain-heart infusion (BHI; Becton Dick-

inson) agar plates supplemented with 10% (vol:vol) horse blood. Plates were incubated in an anaero-

bic growth chamber (Coy Laboratory Products; atmosphere 3% hydrogen, 20% CO2, and 77% N2).

Single colonies were picked and grown overnight on a defined Bacteroides minimal medium (BMM)

(McNulty et al., 2013) containing 5 mg/mL D-glucose. Bacteria were then diluted 1:500 (vol:vol) into

BMM supplemented with a carbon source at a final concentration of 0.5% (wt:wt) and distributed

into the wells of a 96-well half-area plate (Costar; Cat. No.: 3696). Plates were sealed with an

optically clear membrane (Axygen; Cat. No.: UC500) and growth at 37˚C was monitored by measur-

ing optical density at 600 nm every 15 min (Biotek Eon instrument with a BioStack 4). Carbon sources

tested include D-glucose, PFABN, SBABN, and glucomannan (Megazyme). All conditions were tested

in quadruplicate. Readings obtained from control wells inoculated with bacteria but lacking a carbon

source were averaged and subtracted from data obtained from carbon-supplemented cultures to

generate background subtracted OD600 growth curves.

Gnotobiotic mouse experiments
All experiments involving mice were carried out in accordance with protocols approved by the Ani-

mal Studies Committee of Washington University in Saint Louis.
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Colonization
Germ-free male C57BL/6J mice were maintained within flexible plastic isolators under a strict 12 hr

light cycle (lights on a 0600) and fed an autoclavable mouse chow (Envigo). Animals were colonized

with a 14-member microbial community of cultured, sequenced bacterial strains composed of a mix-

ture of type strains or their Tn mutant library equivalent (Hibberd et al., 2017; Wu et al., 2015) and

strains isolated from the lean co-twin of an obesity discordant twin pair (Twin Pair one in

Ridaura et al., 2013). Bacterial strains were grown to early stationary phase in gut microbiota

medium (Goodman et al., 2011) or LYBHI medium (Sokol et al., 2008). Monocultures were stored

at �80˚C after addition of an equal volume of PBS (pH 7.4) supplemented with 30% glycerol (vol:

vol). Gavage pools were prepared (2 � 106 CFUs per strain; equal volumes of each INSeq library)

and introduced into mice using a plastic tipped oral gavage needle. Animals receiving communities

with Tn mutant libraries were individually housed in cages containing cardboard shelters (for environ-

mental enrichment).

Five days prior to colonization, mice were switched to a HiSF-LoFV diet. This diet was produced

using human foods as described in a previous publication (Ridaura et al., 2013), freeze-dried, and

milled (D90 particle size 980 mm). The milled diet and each of the three diet supplements were

weighed and transferred (separately) into sterile screw top containers (Fisher Scientific; Cat. No.: 22-

150-244). Diets were sterilized by gamma irradiation (20–50 kilogreys, Steris, Mentor, OH). Sterility

was confirmed by culturing material in TYG medium under aerobic and anaerobic conditions. The

HiSF-LoFV diet and supplement were combined after transfer into gnotobiotic isolators (raw pea

fiber at 10% [wt:wt]; PFABN at 2% [wt:wt], and SBABN at 2% [wt:wt]). Diets were mixed into a paste

after adding sterile water (15 mL/30 g of diet). The paste was pressed into a small plastic tray and

placed on the floor of the cage. Fresh diet was introduced every 2 days and in sufficient quantity to

allow access ad libitum. Autoclaved bedding (Aspen wood chips; Northeastern Products) was

changed at least weekly and immediately following a diet switch. Germ-free mice were randomized

into groups to match the starting average weights of animals in all treatment groups.

Community profiling by sequencing
DNA was isolated from fecal samples by bead beading with 250 mL 0.1 mm zirconia/silica beads and

one 3.97 mm steel ball in 500 mL of 2� buffer A (200 mM Tris, 200 mM NaCl, 20 mM EDTA), 210 mL

20% (wt:wt) sodium dodecyl sulfate, and 500 mL of phenol:chloroform:amyl alcohol (pH 7.9; 25:24:1)

for 4 min. Four hundred and twenty microliters of the aqueous phase was removed; DNA was puri-

fied (QIAquick 96 PCR purification kit; Qiagen) according to the manufacture’s protocol and eluted

into 10 mM Tris–HCl (pH 8.5). Sequencing libraries were prepared from purified DNA by tagmenta-

tion with the Nextera DNA Library Prep Kit (Illumina) and custom barcoded primers (Adey et al.,

2010). Libraries were sequenced (Illumina Nextseq instrument, 75-nt unidirectional reads) to a

depth �1 � 106 reads per sample. Reads were demultiplexed and mapped to community member

bacterial genomes, 2 ‘spiked-in’ bacterial genomes for absolute abundance calculation (see below),

and two ‘distractor’ genomes (Faecalibacterium prausnitzii; GenBank assembly accession:

GCA_902167865.1; Bifidobacterium longum subsp. infantis; GenBank assembly accession:

GCA_902167615.1; Raman et al., 2019), using custom Perl scripts adapted to use Bowtie 2

(Langmead and Salzberg, 2012; McNulty et al., 2011).

To calculate bacterial absolute abundance, an aliquot containing a known number of two bacteria

strains not encountered in mammalian gut communities or in the diet was added to each fecal sam-

ple prior to DNA extraction (Stämmler et al., 2016) (30 mL of a 2.22 � 108 cells/mL suspension of

Alicyclobacillus acidiphilus DSM 14558 [GenBank assembly accession: GCA_001544355.1] and 30 mL

of a 9.93 � 108 cells/mL suspension of Agrobacterium radiobacter DSM 30147 [GenBank assembly

accession: GCA_000421945.1]; Wolf et al., 2019). Community profiling by sequencing (COPRO-

Seq) provides an output counts table that is normalized to the informative genome size of each bac-

terial genome; this is used to generate a normalized relative abundance table. The calculated rela-

tive abundances of the spike-in genomes were 0.40 ± 0.19% and 0.29% ± 0.16 (mean ± s.d.),

respectively. For a given taxa i, in sample j, the absolute abundance in genome equivalents per

gram of feces was calculated using the normalized relative abundance and the A. acidiphilus spike-in

(A. a):
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To identify bacterial taxa that respond to each diet treatment, absolute abundance data from

fecal samples collected after diet supplementation were fit using a linear mixed-effects model (lme4

package; Bates et al., 2015). The dependence of bacterial abundance on ‘diet by day’ was tested.

‘Animal’ was included as a random variable. Tukey’s HSD p-values from the linear models were cor-

rected for multiple hypotheses (Benjamini and Hochberg, 1995). Estimated marginal means were

calculated from linear models (emmeans package) of absolute abundances for each diet group. To

simplify visualization of the effects of each diet supplement, estimated marginal mean values were

expressed as a ratio of the marginal mean of all mice prior to the diet switch on dpg 2. Diet-respon-

sive bacterial strains were defined as those whose absolute abundance was significantly different

(p<0.01, linear mixed-effects model [Gaussian]; two-way ANOVA with Tukey’s HSD, FDR corrected)

in �3 of the six total diet comparisons (i.e., (1) HiSF-LoFV vs pea fiber, (2) HiSF-LoFV vs PFABN, (3)

HiSF-LoFV vs SBABN, (4) pea fiber vs PFABN, (5) pea fiber vs SBABN, or (6) PFABN vs SBABN), and

the estimated marginal mean of the diet effect was greater than 1.5 for at least one diet-supple-

mented group.

Tn insertion site sequencing
Multi-taxon INSeq (Wu et al., 2015) was used to simultaneously measure genetic fitness determi-

nants in five Bacteroides sp. (four of which were identified as fiber responsive). Briefly, MmeI diges-

tion cleaves genomic DNA at a site 20–21 bp distal to the restriction enzyme’s recognition sequence

in the mariner transposon vector. This flanking genomic DNA, and a taxon-specific barcode inserted

into the transposon, allow quantitation of each unique insertion mutant member of a given Bacter-

oides INSeq library.

Purified fecal DNA was processed as previously described (Wu et al., 2015). Genomic DNA was

digested with MmeI, size selected, ligated to sample-specific adapter primers, size selected, ampli-

fied by PCR, and a specific 131 bp final product isolated from a 4% (wt:wt) MetaPhore (Lonza) DNA

gel. Purified DNA was sequenced, unidirectionally, on an Illumina HiSeq 2500 platform (50-nt reads)

using a custom primer that captures the species-specific barcode. Quantitation of each insertion

mutant’s abundance (read counts) was determined using custom software (Wu et al., 2015). Count

data were normalized for library depth (within the same species), a pseudo-count of 8 was added,

and the data were log2 transformed. Transformed count data from dpg 2 and dpg six were used to

build linear models (limma package; Ritchie et al., 2015) to identify diet supplement-specific genes

that significantly altered bacterial abundance (relative to unsupplemented HiSF-LoFV diet). p-values

from the linear models were corrected for multiple hypotheses with the Benjamini–Hochberg

method.

Metaproteomic analysis
The protocol for mass spectrometry-based metaproteomic analysis of fecal samples has been

described in detail in Patnode et al., 2019. Briefly, samples were processed using bead beating and

4% (wt:wt) sodium dodecyl sulfate (SDS) buffer for lysis and solubilization followed by on-filter prote-

ase digestion of proteins. SDS is widely used as a detergent in protein extraction protocols for its

increased efficiency of whole-cell protein solubilization. A number of proteome publications have

demonstrated that inclusion of this detergent in protein extraction protocols increases peptide iden-

tification rates from a wide range of proteins, including peptides found in membrane-associated pro-

teins (Tanca et al., 2013). We have also documented an increase in total peptide identifications,

including membrane protein representation, after inclusion of SDS in the extraction method that we

have applied to a variety of microbial systems (Blakeley-Ruiz et al., 2019; Nickels et al., 2020;

Salvachúa et al., 2020). While there may still be underrepresentation of some proteins, such as

membrane proteins with multiple transmembrane helices, if there is an underrepresentation of pro-

teins encoded by the PULs due to methodology-induced bias, this bias will be inherent and consis-

tent across all samples. As proteins encoded by the PULs are compared across treatment, we

reasoned that underrepresentation of these proteins would be the same across all samples and not

impact our overall findings.
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Only data from peptides that uniquely map to a single protein were considered for analysis.

Summed peptide abundance data for each protein was log2-transformed. Missing data was imputed

to simulate ‘instrument limit of detection’ by calculating the mean and standard deviation of the pro-

tein abundance distribution for each sample. Proteins included in this distribution were detected in

more than three mice within a given treatment group. Missing values were imputed as mean minus

2.2 times the standard deviation with a width equal to 0.3 times the standard deviation. For species

where greater than 100 proteins were quantified, data were normalized with cyclic loess normaliza-

tion (limma package). Loess-normalized protein abundance data were then used to build linear mod-

els (limma package) to identify diet-supplement-responsive proteins (relative to levels in control

mice receiving the unsupplemented HiSF-LoFV diet) at dpg 6. p-values from the linear models were

corrected for multiple hypotheses.

Generation of microbiota functional activity biosensors
Synthesis of amine plus phosphonate functionalized beads
Paramagnetic, 10 mm diameter glass beads (Millipore Sigma) were incubated at 23˚C overnight in a

solution of 20 mM HEPES (pH 7.4) and 100 mM NaCl. Equal molar amounts of (3-aminopropyl)trie-

thoxysilane (APTS; Sigma–Aldrich) and 3-(trihydroxysilyl)propylmethylphosphonate (THPMP; Sigma–

Aldrich) were subsequently added to a suspension of hydrolyzed NHS ester-activated beads in

deionized water (Bagwe et al., 2006; Soto-Cantu et al., 2012). Beads were derivatized at a density

of 5 � 106/mL, and the organosilane reagents were included at 1000-fold excess of what would be

required to coat the bead surface (based on four silane molecules per nm2; Soto-Cantu et al.,

2012). The reaction was allowed to proceed for 5 hr at 50˚C with shaking and then terminated with

three cycles of washing in water (using a magnet to recover the beads after each wash cycle). Beads

were stored at 4˚C in a sterile solution of 20 mM HEPES (pH 7.2) and 100 mM NaCl at 4˚C.

Amine plus phosphonate bead acetylation
Beads were washed repeatedly with multiple solvents with the goal of resuspending the beads in

anhydrous methanol; to do so, beads were washed in water, then methanol, and then anhydrous

methanol (1 vol equivalent; 5 � 106 beads /mL). Pyridine (0.5 vol equivalents) was then added as a

base followed by acetic anhydride (0.5 vol equivalents). The reaction was allowed to proceed for 3

hr at 22˚C and then terminated by repeated washing in water. Beads were stored in 20 mM HEPES

(pH 7.2) and 100 mM NaCl at 4˚C.

Fluorophore labeling of amine plus phosphonate beads
Beads were labeled with the following N-hydroxysuccinimide (NHS) ester-activated fluorophores: (1)

Alexa Fluor 488 NHS ester (Fisher Scientific), (2) Promofluor 415 NHS ester (PromoKine); (3) Promo-

fluor 633P NHS ester (PromoKine), and (4) Promofluor 510-LSS NHS ester (PromoKine). NHS-acti-

vated fluorophores were dissolved in dimethyl sulfoxide (DMSO) at 1 mM. The stock solution of

each fluorophore was diluted in DMSO to 10 mM. The fluorophore was conjugated to amine plus

phosphonate beads in 20 mM HEPES (pH 7.2) and 100 mM NaCl (3 � 106 beads/mL reaction; final

concentration of fluorophore in the reaction, 100 nM). The reaction was allowed to proceed for 50

min at 22˚C and then terminated by repeated washing with water. Beads were stored in 20 mM

HEPES (pH 7.2) and 100 mM NaCl at 4˚C.

Polysaccharide conjugation to fluorophore-labeled amine plus phosphonate
beads
Polysaccharides were resuspended at a concentration of 5 mg/mL in 50 mM HEPES (pH 7.8) using

heat and sonication with the exception of maltodextrin (DE 13–17; Sigma–Aldrich), which was resus-

pended at 50 mg/mL. Triethylamine (TEA, 0.5 equivalent) and 1-cyano-4-dimethylaminopyridinium

tetrafluoroborate (CDAP; one eq; Sigma–Aldrich; dissolved in DMSO at a concentration of 50 mg/

mL) were added to the polysaccharide solution. The optimal concentration of CDAP for polysaccha-

ride activation, without overactivation and aggregation, was found to be 0.2 mg CDAP/mg of poly-

saccharide (or roughly 7 moles of hexose per mole of CDAP for a hexose polysaccharide). The

polysaccharide/TEA/CDAP solution was mixed for 2 min at 22˚C to allow for polysaccharide activa-

tion. Fluorophore-labeled amine plus phosphonate beads resuspended in 50 mM HEPES (pH 7.8)
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were added to the activated polysaccharide solution, and the reaction was allowed to proceed for

15 hr at 22˚C (final polysaccharide concentration typically 3.5 mg/mL). Any aggregated beads were

disrupted by gentle sonication. Polysaccharide-conjugated beads were reduced by adding 2-picoline

borane (one eq; Sigma–Aldrich) dissolved in DMSO (10% wt:wt) and incubating the mixture for 40

min at 40˚C. The reaction was terminated with repeated washing with water. Beads were stored in

20 mM HEPES (pH 7.2) and 100 mM NaCl at 4˚C.

Beads were counted using flow cytometry. Typically, 5 mL of a polysaccharide-coated bead solu-

tion were added to 200 mL of HNTB (20 mM 4-(2-hydroxyethyl)�1-piperazineethanesulfonic acid

[HEPES] [pH 7.4], 100 mM NaCl, 0.01% bovine serum albumin [wt:wt], and 0.01% Tween-20 [wt:wt])

containing CountBright Absolute Counting Beads (Thermo Scientific). Beads were analyzed using

flow cytometry on a FACSAriaIII instrument (BD Biosciences).

Analytical characterization of beads
Bead zeta potential was measured to characterize the extent of modification of the bead surface;

zeta potential was determined for beads reacted with organosilane reagents with or without surface

amine acetylation. Zeta potential measurements were made on a Malvern ZEN3600 instrument using

disposable zeta potential cuvettes (Malvern). Beads were resuspended to a concentration of 5 �

105/mL in 10 mM HEPES (pH 7.2) passed through a 0.22 mm filter (Millipore) and analyzed in tripli-

cate. Measurements were obtained with the default settings of the instrument, using the refractive

index of SiO2 as the material and water as the dispersant.

Bead surface amines were quantified using a ninhydrin-based assay per the manufacturer’s

instructions (Anaspec) with slight modification. Octylamine (Sigma–Aldrich) in 60% (vol:vol) ethanol:

water was used to generate a standard curve. Octylamine or beads resuspended in 60% ethanol

were added to glass crimp top vials (1 vol equivalent; 100 mL). One volume equivalent of each of

three solutions used for detection of amines was added to the vials. Vials were then sealed and incu-

bated at 95˚C for 3 min. The reaction mixture was centrifuged (5000 x g, 5 min) to remove the

beads, and the absorbance at 570 nm was measured from the resulting supernatant (Biotek Eon).

One million amine plus phosphonate beads were analyzed, while three million acetylated amine plus

phosphonate beads were required for sufficient signal. Surface amines were calculated from linear

regression of the octylamine standard curve.

Biotin binding sites on streptavidin-coated beads (Millipore Sigma) were quantified using an avi-

din and 40-hydroxyazobenzene-2-carbocylic acid assay according to the manufacturer’s instructions

(Fisher Scientific). Briefly, 5 � 106 beads were incubated for 1 hr at 22˚C in 0.25 mL of 0.2 mM biotin

dissolved in PBS (7.4). The concentration of biotin remaining was compared to the initial biotin solu-

tion to quantify the mols of biotin captured by streptavidin-coated beads.

Quantification of bead-bound polysaccharide
Polysaccharide degradation from beads was quantified by GC–MS as described in the section ‘GC-

MS of neutral monosaccharide composition’. Briefly, polysaccharide-coated beads were counted

using flow cytometry. Beads for hydrolysis were transferred to a 96-well skirted PCR plate (Multimax;

Cat. No.: 2668; 3–7 � 104 beads/well) and washed three times in water using a magnet. Beads were

resuspended in 175 mL of 2M trifluoroacetic acid containing 15 ng of D6-myo-inositol as an internal

standard and then transferred into 8 mm crimp top glass vials. An aliquot was removed from the

vial, and flow cytometry was used to quantify the number of beads that had been transferred to that

vial. The quantity of monosaccharide released from a bead was determined from the linear fit of

standards divided by the number of beads transferred into the hydrolysis vial. For quantifying rela-

tive polysaccharide degradation, the absolute amount of monosaccharide released from the bead

surface was divided by the mass of that monosaccharide quantified on input beads (with results

expressed as a percentage). Samples were omitted when a insufficient number of beads was recov-

ered for analysis or where an instrument malfunction occurred (i.e., broken vial). Biological replicates

represent beads from individual animals, bacterial cultures, or input beads collected from FACS.

Technical replicates represent independent GC–MS derivatizations and analyses from beads recov-

ered from the same biological sample.
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Use of polysaccharide-coated MFABs in vitro
Individual glycosyl hydrolases, or combinations of enzymes, were added to PFABN-coated beads

(106 beads/mL in 400 mL of 100 mM sodium acetate [pH 4] plus 0.5% bovine serum albumin). All

reactions contained a total of 1 unit of enzyme (per the manufacturer’s documentation). Beads were

incubated with rotation at 37˚C and aliquots were removed after 30 min and 20 hr. Beads were then

washed �3 times with 20 mM HEPES (7.2) and 50 mM NaCl on a magnetic tube stand, incubated at

80˚C for 10 min to inactivate any residual enzyme, and stored in HNTB. The absolute mass of PFABN

remaining on the bead surface was determined by using GC–MS as described above.

Single bacterial colonies were picked and grown overnight in BMM (McNulty et al., 2013) con-

taining 5 mg/mL D-glucose. Bacteria were diluted 1:250 (vol:vol) into BMM supplemented with either

D-glucose or destarched PFABN to a final concentration of 0.5% (wt:wt). Bacterial growth was moni-

tored by measuring optical density at 600 nm every 15 min in a 96-well plate (Biotek Eon). Mid-log

phase cells were harvested by centrifugation (4000 x g; 5 min) and washed once with BMM without

a carbon source. Pelleted cells were resuspended in BMM, without or without added destarched

PFABN, and aliquoted into sterile 5 mL snap cap tubes (Eppendorf; Cat. No.: 0030119401). PFABN-

coated MFABs were sterilized by washing in 70% ethanol (vol:vol) twice on a magnetic tube stand

before resuspension in BMM for at least 1 hr within a Coy chamber (atmosphere 3% hydrogen, 20%

CO2, and 77% N2). The concentration of MFABs in the final incubation was 1 � 106 beads/mL. The

bacteria/MFAB mixture, with or without added destarched PFABN, was incubated at 37˚C with rota-

tion; aliquots (200 mL) were withdrawn at various time points and the number of colony forming units

was determined by 10-fold serial dilution in BMM and plating on LYBHI agar plates. Beads were

washed �3 times with HNTB on a magnetic tube stand. The absolute mass of PFABN remaining on

the bead surface was determined by using GC–MS as described above.

Gavage and recovery of polysaccharide-coated MFABs from mice
Each bead type was individually sterilized by washing in 70% ethanol (vol:vol) twice on a magnetic

tube stand before resuspension in HNTB. A pool of 10–15 � 106 beads (2.5–3.75 � 106 per bead

type) in 400 mL of HNTB was prepared for each mouse; a 350 mL aliquot of the pool was introduced

by oral gavage; the remaining 50 mL was analyzed as the input beads (see above). Beads were iso-

lated from the cecums of mice 4 hr after gavage or from all fecal pellets that had been collected

from a given animal during the 3–6 hr period following gavage. Beads were typically used in mice

within 30 days after polysaccharide conjugation.

Recovered beads were resuspended in 10 mL of HNTB by pipetting and subsequently by vortex-

ing. The resulting slurry was passed through a 100 mm nylon filter (Corning; Cat. No.: 352360). Beads

were isolated from the suspension by centrifugation (500 x g, 5 min) through Percoll Plus (GE Health-

care) in a 50 mL conical tube. Beads were recovered from the bottom of the tube; recovered beads

from each animal were distributed into four 1.5 mL sterile tubes and washed at least three times

with HNTB on a magnetic tube stand until macroscopic particulate debris from intestinal contents

were no longer observed. The material from four tubes were subsequently recombined, and beads

were stored in HNTB containing 0.01% (wt:wt) sodium azide at 4˚C. The procedure described above

typically recovers 20–50% of the input beads from the cecum 4 hr post-gavage.

Bead types were purified by fluorescence-activated sorting (FACSAriaIII; BD Biosciences). Ali-

quots of input beads were sorted throughout the procedure to quantify and monitor sort yield and

purity. Bead purity typically exceeded 98%. Sorted beads were centrifuged (1500 x g, 5 min), the

supernatant was aspirated, and beads were transferred into a 0.2 mL 96-well skirted PCR plate.

Beads were washed with HNTB using a magnetic plate holder and stored at 4˚C in HNTB plus 0.01%

(wt:wt) sodium azide until analysis. Beads were subjected to acid hydrolysis of the bound polysaccha-

ride, and the amount of liberated neutral monosaccharides was determined by GC–MS. All samples

of a given bead type were analyzed in the same GC–MS run; however, the order of analysis of a

given bead type recovered from animals representing different treatment groups was randomized. If

sufficient beads were available, each bead type from each animal was analyzed up to three times.

Data availability
COPRO-Seq and INSeq datasets are deposited at the European Nucleotide Archive (ENA) under

study accession: PRJEB38095. Proteomic data are available in the MassIVE database under project
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number: MSV000085341. COPRO-Seq analysis software can be accessed at https://gitlab.com/hib-

berdm/COPRO-Seq and INSeq analysis software at https://github.com/mengwu1002/Multi-taxon_

analysis_pipeline; a copy has been archived at swh:1:rev:

fac437a7d35ecfd53600ff4dc667563dfb251d25.
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Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux JJ, Blugeon S, Bridonneau C,
Furet JP, Corthier G, Grangette C, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottière HM, Doré J,
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Appendix 1

Supplemental results
Identification of Bacteroides PULs whose expression and contribution to
fitness are significantly affected in vivo by pea fiber, PFABN, and SFABN

To characterize the response of each Bacteroides to the altered nutritional landscape during diet

supplementation, we first conducted a meta-proteomic analysis of PUL expression. Fecal communi-

ties were sampled 4 days after initiation of diet supplementation (dpg 6) from mice belonging to the

three treatment groups receiving supplemented HiSF-LoFV diets and from control animals consum-

ing the unsupplemented diet. Levels of a given protein were cyclic loess-normalized and expressed

as a Z-score relative to the abundances of all quantified proteins in each strain and sample: with this

approach differences between these protein abundance values in a given community member in

mice fed a supplemented compared to unsupplemented diet are not confounded by differences in

the abundances of its host bacterium.

The response of individual proteins to each diet supplement was parameterized using linear mod-

els generated in limma (Ritchie et al., 2015). In total, the abundances of 354, 154, and 156 proteins

were significantly different during diet supplementation with pea fiber, PFABN, or SBABN, respec-

tively (adjusted p-value<0.05, FDR corrected; Supplementary file 3); of these proteins, 196, 88, and

89, respectively, were encoded within PULs, loci for polysaccharide biosynthesis, and/or were anno-

tated as carbohydrate active enzymes (CAZymes).

To identify PULs whose expression were altered significantly, we performed gene set enrichment

analysis (GSEA) on normalized fecal metaproteomic data, considering those PULs that had at least

five encoded proteins whose abundances were altered in the same direction (adjusted p-value<0.05,

unpaired one-sample Z-test, FDR corrected; Luo et al., 2009). The magnitude of each PUL response

was expressed as the average fold-change (log2) of each quantified protein in that PUL compared to

its abundance in the context of the unsupplemented HiSF-LoFV diet. GSEA identified 14, 12, 11,

and 8 PULs that we deemed ‘responsive’ to at least one of the diet supplements in B. thetaiotaomi-

cron VPI-5482 (BT), B. ovatus ATCC 8483 (Bovatus), B. cellulosilyticus WH2 (BcellWH2), and B. vulga-

tus ATCC 8482 (BVU), respectively (Figure 2—figure supplement 1).

Plots of fitness score versus change in protein abundance were then generated for all genes in

each Bacteroides under each diet condition tested (Figure 2—source data 1). High-protein expres-

sion and low mutant fitness are represented in the right lower quadrant of these graphs. A chi-

square test was used to assess overrepresentation of genes from a given PUL in this quadrant.

Genes within a PUL of interest that fell within an ellipse of the interquartile range of both measure-

ments were omitted from the calculation; all genes other than the tested PUL represented the null.

Analyzing PULs as gene sets revealed protein abundance responses and effects on fitness that

were shared between the three supplements and others that were unique. For B. thetaioatomicron

VPI-5482, PUL7 was the most highly upregulated PUL with unfractionated pea fiber or isolated

PFABN; it contains multiple glycoside hydrolase (GH) family 43 and 51 members with reported arabi-

nofuranosidase activity (Figure 2—figure supplement 1; Cartmell et al., 2011). During supplemen-

tation with SBABN, B. thetaioatomicron VPI-5482 PUL75 was highly upregulated; it specifies multiple

GH enzymes, polysaccharide lyases and carbohydrate esterases involved in depolymerizing the

repeating disaccharide RGI backbone (a-(1,2)-L-rhamnose-a-(1,4)-D-galacturonic acid) and is induced

in vitro by diverse pectic polysaccharides (Figure 2—figure supplement 1; Luis et al., 2018;

Martens et al., 2011). BT_PUL7 was identified as having a significant effect on fitness during pea

fiber, PFABN, and SBABN supplementation, while BT_PUL75 had a significant effect on fitness only

during SBABN supplementation (Figure 2—source data 1) (p<0.05, chi-square test, FDR-corrected).

Other PULs in B. thetaioatomicron VPI-5482 that respond differently based on supplement type

include BT_PUL73 (lower in SBABN) and BT_PUL63 (higher in SBABN) (Figure 2—figure supple-

ment 1). Previous RNA-Seq studies had indicated that BT_PUL73 is activated by multiple non-ara-

binan pectic glycans in vitro (Martens et al., 2011) and is involved in homogalacturonan

degradation (Luis et al., 2018). BT_PUL63 responds in vitro to arabinogalactan and modestly to ara-

binan (Martens et al., 2011) and contains enzymes essential for RGI backbone depolymerization

(GH145 and GH105), multiple arabinofuranosidases (GH43 and GH51), and a- and b-galactosidases

(GH97 and GH35, respectively). Whether BT_PUL63 is responding to the increased mole percent of
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galactose, or unique structural features such as 6- or 3,6-substituted galactopyranose in SBABN

remains an open question.

B. vulgatus ATCC 8482 provided another example of multiple PULs that target arabinan but func-

tion as supplement source-specific fitness determinants. BVU_PUL27 and BVU_PUL12 contain genes

belonging to GH43, GH51, and GH146 families that have specificity for L-arabinofuranosyl structures

found in arabinan (Figure 2—figure supplement 1B; Luis et al., 2018). BVU_PUL27 expression is

responsive to all three supplements (Figure 2—figure supplement 1A), but it only significantly

affects fitness in the context of unfractionated pea fiber and PFABN supplementation (Figure 2—

source data 1) (p<0.05, chi-square test, FDR corrected). In contrast, BVU_PUL12 responds to and

functions as a fitness determinant only during SBABN supplementation (Figure 2—figure supple-

ment 1A and Figure 2—source data 1) (p<0.05, chi-square test, FDR corrected).

B. ovatus ATCC 8483 PUL97 exhibits significantly greater expression and functions as a fitness

PUL with all three supplements (Figure 2—figure supplement 1 and Figure 2—source data 1)

(p<0.05, chi-square test, FDR corrected); it is likely involved in RGI utilization based on the presence

of multiple polysaccharide lyases, plus GH2, GH28, GH43, and GH105 family enzymes (Figure 2—

figure supplement 1B). B. ovatus ATCC 8483 PUL97 is the only fitness PUL we identified in this

strain despite increased expression of other PULs, such as Bovatus_PUL40 and Bovatus_PUL96 dur-

ing unfractionated pea fiber and PFABN supplementation (Figure 2—figure supplement 1).

In B. cellulosilyticus WH2, BcellWH2_PUL5 is induced and functions as a fitness PUL in the context

of all three supplements (Figure 2—figure supplement 1 and Figure 2—source data 1) (p<0.05,

chi-square test, FDR corrected). Expression of BcellWH2_PUL71 is significantly higher only during

supplementation with unfractionated pea fiber and PFABN (Figure 2—figure supplement 1) but

contributes minimally to B. cellulosilyticus WH2 fitness (Figure 2—source data 1).

Together, these observations illustrate how human gut Bacteroides exhibit great sensitivity to

diet supplement source and structure. A substantial number of the genes in our forward genetic

screen have a fitness score greater than zero, indicating that the mutant grew better than wild type.

The biological explanation for improved fitness in these cases remains to be determined.

Appendix 1—key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers Additional information

Strain, strain
background
(Bacteroides
cellulosilyticus)

INSeq library (B.
cellulosilyticus WH2)

Wu et al., 2015

Strain, strain
background
(Bacteroides ovatus)

INSeq library (B. ovatus
ATCC 8483)

Wu et al., 2015

Strain, strain
background
(Bacteroides
thetaiotaomicron)

INSeq library (B.
thetaiotaomicron 7330)

Wu et al., 2015

Strain, strain
background
(Bacteroides
thetaiotaomicron)

INSeq library (B.
thetaiotaomicron VPI-
5482)

Wu et al., 2015

Strain, strain
background
(Bacteroides
vulgatus)

INSeq library (B. vulgatus
ATCC 8482)

Hibberd et al.,
2017

Strain, strain
background
(Bacteroides
cellulosilyticus)

B. cellulosilyticus WH2 McNulty et al.,
2013

Continued on next page
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Appendix 1—key resources table continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers Additional information

Strain, strain
background
(Bacteroides ovatus)

B. ovatus ATCC 8483 ATCC Cat. No. ATCC
8483

Strain, strain
background
(Bacteroides
thetaiotaomicron)

B. thetaiotaomicron 7330 Hibberd et al.,
2017

Strain, strain
background
(Bacteroides
thetaiotaomicron)

B. thetaiotaomicron VPI-
5482

ATCC Cat. No. ATCC
29148

Strain, strain
background
(Bacteroides
vulgatus)

B. vulgatus ATCC 8482 ATCC Cat. No. ATCC
8482

Strain, strain
background
(Bacteroides caccae)

B. caccae TSDC17.2–1.2 Ridaura et al.,
2013

Donor fecal sample F60T2

Strain, strain
background
(Bacteroides
finegoldii)

B. finegoldii TSDC17.2–1.1 Ridaura et al.,
2013

Donor fecal sample F60T2

Strain, strain
background
(Bacteroides
massiliensis)

B. massiliensis TSDC17.2–
1.1

Ridaura et al.,
2013

Donor fecal sample F60T2

Strain, strain
background
(Collinsella
aerofaciens)

C. aerofaciens TSDC17.2–
1.1

Ridaura et al.,
2013

Donor fecal sample F60T2

Strain, strain
background
(Escherichia coli)

E. coli TSDC17.2–1.2 Ridaura et al.,
2013

Donor fecal sample F60T2

Strain, strain
background
(Odoribacter
splanchnicus)

O. splanchnicus
TSDC17.2–1.2

Ridaura et al.,
2013

Donor fecal sample F60T2

Strain, strain
background
(Parabacteroides
distasonis)

P. distasonis TSDC17.2–
1.1

Ridaura et al.,
2013

Donor fecal sample F60T2

Strain, strain
background
(Ruminococcaceae
sp.)

Ruminococcaceae sp.
TSDC17.2–1.2

Ridaura et al.,
2013

Donor fecal sample F60T2

Strain, strain
background
(Subdoligranulum
variabile)

S. variabile TSDC17.2–1.1 Ridaura et al.,
2013

Donor fecal sample F60T2

Strain, strain
background
(Alicyclobacillus
acidiphilus)

A. acidiphilus DSM 14558 DSMZ;
Stämmler et al.,
2016

Cat. No. 14558

Strain, strain
background
(Agrobacterium
radiobacter)

A. radiobacter DSM 30147 DSMZ;
Stämmler et al.,
2016

Cat. No. 30147

Continued on next page
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Appendix 1—key resources table continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers Additional information

Strain, strain
background (Mus
musculus, male)

C57BL/6J mice; rederived
germ-free

The Jackson
Laboratory

Cat. No. 00064

Sequence-based
reagent

M12 oligonucleotide,
double stranded

Wu et al., 2015 CTGTCCGTTCCGACT
ACCCTCCCGAC

Sequence-based
reagent

INSeq PCR primer; F Wu et al., 2015 CAAGCAGAAGACGGCA
TACG

Sequence-based
reagent

INSeq PCR primer; R Wu et al., 2015 AATGA
TACGGCGACCACCGAACA
CTCTTTCCCTACACGA

Sequence-based
reagent

INSeq Indexing primer Wu et al., 2015 ACAGGTTGGATGATAAGT
CCCCGGTC

Peptide,
recombinant protein

Amyloglucosidase Megazyme Cat. No.
E-AMGFR

Peptide,
recombinant protein

alpha-Amylase Megazyme Cat. No.
E-PANAA

Peptide,
recombinant protein

Endo-1,5-a-Arabinanase Megazyme Cat. No.
E-EARAB

Peptide,
recombinant protein

a-L-Arabinofuranosidase
(Aspergillus niger)

Megazyme Cat. No.
E-AFASE

Peptide,
recombinant protein

a-L-Arabinofuranosidase
(Cellvibrio japonicus)

Megazyme Cat. No.
E-ABFCJ

Peptide,
recombinant protein

Endo-Inulinase Megazyme Cat. No.
E-ENDOIAN

Peptide,
recombinant protein

MmeI restriction
endonuclease

NEB Cat. No.
R0637L

Peptide,
recombinant protein

T4 DNA ligase NEB Cat. No.
M0202M

Peptide,
recombinant protein

Superfi DNA polymerase Fisher Scientific Cat. No.
12351050

Commercial assay or
kit

Bicinchoninic acid protein
assay kit

Thermo Scientific Cat. No. 23225

Commercial assay or
kit

Nextera DNA library prep
kit

Illumina Cat. No.
15028211

Commercial assay or
kit

QIAquick 96 PCR
purification kit

Qiagen Cat. No. 28181

Commercial assay or
kit

MinElute gel extraction kit Qiagen Cat. No. 28604

Commercial assay or
kit

Quant-iT dsDNA assay kit,
high sensitivity

Thermo Scientific Cat. No.
Q33120

Commercial assay or
kit

CountBright absolute
counting beads

Thermo Scientific Cat. No.
C36950

Commercial assay or
kit

Ninhydrin test kit Anaspec Cat. No. AS-
25241

Commercial assay or
kit

Biotin quantitation kit Thermo Scientific Cat. No. 28005

Software, algorithm R, version 3.5.2 https://www.r-
project.org/

Software, algorithm metaMS Wehrens et al.,
2014

Continued on next page
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Appendix 1—key resources table continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers Additional information

Software, algorithm COPRO-Seq pipeline Hibberd et al.,
2017

https://gitlab.
com/
hibberdm/
COPRO-Seq

Software, algorithm INSeq pipeline Wu et al., 2015 https://github.
com/
mengwu1002
/Multi-taxon_
analysis_
pipeline

Software, algorithm lme4 Bates et al.,
2015

https://github.
com/lme4/
lme4/

Software, algorithm emmeans https://github.
com/rvlenth/
emmeans

Software, algorithm GAGE Luo et al., 2009

Software, algorithm limma Ritchie et al.,
2015

http://
bioconductor.
org/packages
/release/bioc/
html/limma.
html

Software, algorithm FlowJo V10.5.3 https://www.
flowjo.com/

Other Teklad Global 18%
Protein Rodent diet

Envigo Cat. No. 2018S

Other High saturated fats low
fruits and vegetables
mouse chow (HiSF-LoFV)

Ridaura et al.,
2013

Other Pea fiber Rattenmaier Cat. No. Pea
Fiber EF 100

Other Sugar beet arabinan Megazyme Cat. No.
P-ARAB

Other Glucomannan Megazyme Cat. No.
P-GLCML

Other Maltodextrin (DE 13–17) Sigma–Aldrich Cat No. 419680

Other Gut microbiota medium,
for bacterial culture

Goodman et al.,
2011

Other Bacteroides minimal
medium,
for bacterial culture

McNulty et al.,
2013

Other Pullulan length standards Shodex Cat. No.
Standard P-82

Other [1,2,3,4,5,6-2H]-Myo-
inositol

CDN Isotopes Cat. No. D3019

Other MSTFA
(N-methyl-N-
trimethylsilyltrifluoro)
acetamide plus 1% TCMS
(2,2,2-trifluoro-N-methyl-
N-
(trimethylsilyl)-acetamide,
chlorotrimethylsilane)

Thermo Scientific Cat. No. TS-
48915

Continued on next page
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Appendix 1—key resources table continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers Additional information

Other PureProteome NHS
flexibind magnetic beads

Millipore Sigma Cat. No.
LSKMAGN01

Other (3-Aminopropyl)
triethoxysilane

Sigma–Aldrich Cat. No.
440140

Other 3-(Trihydroxysilyl)
propylmethylphosphonate

Sigma–Aldrich Cat. No.
435716

Other Alexa Fluor 488 NHS ester Thermo Scientific Cat. No.
A20000

Other Promofluor 415 NHS ester PromoKine Cat. No. PK-
PF415-1-01

Other Promofluor 633P NHS
ester

PromoKine Cat. No. PK-
PF633P-1–01

Other Promofluor 510-LSS NHS
ester

PromoKine Cat. No. PK-
PF510LSS-1–01

Other 1-Cyano-4-
dimethylaminopyridinium
tetrafluoroborate

Sigma–Aldrich Cat. No.
RES1458C

Other 2-Picoline borane Sigma–Aldrich Cat. No.
654213

Other PureProteome
streptavidin magnetic
beads

Millipore Sigma Cat. No.
LSKMAGT02

Other Percoll Plus GE Healthcare Cat. No.
17544502
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